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CAPILLARITY AND
ARCHIMEDES’ PRINCIPLE

JOHN MCCUAN AND RAY TREINEN

We consider some of the complications that arise in attempting to generalize
a version of Archimedes’ principle concerning floating bodies to account for
capillary effects. The main result provides a means to relate the floating
position (depth in the liquid) of a symmetrically floating sphere in terms of
other observable geometric quantities.

A similar result is obtained for an idealized case corresponding to a sym-
metrically floating infinite cylinder.

These results depend on a definition of equilibrium for capillary systems
with floating objects which to our knowledge has not formally appeared in
the literature. The definition, in turn, depends on a variational formula for
floating bodies which was derived in a special case earlier (Pacific J. Math.
231:1 (2007), 167–191) and is here generalized to account for gravitational
forces.

A formal application of our results is made to the problem of a ball float-
ing in an infinite bath asymptotic to a prescribed level. We obtain existence
and nonuniqueness results.

1. Introduction

Archimedes stated the principle that bears his name in a work titled On floating
bodies. The principle is commonly stated as follows:

A body immersed in a fluid is buoyed up with a force equal to the weight
of the displaced fluid.

This is actually a reformulation of Archimedes’ principle and, as Erlend Graf
[2004] points out, it is deficient (and incorrect) in various respects.

Archimedes considered three distinct cases. The first case is that in which the
density of the body is equal to the density of the liquid. The assertion is that the
body, after it is deposited into the liquid and comes to rest, will not project above
the surface of the liquid nor sink lower in the liquid (On floating bodies, part I,
Proposition 3; see [Archimedes/Heath 1897, p. 255]).
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The second case is that in which the density of the body is less than that of
the liquid. The assertion is that the body, if left to interact freely with the liquid
bath, will project above the surface of the bath and will displace a volume of liquid
having the same weight as the object (Propositions 4 and 5; [ibid., pp. 256–257]).
Furthermore, if the object is not allowed to float freely, but is manually pushed
downward into the liquid from its floating position, then the object will experience
an upward force equivalent to the difference of the weight of the object and the
weight of the displaced liquid (Proposition 6; [ibid., p. 257]).

Finally, if the body is more dense than the liquid it will sink to the bottom and, if
weighed while in the liquid will be found lighter than its true weight by the weight
of the displaced liquid (Proposition 7; [ibid., p. 258]).

The reformulation is about the force experienced by a body deposited in a
liquid bath (and nothing else). The original principle of Archimedes specifically
addresses two additional questions:

(1) Will the body float1 or sink?

(2) At what height will the object come to rest?

The first question is conditional; the second is geometric. The fact that the refor-
mulation ignores these aspects of the problem is a deficiency of the reformulation
and no reflection on the acuity of Archimedes.

An aspect of the problem that does seem to have escaped the notice of Archi-
medes involves the effect of surface tension or surface energy associated with
wetting. Indeed, simple experiments show that it is possible, under certain circum-
stances, for even a convex2 object with density greater than that of a given liquid
bath to float (only) partially submerged on the surface of the bath, contradicting
Archimedes’ Proposition 7; see Figure 1.

Finn [2011] has recently given the first rigorous mathematical proof of this fact,
at least in an idealized situation which we describe in Section 4 below. Finn and
Vogel [2009] wrote: “One may assume that [Archimedes] was unaware of observa-
tions of Aristotles a century earlier” (concerning heavy floating objects). This may
be true, or perhaps Archimedes restricted himself to a problem whose solution used
the mathematical tools he had at hand. In either case, we find connections with
the results of Archimedes, and derive from our new results what can be viewed as
a generalization of results which follow from Archimedes’ approach. Notice also

1That is, will the object project above the surface of the liquid?
2Convexity is mentioned here in contrast to something like a hollow boat hull often considered in

connection with the density considerations of Archimedes. In fact, the possibility that objects with
density greater than water might float on the surface of water was already considered by Aristotle a
century before Archimedes, and it is surprising Archimedes makes no mention of it. The fact that
a thin metal paper clip can float on water makes it clear convexity is not a necessary hypothesis.
Nevertheless, we did not know if a sphere could float until we tried it (Figure 1).
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Figure 1. Photos of a plastic ball in a bath of water: sinking to the
bottom (left), being raised to the surface (middle), floating (right)

that the results of [Finn 2011] and [Finn and Vogel 2009] initiate a return to the
question addressed by Archimedes: Does the body sink or swim?

Our work below assumes the answer to the question of floating versus sinking
is affirmative for floating and seeks to answer a version of Archimedes’ second
question: What is the geometry? More precisely: What is the height of the floating
body and what is the geometry of the interface? We are able to give a partial answer
under the assumption of rotational symmetry of the object and the interface. This
symmetry appears to hold in the physical system of Figure 1, and similar symmetric
interfaces have been shown to exist mathematically in [Treinen 2012] and [Elcrat
et al. 2004b]. For further discussion of this point, see Section 6.

For purposes of comparison, we describe briefly this problem of a floating ball as
we imagine Archimedes might have considered it.3 Given the diagram in Figure 2,
with an assumed planar interface meeting a floating sphere 6 along a circular
contact line determined by an azimuthal angle φ, and assuming a density ρ of the
ball less than the density ρl of the liquid, Archimedes’ Proposition 5 then becomes

(1) ρl Vd = ρ|6|

where Vd is the volume of displaced liquid. Equating this volume of liquid with
the volume of the spherical cap below the plane of the interface,

Vd =
1
3πa3 (sin2 φ cosφ+ 2+ 2 cosφ

)
,

3The explanation of Vitruvius (in De architectura) is of particular interest for this discussion, as it
provides some details not contained in Archimedes’ work directly. In particular, Vitruvius identified
the “displaced fluid” as that which overflows a vessel into which an object is deposited.
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φ

Figure 2. Azimuthal angle determined by a horizontal contact
line.

we obtain this:

Theorem 1. According to Archimedes’ principle, a homogeneous sphere of density
ρ > ρl will sink to the bottom of a bath of density ρl , and a homogeneous sphere
of density ρ < ρl will float at a level determined by

(2) cos3 φ− 3 cosφ = 2
(

1− 2ρ
ρl

)
.

It is easily checked that the function F(φ) = cos3 φ − 3 cosφ is increasing
from −2 to 2 on [0, π], with zero derivative at the endpoints and strictly positive
derivative interior to the interval. Thus, for each positive value 0 ≤ ρ ≤ ρl , the
condition (2) determines a unique azimuthal angle. See Figure 3.

