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GENERALIZED EIGENVALUE PROBLEMS
OF NONHOMOGENEOUS ELLIPTIC OPERATORS

AND THEIR APPLICATION

DUMITRU MOTREANU AND MIEKO TANAKA

We consider the equation −div(a(x, |∇u|)∇u) = λ|u| p−2u (whose special
case a(x, t)= t p−2 is the p-Laplace equation) on a bounded domain�⊂RN

with C2 boundary, with null boundary condition. We prove that there are
λ ∈ R for which the equation has a nontrivial solution. As an applica-
tion, by variational methods, we present the existence of a positive solution
to −div(a(x, |∇u|)∇u) = f (x, u) in �, where f is asymptotically ( p−1)-
linear near zero and ∞, considering the nonresonant, resonant, and dou-
bly resonant cases. We show that, generally, the spectrum of the operator
−div(a(x, |∇u|)∇u) on W 1, p

0 (�) is not discrete.

1. Introduction

Let 1< p <∞ and let �⊂ RN be a bounded domain with C2 boundary ∂�. We
are interested in values of λ∈R such that a nontrivial solution exists to the equation

(EV; λ)
{
−div A(x,∇u)= λ|u|p−2u in �,
u = 0 on ∂�;

such a λ is called an eigenvalue for A. Here A : �×RN
→ RN is a map that is

strictly monotone in the second variable and satisfies the regularity conditions in
Assumption A below.

The p-Laplace equation is the special case of (EV; λ) with A(x, y)= |y|p−2 y,
and in this case the eigenvalues for A are the usual eigenvalues of the p-Laplacian.
However, we do not suppose that A is (p−1)-homogeneous in the second variable.
Instead, these are the assumptions we make on the map A:

Assumption A. A(x, y) = a(x, |y|)y, where a(x, t) > 0 for all x ∈ � and all
t ∈ (0,+∞); furthermore:

(i) A ∈ C0(�×RN ,RN )∩C1(�× (RN
\ {0}),RN ).
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(ii) There exists C1 > 0 such that

|Dy A(x, y)| ≤ C1|y|p−2 for every x ∈� and y ∈ RN
\ {0}.

(iii) There exists C0 > 0 such that

Dy A(x, y)ξ · ξ ≥ C0|y|p−2
|ξ |2 for every x ∈�, y ∈ RN

\ {0} and ξ ∈ RN
;

(iv) there exists C2 > 0 such that

|Dx A(x, y)| ≤ C2(1+ |y|p−1) for every x ∈� and y ∈ RN
\ {0}.

(v) There exist C3 > 0 and a positive t0 ≤ 1 such that

|Dx A(x, y)| ≤ C3|y|p−1(−log |y|)

for every x ∈�, y ∈ RN with 0< |y|< t0.

From now on, we assume that C0 ≤ p − 1 ≤ C1 which leads to no loss of
generality, as can be seen from Assumption A(ii)–(iii).

A similar hypothesis to Assumption A is considered in the study of quasi-
linear elliptic problems; see [Motreanu and Papageorgiou 2011, Example 2.2;
Damascelli 1998; Motreanu et al. 2011; Miyajima et al. 2012; Tanaka 2012a].
We also refer to [García-Huidobro et al. 1995; Kim 2009; Kim and Kim 2010;
Fukagai and Narukawa 2007; Prado and Ubilla 1998; Robinson 2004] for general-
ized p-Laplace operators. In particular, when A(x, y)= |y|p−2 y — that is, when
div A(x,∇u) is the usual p-Laplacian 1pu — we can take C0 = C1 = p − 1 in
Assumption A. Conversely, if C0 = C1 = p− 1 in Assumption A, the inequalities
in Remark 1(ii)–(iii) below show that a(x, t)= |t |p−2, whence A(x, y)= |y|p−2 y.
In the p-Laplace case, the first eigenvalue λ1 is obtained by the Rayleigh quotient:
λ1 = inf

{∫
�
|∇u|p dx/‖u‖p

p : u 6= 0
}
. But since our operator is nonhomogeneous,

inf{λ ∈ R : λ is an eigenvalue of A} is in general not obtained by such a Rayleigh
quotient corresponding to A. In Section 3, since the Rayleigh quotient plays
an important role, we study its behavior as ‖u‖p → 0 or ‖u‖p →∞ under an
additional condition describing an asymptotic (p−1)-homogeneity. For example,
we can consider

div A(x,∇u)= div
((

a0(x)|∇u|p−2
+ a∞(x)|∇u|q−2)(1+ |∇u|q)(p−q)/q

∇u
)

for 1 < p ≤ q <∞, a0, a∞ ∈ C1(�) with min� a0 > 0 and min� a∞ > 0. This
satisfies

A(x, y)− a0(x)|y|p−2 y = o(|y|p−1) as |y| → 0,

A(x, y)− a∞(x)|y|p−2 y = o(|y|p−1) as |y| →∞.

Under these these conditions (see (AH0) and (AH) in Section 3), we shall prove



EIGENVALUE PROBLEMS OF NONHOMOGENEOUS ELLIPTIC OPERATORS 153

that

min
{∫

�

∫
|∇u(x)|

0

a(x, t)t
r p dtdx : ‖u‖p = r

}
approaches λ1(a0)/p as r→+0 and λ1(a∞)/p as r→+∞; here

λ1(a0)=min
{∫

�

a0(x)|∇u|p dx : ‖u‖p = 1
}
,

λ1(a∞)=min
{∫

�

a∞(x)|∇u|p dx : ‖u‖p = 1
}
.

Concerning the eigenvalue problem for a nonhomogeneous operator, we can
refer to [Robinson 2004; Tanaka 2012b] under the Neumann boundary condition.

In Section 4, as an application of Section 3, we present the existence of a positive
solution for the quasilinear elliptic equation

(P)
{
−div A(x,∇u)= f (x, u) in �,
u = 0 on ∂�,

where f satisfies the following assumption.

Assumption ( f ). f is a Carathéodory function on �× R with f (x, 0) = 0 for
a.e. x ∈ �, f is bounded on bounded sets and f is asymptotically (p−1)-linear
near +0 and +∞ in the following sense:

lim
u→+0

f (x, u)
u p−1 = α0 uniformly in a.e. x ∈�,(i)

lim
u→+∞

f (x, u)
u p−1 = α uniformly in a.e. x ∈�,(ii)

for some constants α0 and α.

Regarding the existence of a positive solution under the Dirichlet boundary
condition, we can refer to [Fukagai and Narukawa 2007; Prado and Ubilla 1998]
for nonhomogeneous operators. However, we can not apply these results to our
nonlinear term which is only asymptotically (p−1)-linear near +0 and +∞, and
furthermore with possibly different weights. In [García-Huidobro et al. 1995], it is
proved the existence of a positive radial solution for nonhomogeneous operators.

For the p-Laplace equation, it is well known that if (α−λ1)(α0−λ1) < 0 (where
λ1 denotes the first eigenvalue of −1p under a Dirichlet boundary condition),

−1pu = f (x, u) in �, u = 0 on ∂�,

has a positive solution (see [Dancer and Perera 2001]). One of our main purposes
is to extend this existence result from the p-Laplace equation to the corresponding
problem involving our nonhomogeneous operator A. This is done in Theorem 25.
We mention that in the special case of A(x, y) = A(y), the result in [Kyritsi
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et al. 2010] provides the existence of a positive solution if α < λ1C0/(p− 1) and
λ1C1/(p− 1) < α0 hold (note that we can apply this result only to the case where
α < α0). We emphasize that, for our general operator, the case λ1(a0) 6= λ1(a1)

can occur. Note that in such a situation, contrary to the p-Laplacian case, we can
still apply our theorem when α0 = α provided this number is between λ1(a0) and
λ1(a1). The known result for the p-Laplacian case is obtained from our theorem
simply by setting a0 ≡ 1 and a∞ ≡ 1.

In particular, our theorem implies that if λ1(a0) 6= λ1(a∞), then every λ between
λ1(a0) and λ1(a∞) is an eigenvalue of A (see Corollary 26) and has a positive eigen-
function. This shows that, generally, the spectrum of the operator −div A(x,∇· )
on W 1,p

0 (�) is not discrete.
In the final part of the paper, we treat the one side resonant and doubly resonant

cases under additional conditions on f . For the p-Laplace equation, we refer to
[Tanaka 2009] for the resonant and doubly resonant cases. Our Theorem 31 provides
the existence of a positive solution in all cases of resonance for problem (P) with a
nonhomogeneous operator in the principal part.

2. The properties of the map A

In what follows, the norm on W 1,p
0 (�) is given by

‖u‖p
:= ‖∇u‖p

p,

where ‖u‖q denotes the usual norm of Lq(�) for u ∈ Lq(�) (1≤ q ≤∞). Setting

(1) G(x, y) :=
∫
|y|

0
a(x, t)t dt,

we can easily see that

∇yG(x, y)= A(x, y) and G(x, 0)= 0

for every x ∈�; see [Motreanu et al. 2011] for details.

Remark 1. The following assertions hold under Assumption A:

(i) For all x ∈�, A(x, y) is maximal monotone and strictly monotone in y.

(ii) |A(x, y)| ≤
C1

p− 1
|y|p−1 for every (x, y) ∈�×RN .

(iii) A(x, y)y ≥
C0

p− 1
|y|p for every (x, y) ∈�×RN .

(iv) G(x, y) is strictly convex in y for all x and satisfies the inequalities

(2) A(x, y)y ≥ G(x, y)≥
C0

p(p− 1)
|y|p and G(x, y)≤

C1

p(p− 1)
|y|p

for every (x, y) ∈�×RN .
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The following result is important for the proof of the Palais–Smale condition for
the functionals related to our problem.

Proposition 2 [Motreanu et al. 2011, Proposition 1]. Let V : W 1,p
0 (�)→W 1,p

0 (�)∗

be the map defined by

〈V (u), v〉 =
∫
�

A(x,∇u)∇v dx

for u, v ∈ W 1,p
0 (�). Then any sequence {um} that converges weakly to u and

satisfies lim supm→∞〈V (um), um − u〉 ≤ 0 also converges strongly to u.

Remark 3. (i) If u ∈ W 1,p
0 (�) is a solution of (P), then u ∈ C1,α(�) for some

0< α < 1.

(ii) If u ∈W 1,p
0 (�) is a nontrivial solution of (P) such that u ≥ 0, then u > 0 in �

and ∂u/∂ν < 0 on ∂�, where ν denotes the outward unit normal vector on ∂�.

