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AN OVERDETERMINED PROBLEM IN POTENTIAL THEORY

DMITRY KHAVINSON, ERIK LUNDBERG AND RAZVAN TEODORESCU

We investigate a problem posed by L. Hauswirth, F. Hélein, and F. Pacard
(Pacific J. Math. 250:2 (2011), 319–334): characterize all the domains in the
plane admitting a positive harmonic function that solves simultaneously the
Dirichlet problem with null boundary data and the Neumann problem with
constant boundary data. Hauswirth et al. suggested that essentially only
three possibilities exist: the exterior of a disk, a half-plane, and a nontrivial
example they found — the image of the strip |=ζ |<π/2 under ζ 7→ζ+sinh ζ .
We partially prove their conjecture, showing that these are indeed the only
possibilities if the domain is Smirnov and it is either simply connected or
its complement is bounded and connected. We also show the nonexistence
in R4 of an analogous nontrivial example among axially symmetric domains
containing their axis of symmetry.

1. Introduction

In [Hauswirth et al. 2011], the authors posed the following problem: find a smooth
bounded domain � in a Riemannian manifold Mg with metric g, such that the first
eigenvalue λ1 of the Laplace–Beltrami operator on � has a corresponding real,
positive eigenfunction u1 satisfying u1 = 0, ∂u1/∂n = 1 on the boundary of �.
Any such domain is called extremal because it provides a critical point for the first
eigenvalue λ1 of the Laplace–Beltrami operator, under the constraint of fixed total
volume of � (see [Hauswirth et al. 2011] and references therein).

In special cases, one can find a sequence of extremal domains {�t }with increasing
volumes, such that the limit domain�=�t→∞ is unbounded, and its first eigenvalue
vanishes as t→∞. This limit extremal domain is then called exceptional, and the
corresponding limit function (u1,t)t→∞→ u is a positive, harmonic function on �
which solves simultaneously the overdetermined boundary value problem with null
Dirichlet data and constant Neumann data.

The problem of finding exceptional domains in Rn and their corresponding
functions u (called roof functions by the authors of [Hauswirth et al. 2011]) is a
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nontrivial problem of potential theory. There is no obvious variational principle to
use, on the one hand because � is unbounded (so the Dirichlet energy of u [Astala
et al. 2009, Chapter 1] will diverge), and, on the other hand, because the constant
Neumann data constraint is not conformally invariant.

In the absence of a suitable variational formulation, we may interpret the scaling
t→∞ described above as a dynamical process, in which the pair (�t , ut) evolves
so that the limit t→∞ solves the overdetermined problem. In other words, we can
turn this observation into a constructive method for finding (building) exceptional
domains. In order to do this, it is helpful to note that, upon compactification of the
boundary ∂� (with metric dσ 2), the pair (�, u) with flat metric becomes conformal
to the half-cylinder N :=R+×∂�, with metric ds2

= e−2u(du2
+dσ 2). Under this

reformulation, scaling of (�t , ut)t→∞ becomes equivalent to scaling of the metric
structure given above, defined over the fixed space N. This is reminiscent of the
Ricci flow, in which the metric structure g evolves with respect to a deformation
parameter t ∈ R according to the equation

dgi j

dt
=−2Ri j ,

with the right side of the equation given by the covariant Ricci tensor. It is known
from [Topping 2006] that for the case of a two-dimensional manifold, with metric
given by

ds2
= e−2u(dx2

+ dy2),

the Ricci flow equations reduce to a single nonlinear equation

∂u
∂t
=∇

2
gu

(since in two dimensions the Riemann tensor has only one independent component).
This is a heat equation with the generator given by the Laplace–Beltrami operator
corresponding to the metric ds2. Therefore, if there is a stationary solution ∂u/∂t→
0 as t→∞, it will correspond to the scaling of the first eigenvalue λ1(t)→ 0 and,
by conformally mapping back N using the solution u(t→∞), we will obtain the
solution (�, u).

In other words, we can summarize this constructive method for finding excep-
tional domains in R2 as follows: starting from a 2-dimensional Riemannian manifold
with finite volume and metric encoded through the positive real function u, and
boundary set defined via u = 0, consider the time evolution given by the Ricci flow,
without volume renormalization. Then the manifold will remain Riemannian at all
times [ibid.], and in the t→∞ limit, the function u will become a solution of the
nonlinear Laplace–Beltrami equation. Furthermore, if u remains finite everywhere in
the domain, then it is harmonic and satisfies both Dirichlet and Neumann conditions
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at all finite boundary components, so it is a solution for the overdetermined potential
problem. Considered together with the (boundary) point at infinity, the manifold is
equivalent to a pseudosphere — flat everywhere except at the point at infinity, with
overall positive curvature. (We wish to emphasize that there is no reason to assume
that such constructive methods would be exhaustive.)

Thus, so motivated, it is natural to try to characterize exceptional domains in flat
Euclidean spaces. Hauswirth et al. [2011] suggested that in two dimensions there
are only three examples: a complement of a disk, a half-plane, and a nontrivial
example they found [ibid., Section 2]: the image of the strip |=ζ | ≤ π/2 under the
mapping ζ 7→ ζ + sinh ζ . They posed as an open problem to determine if these are
the only examples [ibid., Section 7]. (They gave some evidence by characterizing
the half-plane under a global assumption on the gradient of the roof function [ibid.,
Proposition 6.1].) They also posed the problem of finding nontrivial examples in
higher dimensions and suggested the possibility of axially symmetric examples
similar to the nontrivial example in the plane [ibid., Remark 2.1].

We address both of these problems. The paper is organized as follows. In
Section 2, we review the theory of Hardy spaces in order to address a subtlety
that arises in connection with the regularity of the boundary of an exceptional
domain. This leads us to assume in our theorems that the domain � is Smirnov. In
Section 3, we characterize exteriors of disks as being the only exceptional domain
whose boundary is compact. In Section 4, we establish a connection between the
roof function of an exceptional domain and the so-called Schwarz function of its
boundary, and we also show that the boundary of a simply connected exceptional
domain � can pass either once or twice through infinity. We then show that in the
first case � is a half-plane (Section 5) and in the second case � is the nontrivial
example of Hauswirth et al. (Section 6). In each of these theorems we assume
that � is Smirnov, but we allow the roof function to be a weak solution merely
satisfying the boundary conditions almost everywhere.

In Section 7, we extend the result of Section 3 to higher dimensions. In Section 8,
we show that the nontrivial example from Section 6 does not allow an extension to
axially symmetric domains in four dimensions, contrary to what was suggested in
[Hauswirth et al. 2011, Remark 2.1] (and we conjecture that this example has no
analogues in any number of dimensions greater than two).