Definitions of equilibria. From a more sophisticated point of view, liquid inter-
faces are rarely planar. Even without the introduction of a floating object, the
interface of liquid in a cylinder is usually noticeably curved around the edges.
With the introduction of a rigid floating object, one may assume the interface will
be further deformed in possibly unexpected ways.

The modern theory of equilibrium capillary configurations developed by Young,
Laplace, Gauss, and others (see [Finn 1986]) is now founded on the consideration
of energies associated with the area of the outer surface of the liquid where it
contacts the surrounding atmosphere and where it contacts the bounding container.
This theory has been primarily pursued in the context of solid structures that are
rigid and fixed. This has led to a commonly adopted definition of a capillary equi-
librium [ibid.]:

Up to the determination of a single real parameter (λ below) the problem
of finding a capillary surface is a purely geometric one: to find a surface
whose mean curvature is a prescribed function of position and which
meets prescribed (rigid) bounding walls in a prescribed angle γ .
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In terms of equations commonly used to model equilibrium capillary surfaces in a
gravity field, we have

(3) 2H = κz− λ and cos γ = β,

where H denotes the mean curvature of the interface, z denotes the vertical height
of a point on the interface, κ = ρl g/σ is the capillary constant, constructed us-
ing the gravitational acceleration g and the surface tension σ , and λ is a single
real (Lagrange) parameter related to the constraints of the problem; in the second
equation one finds the relative adhesion coefficient β defined by the assumption
that σβ is the local energy density4 associated with contact between the liquid
volume and solid structures; one integrates σβ over the area of contact, or wetted
area, to obtain the total energy of wetting. The angle γ is assumed to be defined
along a curve where the liquid, the container, and the surrounding atmosphere all
meet. This curve is called the contact line and γ is referred to as the contact angle.

While the problem of a floating object considered here is still purely geometric,
the conditions (3) are inadequate to characterize equilibria, even if the object is
rigid and the Lagrange parameter λ is known. One still has recourse to the general
principle of virtual work, that is, the energy is stationary with respect to variations
compatible with the constraints of the problem. Nevertheless, attaining a collec-
tion of fundamental necessary conditions analogous to (3) that may be taken as a
working definition of equilibrium in particular cases is of evident utility both for
applications and the mathematical theory of capillarity. A preliminary discussion
of the need for this development was suggested in [McCuan 2007] in the absence
of external forces (i.e., zero gravity), and we provide here a general flux condition
(13) to augment (3), thus providing a new definition of equilibrium in this context.
A discussion of this formula for capillary surfaces is in Section 2.

From the flux formula we obtain the following result which may be compared
to Theorem 1 and is proved in Section 3.

Theorem 2. A sphere of radius a that floats in a centrally symmetric position as
described above under the effects of surface tension and adhesion effects of an
axially symmetric bath must float at a level determined by the azimuthal angle φ
satisfying

(4) cos3 φ− 3 cosφ+
6
κa

(
H +

cos γ
a

)
sin2 φ−

3 sin γ
κa2 sin(2φ)= 2

(
1− 2ρ

ρl

)
,

4In [Finn 1986], the relative adhesion coefficient is given on page 6 as the difference β∗ − β̂∗

of energy densities associated with contact between one fluid and the container (β∗) and a comple-
mentary fluid and the container (β̂∗). Using the approximation β̂∗ ≈ 0, the formulation used here is
equivalent. For simplicity, we will also assume σ and β are constants; the reasoning below extends
in a straightforward manner to the general case.
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Figure 3. The azimuthal angles determined by Theorems 1 (top
left) and 2 (top right); plotted together on the bottom.

where κ is the capillary constant described above, H is the mean curvature of the
liquid interface at the contact line, and γ ∈ (0, π) is the contact angle of the liquid
interface with the floating sphere.

The function F(φ) appearing on the left side of (4) takes the values −2 and 2
at the endpoints φ = 0 and π respectively. However, F is decreasing at φ = 0
and decreases to a unique local interior minimum at φ = φ1. On the interval from
φ = φ1 to φ = π the function F has a unique interior local maximum at φ = φ2.

If γ = 0, π , then the value of the azimuthal angle is uniquely determined by the
same function F , which is increasing and satisfies F ′(0)= 0= F ′(π) but is distinct
from the function appearing in Theorem 1.

The existence of the unique local interior minimum at φ = φ1 allows values
of ρ > ρl and leads to the determination of a unique maximum density ρmax =

ρmax(a, γ, κ, H̄) for which ρ > ρmax implies no floating is possible. It will be
noted from the properties of F that a unique azimuthal angle φ is determined for
all values 0<ρ <ρl , and that two values are possible for certain values ρ ≥ ρl (as
long as ρ is not too large). We presume by continuity that the physically observed
value for heavy floating spheres is the larger one determined by (4). The physical
relevance of the other value is discussed in Section 6 of the paper.

We note also that the graph of F takes values corresponding to negative den-
sities ρ. This can be imagined to have physical relevance in a situation where a
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gravitational field acts on the floating object, but one with the opposite direction
as that acting on the liquid. It is not readily apparent how such a physical situation
would arise, but one can easily imagine a magnetic field producing an upward force
on a floating object in a downward gravity field, which would be quite similar.

Further remarks. The quantity H appearing in the formula (4) of Theorem 2 is
presumed to depend in some manner on other parameters, and perhaps globally
imposed geometric constraints in the problem. Perhaps the quantity H and its
appearance in (4) is best viewed in contrast to the following specific quantities:
the enclosed volume of liquid (n.b., the Lagrange parameter λ), the outer radius R
of the cylindrical vessel, and the contact angle γout between the interface and the
outer wall, all of which are conspicuously absent from formula (4). As far as we
know, this paper and [McCuan 2007] are the first to consider the global floating
configuration for a floating ball including a finite outer bounding wall. Indeed, one
might be tempted to dismiss the effects of the interface at the outer bounding wall.
Several authors have considered floating objects in an infinite bath asymptotic to
a plane (and we do so below in § 6 as well). Under certain assumptions, estimates
have been derived [Siegel 1980] to establish the fact that such an interface con-
verges to the planar asymptote exponentially with distance from a floating object.

We offer the following description of an experiment as a caution against assum-
ing the influence of an outer wall is not important.