Sketch of proof. (i) Let u ∈W 1,p
0 (�) be a solution of (P). Then, because u ∈ L∞(�)

as shown by using the Moser iteration process (cf. [Miyajima et al. 2012, Appendix]),
we see that u ∈ C1,α(�) (0< α < 1) by the regularity result in [Lieberman 1988].

(ii) Let u ∈ W 1,p
0 (�) be a solution of (P) satisfying u ≥ 0 and u 6≡ 0. Then, by

Assumption ( f ), we obtain a constant λ > 0 satisfying

−div A(x,∇u)+ λu p−1
≥ 0 in �.

Noting that u ∈ C1,α(�) (0 < α < 1) by (i), we have u(x) > 0 for every x ∈ �
by [Miyajima et al. 2012, Appendix, Theorem B]. In addition, using the strong
maximum principle [ibid., Appendix, Theorem A], we easily see that ∂u(x)/∂ν < 0
for every x ∈ ∂�. �

Proposition 4. Let fn : �×R→ R be a Carathéodory function satisfying

| fn(x, t)| ≤ D(1+ |t |r−1) for every x ∈�, t ∈ R

with some positive constant D independent of n and r ∈ [p, p∗), where p∗ =∞
if N ≤ p and p∗ = pN/(N − p) if N > p. Assume that An : �×RN

→ RN is a
map satisfying parts (i)–(iv) of Assumption A with positive constants C ′1, C ′0, and
C ′2 independent of n. If un is a solution for

−div An(x,∇u)= fn(x, u) in �, u = 0 on ∂�

and {un} is bounded in W 1,p
0 (�), then there exist a subsequence {unl } of {un} and

u0 ∈ C1
0(�) such that unl → u0 in C1

0(�) as l→∞.

Proof. Since {un} is bounded in W 1,p
0 (�), we may assume that un converges weakly

to some u0 in W 1,p
0 (�) by choosing a subsequence. We can show that there exists

a C > 0 depending only on |�|, p, N , D, C ′0, C ′1, and the embedding constant of
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W 1,p
0 (�) into L p̄∗(�) such that ‖un‖∞≤C max{1, ‖un‖

( p̄∗−p)/( p̄∗−r)
} by the Moser

iteration process to [Miyajima et al. 2012, Theorem C], where p̄∗ = p∗ if N > p
and p̄∗ > r is any constant if N ≤ p. Since D, C ′1, and C ′0 are independent of n,
‖un‖∞ is bounded. Therefore, the regularity result in [Lieberman 1988] guarantees
that there exist γ ∈ (0, 1) and M > 0 independent of n such that un ∈ C1,γ

0 (�) and
‖un‖C1,γ

0
(�) ≤ M (where we use the fact that C ′2 is independent of n). Since the

inclusion of C1,γ
0 (�) to C1

0(�) is compact, un converges to u0 in C1
0(�) (note that

un ⇀ u0 in W 1,p
0 (�)). �

3. Eigenvalue problems

We introduce a function J :W 1,p
0 (�)→ R by

(3) J (u)=
∫
�

G(x,∇u) dx for all u ∈W 1,p
0 (�).

It is clear that J is of class C1. We also note that

(4) r S := {u ∈W 1,p
0 (�) : ‖u‖p = r} for r > 0

is a C1 Finsler manifold (cf. [Deimling 1985, Sections 27.4 and 27.5]) because r
is a regular value of the function u 7→ ‖u‖p on W 1,p

0 (�). Hence the norm of the
derivative at u ∈ (r S) of the restriction J̃ of J to r S is defined by

‖ J̃ ′(u)‖∗ := min{‖J ′(u)− t8′(u)‖W 1,p
0 (�)∗

: t ∈ R}

= sup{〈J ′(u), v〉 : v ∈ Tu(r S), ‖v‖ = 1},

where 8(u) := (1/p)‖u‖p
p and Tu(r S) denotes the tangent space of r S at u, that

is, Tu(r S) = {v ∈ W 1,p
0 (�) :

∫
�
|u|p−2uv dx = 0}. It follows that the restriction

J̃ = J |(r S) is a C1-function on r S in the sense of manifolds.

Proposition 5. For r > 0, the infimum

(5) µ1(A, r)= inf
u∈(r S)

∫
�

G(x,∇u) dx

is attained at points ±ûr ∈ (r S) with ûr ∈ C1,α(�) and ûr > 0 in �. Moreover,
±ûr are solutions of (EV; λ) with λ= λ1(A, ûr )/r p, where

(6) λ1(A, ûr )=

∫
�

A(x,∇ûr )∇ûr dx ≥
C0

p− 1
λ1r p.

Proof. Let {un} ⊂ (r S) be a minimizing sequence for (5). Using (2), it follows that
{un} is bounded in W 1,p

0 (�), so along a relabeled subsequence we have un ⇀ u
in W 1,p

0 (�) and un → u in L p(�) for some u ∈ W 1,p
0 (�), thus u ∈ (r S). Since
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G(x, · ) is convex and continuous for all x ∈�, J is weakly lower semicontinuous
on W 1,p

0 (�) [Mawhin and Willem 1989, Theorem 1.2]. Therefore, we derive that

µ1(A, r)≤
∫
�

G(x,∇u) dx ≤ lim inf
n→∞

∫
�

G(x,∇un) dx,

which yields

µ1(A, r)=
∫
�

G(x,∇u) dx .

The fact that the functional J is even implies that |u| is also a global minimizer
of J̃r . Consequently, we may assume that u ≥ 0. On the other hand, the Lagrange
multiplier rule leads to the existence of t ∈ R such that

(7)
∫
�

A(x,∇u)∇v dx = t
∫
�

u p−1v dx for all v ∈W 1,p
0 (�).

Inserting v = u in (7) entails

(8) trp
=

∫
�

A(x,∇u)∇u dx ≥
C0

p− 1
‖∇u‖p

p ≥
C0λ1

p− 1
‖u‖p

p =
C0λ1

p− 1
r p.

Therefore, we have
t =

λ1(A, u)
r p ≥

C0λ1

p− 1
.

From (7), it follows that u is a solution of (EV; λ) with λ = t = λ1(A, u)/r p.
According to Remark 3 with f (x, u) = t |u|p−2u, it follows that u ∈ C1,α(�)

(0 < α < 1) and u > 0 in �. Since J is even and λ1(A, u) = λ1(A,−u), we
have that J (−u)= J (u)= µ1(A, r) and −u is a negative solution of (EV; λ) with
λ= t = λ1(A, u)/r p. The result is thus established with ûr = u. �

We define
K1(A, r) := {u ∈ (r S) : J (u)= µ1(A, r)}.

Then it follows from Proposition 5 that K1(A, r) is not empty for each r > 0.
Because we do not know whether the minimizers of J̃r are only±ûr , we introduce

the following:

λ1(A, r) := inf
{∫

�

A(x,∇u)∇u dx : u ∈ K1(A, r)
}
,

λ̄1(A, r) := sup
{∫

�

A(x,∇u)∇u dx : u ∈ K1(A, r)
}
.

Lemma 6. For every r > 0, λ1(A, r) and λ̄1(A, r) are attained.

Proof. We only deal with λ1(A, r) because λ̄1(A, r) can be treated similarly. Fix
any r > 0. Let un ∈ K1(A, r) satisfy λ1(A, un)→ λ1(A, r) as n→∞. Then we
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see that ‖∇un‖p is bounded from the inequality

C0

p(p− 1)
‖∇un‖

p
p ≤

∫
�

G(x,∇un) dx = µ1(A, r)≤
∫
�

G(x,∇w) dx

for w ∈ r S, where we use the definition of µ1(A, r) and (2). Recall that each un is
a solution of (EV; λ) with λ= λ1(A, un)/r p. Moreover, we have

C0

p− 1
λ1r p
≤ λ1(A, un)≤

C1

p− 1
‖∇un‖

p
p

by Remark 1(ii) (see (6) for the first inequality), whence λ1(A, un)/r p is bounded.
As a result, due to Proposition 4, we may assume that there exists u0 ∈W 1,p

0 (�)

such that un → u0 in C1
0(�) by choosing a subsequence if necessary. Since J

and λ1(A, · ) are continuous in W 1,p
0 (�), we see that J (u0) = limn→∞ J (un) =

µ1(A, r), u0 ∈ K1(A, r), and λ1(A, u0) = limn→∞ λ1(A, un) = λ1(A, r). Thus,
our conclusion holds. �

Define

λ1(A) := inf
u 6=0

∫
�

A(x,∇u)∇u
‖u‖p

p
dx and µ1(A) := inf

u 6=0

∫
�

G(x,∇u)
‖u‖p

p
dx .

Lemma 7.

C0

p− 1
λ1 ≤ λ1(A)≤min

{
inf
r>0

λ1(A, r)
r p ,

C1

p− 1
λ1

}
and µ1(A)= inf

r>0

µ1(A, r)
r p .

Proof. First, we consider λ1(A). For every 0 6= u ∈W 1,p
0 (�), we have

(9)
C0

p− 1
‖∇u‖p

p

‖u‖p
p
≤

∫
�

A(x,∇u)∇u
‖u‖p

p
dx ≤

C1

p− 1
‖∇u‖p

p

‖u‖p
p

by Remark 1(ii)–(iii). Thus (C0/(p− 1))λ1 ≤ λ1(A)≤ (C1/(p− 1))λ1 by taking
the infimum with respect to u.

Here we fix any ε > 0. Then there exists an rε > 0 such that λ1(A, rε)/r p
ε ≤

infr>0(λ1(A, r)/r p) + ε. By Lemma 6, we can choose uε ∈ (rεS) such that
λ1(A, uε)= λ1(A, rε), that is,

∫
�

A(x,∇uε)∇uε dx = λ1(A, rε). By the definition
of λ1(A), we obtain

λ1(A)≤
∫
�

A(x,∇uε)∇uε
‖uε‖

p
p

dx =
λ1(A, rε)

r p
ε

≤ inf
r>0

λ1(A, r)
r p + ε.

Because ε > 0 is arbitrary, we have λ1(A)≤ infr>0(λ1(A, r)/r p).
Next we treat µ1(A). Fix any ε > 0. Then there exists an rε > 0 such that

µ1(A, rε)/r p
ε ≤ infr>0(µ1(A, r)/r p)+ ε. On the other hand, because µ1(A, rε) is
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attained at some uε ∈ (rεS), we have

inf
u 6=0

∫
�

G(x,∇u)
‖u‖p

p
dx ≤

∫
�

G(x,∇uε)
‖uε‖

p
p

dx =
µ1(A, rε)

r p
ε

≤ inf
r>0

µ1(A, r)
r p + ε.