Sections 3 through 6 together partially confirm what was suggested in [Hauswirth
et al. 2011, Section 7], under some assumptions on the topology of � and assuming
that � is Smirnov. In Section 9, we give concluding remarks, including a conjecture
that, up to similarity, there are only three finitely connected exceptional domains.
The additional assumption of finite connectivity is due to a remarkable example of
an infinitely connected exceptional domains that appeared in the fluid dynamics
literature [Baker et al. 1976]. See Section 9 for discussion.
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Remark. After this paper was submitted, Martin Traizet [2013] announced a more
complete classification of exceptional domains after developing an exciting new
connection to minimal surfaces. He characterized the three examples as the only
ones having finitely many boundary components. Traizet’s preprint, which appeared
while we were revising this paper, finds a new beautiful connection of the problem
with the theory of minimal surfaces. From this point of view, he noticed the
above-mentioned family of infinitely connected examples [Baker et al. 1976] and
characterized them as the only periodic exceptional domains for which the quotient
by the period has finitely many boundary components [Traizet 2013, Theorem 13].
For this latter result, he invokes a powerful theorem of W. H. Meeks and M. Wolf.
Our methods mostly rely on classical function theory (H p spaces) and potential
theory and in most parts are different from Traizet’s. Interestingly, as noted by
Traizet [2013, Remark 5], if one could prove his Theorem 13 by only invoking pure
function theory, this would give a new and independent proof of the Meeks–Wolf
result from minimal surfaces. An attractive challenge!

2. Classical versus weak solutions, regularity of the boundary,
and Hardy spaces

From the rigidity of the Cauchy problem, one might expect to obtain, for free, regu-
larity of the boundary of an exceptional domain (as is often the case for solutions of
free boundary problems). Unfortunately, the problem at hand is complicated by a re-
markable family of examples with rectifiable but nonsmooth boundaries, also known
as non-Smirnov domains; see [Duren 1970, Chapter 10]. This results in adding
a Smirnov condition to the assumptions on the domains if we desire to consider
weak solutions, i.e., harmonic roof functions satisfying the Dirichlet and Neumann
boundary conditions almost everywhere with respect to the Lebesgue measure.

In order to address this subtlety, we first give some background from H p theory;
see [Duren 1970] for details.

An analytic function f : D → C is said to belong to the Hardy class H p,
0< p <∞, if the integrals ∫ 2π

0
| f (reiθ )|p dθ

remain bounded as r→ 1.
Recall that a Blaschke product is a function of the form

B(z)= zm
∏

n

|an|

an

an − z
1− anz

,

where m is a nonnegative integer and
∑
(1−|an|)<∞. The latter condition ensures

convergence of the product [Duren 1970, Theorem 2.4].
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A function analytic in D is called an inner function if its modulus is bounded
by 1 and its modulus has radial limit 1 almost everywhere on the boundary. If S(z)
is an inner function without zeros, then S(z) is called a singular inner function.

An outer function for the class H p is a function of the form

(2-1) F(z)= eiγ exp
{

1
2π

∫ 2π

0

ei t
+ z

ei t − z
logψ(t) dt

}
,

where γ is a real number, ψ(t)≥ 0, logψ(t) ∈ L1, and ψ(t) ∈ L p.
The following theorem [Duren 1970, Chapter 2, Chapter 5] (see also [Fisher

1983]) provides the parametrization of functions in Hardy classes by their zero sets,
associated singular measures, and moduli of their boundary values.

Theorem 2.1. Every function f (z) of class H p (p > 0) has a unique (up to a
unimodular constant factor) factorization of the form f (z)= B(z)S(z)F(z), where
B(z) is a Blaschke product, S(z) is a singular inner function, and F(z) is an outer
function for the class H p.

Suppose � is a Jordan domain with rectifiable boundary and f : D→ � is a
conformal map. Then f ′ ∈ H 1 by Theorem 3.12 in [Duren 1970]. By Theorem 2.1,
f ′ has a canonical factorization f ′(z)= B(z)S(z)F(z), and since f is a conformal
map f ′ does not vanish, so f ′(z)= S(z)F(z). Then � is called a Smirnov domain
if S(z) ≡ 1 so that f ′(z) = F(z) is purely an outer function. This definition is
independent of the choice of conformal map.

There are examples of non-Smirnov domains with, as above, f ′(z)= S(z)F(z),
but now F(z) ≡ 1 and the singular inner function S(z) is not constant. Such
examples were first constructed by M. Keldysh and M. Lavrentiev [1937] using
complicated geometric arguments. Their existence was somewhat demystified by an
analytic proof provided by P. Duren, H. S. Shapiro, and A. L. Shields [Duren et al.
1966; Shapiro 1966]. Like the disk, such a domain has harmonic measure at zero
(assuming f (0)= 0) proportional to arclength. Thus, its boundary is sometimes
called a pseudocircle.

Similarly, there are exterior pseudocircles, arising as the boundary of an un-
bounded non-Smirnov domain [Jones and Smirnov 1999] for which the harmonic
measure at infinity is proportional to arclength, and thus Green’s function with
singularity at infinity provides a roof function that is a weak solution satisfying
the boundary conditions almost everywhere. Thus, this provides a pathological
example of an exceptional domain in a weak sense. In order to construct such an
unbounded non-Smirnov domain, let us follow the method above-mentioned [Duren
et al. 1966], which is presented in Duren’s book [1970, Section 10.4]. We recall
that the construction is carried out by working backwards, first writing down a
singular inner function S(z) as a candidate for the derivative f ′(z) of the conformal
map f (z). The difficulty is then to show that f (z) is not only analytic, but is also
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univalent, so that it actually gives a conformal map from D to some domain �.
Univalence is established using a univalence criterion of Nehari (and Ahlfors and
Weill), which states that the growth condition

(2-2) |(S f )(z)| ≤
k

(1− |z|2)2
, with k < 2,

on the Schwarzian derivative S f implies that f maps D univalently onto a Jordan
domain on the Riemann sphere.

We follow this procedure, indicating the step that needs to be modified. Start
with a nondecreasing measure µ≤ 0, singular with respect to Lebesgue measure
on the circle, yet sufficiently smooth, so that it belongs to the Zygmund class 3∗
[Duren 1970, Section 10.4].

We will also require µ to have first moment zero:

(2-3)
∫ 2π

0
eiθ dµ(θ)= 0.

This can always be achieved by symmetrizing µ around the origin, thus replacing µ
by 1

2(dµ(θ)+ dµ(θ +π)). Then the center of mass is at the origin, which is (2-3).
As in [Duren 1970, p. 177], let F(z) be the Schwarz integral of µ:

F(z)=
1

2π

∫ 2π

0

eiθ
+ z

eiθ − z
dµ(θ).

Let g(z) be the exponential of a constant (to be chosen later) times F :

g(z)= exp{−aF(z)}.

Having chosen µ in 3∗ and nondecreasing, for a small enough the antiderivative of
g maps the disk onto a bounded Jordan domain with rectifiable boundary [Duren
1970, Theorem 10.9]. Here is where we depart slightly from [Duren 1970], to get
an unbounded domain as the image of f (z). Instead of taking g(z) as a candidate
for f ′(z), we take

f ′(z)= g(z)/z2.

and we check that the same estimates used in the proof of [Duren 1970, Theorem
10.9] also apply to this case. The residue of f ′(z) is zero (since we made the first
moment of µ zero), so its antiderivative f (z) is analytic in D except for a simple
pole at z = 0. Also, | f ′(z)| = 1 a.e. on ∂D.

A calculation shows that the Schwarzian derivative S f of f is given by

(S f )(z)= (SG)(z)+
2
z

g′(z)
g(z)
=−aF ′′(z)−

a2

2
F ′(z)2−

2a
z

F ′(z),

where G is an antiderivative of g. As explicitly stated in [Duren 1970, Section 10.4],
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F ′′(z), F ′(z)2, and F ′(z) are each O((1− |z|)−2). Moreover, F ′(0) = 0 by the
vanishing of the first moment of µ, so that F ′(z)/z is also O((1− |z|)−2). Thus, if
a is chosen small enough, S f satisfies the Nehari criterion for univalence, (2-2).