If a cylinder of water is partially filled, and a ball of density ρ < ρl is deposited
in the center of the resulting interface, it will move rapidly to the outer wall. See
Figure 4. If the same cylinder is subsequently slightly overfilled so that the (roughly
flat) interface curves downward at the edges, then the ball will move rapidly to the
center of the interface and remain there in an apparently stable configuration; if the
ball is manually moved away from the center it will return.

This experiment brings up a question that is fundamentally different from the
one considered in this paper, but it indicates in broad terms that the question of

Figure 4. Photos of a plastic ball in a bath of water: tending to
the edge (left), stable in the middle (center and right).
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how an object floats on a liquid interface can have an answer depending strongly
on nonlocal conditions involving the outer bounding wall.

Ideally one would like a formula for the azimuthal angle φ̄ in terms of the volume
of liquid in the bath V , the radii a and R of the ball and the container respectively,
and the contact angles γ between the liquid interface and the surface of the floating
object and γout between the liquid interface and the surface of the container, and
from the classical point of view, this is what one would expect. We were unable to
attain such a result, and the result we obtain (4) may be viewed simply as a relation
between H and φ̄ for any equilibrium. The interpretation we give in the context of
Archimedes’ geometric question may then be viewed as the most explicit currently
available information arising from (13).

The barrier to getting a more definitive result lies in the complicated nature of the
system of ordinary differential equations determining the rotationally symmetric
interface. For a survey of recent progress in understanding the family of solutions to
these equations, see [Finn 1986; Vogel 1982; Siegel 2006; Siegel 1980; Nickolov
2002; Elcrat et al. 2004a; Turkington 1980; Johnson and Perko 1968; Treinen
2012].

2. Variational formulation

The general assumptions of our model are outlined in [McCuan 2007] though
the derivation given there was aimed at the zero gravity case in which buoyancy
plays no role, and the effects of gravity were not properly considered. For the
sake of making this paper somewhat more self-contained we include a short re-
view/summary of the model and amend the deficiencies in the former derivation.

Quite generally, we consider a solid structure

6 =6s ∪6m

consisting of a stationary part 6s and a movable, or floating, part 6m . In addition,
we hypothesize an equilibrium liquid interface3with corresponding wetted region
W=Ws ∪Wm , so that the liquid volume V satisfies ∂V=3∪W and the contact
line/triple interface is given by ∂3 = ∂W. Under these assumptions, we consider
the variational problem associated with

(5) E= σ |3| − σβ|W| +G

where G =
∫

V∪6m
G and G is a position dependent function representing field

forces such as gravity.5

One specific application of the discussion which now follows is that it justifies
the following fundamental definition:

5We included only
∫

V G in [McCuan 2007].
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Definition 3. A floating configuration 6s, 6m,V as described above is said to be
in free-floating equilibrium for the functional (5) if

1. 2H = G/σ − λ, where H is the mean curvature of the free surface interface
3 and λ is some constant,

2. cos γ = β where γ is the angle at which the free surface interface meets
the surface of the solid structures measured within V and β is the (possibly
location dependent) adhesion coefficient, and

3.
∫
∂Wm

En+
∫

Wm

(G/σ − λ)N −
∫
∂6m

(G/σ)N = 0,

where n is the outward pointing unit conormal along ∂3, and N is the unit
normal to ∂V pointing out of V.

Under rather general hypotheses, as described in [McCuan 2007], a family of
variations leaving 6m fixed leads to the (standard) variational formulas (6)–(8)
below:

(6) ˙|3| = −

∫
3

2H Ẋ · N +
∫
∂3

Ẋ · En,

where H is the mean curvature defined on 3, Ẋ is the variation vector, N is the
unit normal pointing out of the liquid volume V, and En is the unit conormal to N
and ∂3 pointing out of 3;

(7) ˙|W| =

∫
∂3

Ẋ · Eν,

where Eν is the unit conormal to N W and ∂W pointing out of W; note that N W

denotes the unit normal to W pointing out of V and may also be denoted by N on
the interior of W where no ambiguity arises;

(8) Ġ=

∫
3

G Ẋ · N and ˙|V| =

∫
3

Ẋ · N .

These last two formulas apparently require an interesting and somewhat delicate
application of more general mathematical principles of fluid mechanics, and we
outline their derivation under more general assumptions below.

For now, we assemble Ė/σ − λ ˙|V| from the constituent parts above where λ is
a Lagrange multiplier associated with the volume constraint:

Ė/σ − λ ˙|V| =

∫
3

(−2H +G/σ − λ)Ẋ · N +
∫
∂3

(Ẋ · En−β Ẋ · Eν).

The vanishing of this quantity for all variation vectors Ẋ results in the well known
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geometric boundary value problem

(9)
{

2H = G/σ − λ on 3,
cos γ = β on ∂3,

since
En = (En · N W)N W

+ cos γ Eν.

In the special case under consideration in this paper, G represents the limiting value
ρl gz taken as a limit from inside the liquid, so that

2H = κz− λ

where κ = ρl g/σ is a capillary constant for the problem. Furthermore, we restrict
attention in this paper to cases in which the adhesion coefficient satisfies−1<β<1
or equivalently, the contact angle γ is strictly between 0 and π .

A more general variation allowing rigid motion of 6m takes the form

X = X ( p; t, h) : M × (−ε, ε)× (−δ, δ)→ R3,

where M =6 ∪V is considered as an abstract manifold; see Figure 5.
It is assumed here, as indicated in the figure, that h parametrizes a family of rigid

motions w=w(x; h) to which 6m is subject. Denoting derivatives with respect to
h by an acute accent, we find

´|3| = −

∫
3

2H X́ · N +
∫
∂3

X́ · En,(10)

´|W| = −

∫
Wm

2H W X́ · N +
∫
∂Wm

X́ · Eν,(11)

Ǵ=

∫
3

G X́ · N +
∫

Wm

G X́ · N W
+

∫
∂6m

Gm X́ · N m .(12)

This last term requires some explanation. The quantity Gm denotes the value of
the volumetric force field potential taken as a limit from inside the movable solid

X (V)

X (6m)
X

6m

V

3

6s = X (6s)

Figure 5. The variation map and its notation.
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structure6m . In the special case of a floating object of density ρ, we typically take
Gm = ρgz. Also in this last identity N m denotes the unit normal to the boundary
∂6m of the movable/floating solid structure and points out of 6m , so that N m

=

−N W on their common domain of definition Wm . Finally, we include a brief
derivation.