Because ε > 0 is arbitrary, this yields that µ1(A)≤ infr>0(µ1(A, r)/r p).
For any ε > 0, we take vε 6= 0 such that

∫
�
(G(x,∇vε)/‖vε‖

p
p) dx ≤ µ1(A)+ ε.

Then rε := ‖vε‖p > 0 and so

µ1(A, rε)
r p
ε

≤

∫
�

G(x,∇vε)
‖vε‖

p
p

dx ≤ µ1(A)+ ε.

This leads to µ1(A)≥ infr>0(µ1(A, r)/r p). �

Proposition 8. If λ < λ1(A), (EV; λ) has no nontrivial solutions.

Proof. Let u be a nontrivial solution of (EV; λ) with λ < λ1(A). Then we have

λ1(A)≤
∫
�

A(x,∇u)∇u
‖u‖p

p
dx = λ

by the definition of λ1(A). This is a contradiction. �

Set

(10) Ap :=
C1

p− 1

(
C1

C0

)p−1

≥ 1,

which is equal to 1 exactly in the case of A(x, y) = |y|p−2 y (that is, the special
case of the p-Laplacian ) because we can choose C0 = C1 = p− 1.

Lemma 9 [Tanaka 2012a, Lemma 16]. Let ε > 0. For every

u, ϕ ∈W 1,p(�)∩C1(�)∩ L∞(�)

with u ≥ 0 and ϕ ≥ 0 in �, we have∫
�

A(x,∇u)∇
(

ϕ p

(u+ ε)p−1

)
dx ≤ Ap‖∇ϕ‖

p
p.

Proposition 10. Any nontrivial solution of (EV; λ) with λ > Apλ1 changes sign.

Proof. By way of contradiction, assume there is a solution u that does not change
sign. Then we may suppose that u≥0 because A is odd. Due to the strong maximum
principle and the regularity theorem (see Remark 3), it follows that u ∈ C1

0(�) and
u > 0 in �. Let ϕ1 be the positive eigenfunction of −1p corresponding to λ1 such
that ‖ϕ1‖p = 1. According to Lemma 9, we obtain

Apλ1 = Ap‖∇ϕ1‖
p
p ≥

∫
�

A(x,∇u)∇
(

ϕ
p
1

(u+ ε)p−1

)
dx = λ

∫
�

(
u

u+ ε

)p−1

ϕ
p
1 dx

for every ε > 0. By taking ε ↓ 0, we have λ≤ Apλ1. This is a contradiction. �
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Proposition 11. Assume Apλ1 < C0λ2/(p − 1), where λ2 > λ1 is the second
eigenvalue of −1p. If Apλ1 < λ < C0λ2/(p − 1), (EV; λ) has no nontrivial
solutions.

Proof. By way of contradiction, we assume that (EV; λ) has a nontrivial solution u.
Then it follows from Proposition 10 that u changes sign. Moreover, by taking u±
as a test function in (EV; λ), we have

C0

p− 1
‖∇u±‖p

p ≤

∫
�

A(x,∇u)(±∇u±) dx = λ‖u±‖p
p,

whence

(11) ‖∇u±‖p
p < λ2‖u±‖p

p.

This inequality guarantees the existence of a continuous path γ0 on S such that
γ0(0) = ϕ1, γ0(1) = −ϕ1 and maxt∈[0,1] ‖∇γ0(t)‖

p
p < λ2; refer to [Cuesta et al.

1999, Lemma 5.3]. This contradicts the equality

λ2 = inf
γ∈6

max
t∈[0,1]

8(γ (t)),

where 8(u) := ‖∇u‖p
p and 6 := {γ ∈ C([0, 1], S) : γ (0)= ϕ1, γ (1)=−ϕ1}; see

[Anane 1987; Cuesta et al. 1999]. This contradiction proves our result.
For the reader’s convenience, we give the sketch of the construction of a path γ0

as required above. Define paths as follows:

γ1(t) :=
tu+ (1− t)u+
‖tu+ (1− t)u+‖p

=
u+− tu−
‖u+− tu−‖p

, γ2(t) :=
tu++ (1− t)u−
‖tu++ (1− t)u−‖p

,

γ3(t) :=
(1− t)u− tu−
‖(1− t)u− tu−‖p

=
(1− t)u+− u−
‖(1− t)u+− u−‖p

for t ∈ [0, 1]. Then, setting 8̃ :=8|S , we obtain by (11)

max
t∈[0,1]

8̃(γi (t)) < λ2, for i = 1, 2, 3.

We recall that any component of O(r) := {u ∈ S : 8̃(u) < r} contains at least
one critical point of 8̃, where r > 0 [Cuesta et al. 1999, Lemma 3.6]. Note that
O(λ2) contains just two critical points ϕ1 and −ϕ1 because a critical value c of 8̃
corresponds to the eigenvalue c of the negative p-Laplacian. Since any component
of O(λ2) is path connected [ibid., Lemma 3.5], there exists a path γ4 joining from
u−/‖u−‖p to ϕ1 or −ϕ1 in O(λ2). Thus, by noting that 8 is even, we can construct
a path γ0 ∈6 such that maxt 8̃(γ0(t)) < λ2 by considering γ−1

4 ·γ2 ·γ1 ·γ3 · (−γ4)

or its inverse, where γ−1
i (t) := γi (1− t) and γi · γ j denotes the path defined by

γi (2t) if 0≤ t ≤ 1
2 and γ j (2t − 1) if 1

2 < t ≤ 1. �
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3.1. Asymptotically homogeneous case near zero. We now consider the case where
A is asymptotically (p−1)-homogeneous near zero in the following sense.

(AH0) There exist a positive function a0 ∈ C1(�,R) and a continuous function
ã0(x, t) on �×[0,+∞) such that

A(x, y)= a0(x)|y|p−2 y+ ã0(x, |y|)y for every x ∈�, y ∈ RN ,

where

lim
t→+0

ã0(x, t)
t p−2 = 0 uniformly in x ∈�.

For this weight function a0, we define

(12) λ1(a0) := inf
{∫

�

a0(x)|∇u|p dx : ‖u‖p = 1
}
.

Because 0<minx∈� a0(x)≤maxx∈� a0(x) <∞, by the same argument as the one
for the first eigenvalue of the negative p-Laplacian, we can prove that λ1(a0) is the
first eigenvalue of

(13) −div
(
a0(x)|∇u|p−2

∇u
)
= λ|u|p−2u in �, u = 0 on ∂�.

Moreover, λ1(a0) has a positive eigenfunction ϕa0 ∈ C1(�) and it is simple. It is
proved that (13) has no constant sign solutions other than 0 provided λ 6= λ1(a0).

Theorem 12. Assume (AH0). For every ε > 0 there exists r0 > 0 such that equation
(EV; λ) has no nontrivial solutions in Bp(r0) := {v∈W 1,p

0 (�) : ‖v‖p< r0} provided
λ < λ1(a0)− ε.

Proof. We argue by contradiction. Thus we assume that there exist ε0 > 0, {λn}

and {un} such that λn < λ1(a0)− ε0, un ∈ Bp(1/n) and un is a nontrivial solution
of (EV; λn). By taking un as a test function in (EV; λn), we have

(14)
C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un)∇un dx = λn‖un‖
p
p ≤ (λ1(a0)−ε0)/n p

→ 0

as n →∞. Therefore, un → 0 in W 1,p
0 (�). In addition, by noting that un is a

nontrivial solution of (EV; λn) and 0≤ λn < λ1(a0)− ε0, Proposition 4 yields that
un converges to 0 in C1(�).

Set vn := un/‖un‖p. Then it follows from (14) and the boundedness of {λn} that
{vn} is bounded in W 1,p

0 (�). Hence, by choosing a subsequence, we may assume
that vn converges to some v0 weakly in W 1,p

0 (�) and strongly in L p(�). Again by
taking un/‖un‖

p
p as a test function in (EV; λn), we obtain
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λ1(a0)− ε0 > λn =

∫
�

a0(x)|∇un|
p

‖un‖
p
p

dx +
∫
�

ã0(x, |∇un|)|∇un|
2

‖un‖
p
p

dx

=

∫
�

a0(x)|∇vn|
p dx +

∫
�

ã0(x, |∇un|)|∇un|
2

‖un‖
p
p

≥ λ1(a0)+

∫
�

ã0(x, |∇un|)|∇un|
2

‖un‖
p
p

=: λ1(a0)+ I

because of the characterization of λ1(a0). Hypothesis (AH0) guarantees that for
every δ > 0 there exists ρ0 > 0 such that |ã0(x, t)| ≤ δ|t |p−2 if |t | ≤ ρ0. Since
‖un‖C1(�)→ 0 and in view of (14), we can get

|I | ≤ δ
∫
�

|∇vn|
p dx ≤

δ(p− 1)
C0

λn ≤
δ(p− 1)

C0
(λ1(a0)− ε0)

for sufficiently large n. As a result, by taking a sufficiently small δ > 0, we have a
contradiction for sufficiently large n. �

Theorem 13. Assume (AH0). For every ε > 0 there exists r1 > 0 such that (EV; λ)
has no constant sign solutions in Bp(r1) \ {0} provided λ > λ1(a0)+ ε.

Proof. By way of contradiction, we assume that there exist ε0 > 0, {λn} and {un}

such that λn > λ1(a0)+ ε0, 0 6= un ∈ Bp(1/n) and un is a constant sign solution of
(EV; λn). Because A is odd, we may suppose that un ≥ 0 by considering −un if
necessary. Thus, by Remark 3(i)–(ii), un ∈ C1(�) and un > 0 in �. We note that
λn ≤ Apλ1(−1p) by Proposition 10, where λ1(−1p) denotes the first eigenvalue
of −1p (see (10) for the definition of Ap), and so {λn} is bounded. Therefore, we
may assume that λn converges to some λ0 by choosing a subsequence. In addition,
by the same argument as in Theorem 12, we can show that un→ 0 in C1(�).