Hence, f (z) is a conformal map taking {|z|< 1} onto the complement of a Jordan
domain with rectifiable boundary. To see why the boundary is rectifiable, note that,
as stated in [Duren 1970, Section 10.4]), g(z) ∈ H 1, and so f ′(z)= g(z)/z2 is in
H 1 in an annulus 0< r < |z|< 1.

This seemingly excessive construction of an exterior pseudocircle cannot be
avoided by simply taking an inversion of an interior pseudocircle; the result will be
non-Smirnov, but it will not be an exterior pseudocircle. Nor can one simply take
the complement. As proved by P. Jones and S. Smirnov [1999], the complement
of a non-Smirnov domain is often Smirnov! (This unexpected resolution of a long
standing problem put to rest all hopes of characterizing the Smirnov property in
terms of a boundary curve.)

Remark. Closely related examples of similar function-theoretic problems can be
found in [Ebenfelt et al. 2002; Shahgholian 1992]. These examples of non-Smirnov
exceptional domains lead to assuming � is Smirnov in our main theorems; but we
allow u to be a weak solution.

An alternative approach is to require the roof function u to be a classical solution
that satisfies the boundary condition everywhere (and not just a.e.). Then the
domain must be Smirnov. This is because the boundary is locally real-analytic,
as stated in the next lemma. Thus, the boundary is smooth except possibly at
infinity. The preimage of infinity under a conformal map from the disc (or a circular
domain, in the multiply connected case) can consist of at most countably many
points on the boundary, i.e., infinity represents at most countably many “prime
ends” [Markushevich 1977]. Indeed, the complement of � is a disjoint union of
domains, and for each boundary component of� going to infinity there is a separate
component of the complement. None of these are void, since boundary components
must be petals as opposed to slits — on a slit the normal vector would jump at the
finite end point of the slit (violating the local real analyticity stated in the lemma
below). There can be at most countably many such boundary components, because
otherwise the complement of � would consists of uncountably many disjoint
nonempty domains (impossible). Thus, the point at infinity can represent at most
countably many prime ends (for the definition of prime end, see [Markushevich
1977, Chapter 2]). So, if the Smirnov condition is violated, meaning the derivative
f ′ of the conformal map has a factor that is a nontrivial singular inner function,
then the associated singular measure would consist of atoms. The derivative f ′ then
decays exponentially at those points. This violates basic estimates on the derivatives
of univalent functions, as given by Koebe’s distortion theorem [Pommerenke 1975,
Theorem 1.3].
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Lemma 2.2. If �⊂R2 is exceptional and the roof function u is a classical solution
in C1(�), then ∂� is locally real-analytic.

Proof. The analytic completion f (z)= u+ iv (possibly multivalued) maps � into
the right half-plane, since u is positive. The Neumann condition for u implies that
| f ′(z)| = 1 on ∂�. Also, u ∈ C1(�) implies that f ′ ∈ C(�).

Choose a point z0 ∈ ∂�, and let ζ0 = f (z0). Let g(ζ ) = f −1(ζ ) denote the
local inverse of f (z). Choose a neighborhood U of ζ and let F :=U ∩ {<(ζ )≥ 0}.
Choose U small enough so that g ∈ C(F).

Since |g′(ζ )| = 1 on ∂�, we can also choose U small enough that g′ does not
vanish in F . This implies that h(ζ )= log(g′(ζ )) is analytic in the interior of F and
continuous in F . Further, <{h(ζ )} vanishes on the imaginary axis, since |g′(ζ )| = 1
there. Thus h(ζ ) extends to a neighborhood of ζ0 by the Schwarz reflection principle.
This allows us to extend g′(z), and therefore g(z) and f (z) extend analytically
across z0, since u := < f = 0 on ∂� and |∇u| = 1 on ∂� near z0. �

Corollary 2.3. If ∂� is C2-smooth and � is exceptional, then ∂� is locally real-
analytic.

Proof. C2-smoothness of ∂� implies that u is in C1(�). Now use Lemma 2.2. �

Using Kellogg’s theorem [1929] on regularity of conformal maps up to the
boundary (see also [Pommerenke 1992, Chapter 3]), one easily extends the corollary
to C1,α boundaries (α > 0) and even C1 boundaries. We shall not pursue these
details here. It would be interesting to find sharp necessary and sufficient conditions
for the a priori regularity of the boundary that would guarantee the conclusion
of Corollary 2.3. As we have mentioned in the beginning of this section, it is
necessary to assume that the domain is Smirnov, but it is not at all obvious that this
is sufficient. See [Castro and Khavinson 2013a; 2013b] for a related discussion
regarding nonconstant functions in E p classes with real boundary values.

3. The case when infinity is an isolated boundary point

Theorem 3.1. Suppose � is an exceptional domain whose complement C \� is
bounded and connected, and assume � is Smirnov. Then � is the exterior of a disk.

Proof. Let u be a roof function for �. Positivity of u implies, by Bôcher’s theorem
[Axler et al. 1992, Chapter 3], u(z)= u0(z)+C log|z| for some constant C , where
u0(z) is harmonic in�∪{∞}, and u0(z) approaches a constant at infinity (the Robin
constant of ∂� provided C = 1). Thus, in view of the Dirichlet data of u, u(z) is a
multiple of the Green’s function of � with a pole at infinity, and taking v(z) to be
the harmonic conjugate of u(z)/C , we have a conformal map g(z)= eu(z)/C+iv(z)

from � to the exterior of the unit disk (note that g(z) is single-valued in �).
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Using both the Dirichlet and Neumann data, we have |g′(z)| = 1/C a.e. on ∂�,
and therefore

|(g−1)′(ζ )| =
1

|g′(g−1(ζ ))|
= C

a.e. on ∂D. Since g−1 has a simple pole at infinity, (g−1)′ is analytic. Also, (g−1)′

is in H 1(C \D) since ∂� is rectifiable. Since � is Smirnov, the latter function is
outer and also has constant modulus on the unit circle a.e., which together imply
that it is constant. (Recall from (2-1) that an outer function is determined from its
boundary values.) Hence, g−1 is a linear function and ∂� is a circle. �

We defer proving a higher-dimensional version of this result until Section 7, but
we mention here that under more smoothness assumptions, the higher-dimensional
case can be proved using a theorem of W. Reichel [1997].

Under additional smoothness assumptions, the hypothesis of Theorem 3.1 guar-
antees that � is a special type of arclength quadrature domain. The following is
then an immediate corollary of a result of B. Gustafsson [1987, Remark 6.1].

Theorem 3.2. Suppose� is a finitely connected exceptional domain, with piecewise
C1 boundary, and infinity is not a point on the boundary of�. Then� is the exterior
of a disk.

This removes the condition that the complement of � is connected.

Proof. We will show that � is an arclength null-quadrature domain (this term is
defined in Section 9.3) for analytic functions vanishing at infinity. At first, take the
class of test functions to be integrated over ∂� to consist of rational functions r(z)
in � vanishing at infinity.