Up until this point, we have stated all variational formulae in their final form,
that is to say with the parameters of the variation set to zero so that Ẋ represents

d
dt

X ( p; t)∣∣
t=0
,

where X = X ( p; t) :M×(−ε, ε)→R3. For this calculation, we must temporarily
assume the parameters t and h are not evaluated at zero. Notationally, this is
conveniently indicated by a tilde so that 6̃m = X (6m)= X (6m; t; h), and we will
evaluate at t = h = 0 at the end.

Consideration of the second term should suffice. Setting

Gm =

∫
6̃m

Gm,

we have

Gm =

∫
6m

Gm ◦ Xdet DX,

where X represents the restriction of the variation to6m and the derivative is taken
in M ⊂ R3 with respect to p. Euler’s kinematical formula [Serrin 1959] tells us
how a material integral changes with the flow of a region of fluid. We can cast our
present situation into this framework starting with the preliminary identity

∂

∂h
det DX = (divR3 v) ◦ X det DX

where v(x; h) = X́(X−1(x; h); h) is the spatial velocity associated with the flow
X = X ( p; h) and we have simply suppressed the t dependence. It might be ex-
pected (or hoped) that in our situation the motion/flow associated with the variation
should be particularly simple, at least on the solid movable object 6m , and that we
might have, for example, X ( p; h)≡ w( p; h) there. However, taking into account
the motion of the liquid and that of the contact line of the liquid interface 3 in
particular, it is clear that this would violate the continuity assumption on the varia-
tion X : M× (−ε, ε)× (−δ, δ)→R3. Having made this concession and subjected
ourselves to the added complication that other authors seem to have avoided, it is
some consolation, as pointed out in [Finn 2005], that the internal motion of the
liquid under a variation of the free surface interface could be very complicated,
and we are taking account of such possibilities.
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In any case, we continue to obtain

Ǵm =

∫
6̃m

DGm · v+ divR3 v =

∫
6̃m

divR3(Gmv)=

∫
∂6̃m

Gmv · N m,

so that

Ǵm
∣∣
h=0 =

∫
∂6m

Gm X́ · N m .

A similar argument applies to the integral over V appearing in G and also yields

´|V| =

∫
3

X́ · N +
∫

Wm

X́ · N ,

where we have returned to the general assumption on evaluation, that t = h = 0.
Combining this with (10)–(12), we have

É/σ−λ ´|V| =

∫
3

(−2H+G/σ−λ)X́ ·N+
∫
∂3

(X́ · En−β X́ ·Eν)

+β

∫
Wm

2H W X́ ·N+
∫

Wm

(G/σ−λ)X́ ·N+
∫
∂6m

(Gm/σ)X́ ·N m

=

∫
∂Wm

X́ · En−cos γ
∫
∂Wm

X́ ·Eν

+ cos γ
∫

Wm

2H W X́ ·N+
∫

Wm

(G/σ−λ)X́ ·N+
∫
∂6m

(Gm/σ)X́ ·N m .

Next we refer to a calculation from [McCuan 2007] that uses the fact that

w−1(X; h) ∈6m

when X = X ( p; h) ∈ w(6m; h) to show that

X́ − ẃ ∈ TX6m .

It follows that X́ may be replaced with ẃ in the formula above. A second calcula-
tion involving an explicit auxiliary variation shows∫

Wm

2H Wẃ · N =
∫
∂Wm

ẃ · Eν.

Making the indicated substitutions, we arrive at our new necessary condition for
equilibrium of a floating object:

Theorem 4. If a floating configuration 6m,V subject to forces (having volumetric
potentials denoted by G and Gm as described above) locally minimizes energy
among liquid interface configurations compatible with a smooth family of rigid
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motions w = w(x; h) with w(x; 0) = idR3 and the wetted region on the floating
object is denoted by Wm , then the configuration must satisfy

(13)
∫
∂Wm

ẃ · En+
∫

Wm

(G/σ − λ)ẃ · N W
+

∫
∂6m

(Gm/σ)ẃ · N m
= 0,

where En is the outward pointing unit conormal along the boundary of the liquid
interface 3, N W is the unit normal to 6m pointing out of the liquid, N m

=−N W,
and ẃ represents the derivative with respect to h evaluated at h = 0.

The condition of the theorem must hold for all ẃ ∈ R3 for free floating, or more
generally for any collection of directions in which 6m is free to move. In the case
in which all directions ẃ are possible, the condition (13) simplifies to∫

∂Wm

En+
∫

Wm

(G/σ − λ)N W
+

∫
∂6m

(Gm/σ)N m
= 0.

One immediately notes the integral over the boundary of the movable wetted sur-
face of the conormal to the free surface interface (the first term) as marking this as
a kind of flux formula or force balance formula as is well known from the work of
A. Ros [1996] in minimal surfaces. It is tempting to interpret the other two integrals
appearing in the formula as force vectors, and without doubt they are such. We are
indebted to a referee for explaining how to do this for a constant vertical gravity
field. Similar calculations for that case are also contained in [Bhatnagar and Finn
2006] where a somewhat different problem is considered; see Sections 4 and 6
for further remarks. With this help, we were able to see the following general
interpretation.

In order to be dimensionally correct, multiply the equation by the surface tension
σ . The first term is then the negative of the force exerted on the object by the
interface itself — the surface tension force.

The integrand of the second term G − λσ will be recognized from (9) as the
quantity 2σH at the interface and, according to the insight of Thomas Young, the
difference in pressure across the interface. It is natural to assume that G−λσ gives
a pressure field extending throughout the volume of liquid, up to a sign. Since the
mean curvature is calculated with respect to the normal N pointing out of the liquid,
we see that the second integral represents the negation of the force this pressure
exerts on the floating object, i.e., the buoyancy force.

Let us consider the third term componentwise. If e j is the j-th standard unit
vector, then the j-th component of the third integral is∫

∂6m

Gm e j · N m
=

∫
6m

div(Gm e j )=

∫
6m

DGm · e j ,

where the first equality is by the divergence theorem, and we recognize the negation
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of the volumetric force density in the gradient of the potential appearing in the last
expression. Recombining the components, the third term∫

6m

DGm

evidently lends itself to being interpreted as (minus) the “weight” of the floating
object with respect to the potential field Gm .

In summary, our third equilibrium condition may be read (without the slightest
ambiguity in the case of a constant downward gravitational field Gm = ρgz) thus:

The weight, the pressure/buoyancy force, and the surface tension force
on the floating object must sum to zero.

We next proceed to examine the consequences of (13) for the simple cases of
floating suggested in the introduction.