Set An(x, y) := A(x, ‖un‖p y)/‖un‖
p−1
p and fn(x, t) := λn|t |p−2t . Then An

satisfies Assumption A(i)–(iv) with the same constants C0, C1, and C2. Moreover,
| fn(x, t)| ≤ λn|t |p−1

≤ Apλ1(−1p)|t |p−1 for every t ∈ R, a.e. x ∈ �. Note also
that we have the boundedness of ‖vn‖ due to the inequality C0‖∇un‖

p
p/(p− 1)≤∫

�
A(x,∇un)∇un dx = λn‖un‖

p
p. Since vn := un/‖un‖p is a positive solution of

−div(An(x,∇u))= fn(x, u) in �, u = 0 on ∂�,

Proposition 4 guarantees that {vn} has a convergent subsequence in C1(�). By
choosing a subsequence, we may suppose that vn → v0 6= 0 in C1(�) (note that
‖v0‖p = 1). Using that we obtain, for every w ∈W 1,p

0 (�), that∫
�

ã0(x, |∇un|)∇un

‖un‖
p−1
p

∇w dx =
∫
�

ã0(x, |∇un|)∇un

|∇un|
p−1 ∇w|∇vn|

p−1 dx→ 0

as n →∞ in view of (AH0) and the convergence un → 0. As a result, letting
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n→∞ in the equality∫
�

a0(x)|∇vn|
p−2
∇vn∇wdx+

∫
�

ã0(x, |∇un|)∇un

‖un‖
p−1
p

∇wdx =λn

∫
�

|vn|
p−2vnwdx

for each w ∈W 1,p
0 (�), we see that v0 6= 0 is a positive solution of (13) with λ= λ0

(see Remark 3(ii) for v0 > 0). This yields that λ0 = λ1(a0), because (13) has no
positive solutions other that λ= λ1(a0). Therefore we have a contradiction, because
λ0 = limn→∞ λn ≥ λ1(a0)+ ε0. �

Proposition 14. Assume (AH0). Then, for every ε > 0, there exists r0 > 0 such that

λ1(A, r)
r p ≥ λ1(a0)− ε for every 0< r < r0.

Proof. Assume that there exist ε > 0 and rn > 0 such that rn → 0 as n →∞
and λ1(A, rn)/r p

n < λ1(a0)− ε for every n ∈ N. Because of Proposition 5 and
Lemma 6 (note that A is odd in the second variable), we can choose a positive
function un ∈ (rn S)∩C1(�) satisfying∫
�

A(x,∇un)∇un dx = λ1(A, rn), min
v∈rn S

∫
�

G(x,∇v) dx =
∫
�

G(x,∇un) dx .

Note that

(15)
C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un)∇un dx = λ1(A, rn) < (λ1(a0)− ε)r p
n → 0,

and so un → 0 in W 1,p
0 (�). Because un is a solution of (EV; λ) with λ =

λ1(A, rn)/r p
n (see Proposition 5), by combining the inequality

λ1(a0)− ε >
λ1(A, rn)

r p
n

=

∫
�

a0(x)|∇vn|
p dx +

∫
�

ã0(x, |∇un|)|∇un|
2

‖un‖
p
p

dx

and an argument as in Theorem 12 with λn=λ1(A, rn)/r p
n , we have a contradiction.

�

Proposition 15. Assume (AH0). Then, for every ε > 0, there exists r1 > 0 such that

λ̄1(A, r)
r p ≤ λ1(a0)+ ε for every 0< r < r1.

Proof. Assume that there exist ε0 > 0 and rn > 0 such that rn → 0 as n →∞
and λ̄1(A, rn)/r p

n > λ1(a0) + ε0 for every n ∈ N. According to Lemma 6 and
Proposition 5, we can take a positive function un ∈ (rn S)∩C1(�) satisfying∫
�

A(x,∇un)∇un dx = λ̄1(A, rn), min
v∈rn S

∫
�

G(x,∇v) dx =
∫
�

G(x,∇un) dx .

Noting that, with ϕa0 the positive eigenfunction corresponding to λ1(a0) satisfying
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‖ϕa0‖p = 1, we have

C0

p(p− 1)
‖∇un‖

p
p≤

∫
�

G(x,∇un) dx≤
∫
�

G(x, rn∇ϕa0) dx≤
C1r p

n

p(p− 1)
‖∇ϕa0‖

p
p,

we see that un→ 0 in C1(�) due to Proposition 4, because un is a positive solution
of (EV; λ) with λ= λ̄1(A, rn)/r p

n and (λ1(a0)+ε0<)λ̄1(A, rn)/r p
n ≤ Apλ1(−1p)

by Proposition 10, where λ1(−1p) denotes the first eigenvalue of −1p (see (10)
for the definition of Ap). Therefore, by the same argument as in Theorem 13 with
λn = λ̄1(A, rn)/r p

n , we have a contradiction. �

The following result follows from Propositions 14 and 15, (note λ1(A, r) ≤
λ̄1(A, r) for every r > 0).

Corollary 16. Under (AH0), we have

lim
r→+0

λ̄1(A, r)
r p = lim

r→+0

λ1(A, r)
r p = λ1(a0).

Proposition 17. Under (AH0), we have

lim
r→+0

µ1(A, r)
r p =

λ1(a0)

p
.

Proof. Due to Proposition 5, for every r > 0, there exists a positive solution
ur ∈ (r S)∩C1(�) of (EV; λ) with λ= λ1(A, ur )/r p and µ1(A, r)= J (ur ). Then
we can prove that ur→0 in C1(�) as r→+0 and ur/‖ur‖p is bounded in W 1,p

0 (�)

as r→+0 by a similar reason to the one in Proposition 15 (note that λ1(A, ur )/r p

is bounded as r→+0 by the inequality below and Corollary 16).
Set G̃0(x, y) :=

∫
|y|

0 ã0(x, t)t dt for y ∈ RN . We point out that

λ1(A, r)≤ λ1(A, ur )≤ λ̄1(A, r)

and

µ1(A, r)=
∫
�

G(x,∇ur ) dx =
1
p

∫
�

a0(x)|∇ur |
p dx +

∫
�

G̃0(x,∇ur ) dx

=
λ1(A, ur )

p
−

1
p

∫
�

ã0(x, |∇u|)|∇ur |
2 dx +

∫
�

G̃0(x,∇ur ) dx .

Thus, by Corollary 16 and r = ‖ur‖p, it suffices to prove

lim
r→+0

∫
�

ã0(x, |∇u|)|∇ur |
2

‖ur‖
p
p

dx = 0 and lim
r→+0

∫
�

G̃0(x,∇ur )

‖ur‖
p
p

dx = 0.

Now we fix any ε > 0. Then, by (AH0), there exists δ > 0 such that

|ã0(x, t)| ≤ εt p−2 and |G̃0(x, y)| ≤ ε|y|p/p for every 0< t ≤ δ, |y| ≤ δ.
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Because ur → 0 in C1(�) as r → +0, we may assume that ‖ur‖C1(�) ≤ δ for
sufficiently small r > 0. Therefore, we obtain∣∣∣∣∫

�

ã0(x, |∇u|)|∇ur |
2

‖ur‖
p
p

dx
∣∣∣∣≤ ε‖∇ur‖

p
p

‖ur‖
p
p
,

∣∣∣∣∫
�

G̃0(x,∇ur )

‖ur‖
p
p

dx
∣∣∣∣≤ ε‖∇ur‖

p
p

p‖ur‖
p
p
.

Since ‖∇ur‖p/‖ur‖p is bounded as r→+0 and ε > 0 is arbitrary, our conclusion
holds. �

3.2. Asymptotically homogeneous case near∞. In this subsection, we consider
the case where A is asymptotically (p−1)-homogeneous near∞ in the following
sense.

(AH) There exist a positive function a∞ ∈ C1(�,R) and a continuous function
ã(x, t) on �×R such that

A(x, y)= a∞(x)|y|p−2 y+ ã(x, |y|)y for every x ∈�, y ∈ RN ,

where
lim

t→+∞

ã(x, t)
t p−2 = 0 uniformly in x ∈�.

For the weight function a∞, we define

(16) λ1(a∞) := inf
{∫

�

a∞(x)|∇u|p dx : ‖u‖p = 1
}
.

Because 0< minx∈� a∞(x) ≤ maxx∈� a∞(x) <∞, by the same argument as for
the first eigenvalue of −1p, we can prove the following elementary results:

(i) λ1(a∞) is the first eigenvalue of

(17) −div(a∞(x)|∇u|p−2
∇u)= λ|u|p−2u in �, u = 0 on ∂�.

(ii) λ1(a∞) has a positive eigenfunction ϕa∞ ∈ C1(�) with ‖ϕa∞‖p = 1 and it is
simple.

(iii) If λ 6= λ1(a∞), then (17) has no constant sign solutions other than 0.

Theorem 18. Assume (AH). For every ε > 0 there exists R0 > 0 such that equation
(EV; λ) has no solutions in W 1,p

0 (�) \ Bp(R0) provided λ < λ1(a∞)− ε.

To prove the theorem, we need the following result.

Lemma 19. Assume (AH) and let {un} ⊂ W 1,p
0 (�) be a sequence satisfying

‖un‖p→∞ as n→∞. If vn := un/‖un‖p is bounded in W 1,p
0 (�), the following

assertions hold:

(i) lim
n→∞

∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx = 0.
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(ii) For every w ∈W 1,p
0 (�),

lim
n→∞

∫
�

ã(x, |∇un|)∇un∇w

‖un‖
p−1
p

dx = 0.

(iii) lim
n→∞

∫
�

G̃(x,∇un)

‖un‖
p
p

dx = 0, where G̃(x, y) :=
∫
|y|

0 ã(x, t)t dt for y ∈RN .

Proof. (i) Fix any ε > 0. By the property of the function ã, there exist R > 0 and
C > 0 such that

(18) |ã(x, t)| ≤ ε|t |p−2 if t ≥ R and |ã(x, t)| ≤ C if 0≤ t ≤ R.

Therefore, we obtain∣∣∣∣∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx
∣∣∣∣≤ ∫

|∇un |>R
ε|∇vn|

p dx +
∫
|∇un |≤R

C |∇un|
2

‖un‖
p
p

dx

≤ ε‖∇vn‖
p
p +

C R2
|�|

‖un‖
p
p
≤ εD p

+
C R2
|�|

‖un‖
p
p

by (18), where D := supn ‖∇vn‖p. Letting n→∞, we have

lim sup
n→∞

∣∣∣∣∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx
∣∣∣∣≤ εD p,

because ‖un‖p →∞ as n→∞. Thus, since ε > 0 is arbitrary, our conclusion
holds.