Let f (z)= u(z)+ iv(z) be the analytic completion of the roof function u. Note
that f ′(z) is single-valued (since it is the conjugate of the gradient of u), and, by
the theorem of Bôcher already cited, f ′(z)= O(|z|−1). The inward normal of ∂�
coincides with the gradient of u, which equals f ′(z)= 1/ f ′(z). The unit tangent
vector dz/ds is a 90◦ rotation of the normal vector 1/ f ′(z). Thus, i f ′(z) dz = ds.
We then have a quadrature formula for integration of r(z) with respect to arclength:

(3-1)
∫
∂�

r(z) ds = i
∫
∂�

r(z) f ′(z) dz = 0,

where the vanishing of this integral is obtained by deforming the contour to infinity
where f ′(z) r(z) = O(|z|−2). Indeed, r(z) = O(|z|−1) by our choice of the test
class, and f ′(z)= O(|z|−1) as mentioned above.

If the boundary of � is piecewise C1, rational functions are dense in E p classes
(see [Duren 1970, Theorem 10.7] and, for the multiply connected case, [Tumarkin
and Havinson 1958a; 1958b; 1960]). In particular, rational functions r(z) vanishing
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at infinity are dense in the space of functions E(�) considered in [Gustafsson 1987].
Thus, (3-1) shows that � is an arclength null-quadrature domain for this space of
functions, and the result now follows from Remark 6.1 in [Gustafsson 1987]. �

4. The Schwarz function of an exceptional domain

The Schwarz function of a real-analytic curve 0 is the (unique and guaranteed to
exist near 0) complex-analytic function that coincides with z̄ on 0. For the basics
on the Schwarz function, we refer to [Davis 1974] and [Shapiro 1992].

We recall two basic facts needed in the proof of the next proposition.

(i) On 0, |S′(z)| = 1.

(ii) The complex conjugate of
√
−S′(z) is normal to 0.

Statement (i) follows from the chain rule and the fact that the complex conjugate
of the Schwarz function, S(z), is an involution; see [Davis 1974, Chapter 7].
Statement (ii) follows from Formula (7.5) of the same reference, expressing the
tangent vector along 0 (i.e., the derivative of z with respect to arclength):

(4-1) T (z)= dz/ds = 1/
√

S′(z).

Proposition 4.1. If� is an exceptional domain such that the roof function is a classi-
cal solution, then the z-derivative of the roof function is given by uz(z)= c

√
−S′(z),

where c is a real constant and S(z) is the Schwarz function of ∂�. In particular,
S′(z) is analytic throughout �.

Remark. If, for instance, the constant Neumann data for the roof function is 1,
then the constant above c =± 1

2 , where the sign depends on the orientation of the
boundary.

Proof. Lemma 2.2 implies that 0 is locally real-analytic. So 0 has a Schwarz
function S(z). The complex conjugate of the analytic function uz is normal to
0 (since u has zero Dirichlet data). In light of the constant Neumann data, we
then have |uz(z)| = |(uz(z))∗| = 1

2 |ux + iu y| =
1
2

√

u2
x + u2

y is constant on 0. This,
along with the statements (i) and (ii) above, shows that on 0 the vectors uz(z)
and
√
−S′(z) are parallel and each have constant length. Therefore, for some real

constant c, the equation uz(z)= c
√
−S′(z) holds on 0. But since uz and

√
−S′(z)

are both analytic, the equation is true everywhere that either side is defined. In
particular, this guarantees analytic continuation of S′(z) throughout �. �

Let us use the Schwarz function to give a heuristic argument that the boundary
of an exceptional domain can pass through infinity at most twice. In fact, the angle
between consecutive arcs at infinity must be π (and obviously there cannot be more
than two such angles at infinity). Suppose the boundary of a domain has a corner
where two arcs meet at an angle different from 0, π , or 2π . Then the derivatives
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of the Schwarz functions of the two arcs have a branch cut along a third arc that
propagates into the domain from the corner. To see why this is the case, note that
the Schwarz function of an arc can be approximated near a point by the Schwarz
function of the tangent line. Thus, to first order, the jump along the branch cut is
linear, so to zeroth order, the jump of S′ is determined by the slopes of the tangent
lines. If the angle is 0 or 2π , then the tangent line is the same for each arc, but the
orientation changes, so there is still a jump due to the sign change. In the case of an
angle of π , both the tangent line and the orientation are unchanged. Thus, for any
angle other than π , S′(z) has a jump across a branch cut between the two boundary
components. For an exceptional domain, u is a global solution throughout �, and
so Proposition 4.1 indicates that the Schwarz function cannot have such branch
cuts. Thus, the angle between consecutive boundary arcs at infinity can only be π ,
and there can be at most two such angles.

In the informal argument above, we have assumed that each arc is real-analytic
at infinity, so that the Schwarz function has a Taylor expansion there. A. Eremenko
(private communication, 2012) related to us the following proof using ideas from
[Barrett and Eremenko 2012] that extend techniques due to C. Pommerenke. Its
indisputable advantage is that no regularity assumptions on ∂� are required. Also,
an important part of the theorem readily extends to higher dimensions.

We recall that a Martin function is a positive harmonic function M in a region �
with the property that for any positive harmonic function v in �, the condition
v ≤ M implies that v = cM , where c > 0 is a constant. (Martin functions are also
called minimal harmonic functions, as in [Heins 1950].) Martin functions on finitely
connected domains are simply Poisson kernels evaluated at points of the Martin
boundary, the boundary under Carathéodory compactification (prime ends) of the
domain (see [Brelot 1971]).

Theorem 4.2 (A. Eremenko). The roof function u of any exceptional domain � is
a convex combination of at most two Martin functions of � at infinity. Moreover,
u(z)= O(|z|), and in two dimensions we also have ∇u(z)= O(1) in �.

Remark. M. Traizet [2013] obtained the estimate |∇u| ≤ 1 in � for domains with
finitely many boundary components using the Phragmén–Lindelöf principle. For
Smirnov domains �, it suffices to show that uz belongs to the class N+ (see [Castro
and Khavinson 2013a]) in order to conclude that the analytic function uz is bounded
by 1 in �. However, even this assumption is not needed here, and it is possible to
establish the estimate on ∇u in full generality. Eremenko has kindly permitted us
to include his argument here.

Proof. First we note that, as observed in [Barrett and Eremenko 2012, Lemma 1], if
u is a positive harmonic function in a disk (or a ball in higher dimensions), D(a, R)
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of radius R centered at a, and u(z1)= 0 for some boundary point z1, then

(4-2) u(a)≤ 2R|∇u(z1)|.

This immediately follows from Harnack’s inequality for D(a, R) as for z ∈ D(a, R)

u(a)
R+ |z− a|

≤
u(z)

R− |z− a|
=

u(z)− u(z1)

R− |z− a|
,

and letting z→ z1 establishes (4-2).
Applying (4-2) when a ∈ � and R is the distance from a to ∂�, gives u(a) ≤

2RC ≤ 2(|a| + const)C , where C is the constant value of the Neumann data. So
u(z)= O(|z|), as z→∞, showing that u(z) has order at most one.

That u is a combination of at most two Martin functions now follows directly
from [Kjellberg 1950, Theorem II], which states that if � has n ≥ 2 different
(nonproportional) Martin functions of respective orders ρ1, ρ2, . . . , ρn , then

n∑
j=1

1/ρ j ≤ 2.

(This is proved using an application of Carleman’s inequality [1926].) In higher
dimensions, one must use [Friedland and Hayman 1976] instead of [Kjellberg
1950].