3. Floating in three dimensions

Here we assume a vertical circular cylindrical vessel is observed with a sphere 6m

floating symmetrically along the axis of the vessel and having symmetric circular
contact line at azimuthal angle φ=φ. Assuming the surface of the liquid is also ro-
tationally symmetric with respect to the same axis, the meridian of the surface with
vertical component u and radial component r considered as functions of arclength
along the meridian must satisfy the boundary value problem

(14)



ṙ = cosψ,
u̇ = sinψ,
ψ̇ = κu− λ− sinψ/r,
ψ = γ −φ and u = d + a cosφ when r = r(0)= a sinφ,
ψ = π/2− γout when r = r(l)= R,

where we have chosen coordinates so that the center of the floating sphere is
(0, 0, d), and we have denoted by l the total length and by ψ the inclination angle
of the meridian.

It would be desirable to preface our discussion of the geometry of the floating
ball in Figure 1 with an existence result, but we are unable to obtain such a result
for essentially the same reason that our geometric result is somewhat suboptimal:
The system of ordinary differential equations appearing in the problem above has
been studied extensively, but the structure of the family of all solutions is not well
enough understood. Thus, we turn directly to the auxiliary condition (13).

The following formulae, valid in the plane y = x2 = 0, are useful in simplifying
the integrals in (13):



CAPILLARITY AND ARCHIMEDES’ PRINCIPLE 137

(15)

N m
[φ] = sinφ e1+ cosφ e3,

N W
[φ] = −N m

=−sinφ e1− cosφ e3,

Eν[φ] = (N m)⊥

=−cosφ e1+ sinφ e3,

En = cos γ Eν+ sin γ N W

=−cos(φ− γ ) e1+ sin(φ− γ ) e3,

N3
= (−En)⊥

= sin(φ− γ ) e1+ cos(φ− γ ) e3.

In these formulae, the bracketed φ indicates validity in the form of the result for
an arbitrary azimuthal angle on ∂6m though the main interest is on ∂Wm ; e1 and
e3 are the standard orthonormal unit vectors in R3.

Taking a vertical translation for the rigid motion of 6m so that ẃ= e3, the three
terms of (13) are as follows:∫

∂Wm

e3 · En = 2πa sinφ sin(φ− γ ),∫
Wm

(κz− λ)e3 · N = πa2 ((κd − λ) sin2 φ− 2
3κa(1+ cos3 φ)

)
,∫

∂6m

κ
ρ

ρl
ze3 · N m

=
4
3πκa3 ρ

ρl
.

Combining these terms and rearranging:

(16)
6 sinφ sin(φ− γ )

κa2 +
3(κd − λ) sin2 φ

κa
− 2 cos3 φ = 2

(
1− 2ρ

ρl

)
.

Next, we make the substitution

2H = κ(d + a cosφ)− λ,

which follows directly from (9). This leads to

6 sinφ sin(φ− γ )
κa2 +

3(2H − κa cosφ) sin2 φ

κa
− 2 cos3 φ = 2

(
1− 2ρ

ρl

)
.

This last condition simplifies directly into condition (4) of Theorem 2. It remains
to verify the description of the function

F(φ)= cos3 φ− 3 cosφ+
6
κa

(
H +

cos γ
a

)
sin2 φ−

3 sin γ
κa2 sin(2φ),
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where H is taken to be a given constant. The values at the endpoints are immediate.
We find also that

F ′(φ)
3
=− cos2 φ sinφ+ sinφ+

4
κa

(
H +

cos γ
a

)
sinφ cosφ−

2 sin γ
κa2 cos(2φ)

= sin3 φ+
2
κa

(
H +

cos γ
a

)
sin(2φ)−

2 sin γ
κa2 cos(2φ).

Thus, F ′(0)= F ′(π)=−(6/κa2) sin γ < 0. From this it is clear that F must attain
an absolute min at some value less than −2 and an absolute max greater than 2. At
these points, F ′ must vanish, and it only remains to show these are the only zeros
of F ′ on [0, π]. In fact, we see that

1
3 F ′(φ)= sin3 φ+ A sin(2φ− B)

for some quantities A > 0 and B independent of φ. The fact that F ′(0) < 0 tells
us that we may assume 0< B < π . Clearly, since 0 ≤ φ ≤ π , we have sin3 φ ≥ 0
and there can be no zero of F ′ on the interval [B/2, π/2+ B/2]. For the rest, we
consider two cases.

Case I: 0 < B ≤ π/2, i.e., F ′′(0) ≥ 0. In this case, both terms in the expression
for F ′ are increasing on the interval 0<φ < B/2, so F ′ can have at most one zero
there. (And since F ′(B/2) > 0 it does have exactly one.)

F ′ must also have a zero on [π/2+ B/2, π]. We note that

1
3 F ′′(φ)= 3 cosφ sin2 φ+ 2A cos(2φ− B)

=
3
2 sin(2φ) sinφ+ 2A cos(2φ− B)

and consider two subcases, depending on the sign of A− sin3(3π/4+ B/2).

• First assume that A ≥ sin3(3π/4+ B/2).
Since F ′(π/2+ B/2)/3= sin3(π/2+ B/2)+ A> 0, and F ′(3π/4+ B/2)/3=

sin3(3π/4+ B/2)− A ≤ 0, there is some zero of F ′ on the interval

(π/2+ B/2, 3π/4+ B/2].

Since both sin3 φ and A sin(2φ−B) are decreasing on this interval, there is exactly
one zero of F ′ there.

Let us assume there is another zero φ0 of F ′ with 3π/4+ B/2<φ0 <π . Since
F ′′(3π/4+ B/2) < 0 and F ′(3π/4+ B/2) ≤ 0, we conclude that F ′′ must have
a zero φ1 on the interval (3π/4+ B/2, φ0) at a negative local minimum of F ′.
Furthermore, since F ′(π) < 0, it must be the case that F ′′ has another zero φ2 on
the interval (φ1, π) at a nonnegative local maximum of F ′.

We now show this situation leads to a contradiction by establishing that F ′′ has
exactly one zero on the interval (3π/4+ B/2, π]. In fact, we will show more:
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Lemma 5. If 0 < B < π/2, then F ′′ has exactly one zero in [π/2+ B/2, π], and
it occurs on the interval (3π/4+ B/2, π) at a local minimum of F ′.

This is because 3 sin2 φ cosφ is increasing on the interval
(
π − arccos 1

√
3
, π
)
.