(ii) For any ε > 0 and w ∈W 1,p
0 (�), we have∣∣∣∣∫

�

ã(x, |∇un|)∇un∇w

‖un‖
p−1
p

dx
∣∣∣∣

≤

∫
|∇un |>R

ε|∇vn|
p−1
|∇w| dx +

∫
|∇un |≤R

C |∇un||∇w|

‖un‖
p−1
p

dx

≤ ε‖∇vn‖
p−1
p ‖∇w‖p +

C R‖∇w‖p|�|
(p−1)/p

‖un‖
p−1
p

by Hölder’s inequality and (18). By combining this inequality and a similar argument
to that used in (i), our conclusion is shown.

(iii) It is easily shown that, for every ε > 0, there exists C > 0 such that

|G̃(x, y)| ≤ ε|y|p +C for every y ∈ RN .

Therefore,
∣∣∣∫
�

G̃(x,∇un) dx
∣∣∣≤ ε‖∇un‖

p
p+C |�|. This implies our conclusion. �
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Proof of Theorem 18. By way of contradiction, we assume that there exist ε0 > 0,
{λn}, and {un} such that λn <λ1(a∞)−ε0, limn→∞ ‖un‖p=∞, and un is a solution
of (EV; λn). By taking un as a test function in (EV; λn), we have

C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un)∇un dx = λn‖un‖
p
p ≤ (λ1(a∞)− ε0)‖un‖

p
p;

refer to Remark 1(iii). Therefore, vn := un/‖un‖p is bounded in W 1,p
0 (�).

Again by taking un/‖un‖
p
p as a test function in (EV; λn), we obtain

λ1(a∞)− ε0 > λn =

∫
�

a∞(x)|∇un|
p

‖un‖
p
p

dx +
∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx

=

∫
�

a∞(x)|∇vn|
p dx +

∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx

≥ λ1(a∞)+ o(1),

using the definition of λ1(a∞) and Lemma 19(i). This is a contradiction. �

Theorem 20. Assume (AH). For every ε > 0 there exists R1 > 0 such that (EV; λ)
has no constant sign solutions in W 1,p

0 (�) \ Bp(R1) provided λ > λ1(a∞)+ ε.

Proof. By way of contradiction, we assume that there exist ε0 > 0, {λn}, and {un}

such that λn >λ1(a∞)+ε0, limn→∞ ‖un‖p =∞, and un is a constant sign solution
of (EV; λn). Because A is odd, we may suppose that un ≥ 0 by considering −un if
necessary. Thus, by Remark 3, un ∈ C1(�) and un > 0 in �. Here we note that
λn ≤ Apλ1(−1p) by Proposition 10, where λ1(−1p) denotes the first eigenvalue
of −1p (see (10) for the definition of Ap), and so {λn} is bounded. Hence we may
assume, by taking a subsequence, that λn converges to some

λ0 ∈
[
λ1(a∞)+ ε0, Apλ1(−1p)

]
.

In addition, we know that vn := un/‖un‖p is bounded in W 1,p
0 (�)

C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un) dx = λn‖un‖
p
p,

where we take un as a test function in (EV; λn). Thus, by choosing a subsequence,
we may suppose that vn converges to some v weakly in W 1,p

0 (�) and strongly in
L p(�).

We claim that v is a positive solution of

(19) −div(a∞(x)|∇v|p−2
∇v)= λ0|v|

p−2v in �, v = 0 on ∂�,

that is, v is a positive eigenfunction corresponding to λ0. If our claim holds, then
λ0=λ1(a∞) occurs because (17) has no positive solutions in the case of λ 6=λ1(a∞).
Hence this contradicts λ1(a∞)+ ε0 ≤ limn→∞ λn = λ0.
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We now prove our claim. First, we show that vn converges to v strongly in
W 1,p

0 (�). Indeed, by taking (vn − v)/‖un‖
p−1
p as a test function in (EV; λn), we

have

λn

∫
�

v p−1
n (vn − v) dx

=

∫
�

a∞(x)|∇vn|
p−2
∇vn∇(vn − v) dx +

∫
�

ã(x, |∇un|)∇un

‖un‖
p−1
p

∇(vn − v) dx

=

∫
�

a∞(x)|∇vn|
p−2
∇vn∇(vn − v) dx + o(1)

as n →∞ due to Lemma 19(i)–(ii). Since vn → v in L p(�), this implies that∫
�

a∞(x)|∇vn|
p−2
∇vn∇(vn − v) dx converges to 0 as n→∞. Noting that

o(1)=
∫
�

a∞(x)(|∇vn|
p−2
∇vn − |∇v|

p−2
∇v)∇(vn − v) dx

≥min
�

a∞

∫
�

(|∇vn|
p−2
∇vn − |∇v|

p−2
∇v)∇(vn − v) dx

≥min
�

a∞(‖∇vn‖
p−1
p −‖∇v‖p−1

p )(‖∇vn‖p −‖∇v‖p)≥ 0,

we have vn→ v in W 1,p
0 (�) (note 0<min� a∞ ≤max� a∞ <∞). As a result, v

is a solution of (19) by letting n→∞ in the equality∫
�

a∞(x)|∇vn|
p−2
∇vn∇w dx +

∫
�

ã(x, |∇un|)∇un∇w

‖un‖
p−1
p

dx = λn

∫
�

v p−1
n w dx

for every w ∈ W 1,p
0 (�); note that, by Lemma 19(ii), the second term converges

to zero. Since vn = un/‖un‖p > 0 in �, v is nonnegative, and so v is positive by
Remark 3(i) and ‖v‖p = 1. Thus our claim is shown. �

Proposition 21. Assume (AH). Then, for every ε > 0, there exists R0 > 0 such that
λ1(A, r)

r p ≥ λ1(a∞)− ε for every r > R0.

Proof. Assume that there exist ε0 > 0 and rn > 0 such that rn →∞ as n→∞
and λ1(A, rn)/r p

n < λ1(a∞)− ε0 for every n ∈ N. Because of Proposition 5 and
Lemma 6, we can choose a positive function un ∈ (rn S)∩C1(�) satisfying∫
�

A(x,∇un)∇un dx = λ1(A, rn), min
v∈rn S

∫
�

G(x,∇v) dx =
∫
�

G(x,∇un) dx .

Note that

C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un)∇un dx = λ1(A, rn) < (λ1(a∞)− ε0)r p
n ,
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and so un/rn = un/‖un‖p is bounded in W 1,p
0 (�). Because un is a solution of

(EV; λ) with λ = λ1(A, rn)/r p
n (see Proposition 5), by the same argument as in

Theorem 18 with λn = λ1(A, rn)/r p
n , we have a contradiction. �

Proposition 22. Assume (AH). Then, for every ε > 0, there exists R1 > 0 such that
λ̄1(A, r)

r p ≤ λ1(a∞)+ ε for every r > R1.

Proof. Assume that there exist ε0 > 0 and rn > 0 such that rn →∞ as n→∞
and λ̄1(A, rn)/r p

n > λ1(a∞)+ ε0 for every n ∈ N. According to Lemma 6 and
Proposition 5, we can take a positive function un ∈ (rn S)∩C1(�) satisfying∫
�

A(x,∇un)∇un dx = λ̄1(A, rn), min
v∈rn S

∫
�

G(x,∇v) dx =
∫
�

G(x,∇un) dx .

Note that, with ϕa∞ as in item (ii) of page 165, we have

C0

p(p− 1)
‖∇un‖

p
p≤

∫
�

G(x,∇un)dx≤
∫
�

G(x,rn∇ϕa∞)dx≤
C1r p

n

p(p− 1)
‖∇ϕa∞‖

p
p.

Hence un/rn = un/‖un‖p is bounded in W 1,p
0 (�). Since un is a positive solution

of (EV; λ) with λ= λ̄1(A, rn)/r p
n , by the same argument as in Theorem 20 with

λn = λ̄1(A, rn)/r p
n , we have a contradiction. �

By Propositions 21 and 22, we have the following result.

Corollary 23. Under (AH), we have

lim
r→+∞

λ̄1(A, r)
r p = lim

r→+∞

λ1(A, r)
r p = λ1(a∞).

Proposition 24. Under (AH), we have

lim
r→+∞

µ1(A, r)
r p =

λ1(a∞)
p

.

Proof. Due to Proposition 5, for every r > 0, there exists a positive solution
ur ∈ (r S)∩C1(�) of (EV; λ) with λ= λ1(A, ur )/r p and µ1(A, r)= J (ur ). Then
ur/‖ur‖p = ur/r is bounded in W 1,p

0 (�), as seen from

C0

p(p− 1)
‖∇ur‖

p
p ≤

∫
�

G(x,∇ur ) dx ≤
∫
�

G(x, r∇w) dx ≤
r pC1

p(p− 1)
‖∇w‖p

p

for any w ∈W 1,p
0 (�) with ‖w‖p = 1.

Set

G̃(x, y) :=
∫
|y|

0
ã(x, t)t dx for y ∈ RN .

Note that
λ1(A, r)≤ λ1(A, ur )≤ λ̄1(A, r)
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and

µ1(A, r)=
∫
�

G(x,∇ur ) dx =
1
p

∫
�

a∞(x)|∇ur |
p dx +

∫
�

G̃(x,∇ur ) dx

=
λ1(A, ur )

p
−

1
p

∫
�

ã(x, |∇u|)|∇ur |
2 dx +

∫
�

G̃(x,∇ur ) dx .

According to Corollary 23 and Lemma 19(i) and (iii) (note ‖ur‖p = r→+∞), our
conclusion is achieved. �

4. Existence of a positive solution

In this section, we provide the existence of a positive solution to the equation

(P)
{
−div A(x,∇u)= f (x, u) in �,
u = 0 on ∂�,

where the nonlinear term f satisfies Assumption ( f ).

Theorem 25. Assume (AH0), (AH), and ( f ). Let λ1(a0) and λ1(a∞) be the first
eigenvalues of , respectively, (13) and (17) (see the discussion there). If one of the
following conditions holds, (P) has at least one positive solution.

(i) α0 > λ1(a0) and α < λ1(a∞).

(ii) α0 < λ1(a0) and α > λ1(a∞).

This addresses the existence of an eigenvalue for our operator because we can
apply Theorem 25 to f (x, u)= λ|u|p−2u.

Corollary 26. Assume (AH0), (AH), and λ1(a0) 6= λ1(a∞). Then, for every λ
between λ1(a0) and λ1(a∞), (EV; λ) has a nontrivial (positive) solution. Therefore
λ is an eigenvalue of A

To show the existence of a positive solution, we define a C1 functional I on
W 1,p

0 (�) by

I (u) :=
∫
�

G(x,∇u) dx −
∫
�

F+(x, u) dx for u ∈W 1,p
0 (�),

where F+(x, u) :=
∫ u

0
f+(x, u) dx , with f+(x, t) given by f (x, t) if t ≥ 0 and 0 if

t ≤ 0.