Next we show, in the two-dimensional case, the additional claim that ∇u(z)=
O(1). Let R > 0 and consider an auxiliary function

wR =
|∇u|

u+ R
,

where R > 0 is a parameter. A direct computation shows that

(4-3) 1 logwR = w
2
R,

and wR(z)= C/R for z ∈ ∂D. We claim that

(4-4) wR(z)≤ 2C/R for z ∈�,

from which the result follows by letting R→∞, which gives |∇u| ≤ 2C in �.
Suppose, contrary to (4-4), that wR(z0) > 2/R for some z0 ∈�. Here and in the

next lines, we assume for simplicity that C = 1. Let

v(z)=
2R

R2− |z− z0|2
for z ∈ D(z0, R)= {z : |z− z0|< R}.

Obviously, v(z)≥ 2/R. A computation reveals that 1 log v = v2. Let

K = {z ∈�∩ D(z0, R) : wR(z) > v(z)}.
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We have z0 ∈ K , since v(z0)= 2/R. Let K0 be the component of K containing z0.
Then we have wR(z)= v(z) on ∂K0, since wR(z) < v(z) on ∂�∩ D(z0, R) while
v(z)=+∞ on ∂D(z0, R). On the other hand,

1(logwR − log v)≥ w2
R − v

2 > 0 in K0.

So the subharmonic function logwR − log v is positive in K0 and vanishes on the
boundary, a contradiction. �

Remark. This a priori estimate implies the following corollary showing that the
boundaries of exceptional domains are extremely regular. Namely, they are locally
real-analytic and can even be parametrized from the unit circle via an antiderivative
of a rational function. In particular, it validates the preceding argument using the
Schwarz function, and establishes that the boundary passes at most twice through
infinity each time with an angle of π . The only additional assumptions needed here
are that the domain is Smirnov (compare Section 2) and simply connected.

Corollary 4.3. Let � be a simply connected Smirnov domain, and let h(ζ ) be the
conformal map from D to �. If � is exceptional, then h′(ζ ) is a rational function,
and we are in one of two cases:

(i) h′ has one pole on ∂D.

(ii) h′ has two poles on ∂D.

Proof. Let u be a roof function for �, and f (z)= u+ iv its analytic completion.
Since u > 0, f (z) takes � into the right half-plane, and f (h(ζ )) takes the unit
disk D into the right half-plane. Adding an imaginary constant if necessary, we
may assume that f (h(0)) > 0 is real. Then, by Herglotz’s theorem [Hoffman 1962,
Chapter 3; Duren 1970, Chapter 1], we can represent f (h(ζ )) as

(4-5) f (h(ζ ))=
∫

T

eiθ
+ z

eiθ − z
dµ(θ),

with µ positive.
Now, since < f (h(ζ )) is the pullback to D of the roof function u, which by

Theorem 4.2 is a convex combination of at most two Martin functions, µ consists
of at most two atoms.

Thus, differentiating (4-5),

(4-6) f ′(h(ζ )) · h′(ζ )= R(ζ ),

where R(ζ ) is a rational function with either one or two double poles on ∂D

(at the atoms of µ). Since by Theorem 4.2, f ′(h(ζ )) = 2uz(h(ζ )) is a bounded
analytic function in D with | f ′(h(ζ ))| = 1 a.e. on ∂�, f ′(h(ζ )) is an inner function.
Moreover, h′(ζ ) is an outer function, since � is Smirnov.
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For a rational function such as R(ζ ), the canonical factorization given by
Theorem 2.1 reduces to

R(ζ )= B(ζ ) · F(ζ ),

with B a Blaschke product and F a (rational) outer function. (The singular factor
S(ζ ) is trivial, since R(ζ ) has no essential singularities.) By the uniqueness of the
canonical factorization, h′(ζ ) and f ′(h(ζ )) equal F(ζ ) and B(ζ ) respectively (up
to multiplication by a unimodular constant). Hence, h′(ζ )= F(ζ ) is rational, and
f ′(h(ζ ))= B(z) is a Blaschke product. �

Remarks. (i) It is also possible to see that f ′(h(ζ )) = B(z) has either no zeros
or a single simple zero in D. The reason is that the increment of the argument
of R′(ζ ) dζ = d R over ∂� is zero, since f ′(z) dz is positive. Thus, the winding
number of R′(ζ ) over ∂� is negative one. If R′(ζ ) has one double pole on the
boundary (recall that a pole on the boundary counts half [Bell 1992, p. 48]), then
R′ has no zeros inside D. If R′(ζ ) has two double poles (each counts half), then
R′(ζ ) has one simple zero.

(ii) It seems of interest to discuss to what extent the Corollary extends to the multiply
connected case (Theorem 4.2 does not assume the domain is simply connected.) Let
us make a few comments in this direction. Suppose� is a finitely connected Smirnov
exceptional domain with the boundary passing through infinity and n−1 additional
boundary components that are rectifiable Jordan curves. Let z = h(w) : K →� be
a conformal map from a bounded circular domain into �, with the outer circle Cn

mapped onto the unbounded component of ∂�. Then it is possible to show that
u(h(ζ )) is a Poisson integral of a positive measure µ supported at one or two points
on the circle Cn . Now du(h(ζ ))/dζ = uz(h(ζ ))h′(ζ ) is a single-valued analytic
function in K with at most two double poles at ζ1, ζ2, the support of µ. Since
the Poisson kernel ∂ng of K is analytic in a neighborhood of K except for ζ1, ζ2

on Cn , the function g(ζ ) := du(h(ζ ))/dζ extends to a meromorphic function in a
neighborhood of Cn \ {ζ1, ζ2} and has poles at those points. (This gives us local
real-analyticity of the contour going through∞ on ∂�.) Applying the argument
principle as in the first part of this remark, we see that the total increment of the
argument of uz(h(ζ ))h′(ζ ) is n− 2, and uz(h(ζ )) has either n or n− 1 zeros in K .
From an extension of the factorization theorem [Khavinson 1983] to the multiply
connected case, it follows that B(ζ )= uz(h(ζ )) is either a constant or a covering
of the disk D with n sheets. It is at most n sheets by the above, and at least n since
each boundary component of K is mapped to the circle and must have winding
number at least one. Otherwise B ′(ζ ) vanishes somewhere on the boundary of K ,
and a local expansion of B ′ at that point indicates that B maps part of K outside
of D, a contradiction. Putting all this together, either h′(ζ ) has two double poles
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or B(ζ ) is constant. Thus, if Cn passes through infinity only once, then � is a
half-plane.

5. Infinity as a single point on the boundary

We now characterize the half-plane as the only simply connected exceptional domain
having infinity as a single point on the boundary. This extends Proposition 6.1
of [Hauswirth et al. 2011] by removing a hypothesis (∂x u > 0 in �) on the roof
function.

Theorem 5.1. A domain � as in case (i) of Corollary 4.3 is a half-plane.

Remarks. (i) As mentioned in the introduction and Section 9, M. Traizet [2013]
recently used minimal surfaces to establish this result under the assumption of
finitely many boundary components. We note that, in the simply connected case,
this assumption is stronger than ours, since infinitely many boundary components
were allowed in Eremenko’s result (Theorem 4.2). The final remark in the previous
section explains how to use pure function theory in order to argue that � is a
half-plane without the assumption that � is simply connected.

(ii) We have not been able to prove a higher-dimensional version of Theorem 5.1
(see also Section 7).