Indeed,

d

dφ
(sin2 φ cosφ)= 2 sinφ cos2 φ− sin3 φ = sinφ(3 cos2 φ− 1).

Furthermore, it is easily checked that π − arccos(1/
√

3) < 3π/4. Thus, F ′′ is
increasing on the interval [3π/4+ B/2, π] and has exactly one zero there. Finally,
F ′′ is negative on the interval [π/2+ B/2, 3π/4+ B/2], so we have established
the lemma and finished this subcase.

• Still under the assumption 0 < B ≤ π/2 (Case I), we now suppose instead that
A < sin3(3π/4+ B/2).

In this case F ′ is positive throughout the interval [π/2 + B/2, 3π/4 + B/2].
Thus, the first zero φ0 of F ′ on [π/2+B/2, π]must occur inside (3π/4+B/2, π).
Since F ′(π) < 0, and F ′′(π) > 0, the unique zero φ1 of F ′′ given by Lemma 5
must satisfy

max{φ0, 3π/4+ B/2}< φ1.

If we assume the existence of a second zero of F ′ on the interval (φ0, π), we obtain
a zero of F ′′ at a local maximum of F ′ (and a contradiction) as before.

Case II: π/2≤ B < π , i.e., F ′′(0)≤ 0. The reflection φ→ π −φ transforms this
case into the first one with B→ π − B. �

The reader will have no trouble verifying that under Archimedes’ assumptions
H =0 (a planar interface) and φ=γ (the appropriate azimuthal angle for a horizon-
tal plane to meet the sphere at the correct contact angle) the formula in Theorem 2
reduces to the condition of Archimedes.

4. Floating in two dimensions

The result of [Finn 2011] referred to in the introduction and termed by the au-
thor a “criterion for floating” concerns a variational problem considered earlier in
[Bhatnagar and Finn 2006] for the energy

(17) E=−σ |3̂| − σβ|W| +G,

where 3̂ is the linear segment of intersection of a planar/linear interface with a
two-dimensional convex body and G is the specific gravitational energy we have
considered above. The measures appearing in the first two terms in this functional
are one-dimensional (length) and the integral is an area integral. There is no volume
constraint in Bhatnagar and Finn’s problem, nor outer container. With certain other
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Figure 6. Azimuthal angles determined by a horizontal contact
line (left) and differing azimuthal angles in the two-dimensional
case (right).

assumptions, they also find that the interface always lies along a fixed line. From
this point, Finn goes on to obtain the striking result that for some values of ρ>ρl , σ
and β there will be an equilibrium which is a local minimum for energy in which the
convex body contacts the interface, i.e., floats. We now formulate and extend our
results to a problem dimensionally similar to the problem of Bhatnagar and Finn.

Physically, we envision a trough consisting of two vertical walls and a horizontal
bottom. The trough is assumed to extend infinitely in the y= x2 direction and to be
filled with a sea of liquid. Into this sea is introduced a horizontal floating circular
cylinder (an infinitely long log) with axis parallel to e2. Let us assume that the free
surface interface 3 also is always of cylindrical form with generator parallel to
e2, so that if the log is centrally located between the walls and the interface shares
the same midplane symmetry, then the projection of the system onto the x, z-plane
resembles that of the system considered in the previous section (Figure 6, left),
though the equation satisfied by the generating curve (and hence its shape) will be
different from that of the meridian previously considered.

The energy of such a system can be taken to have the form of (5):

E= σ |3| − σβ|W| +G,

where the dimensions of the measures have been lowered by one and G=
∫

V∪6m
G

is an area integral. The first-order necessary conditions take the form

k = G/σ − λ on the curve 3,

cos γ = β at the endpoints of 3,

and

(18) ẃ · En
∣∣
∂3
+

∫
Wm

(G/σ − λ)ẃ · N W
+

∫
∂6m

(Gm/σ)ẃ · N m
= 0,

where k is the curvature of 3 and λ arises from an area constraint on the cross
section of liquid in the trough. In analogy to the three-dimensional case, we assume
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an area density ρ for the object, that the object floats in a liquid of area density ρl ,
a capillary constant κ = ρl g/σ , and that the radius of the log is a.

Before we begin an analysis of this variational problem in earnest, let us pause
to note what Archimedes’ principle would state in this lower-dimensional case
(because it will appear in a surprising way later):

Theorem 6. According to Archimedes’ principle in one lower dimension, a homo-
geneous disk/log of density ρ > ρl will sink to the bottom of a bath of density ρl ,
and a homogeneous disk/log of density ρ < ρl will float at a level determined by

(19) 2φ− sin(2φ)= 2π
(

1− ρ

ρl

)
.

We assume initially the contact line (i.e., the two points where 3 meets 6m) is
determined by two azimuthal angles, one φ as before and a second φ measured
counterclockwise from the vertical e3; see Figure 6, right. In addition to (15), the
following identities have been found useful.

(20)

N m
[φ] = − sinφe1+ cosφe3,

N W
[φ] = −N m

= sinφe1− cosφe3,

Eν[φ] = (N W)⊥

= cosφe1+ sinφe3,

En = cos γ Eν+ sin γ N W

= cos(φ− γ )e1+ sin(φ− γ )e3,

N3
= (En)⊥

=− sin(φ− γ )e1+ cos(φ− γ )e3.

Taking first a horizontal motion of the floating sphere, so that ẃ = e1, we find

e1 · En
∣∣
∂Wm
= cos(φ− γ )− cos(φ− γ )=−2 sin B sin(A− γ ),

where A = 1
2(φ+φ), B = 1

2(φ−φ),∫
Wm

(κz− λ)e1 · N W
= a(κd − λ)(cosφ− cosφ)+ 1

2κa2(cos2 φ− cos2 φ)

=−2a sin B sin A(κd − λ+ κa cos A cos B),

and ∫
∂6m

(
κ
ρ

ρl
z− λ

)
e1 · N m

= 0.

Since each of these terms has a factor sin B, we see from condition (18), that one
possibility is sin B = 0. If this holds, it can readily be determined that φ = φ.
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Once this occurs, then since the left and right interfaces must start from the same
height and with the same inclination angle, we have a proof that the axis of the
floating cylinder must lie on the midplane between the vertical walls. This is the
conclusion we would like to make. The other alternative is that

sin(A− γ )+ a sin A(κd − λ+ κa cos A cos B)= 0,

which we rewrite as

(21)
(
cos γ + a(κd − λ)

)
sin A+ 1

2κa2 sin(2A) cos B− sin γ cos A = 0.