Remark 27. If u ∈W 1,p
0 (�) is a nontrivial critical point of I , then u is a positive

solution of (P).
Indeed, by taking −u− as a test function, we obtain

0= 〈I ′(u),−u−〉 =
∫
�

A(x,∇u)(−∇u−) dx −
∫
�

f+(x, u)(−u−) dx

=

∫
�

A(x,∇u)(−∇u−) dx ≥
C0

p− 1
‖∇u−‖p

p.
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Thus u ≥ 0. By Remark 3(ii) (note that u 6≡ 0), we see that u is a positive solution
of (P) (note that f+(x, u)= f (x, u)).

Convention. From now on, let Assumption ( f ) be satisfied.

Lemma 28. If α 6= λ1(a∞), then I satisfies the Palais–Smale condition.

Proof. Let {un} be a Palais–Smale sequence of I , which means that

I (un)→ c and ‖I ′(un)‖W 1,p
0 (�)∗

→ 0 as n→∞

for some c ∈ R. In view of Proposition 2 and the compactness of the embedding
W 1,p

0 (�) ↪→ L p(�), it is sufficient to prove the boundedness of {un} in W 1,p
0 (�).

Then, in view of the inequality

(20)
C0

p(p− 1)
‖∇un‖

p
p ≤

∫
�

G(x,∇un) dx = I (un)+

∫
�

F+(x, un) dx

≤ I (un)+C‖un‖
p
p,

it is sufficient to prove the boundedness of {un} in L p(�). By way of contradiction
we may assume that ‖un‖p→∞ as n→∞ by choosing a subsequence if necessary.
Set vn := un/‖un‖p. The inequality (20) ensures that {vn} is bounded in W 1,p

0 (�).
Hence, by choosing a subsequence, we may suppose that vn ⇀v0 in W 1,p

0 (�) and
vn→ v0 in L p(�) for some v0.

First, we see that v0 ≥ 0 for a.e. x ∈ �. Indeed, by taking −(un)− as a test
function, we have

o(1)‖∇(un)−‖p = 〈I ′(un),−(un)−〉

=

∫
�

A(x,∇un)(−∇(un)−) dx ≥
C0

p− 1
‖∇(un)−‖

p
p.

Because p> 1, we have ‖∇(un)−‖p→ 0 as n→∞. Thus (vn)−→ 0 in W 1,p
0 (�),

and hence (v0)− = 0 for a.e. x ∈�.
Now we prove that

(21) lim
n→∞

‖ f+( · , un)−α(un)
p−1
− ‖p′

‖un‖
p−1
p

= 0,

where p′ = p/(p− 1). Fix an arbitrary ε > 0. It follows from condition (ii) of
Assumption ( f ) that there exists a Cε > 0 such that

| f (x, u)−αu p−1
| ≤ ε|u|p−1

+Cε for every u ≥ 0, a.e. x ∈�.

Then we obtain∫
�

| f+(x, un)−α(un)
p−1
+ |

p′ dx ≤ 2p′−1(ε p′−1
‖(un)+‖

p
p +C p′−1

ε |�|).
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Since we are assuming that ‖un‖p→∞ as n→∞, this shows that

lim
n→∞

∥∥ f+( · , un)−α(un)
p−1
+

∥∥
p′/‖un‖

p−1
p = 0,

because ε > 0 is arbitrary.
Here we recall the following result proved in Lemma 19:

(22) lim
n→∞

∫
�

ã(x,|∇un|)∇un

‖un‖
p−1
p

∇(vn−v0)dx= lim
n→∞

∫
�

ã(x,|∇un|)∇un

‖un‖
p−1
p

∇ϕdx=0

for every ϕ ∈W 1,p
0 (�). Thus, by considering

o(1)=
〈I ′(un), vn − v0〉

‖un‖
p−1
p

=

∫
�

a∞(x)|∇vn|
p−2
∇vn∇(vn − v0) dx + o(1),

and using Proposition 2, we see that vn converges strongly to v0 in W 1,p
0 (�). Hence,

by passing to the limit in o(1)= 〈I ′(un), ϕ〉/‖un‖
p−1
p for any ϕ ∈W 1,p

0 (�) and by
noting (21) and (22), we infer that v0 is a nontrivial solution of

−div(a∞|∇u|p−2
∇u)= α|u|p−2u in �, u = 0 on ∂�

(note that ‖v0‖p = 1 and v0 ≥ 0 for a.e. x ∈�). Since v0 ≥ 0 for a.e. x ∈�, v is a
positive solution of (17) with λ= α (see Remark 3). This implies that α = λ1(a∞),
because (17) has no positive solutions if λ 6= λ1(a∞). It contradicts the hypothesis
α 6= λ1(a∞). Hence ‖un‖p is bounded, which completes the proof. �

Lemma 29. Assume (AH) and α < λ1(a∞). Then I is coercive, bounded from
below and weakly lower semicontinuous (wlsc) on W 1,p

0 (�).

Proof. Because α < λ1(a∞), we can take sufficiently small constants ε > 0 and
0< δ < 1 satisfying

(23) (1− δ)(λ1(a∞)− ε) > α+ ε.

By condition (ii) of Assumption ( f ), there exists a C > 0 such that

|F+(x, u)| ≤ (α+ ε)
u p

p
+C

for every u≥ 0 and a.e. x ∈�. Due to Proposition 24 and the definition of µ1(A, r),
there exists an R > 0 such that, for every u ∈W 1,p

0 (�) with ‖u‖p ≥ R,

(24)
∫
�

G(x,∇u) dx ≥ µ1(A, ‖u‖p)≥
λ1(a∞)− ε

p
‖u‖p

p.

Hence, for every u ∈W 1,p
0 (�) with ‖u‖p ≥ R, we obtain
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I (u)≥
(1− δ)(λ1(a∞)− ε)

p
‖u‖p

p +
δC0

p(p− 1)
‖∇u‖p

p −
α+ ε

p
‖u+‖p

p −C |�|

≥
δC0

p(p− 1)
‖∇u‖p

p −C |�|

by (2), (23), and (24), where u+ := max{0, u}. This yields that I is coercive.
Moreover, because I is bounded from below on Bp(R), we see that I is bounded
from below on W 1,p

0 (�). Since J is wlsc (see the proof of Proposition 5) and
W 1,p

0 (�) ↪→ L p(�) is compact, I is wlsc on W 1,p
0 (�). �

Lemma 30. Assume (AH0) and α0 < λ1(a0). Let p < q ≤ p∗, where p∗ =
N p/(N − p) if N > p and p∗ =+∞ if N ≤ p. Then there exists ρ0 > 0 such that

inf{I (u) : ‖u‖q = ρ}> 0 for every 0< ρ < ρ0.

Proof. Because α0<λ1(a0), we can take some sufficiently small ε > 0 and 0<δ< 1
satisfying

(25) (1− δ)(λ1(a0)− ε) > α0+ ε.

According to Proposition 17, there exists an r0 > 0 such that

(26)
µ1(A, r)

r p ≥
λ1(a0)− ε

p
for every 0< r < r0.

In addition, Assumption ( f ) guarantees the existence of Dq > 0 satisfying

(27) F+(x, u)≤
α0+ ε

p
u p
+ Dquq for every u ≥ 0, a.e. x ∈�.

Because W 1,p
0 (�) ↪→ Lq(�) is continuous, we can take a positive constant Cq

such that ‖u‖q ≤ Cq‖∇u‖p for every W 1,p
0 (�). We choose a positive constant ρ

satisfying

(28) ρ <min
{

r0|�|
1/q−1/p,

(
δC0

2p(p− 1)DqC p
q

)1/(q−p)}
=: ρ0.

Note that ‖u‖p < r0 if ‖u‖q = ρ, by Hölder’s inequality and (28). Therefore, for
every ‖u‖q = ρ, we have

I (u)= (1− δ)
∫
�

G(x,∇u)dx+ δ
∫
�

G(x,∇u)dx−
∫
�

F+(x,u)dx

≥ (1− δ)
µ1(A,‖u‖p)

‖u‖p
p
‖u‖p

p+
δC0

p(p−1)
‖∇u‖p

p−
α0+ε

p
‖u+‖p

p−Dq‖u+‖qq

≥
1
p
{(1− δ)(λ1(a0)−ε)−α0−ε}‖u‖p

p+

(
δC0

p(p−1)C p
q
−Dq‖u‖q−p

q

)
‖u‖p

q
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≥
δC0

2p(p−1)C p
q
ρ p,

by the definition of µ1(A, r), (2), (27), (26), (25), and (28). This ensures our
conclusion. �

Proof of Theorem 25. (i) Lemma 29 guarantees the existence of a global minimizer
of I . Thus it suffices to prove that minW 1,p

0 (�)
I < 0 to show the existence of a

nontrivial critical point of I . Choose a positive constant ε > 0 such that α0 >

λ1(a0)+ 2ε. Let ϕa0 ∈ C1(�) be a positive eigenfunction corresponding to λ1(a0)

with ‖ϕa0‖p = 1 (refer to the text below (13) and note that (13) is a homogeneous
equation). It is easily seen that

∫
�

G̃0(x, r∇ϕa0) dx/r p
→ 0 as r →+0 (refer to

the proof of Proposition 17 with ‖rϕa0‖p = r ). Hence there exists r0 > 0 such that

(29)
∫
�

G(x, r∇ϕa0) dx =
r p

p

∫
�

a0(x)|∇ϕa0 |
p dx + r p

∫
�

G̃0(x, r∇ϕa0)

r p dx

≤
λ1(a0)+ ε

p
r p
=
λ1(a0)+ ε

p
‖rϕa0‖

p
p

for every 0< r < r0. On the other hand, it follows from part (i) of Assumption ( f )
that there exists a δ > 0 such that

(30) F+(x, u)≥
α0− ε

p
u p for every u ∈ [0, δ], a.e. x ∈�.

Therefore, for every 0< r <min{r0, δ/‖ϕa0‖∞}, we have

I (ru0)≤
r p

p
(λ1(a0)+ 2ε−α0)‖ϕa0‖

p
p < 0,

by (29) and (30) (note λ1(a0)+ 2ε−α0 < 0), whence minW 1,p
0 (�)

I < 0.

(ii) Let p < q ≤ p∗. Then, by Lemma 30, we obtain ρ > 0 satisfying

δ0 := inf{I (u) : ‖u‖q = ρ}> 0.