Proof. Using the same notation f and h from the proof of Corollary 4.3,

f (h(ζ ))=
∫
∂D

eiθ
+ ζ

eiθ − ζ
dµ(θ)

for some finite positive measure µ on ∂D. By assumption, we are in the case when
h′ has one pole, and according to the proof of Corollary 4.3, µ is an atomic measure
with a single point mass. Without loss of generality, we can place it at the point
eiθ
= 1.

Thus, f (h(ζ ))= C 1+ζ
1−ζ

, which upon differentiation gives

(5-1) f ′(h(ζ ))h′(ζ )= 2C
1

(1− ζ )2
.

As asserted in the proof of Corollary 4.3, f ′(h(ζ )) is the Blaschke factor of the
right side, which has no zeros, so f ′(h(ζ )) is a unimodular constant. Therefore,
f = u+ iv is a linear function and � is a half-plane. �

6. Infinity as a double point of the boundary

In this section we characterize the nontrivial example found in [Hauswirth et al.
2011]. Suppose � is a simply connected domain and � is exceptional. By
Corollary 4.3, recall that the derivative h′(ζ ) of the conformal map from the disk
onto � is a rational function with either one or two double poles on ∂D.
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Theorem 6.1. A domain � as in case (ii) of Corollary 4.3 is, up to similarity, the
image of the strip |=w| ≤ π/2 under the conformal map g(w)= w+ sinhw, while
the analytic completion of the function u(g(w)) is the function f (g(w))= coshw.

Remark. Together with Theorems 3.1, 4.2 and 5.1, this shows that, under an
assumption on the topology, the image of the strip under ζ 7→ ζ+sinh ζ is essentially
the only nontrivial example of an exceptional domain in R2. The topological
assumption is necessary, since there is a whole one-parameter family of nonsimilar
infinitely connected exceptional domains (see Figure 3 on page 106). However,
under the assumption of finitely many boundary components, the example described
in Theorem 6.1 is the only nontrivial example, as recently proved in [Traizet 2013].

Proof. Using the same notation as in the proofs of Corollary 4.3 and Theorem 5.1,
we have that h′(ζ ) is a rational function, and according to (4-6), f ′(h(ζ )) is as
well. This justifies applying the argument principle to study f (h(ζ )) and f ′(h(ζ )).
Namely, we will prove the following.

Claim. The function f solves the differential equation

(6-1) f ′ =
√
( f − 1)/( f + 1), z ∈�,

after simple normalizations described below.

Before proving this, we solve the differential equation to see that it gives the
desired result. Separating variables,∫ √

( f + 1)/( f − 1) d f = z+C.

Making the substitution f = coshw, we obtain z =w+ sinhw (fixing the constant
of integration C = 0). Now using the conditions < f (z(w)) = 0 for z ∈ ∂� and
< f (z(w)) > 0 for ζ ∈�, and the identity < cosh(x + iy)= cosh x cos y, we find
that the preimage of the domain in the w-plane is the strip |=w| ≤ π/2. Therefore,
� can be described as the image of the strip under the map z(w) = w+ sinhw,
concluding the proof of the theorem.

Ω
Γ

Figure 1. Local geometry of the boundary 0 = ∂� near infinity.
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To prove the claim, we will use the argument principle to show that both sides
of (6-1) provide a conformal map from � to D. From the formula

T (z)=
dz
ds
=
−i

f ′(z)
=

1
√

S′(z)
,

which relates the tangent vector T (z) on ∂� to the derivative of the analytic com-
pletion f of u(z), we obtain using the continuity of T (z) through the double point
at infinity (see Figure 1) that ∮

∂�

d log f ′(z)= 2π i.

We conclude that f ′ is a single-sheeted covering of the unit disk by the domain �,
and that it has only one zero, at some point z0 ∈�.

We may assume that f (z0) = 1. If not, say f (z0) = a + ib, a > 0, then one
may subtract the constant ib from f (this just amounts to choosing a different
harmonic conjugate for the same roof function), so we have f (z0)= a. Then one
may simply replace 1 with a in the claim, and integrating the differential equation
is done similarly resulting in a dilation of the original solution.

Now consider the function g(z) :=
√
( f (z)− 1)/( f (z)+ 1), defined on � and

taking values in the unit disk D. This too is a univalent map from � into D. Indeed,
by the argument principle, ( f (z)−1)/( f (z)+1) is a branched, two-sheeted covering
of the disk, since it maps each of the two boundary components shown in Figure 1
onto T, Since the single branch point z0 is mapped to the origin, taking the square
root gives a single-valued analytic function.

Also, f ′(z0) = g(z0) = 0. This uniquely determines the conformal map up to
a unimodular constant, which we may assume is 1 (after a rotation), and we then
arrive at the differential equation (6-1). �

7. An extension of Theorem 3.1 to higher dimensions

In this section, we notice that some results in Section 3 extend to higher dimensions.

Theorem 7.1. Suppose� is an exceptional domain in Rn whose exterior is bounded
and connected. If ∂� is C2,α-smooth, α > 0, then ∂� is a sphere.

Proof. Let u be a roof function for �, and let v(s)= 1/|s|n−2 denote the Newtonian
kernel. Fix y ∈� and take a small ball Bε centered at y. Take also a large ball BR

of radius R that contains both Bε and the complement of �.
Since u(x) and v(x − y) are harmonic in � \ Bε, Green’s second identity gives

(7-1)
∫
∂BR+∂�−∂Bε

(
v(x − y) ∂nu(x)− u(x) ∂nv(x − y)

)
dσx = 0.
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Letting R→∞, we can drop the integration over ∂BR , since again by Bôcher’s
theorem [Axler et al. 1992, Chapter 3], near infinity u(x)≈ |x |2−n .

Since, u(x)= 0 on ∂� and ∂nu(x)= 1 on ∂�,

(7-2)
∫
∂�

v(x − y) dσx =

∫
∂Bε

(
v(x − y) ∂nu(x)− u(x) ∂nv(x − y)

)
dσx .

Let U be a bounded domain such that Rn
\U =�. The outward normal for ∂U

is opposite to that of ∂�, and since v(x − y)= 1/εn−2 on ∂Bε,

(7-3)
∫
∂U
v(x − y) dσx =

∫
∂Bε

(
−ε−(n−2) ∂nu(x)+ u(x) ∂nv(x − y)

)
dσx .

For the first term on the right, we have∫
∂Bε

ε−(n−2) ∂nu(x) dσx =

∫
Bε
1u(x) dV = 0.

So, ∫
∂U
v(x − y) dσx =

∫
∂Bε

u(x) ∂nv(x − y) dσx → u(y),

as ε→ 0. So, u(y) is the single layer potential with charge density 1 on the surface
∂U . That U is a ball now follows from Theorem 1 of [Reichel 1997]. �

Remark. Reichel’s result holds for more general elliptic operators than the Lapla-
cian. In the setting of the Laplacian, J. L. Lewis and A. Vogel [1992] characterized
the sphere in terms of its interior Green’s function under weaker regularity as-
sumptions, namely, the boundary is assumed Lipschitz. In that case, the Neumann
condition can be assumed to hold almost everywhere on the boundary. Thus, the
hypothesis of Theorem 7.1 could be weakened by checking that the proof in [Lewis
and Vogel 1992] works for the exterior case we are interested in. Yet, we have
chosen an easier and more transparent path to apply Reichel’s result directly, even
though it requires a stronger regularity on the boundary.