Leaving this open as a possibility for the moment, we turn to an independent
vertical translation of 6m with ẃ = e3. In this case

e3 · En
∣∣
∂Wm
= sin(φ− γ )+ sin(φ− γ )= 2 cos B sin(A− γ );

moreover∫
Wm

(κz− λ)e3 · N W

= a(κd − λ)(sinφ+ sinφ)+ 1
4κa2(sin(2φ)+ sin(2φ))+ 1

2κa2(φ+φ)− κa2π

= 2a cos B sin A(κd − λ)+ 1
2κa2 sin(2A) cos(2B)+ 1

2κa2(φ+φ)− κa2π

and ∫
∂6m

κ
ρ

ρl
z e3 · N m

= κa2π
ρ

ρl
.

Combining these terms to form the expression in (18), we arrive at a second nec-
essary condition,

(22)
(
cos γ + a(κd − λ)

)
sin A cos B− sin γ cos A cos B

+
1
2κa2 sin A cos A(1− 2 sin2 B)+ 1

4κa2(φ+φ)=
κa2π

2

(
1− ρ

ρl

)
.

Multiplying the equation in (21) by cos B and subtracting the result from (22) and
simplifying, we obtain the surprising condition

(23) φ+φ− sin(φ+φ)= 2π
(

1− ρ

ρl

)
.

This is surprising because it says that if the log floats anywhere but in the middle
between the vertical walls of the trough, then the wetted region must match the
wetted region predicted by (19) of Theorem 6, which is based on Archimedes’
assumptions, including that of a flat interface. In particular, the portion that is
wetted is independent of all parameters except the density fraction! We view this
scenario as highly unlikely. The fact that we cannot rule out this possibility leads
to the following curious result.
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Theorem 7. In the two-dimensional floating log problem, either the axis of the
log lies in the vertical midplane determined by the sides of the vessel, or the
wetted/nonwetted region is determined by the generalized version of Archimedes’
condition given in (23).

At this point, we proceed as in the three-dimensional case by assuming sym-
metry of the interface with respect to the midplane. When φ = φ, condition (22)
associated with the vertical translation is still nonvacuous and becomes

F(φ)= 2φ+ sin(2φ)+
4
κa2 sin(φ− γ )+

4
κa
(κd − λ) sinφ = 2π

(
1− ρ

ρl

)
.

Again following the three-dimensional case, we let

k = κ(d + a cosφ)− λ

denote the curvature of the interface at the contact line on the object. Substitution
yields

Theorem 8. A log that floats in a centrally symmetric position under the effects
of surface tension and adhesion must float at a level determined by the azimuthal
angle φ satisfying

(24) 2φ− sin(2φ)+
4
κa2 sin(φ− γ )+

4k
κa

sinφ = 2π
(

1− ρ

ρl

)
,

where k is the curvature of the interface at the contact line, and γ is the contact
angle of the interface with the floating log.

We emphasize that k is assumed to be given and constant. The behavior of the
function

F(φ)= 2φ− sin(2φ)+
4
κa2 sin(φ− γ )+

4k
κa

sinφ

is somewhat different than that in the three-dimensional case; see Figure 7. One
sees first of all that

F(0)=−
4
κa2 sin γ < 0 and F(π)= 2π +

4
κa2 sin γ > 2π.

Thus, the endpoint values do not coincide with the extremes of the expression on
the right in (24) associated with ρ = 0 and ρ = ρl . Nevertheless, the interval
between 0 and 2π is clearly covered by the values of F(φ) and, in fact, each value
is taken exactly once. To see this we compute

F ′(φ)
2
= 1− cos(2φ)+

2
κa2 cos(φ− γ )+

2k
κa

cosφ
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Figure 7. The azimuthal angles determined by Theorems 6 (top
left) and 8 (top right); plotted together on the bottom.

and observe first that

F ′(0)
2
=

2
κa2 cos(γ )+

2k
κa
=−

F ′(π)
2

.

It follows that F ′ is nonpositive at one of the endpoints and has the opposite sign
at the other. Using this, reasoning similar to that found in Section 3 shows F ′ can
have at most one zero on [0, π].

Thus, some salient features of Theorem 2 hold also in this lower-dimensional
case. For fixed k and γ , if ρ ≤ ρl , there is a unique height at which the disk/log
can float; there is an interval ρl < ρ < ρmax on which there is at least one (and
sometimes two) possible heights at which floating can occur. One expects that if
two azimuthal angles are determined by (24), the larger is the physically relevant
one.

5. Global solutions numerically computed

We have obtained global configurations of floating numerically for the problems
considered above both in two and three dimensions. The stability and uniqueness
of most of these configurations is not presently known.

In Figures 1 and 2 we give representative global configurations which have been
obtained and a list of the relevant parameters.
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ρ/ρl γ γout d λ φ

(1) Lightest 0.0 π/2 π/2 1.8850 1.0860 1.9284
(2) Heavy 1.0 π/2 π/2 2.6504 3.4494 1.2132
(3) Flat 0.5 π/2 π/2 1.6427 1.6427 1.5708
(4) Denser 1.6 π/2 π/2 1.9934 3.9663 0.4973
(5) Unstable (?) 0.5 π/4 π/4 2.3777 2.7878 0.7328
(6) Stable (?) 0.5 π/4 3π/4 2.7382 3.4704 1.0150

Table 1. Two-dimensional case (floating logs). Parameters for
each configuration on the top, from left to right. In all cases a= 1,
κ = 1, R = 2, and the cross-sectional area of liquid is 10.

ρ/ρl γ γout d λ φ

(1) Lightest 0.0 π/2 π/2 2.1174 1.8486 1.7086
(2) Heavy 1.0 π/2 π/2 1.8689 2.1377 1.4330
(3) Flat 0.5 π/2 π/2 1.9902 1.9902 1.5708
(4) Denser 2.1 π/2 π/2 1.4293 2.5321 0.9293
(5) Unstable (?) 0.5 π/4 π/4 1.3646 1.4679 0.7790
(6) Stable (?) 0.5 π/4 3π/4 2.0192 2.6403 1.2570

Table 2. Three-dimensional case (floating balls). Parameters for
each configuration on the top, from left to right. In all cases a= 1,
κ = 1, R = 2, and the volume of liquid is 25.