Now we claim the existence of w ∈W 1,p
0 (�) such that

(31) ‖w‖q > ρ and I (w) < δ0.

Admitting this claim, we define

c := inf
γ∈0

max
t∈[0,1]

I (γ (t)), 0 := {γ ∈ C([0, 1],W 1,p
0 (�)) : γ (0)= 0, γ (1)= w}.

It is obvious that 0 6=∅ and γ ([0, 1])∩ {u ∈W 1,p
0 (�) : ‖u‖q = ρ} 6=∅ for every

γ ∈ 0, since W 1,p
0 (�) ↪→ Lq(�) is continuous. Thus the mountain pass theorem

guarantees that c(≥ δ0) is a nontrivial critical value of I because I satisfies the
Palais–Smale condition by Lemma 28.
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Finally, we prove the existence of w satisfying (31). Because α > λ1(a∞), we
can choose a positive constant ε0 > 0 such that

(32) α > λ1(a∞)+ 2ε0.

Using item (ii) on page 165, we can take ϕa∞ ∈ C1(�) be a positive eigenfunction
corresponding to λ1(a∞) with ‖ϕa∞‖p = 1. It follows from Lemma 19(iii) that∫

�

G̃(x, r∇ϕa∞) dx/r p
→ 0

as r→+∞ (note that ‖rϕa∞‖p = r ). Hence there exists R0 > 0 such that

(33)
∫
�

G(x,r∇ϕa∞)dx =
r p

p

∫
�

a∞(x)|∇ϕa∞ |
p dx+ r p

∫
�

G̃0(x,r∇ϕa∞)

r p dx

≤
λ1(a∞)+ ε0

p
r p
=
λ1(a∞)+ ε0

p
‖rϕa∞‖

p
p

for every r ≥ R0. In addition, it follows from condition (ii) of Assumption ( f ) that
there exists D > 0 such that

(34) F+(x, u)≥
α− ε0

p
u p
− D for every u ≥ 0, a.e. x ∈�.

Consequently, by (32), (33), and (34), we obtain

I (rϕa0)≤
r p

p
(λ1(a∞)+ 2ε0−α)‖ϕa0‖

p
p + D|�| → −∞

as t→+∞. This implies the existence of w satisfying (31). �

4.1. Resonant cases. To consider the resonant cases, we introduce the following
hypotheses for

G̃(x, y) :=
∫
|y|

0
ã(x, t)t dt and G̃0(x, y) :=

∫
|y|

0
ã0(x, t)t dt,

where ã and ã0 are as in (AH) and (AH0).

(H+) There exist 1≤ q < p and H0 > 0 such that

lim
|y|→∞

pG̃(x, y)− ã(x, |y|)|y|2

|y|q
=+∞ for a.e. x ∈�,

pG̃(x, y)− ã(x, |y|)|y|2 ≥−H0(1+ |y|q) for a.e. x ∈�, every y ∈ RN ,

f (x, t)t − pF(x, t)≥−H0(1+ tq) for a.e. x ∈�, every t ≥ 0.
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(H−) There exist 1≤ q < p and H0 > 0 such that

lim
|y|→∞

pG̃(x, y)− ã(x, |y|)|y|2

|y|q
=−∞ for a.e. x ∈�,

pG̃(x, y)− ã(x, |y|)|y|2 ≤ H0(1+ |y|q) for a.e. x ∈�, every y ∈ RN ,

f (x, t)t − pF(x, t)≤ H0(tq
+ 1) for a.e. x ∈�, every t ≥ 0.

(HF+) There exist 1≤ q < p and H0 > 0 such that

pG̃(x, y)− ã(x, |y|)|y|2 ≥−H0(1+ |y|q) for a.e. x ∈�, every y ∈ RN ,

f (x, t)t − pF(x, t)≥−H0(1+ tq) for every t ≥ 0, a.e. x ∈�,

lim
t→+∞

f (x, t)t − pF(x, t)
tq =+∞ for a.e. x ∈�.

(HF−) There exist 1≤ q < p and H0 > 0 such that

pG̃(x, y)− ã(x, |y|)|y|2 ≤ H0(1+ |y|q) for a.e. x ∈�, every y ∈ RN ,

f (x, t)t − pF(x, t)≤ H0(1+ tq) for every t ≥ 0, a.e. x ∈�,

lim
t→+∞

f (x, t)t − pF(x, t)
tq =−∞ for a.e. x ∈�.

(H0+) There exist p ≤ r < p∗ and H0 > 0 such that

lim
|y|→0

pG̃0(x, y)− ã0(x, |y|)|y|2

|y|r
=+∞ for a.e. x ∈�,

pG̃(x, y)− ã(x, |y|)|y|2 ≥−H0|y|r for a.e. x ∈�, every |y| ≤ 1,

f (x, t)t − pF(x, t)≥−H0tr for a.e. x ∈�, every t ∈ [0, 1].

(H0−) There exist p ≤ r < p∗ and H0 > 0 such that

lim
|y|→0

pG̃0(x, y)− ã0(x, |y|)|y|2

|y|r
=−∞ for a.e. x ∈�,

pG̃(x, y)− ã(x, |y|)|y|2 ≤ H0|y|r for a.e. x ∈�, every |y| ≤ 1,

f (x, t)t − pF(x, t)≤ H0tr for a.e. x ∈�, every t ∈ [0, 1].

(HF0+) There exist p ≤ r < p∗ and H0 > 0 such that

pG̃0(x, y)− ã0(x, |y|)|y|2 ≥−H0|y|r for a.e. x ∈�, every |y| ≤ 1,

f (x, t)t − pF(x, t)≥−H0tr for every t ∈ [0, 1], a.e. x ∈�,

lim
t→+0

f (x, t)t − pF(x, t)
tr =+∞ for a.e. x ∈�.
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(HF0−) There exist p ≤ r < p∗ and H0 > 0 such that

pG̃0(x, y)− ã0(x, |y|)|y|2 ≤ H0|y|r for a.e. x ∈�, every |y| ≤ 1,

f (x, t)t − pF(x, t)≤ H0tr for every t ∈ [0, 1], a.e. x ∈�,

lim
t→+0

f (x, t)t − pF(x, t)
tr =−∞ for a.e. x ∈�.

Theorem 31. Let Assumption ( f ), (AH0), and (AH) hold. If any of the following
conditions is satisfied, (P) has at least one positive solution.

(i) α0 > λ1(a0), α = λ1(a∞), and (HF+) or (H+).

(ii) α0 < λ1(a0), α = λ1(a∞), and (HF−) or (H−).

(iii) α0 = λ1(a0), α < λ1(a∞), and (HF0+) or (H0+).

(iv) α0 = λ1(a0), α > λ1(a∞), and (HF0−) or (H0−).

(v) α0 = λ1(a0), α = λ1(a∞), (HF0+) or (H0+), and (HF+) or (H+).

(vi) α0 = λ1(a0), α = λ1(a∞), (HF0−) or (H0−), and (HF−) or (H−).

The rest of this section is devoted to the proof of this theorem, which involves
some preparatory steps.

The singly resonant case. Set f±n(x, t) := f (x, t)± p
n
|t |p−2t and define approxi-

mate functionals on W 1,p
0 (�) by

I±n(u) :=
∫
�

G(x,∇u) dx −
∫
�

(F±n)+(x, u) dx = I (u)∓
1
n
‖u+‖p

p.

From now on, assume f satisfies Assumption ( f ). Take first the case α=λ1(a∞).

Lemma 32. If either (H+) or (HF+) (resp. either (H−) or (HF−)) hold and {un}

satisfies
sup
n∈N

I±n(un) <+∞ and lim
n→∞
‖I ′
±n(un)‖W 1,p

0 (�)∗
= 0(

resp. inf
n∈N

I±n(un) >−∞ and lim
n→∞
‖I ′
±n(un)‖W 1,p

0 (�)∗
= 0

)
,

then {un} is bounded in W 1,p
0 (�).

Proof. The boundedness of ‖un‖p guarantees that ‖un‖ is bounded, since

o(1)‖un‖ = 〈I ′±n(un), un〉 ≥
C0

p− 1
‖un‖

p
−C(1+‖un‖

p
p)∓

1
n
‖(un)+‖

p
p

for some C > 0 independent of n. So, by way of contradiction, we assume that
‖un‖p→∞ as n→∞. Then, by the same argument as in Lemma 28, we see that
vn := un/‖un‖p has a subsequence strongly converging to a positive solution v0 of

(35) −div(a∞|∇u|p−2
∇u)= α|u|p−2u in �, u = 0 on ∂�.
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If α 6= λ1(a∞), we have a contradiction, because (35) does not have a positive
solution except when λ=λ1(a∞). So we may assume that α=λ1(a∞) and v0=ϕa∞
(note ‖v0‖p = 1). For simplicity, we still denote the subsequence under discussion
by {vn}. Thus un(x)→∞ as n→∞ for a.e. x ∈� (note v0 = ϕa∞ > 0 in �).

Assume (HF+) or (HF−). We show that

(36) I :=
∫
�

f+(x, un)un − pF+(x, un)

‖un‖
q
p

dx→±∞,

where the sign on∞ matches (HF±) and q is a constant as in (HF±). Indeed, it
follows from (HF+) that ( f+(x, t)t − pF+(x, t))/tq is bounded from below on
�×[1,+∞). Therefore, since un(x)→∞ for a.e. x ∈�, we have (36) if (HF+)
holds, by applying Fatou’s lemma to the inequality

I ≥
∫

un(x)≥1

f+(x, un)un − pF+(x, un)

uq
n

vq
n dx −

2H0

‖un‖
p
p
|�|,

where H0 > 0 is a constant as in (HF+). The case of (HF−) is handled by the
same argument, with − f instead of f . This shows (36).

Furthermore, by Hölder’s inequality, we have

(37) II :=
∫
�

pG̃(x,∇un)− ã(x, |∇un|)|∇un|
2

‖un‖
q
p

dx

≤ H0

∫
�

(|∇vn|
q
+

1
‖un‖

q
p
) dx ≤ H0‖∇vn‖

q
p|�|

(p−q)/p
+ o(1)

≤ H0‖∇v0‖
q
p|�|

(p−q)/p
+ o(1)

in the case of (HF−), because vn→ v0 in W 1,p
0 (�), where q ∈ [1, p) and H0 > 0

are constants as in (HF−). Similarly, we obtain

(38) II ≥−H0‖∇v0‖
q
p|�|

(p−q)/p
+ o(1)

in the case of (HF+).
Hence we have a contradiction because of (36), (37) or (38) by taking the limit

inferior or superior in the equality

pI±n(un)−〈I ′±n(un), un〉

‖un‖
q
p

= II + I.