8. Nonexistence of a higher-dimensional analog of the cosh z example

The authors in [Hauswirth et al. 2011] expressed a suspicion (see Remark 2.1 in
[Hauswirth et al. 2011]) that there exist n-dimensional, rotationally symmetric
examples similar to the two-dimensional example {(x, y)∈R2

: |y|<π/2+cosh x},
which appeared in Section 6. We show that there does not exist an exceptional
domain in R4 whose boundary is generated by rotation about the x-axis of the
(two-dimensional) graph of an even function.

Theorem 8.1. There does not exist a rotationally symmetric exceptional domain �
in R4 that contains its own axis of symmetry and whose boundary is obtained by
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rotating the (two-dimensional) graph of an even real-analytic function about the
x-axis.

Our proof will rely heavily on two tricks, one exploiting the assumption that
n = 4, and the other using the assumption that the generating curve is symmetric.
However, we strongly suspect a more general nonexistence of such examples in Rn

for any n > 2.
Therefore, we conjecture the following.

Conjecture. For n > 2, there does not exist an axially symmetric, exceptional
domain in Rn that contains its own axis of symmetry.

Remark. The assumption that the domain contains its axis of symmetry rules
out the exteriors of balls and circular (or spherical) cylinders, respectively (which
are clearly exceptional domains as was noted in [Hauswirth et al. 2011]). Also,
A. Petrosyan and K. Ramachandran pointed out to us (private communication, 2012)
that the nonconvex component of the exterior of a certain cone is also an exceptional
domain. In R4, using the x-axis as the axis of rotation, the cone is the rotation of
{(x, y) : y2

− x2
= 0}, and the roof function in the meridian coordinates x, y where

y is the distance to the x-axis in R4, is u(x, y)= (y2
− x2)/y for y > 0.

Proof of Theorem 8.1. Suppose that� is such a domain in R4. Namely, the boundary
∂� is obtained from rotation of γ := {(x, y) ∈ R2

: y = g(x)}, with g(−x)= g(x).
That is, the boundary of � is given by

{(x1, x2, x3, x4) ∈ R4
:

√
x2

2 + x2
3 + x2

4 = g(x1)}.

Considering the boundary data, the rotational symmetry of the domain will be
passed to the roof function (this requires uniqueness of the roof function guaranteed
by the Cauchy–Kovalevskaya theorem, which may be applied since the boundary is
assumed to be real-analytic), so that, abusing notation, we can write

u(x1, x2, x3, x4)= u(x, y).

For clarity, we emphasize that the x-axis corresponds to the axis of symmetry and
the y-coordinate gives the distance from the axis of symmetry.

For axially symmetric potentials v in Rn , the cylindrical reduction of Laplace’s
equation is

1(x,y)v+ (n− 2)vy/y = 0,

where x = x1 and y =
√

x2
2 + · · ·+ x2

n . Moreover, in the case we are considering,
when n = 4, u satisfies the equation 1u+ (2u y)/y = 0, if and only if yu(x, y) is a
harmonic function of two variables x and y. Indeed,

1(yu)= y1u+ 2∇u · ∇ y+ u1y = y1u+ 2u y .
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(The trick that reduces axially symmetric potentials in R4 to harmonic functions in
the meridian plane is well known: compare [Khavinson 1991; Karp 1992].)

Since yu(x, y) is then harmonic in the unbounded two-dimensional domain D
bounded by γ and its reflection (which we denote by γ̄ ) with respect to the x-axis,
this implies ∂(yu(x, y))/∂z is analytic in the domain D, where as usual z = x+ iy.
The Cauchy data (originally posed in R4) imply that uz =

1
2(ux − iu y) coincides

with
√
−S′(z) on γ and γ̄ . This implies that the analytic function

(8-1) W (z) := (yu)z = (−i/2)u+ yuz

coincides with
(
(z− S(z))/2i

)√
−S′(z) on γ and γ̄ . The latter function is analytic,

so this actually gives a formula for W (z) whose validity is not limited to γ and γ̄ :

(8-2) W (z)=
z− S(z)

2i

√
−S′(z).

We note that (8-2) can be used to analytically continue S(z) to all of D, but this is
not needed in our proof.

Let f (ζ ) be the conformal map from the strip 6 := {|=ζ |< 1
2} to D such that

f (0) = 0 and arg{ f ′(0)} = 0. The two-fold symmetry of D implies that f (ζ ) is
an odd function. Indeed, otherwise h(ζ )=− f (−ζ ) gives another conformal map
from the strip 6 to D. But, h(0)=− f (0)= 0 and h′(0)= f ′(0) implies h = f , by
the uniqueness of the conformal map (up to choice of f (0) and argument of f ′(0)).

The Schwarz functions St , Sb of the top and bottom edges of the strip 6 are
St(ζ )= ζ − i and Sb(ζ )= ζ + i . In terms of the conformal map f (ζ ), the pullbacks
to the ζ -plane of the Schwarz functions S+ and S− of γ and γ̄ , respectively, satisfy
(see [Davis 1974, Chapter 8, Equation 8.7])

S±( f (ζ ))= f (ζ ∓ i) and S′
±
( f (ζ ))=

f ′(ζ ∓ i)
f ′(ζ )

.

Substituting these into (8-2), we obtain two expressions for the pullback of W (z)
to the strip 6:

(8-3)
f (ζ )− f (ζ ∓ i)

2i

√
−

f ′(ζ ∓ i)
f ′(ζ )

Even though W ( f (ζ )) is analytic throughout 6, we caution that these two
expressions (one expression for+ and one for−) may only be valid near the bottom
and top sides (respectively) of the strip 6.

Claim. The function W ( f (ζ )) is odd.

In view of the claim, W (0) = W ( f (0)) = 0. By (8-1), we then have that
(−i/2)u+ yuz = 0 at z = 0, which implies that u(0, 0)= 0. This contradicts the
positivity of u, proving the theorem.
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There remains to prove the claim. Set V (ζ ) = W ( f (ζ ))+W ( f (−ζ )). Using
(8-3), we can write

V (ζ )=
f (ζ )− f (ζ − i)

2i

√
−

f ′(ζ − i)
f ′(ζ )

+
f (−ζ )− f (−ζ + i)

2i

√
−

f ′(−ζ + i)
f ′(−ζ )

We show that this formula vanishes where it is valid, which then implies that
V (ζ ) vanishes identically throughout 6. For this, we use the fact that f is odd and
consequently f ′ is even.

V (ζ )=
f (ζ )− f (ζ − i)

2i

√
−

f ′(ζ − i)
f ′(ζ )

+
− f (ζ )+ f (ζ − i)

2i

√
−

f ′(ζ − i)
f ′(ζ )

= 0.