6. Existence and uniqueness

A referee has requested that we provide an existence and uniqueness result for some
floating configurations at least superficially like those to which our main result
applies. As the referee suggests, we provide in this section an existence result for
a ball floating symmetrically in an infinite three-dimensional bath. We also prove
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that uniqueness does not hold in that case in general, and provide some remarks
suggesting that uniqueness does not hold in the problem we consider either.

This problem has been considered in [Keller 1998; Vella and Mahadevan 2005]
though not from a fundamentally variational point of view and with existence (and
presumably some statement of uniqueness) assumed. Various aspects of the prob-
lem make it fundamentally simpler than the physical problem of floating in a finite
container and, as we shall see, we can say much more in this case.

Analogues of the results below are shown numerically in the lower-dimensional
case of Bhatnagar and Finn’s problem [2006]. Also, a partial existence result is
given in [Finn 2011] in the two-dimensional case and in [Finn and Vogel 2009] in
the three-dimensional case. The methods below may be adapted to give versions
of our results in this section for the two-dimensional problem.

As is customary for this kind of problem, we assume a prescribed zero level
to which our symmetric interface, satisfying the first four requirements of the
boundary value problem (14), is asymptotic. The requirement that the interface
be asymptotic (to first order) to the zero level plane necessitates the additional
conditions

lim
r→∞

u = lim
r→∞

ψ = 0.

These conditions along with the third equation in (14) imply that the constant λ is
zero. In order to show existence, we must obtain a solution to this system which
satisfies the additional requirement of Theorem 2. We stress that our application
of Theorem 2 to this situation in which the energies we considered in the proof are
infinite is somewhat formal, though under a suitable modification of the energies,
it is fairly clear that condition (4) is the correct equilibrium condition for float-
ing in this situation as well. With the aforementioned modifications, our problem
becomes one of finding a height d for the center of the sphere of radius a, an
azimuthal angle φ, and a meridian (r, u) with inclination angle ψ such that

(25)



ṙ = cosψ,
u̇ = sinψ,
ψ̇ = κu− sinψ/r,
ψ = γ −φ and u = d + a cosφ when r = r(0)= a sinφ,
limr→∞ u = limr→∞ ψ = 0,

and

(26) cos3 φ−3 cosφ+
6
κa

(
H +

cos γ
a

)
sin2 φ−

3 sin γ
κa2 sin(2φ)= 2

(
1− 2ρ

ρl

)
,

where H = κ(d + a cosφ)/2.
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It has been shown by Elcrat, Neel, and Siegel [Elcrat et al. 2004b] that given
any r = a sinφ > 0 and any inclination angle ψ̄ = γ −φ, there is a unique solution
(r, u) of the system (25) except for the condition u=d+a cosφ on the contact line.
Since d has not been specified, we can obviously take the sphere of center height
d = u(0)− a cosφ to get this condition as well. In this way, everything becomes
a function of φ, and we have only to find φ satisfying the following simplified
version of (26):

(27) cos3 φ−3 cosφ+ 3
a

(
u(0)+ 2 cos γ

κa

)
sin2 φ−

3 sin γ
κa2 sin(2φ)= 2

(
1− 2ρ

ρl

)
.

Unfortunately, the dependence of u(0)= u(0;φ) on φ is not explicit and not well
understood. This fact prevents us from giving a full analysis of the solutions of
(27). Nevertheless, we can set

G(φ)= cos3 φ− 3 cosφ+ 3
a

(
u(0)+ 2 cos γ

κa

)
sin2 φ−

3 sin γ
κa2 sin(2φ),

which is a well defined smooth function of φ.
When φ tends to zero (a sinking ball), we have that r = a sinφ tends to zero and

necessarily u(0;φ) tends to zero as well. Thus,

lim
φ→0

G(φ)=−2.

Similarly,
lim
φ→π

G(φ)= 2.

We draw attention to the fact that these values are shared by the function F
considered in Section 3. In fact, we can numerically graph the function G for
specific choices of κ and γ to see that G shares the qualitative properties of the
function F analyzed in Section 3, initially decreasing to a unique minimum, then
increasing to a unique maximum greater than 2, and decreasing on the remainder
of the interval; see Figure 8. We expect that these qualitative features are always
shared, but we are unable to prove that.

We are able to compute the following:

lim
φ→0,π

G ′(φ)=−
6 sin γ
κa2 .

This means that G is always decreasing at φ = 0 and φ = π . By continuity we
obviously have enough to obtain existence for any density ρ between zero and
the density of the liquid ρl . The last computation also gives existence for some
range of densities greater than ρl and some “negative densities” as described in the
discussion of the main result in Section 1. We have shown the following:
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Figure 8. Numerical plot of the function G for a = 1, κ = 1 and
γ = π/2.

Theorem 9. There are positive numbers ε and δ depending on the capillarity con-
stant κ , the radius of the sphere a, the contact angle γ , and the density of the
liquid ρl , such that the floating ball problem for an infinite bath has a well defined
equilibrium configuration (satisfying the flux condition obtained in this paper) for
each density ρ with −ε < ρ < ρl + δ.

It follows also that there is some φ = φmin where G takes a minimum value
m <−2. If we take a density ρ with

ρl < ρ < ρl(1−m/2),

then we see there are at least two values φ1 and φ2 with φ1 < φmin < φ2 which
correspond to distinct equilibrium configurations for different heights d of the ball.

Theorem 10. The problem of a floating ball in an infinite bath with capillarity
taken into account and γ ∈ (0, π) does not have a unique equilibrium solution
in general. More precisely, there is an interval (ρm, ρM) ⊃⊃ (0, ρl) and for any
density ρ in (ρm, ρM)\(0, ρl), there exist at least two equilibria.

If we calculate a modified energy for the specific choices of parameters con-
sidered above in Figure 8 and the two distinct equilibria shown in Figure 9, we
find that the one of smaller azimuthal angle and lower height d has greater energy.
This strongly suggests that when a heavy ball is floating, the energy increases to
a maximum (at another equilibrium) as the ball is pushed down. After the ball is
pushed below the second equilibrium height (maximum energy), it will sink. These
qualitative observations are consistent with experiments.
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Figure 9. Distinct equilibria showing nonuniqueness for ρ =
3/2> ρl = 1, a = 1, κ = 1 and γ = π/2.

Comparison to the graphs shown in Figure 7, suggests that the same situation
holds in finite containers. It should be noted, however, that Figure 7 does not show
this is the case, because H is considered constant there, and the value of H will
undoubtedly be different in the two distinct equilibrium configurations.
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