This establishes the claim. �

9. Concluding remarks and main conjecture

9.1. It is tempting to conjecture that the three examples in the plane studied above
are the only exceptional domains in the plane, as suggested in [Hauswirth et al.
2011]. However, there is a remarkable family of infinitely connected exceptional
domains. They were discovered as solutions to a fluid dynamics problem by Baker,
Saffman, and Sheffield [Baker et al. 1976]. (See also [Crowdy and Green 2011]
for a more detailed account.) The original problem there was to find hollow vortex
equilibria with an infinite periodic array of vortices, known as spinning bubbles,
amid a stationary flow of ideal fluid. The domain occupied by fluid turns out to be
an exceptional domain with an infinite periodic array of holes, and the roof function
is a stream function of the fluid flow; see Figure 2. The constant Dirichlet condition
corresponds to the requirement that the boundary of each hollow vortex is a stream
line, and the constant Neumann condition corresponds to the requirement that the
fluid pressure should be balanced at the interface by the pressure inside each bubble
which is assumed constant. The latter correspondence is more subtle; in order to
have constant pressure along a stream line, the fluid velocity (which equals the
normal derivative of stream function) should be constant, by Bernoulli’s law.

This infinitely connected example leads us to add to the conjecture the assumption
that the domain is finitely connected.

Conjecture. The only finitely connected exceptional domains in R2 are the exterior
of the unit disk, the half-plane, and the domain described in Theorem 6.1.

Remark. As mentioned in the introduction, Martin Traizet [2013] recently an-
nounced a classification of exceptional domains. His results confirm our conjecture
for domains having finitely many boundary components and also show that the above
infinitely connected example is the only periodic exceptional domain for which
the quotient by the period has finitely many boundary components. His methods
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Figure 2. An infinitely connected exceptional domain that also
provides a hollow vortex equilibrium. Level curves of the roof
function are stream lines. The shape of the bubbles ensures that the
pressure dictated by Bernoulli’s law is constant at the fluid-bubble
interface.

0.1

��0.1
��0.5 0.5 1.0��1.0

��0.4

0.4

Figure 3. One-parameter family of bubble shapes associated with
exceptional domains. As stated in [Traizet 2013], each of the three
previously known examples can be recovered as scaling limits of
this family. In that sense, this family includes all known examples.

use a remarkable nontrivial correspondence to minimal surfaces, perturbing an
exceptional domain by harmonically mapping it to another domain in such a way
that the graph of the new height function (which pulls back to the roof function
in the original domain) satisfies the minimal surface equation. A miraculous (and
crucial to his approach) by-product is that, whereas the graph of the roof function
meets its boundary at a 45◦ angle, the minimal graph meets its boundary vertically
so that gluing it to its own reflection over the xy-plane results in a smooth minimal
surface (without boundary!) embedded in R3.

9.2. Regarding the higher-dimensional case, we conjecture the following extension
of Theorem 5.1 to higher dimensions.

Conjecture. Suppose � is an exceptional domain in Rn that is homeomorphic to a
half-space. Then � is a half-space.
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9.3. The connection to the Schwarz function in Section 4 reveals that exceptional
domains are arclength null-quadrature domains. That is, for any function f , say an-
alytic in�, continuous in �, integrable over the boundary, and decaying sufficiently
at infinity, we have

∫
∂�

f ds = 0. Indeed,
∫
∂�

f ds =
∫
∂�

f (z)(1/T (z))T (z) ds =∫
∂�

f (z)
√

S′(z) dz, where T (z) is the complex unit tangent vector (see Section 4),
and now this integral vanishes as long as the integrand decays sufficiently at infinity.
Null-quadrature domains were previously studied in the case of area measure. They
were characterized in the plane by M. Sakai [1981]. Our current study can be seen
as a step toward characterizing null-quadrature domains for arclength.

9.4. Other interesting connections involve differentials on Riemann surfaces. The
study of Gustafsson [1987] used half-order differentials on the Schottky double of
an arclength quadrature domain. From a different point of view, the boundary of
an exceptional domain is a trajectory of the positive quadratic differential −(d f )2,
where f (z) is the analytic completion of the roof function.

9.5. The differential equation (6-1) can be solved by a more general substitution
using Jacobi elliptic functions [Abramowitz and Stegun 1964, p. 567, §16]:

f (ζ, k)= cos θ cn(ζ, k)+ sin θ sn(ζ, k),(9-1)

z(ζ )= cos θ sn(ζ, k)− sin θ cn(ζ, k)+
∫ ζ dn(ξ, k) dξ,(9-2)

where θ is an arbitrary phase, θ ∈ [0, 2π ].
For a given value of the elliptic modulus k ∈ [0, 1], we define the corresponding

domain F through its fundamental periods

T1(k)= 4K (
√

1− k2) and T2(k)= 4K (k),

where

K (k)≡
∫ π/2

0

1√
1− k2 sin2 θ

dθ

is the complete elliptic integral of the first kind [Abramowitz and Stegun 1964, p.
590, §17.3]. It diverges for k = 1 and equals π/2 for k = 0.

Then it is straightforward to check that (6-1) is satisfied by f (z), due to the
identity [Abramowitz and Stegun 1964, p. 573, §16.9]

1= (−sn z cos θ + cn z sin θ)2+ (cn z cos θ + sn z sin θ)2.

Let γ be the preimage of ∂� under z(ζ ): it consists of two pieces γ±, γ−=−γ+,
dividing the fundamental domain F into three subdomains. Denote the component
which contains the origin by D0. Since f (0)= 1, we conclude that < f (z) > 0 for
z ∈ D0 \ γ±, and we have proven the following result.
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Proposition. The exceptional domain � is the image of the domain D0(k) under
the map ζ 7→ z(ζ ) defined in (9-2).

Remark. The case discussed in the proof of the theorem corresponds to the degen-
erate elliptic modulus k = 0. Then the domain F becomes the infinite strip

T1(0)= 4K (1)→∞, T2(0)= 4K (0)= 2π,

while the functions f , g become (using the fact that dn(z, 1)≡ 1)

z(ζ )= ζ + sinh ζ, f (z(ζ ))= cosh ζ.

As noted before, the conditions < f (ζ )|γ± = 0 give the preimage γ± := z−1(∂�)=

{=ζ =±π/2}, and the preimage of the domain, D0, becomes the strip |=ζ | ≤ π/2.

9.6. The domain D0(k) is the preimage of the unit disk under the map ζ : F→ D

defined by

ζ(w)=
sn(w, k)− i
sn(w, k)+ i

, k ∈ [0, 1],

with the support of µ at points ζ± =±(1− ik)/(1+ ik), where µ is the measure
discussed in the proof of Corollary 4.3. The case k→ 0 corresponds to the strip
domain and to ζ± = ±1. The reparametrization invariance noted above for the
solution f (z) of (6-1) under rescaling of the elliptic modulus k is indicative of a
deeper invariance of the solution: all the specific solutions in C discussed here are
associated with fixed points in the moduli space of Riemann surfaces.

Again let f (h(z)) be the analytic completion of a solution, and denote by G the
group of transformations that leaves supp(µ) invariant up to a global rotation. It
follows that f is an automorphism of the quotient of the group of linear fractional
transformations by G, which can be in general a Kleinian group.. The limit set
(accumulation points of the orbits of the group) can be finite (in which case it can
consist of only 0, 1, or 2 points), or infinite. It is known (see [Astala et al. 2009,
Theorem 10.3.4]) that the set of homeomorphic solutions for a quasilinear elliptic
equation of Laplace–Beltrami type forms a group only in the case of finite limit
set. The Kleinian groups are called degenerate in this case, and they correspond
to either finite groups (with empty limit set), or cyclic groups (generated by one
element, with limit set consisting of 1 or 2 points). These correspond to the solutions
described in the present paper (isolated point at infinity, respectively simple and
double boundary point at infinity).
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