Assume (H+) or (H−). Because v0 is a positive solution of (35), we have
|∇un(x)| → ∞ as n→∞ for a.e. x ∈ �0 := {x ′ ∈ � : |∇v0(x ′)| 6= 0}. Because
|�0|> 0, we can show, by an argument similar to the one used for f , that∫

�

pG̃(x,∇un)− ã(x, |∇un|)|∇un|
2

‖un‖
q
p

dx→±∞,
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where again the sign matches that of (H±). In addition, we easily obtain that

±

∫
�

f+(x, un)un − pF+(x, un)

‖un‖
q
p

dx ≥−H0‖vn‖
q
q + o(1)=−H0‖v0‖

q
q + o(1)

(again, the sign matches). Hence we have a contradiction by considering the limit
of (pI±n(un)−〈I ′±n(un), un〉)/‖un‖

q
p. �

Proof of Theorem 31(i). Because α0 > λ1(a0), there exists an n0 ∈ N such that
α0− p/n0 > λ1(a0). Note that f−n(x, t)/t p−1

→ α0− p/n > λ1(a0) as t →+0
for n ≥ n0 and f−n(x, t)/t p−1

→ α− p/n= λ1(a∞)− p/n<λ1(a∞) as t→+∞.
Hence, by using the proof of Theorem 25(i) to f−n , we can find a global minimizer
un of I−n with I−n(un)< 0 for each n≥ n0. Here we remark that supn≥n0

I−n(un)<

0. In fact, for every n ≥ n0, we have

I−n(un)≤ I−n(un0)= I (un0)+
1
n
‖un0‖

p
p ≤ I (un0)+

1
n0
‖un0‖

p
p = I−n0(un0) < 0,

where, in the first inequality, we use the fact that un is a global minimizer of I−n .
Now, due to Lemma 32, we see that {un} is bounded in W 1,p

0 (�). Therefore,

‖I ′(un)‖W 1,p
0 (�)∗

= ‖I ′(un)− I ′
−n(un)‖W 1,p

0 (�)∗
≤

p
nλ1(−1p)p ‖un‖

p−1
→ 0

as n→∞, where λ1(−1p) is the first eigenvalue of −1p. Since I is bounded
on a bounded set, we may assume that {un} is a bounded Palais–Smale sequence
of I . Because I satisfies the bounded Palais–Smale condition (see Proposition 2),
un has a subsequence converging to some v0 in W 1,p

0 (�). It is clear that I (v0)≤

supn≥n0
I−n(un)= I−n0(un0) < 0, and so v0 is a nontrivial critical point of I . �

Proof of Theorem 31(ii). Using Lemma 30 and α0 < λ1(a0), we can choose
q0 ∈ (p, p∗] and ρ > 0 such that inf{I (u) : ‖u‖q0 = ρ} > 0. Since I+n(u) ≥
I (u)− ‖u‖p

q0 |�|
1−p/q0/n for every u ∈ W 1,p

0 (�), we can take n0 ∈ N such that
α0+ p/n0<λ1(a0) and δ0 := inf{I+n0(u) : ‖u‖q0 =ρ}> 0. Hence, for every n≥ n0,
we have inf{I+n(u) : ‖u‖q0=ρ}≥ δ0, because I+n(u)≥ I+n0(u) for every n≥n0 and
u ∈W 1,p

0 (�). By noting that f+n(x, t)/t p−1
→α+ p/n>α=λ1(a∞) as t→+∞,

and applying Lemma 28 to f+n instead of f , I+n satisfies the Palais–Smale condition.
Therefore, the proof of Theorem 25(ii) implies that, for every n ≥ n0, there exists a
critical point un ∈W 1,p

0 (�) of I+n such that I+n(un)≥ δ0. According to Lemma 32,
{un} is bounded in W 1,p

0 (�). Thus, because we have a bounded Palais–Smale
sequence of I due to a similar reason as in the case of (i), we can obtain a nontrivial
critical point of I (note that infn≥n0 I (un)≥ infn≥n0 I+n(un)≥ δ0 > 0). �

We next turn to the case where α0 = λ1(a0).



180 DUMITRU MOTREANU AND MIEKO TANAKA

Lemma 33. Assume (H0−) or (HF0−) (resp. (H0+) or (HF0+)). Let un 6= 0 be
an element of W 1,p

0 (�) satisfying I ′
±n(un)= 0 for every n ∈N and infn I±n(un)≥ 0

(resp. supn I±n(un)≤ 0). Then lim infn→∞ ‖un‖p > 0.

Proof. By way of contradiction, we assume that limn→∞ ‖un‖p = 0 by choosing a
subsequence. Note that the boundedness of ‖un‖p yields that ‖un‖ and ‖un‖/‖un‖p

are bounded in view of

(39) o(1)‖un‖ = 〈I ′±n(un), un〉 ≥
C0

p− 1
‖un‖

p
−C(1+‖(un)+‖

p
p)∓

p
n
‖(un)+‖

p
p

for some C > 0 independent of n. Then, since un is a positive solution of

−div(A(x,∇u))= f±n(x, un) in �

(refer to Remarks 3 and 27), it follows from Proposition 4 that un→0 in C1(�) (note
that |( f±n)+(x, t)|≤Ct p−1

+ (see Assumption ( f )) and un→0 in L p(�)). Therefore,
we may assume that ‖un‖C1(�) ≤ 1 by considering a sufficiently large n. Since
| f±n(x, ‖un‖pt)/‖un‖

p−1
p | ≤Ct p for every t ≥ 0, a.e. x ∈� (C > 0 independent of

n; see Assumption ( f ) and (39)), by a similar argument to Theorem 13, we see that
vn := un/‖un‖p has a subsequence converging to a positive solution v0 in C1(�) of

(40) −div(a0(x)|∇u|p−2
∇u)= α0|u|p−2u in �, u = 0 on ∂�.

If α0 6= λ1(a0), we have a contradiction because (13) does not have a positive
solution unless λ= λ1(a0). So we may assume that α0 = λ1(a0) and v0 = ϕa0 (note
‖v0‖p = 1). For simplicity, we still denote the subsequence under discussion by
{vn}.

Assume (H0+) or (H0−). Then we can prove that

(41) I :=
∫
�

pG̃0(x,∇un)− ã0(x, |∇un|)|∇un|
2

‖un‖
r
p

dx→±∞

(signs match), where r ∈ [p, p∗) is a constant as in (H0+) or (H0−). Indeed,
because ‖∇v0‖p > 0, we can choose a constant ε0 > 0 such that |{x ∈� : |∇v0|>

2ε0}|> 0. With this ε0, we have under assumption (H0+)

I ≥
∫
|∇vn |>ε0

pG̃0(x,∇un)− ã0(x, |∇un|)|∇un|
2

|∇un|
r |∇vn|

r dx −
∫
|∇vn |≤ε0

H0|∇vn|
r dx

≥

∫
|∇vn |>ε0

pG̃0(x,∇un)− ã0(x, |∇un|)|∇un|
2

|∇un|
r |∇vn|

r dx − εr
0 H0|�|,

where H0 is a positive constant as in (H0+). Hence, applying Fatou’s lemma, our
claim is shown, because the Lebesgue measure of {x ∈� : |∇v0|> 2ε0} is positive.
Similarly, by considering ã0(x, |∇un|)|∇un|

2
− pG̃0(x,∇un), we can prove (41)

under (H0−).
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On the other hand, by using (H0+) or (H0−), we obtain

(42) ±II := ±
∫
�

f+(x, un)un − pF+(x, un)

‖un‖
r
p

dx ≥−H0

∫
�

(vn)
r
+

dx

≥ − H0‖vn‖
r
r =−H0‖v0‖

r
r + o(1)

(note that ‖un‖C1(�) ≤ 1 and vn→ v0 in C1(�)). Now set 9n = I±n . Since

(43) ±(I + II )=±
p9n(un)−〈9

′
n(un), un〉

‖un‖
r
p

=±
p9n(un)

‖un‖
r
p
≤ 0

if supn(±I±(un))≤ 0 (where the signs match throughout), we obtain a contradiction
with (41) and (42) by taking the limit superior or inferior in (43).

Assume (HF0+) or (HF0−). As in the argument for I in the case of (H0±), we
can show that∫
�

f+(x, un)un − pF+(x, un)

‖un‖
r
p

dx =
∫
vn>0

f+(x, un)un − pF+(x, un)

(un)
r
+

(vn)
r
+

dx
→±∞,

the sign matching that of (HF0±). Moreover, it is easily seen that

±

∫
�

pG̃0(x,∇un)− ã0(x, |∇un|)|∇un|
2

‖un‖
r
p

dx≥∓H0‖∇vn‖
r
r =∓H0‖∇v0‖

r
r+o(1).

(Note that ‖un‖C1(�) ≤ 1 and vn→ v0 in C1(�).) Our conclusion follows from a
similar argument as before. �

Proof of Theorem 31(iii). Let n0 ∈ N such that α + p/n0 < λ1(a∞). The proof
of Theorem 25(i) guarantees that, for every n ≥ n0, I+n has a global minimizer
un such that I+n(un) < 0, because f+n(x, t)/t p−1

→ α0+ p/n > α0 = λ1(a0) as
t→+0 and f+n(x, t)/t p−1

→ α+ p/n < λ1(a∞) as t→+∞ if n ≥ n0. Noting
that I+n(u) ≥ I+n0(u) for every u ∈ W 1,p

0 (�) and n ≥ n0, {un} is bounded in
W 1,p

0 (�) since I+n0 is coercive on W 1,p
0 (�) by Lemma 29. Thus {un} is a bounded

Palais–Smale sequence of I by the same argument as in (i). Therefore, {un} has a
convergent subsequence to some u0 in W 1,p

0 (�) because I satisfies the bounded
Palais–Smale condition. On the other hand, Lemma 33 guarantees that u0 6= 0 (note
supn≥n0

I+n(un)≤ 0). Therefore u0 is a nontrivial critical point of I . �

Proof of Theorem 31(iv). Let n0 ∈ N be such that α− p/n0 > λ1(a∞). Applying
Lemma 30 to f−n for n ≥ n0 (and since α0 − p/n < λ1(a0)), we can choose
q0 ∈ (p, p∗] and ρn > 0 such that δn := inf{I−n(u) : ‖u‖q0 = ρn}> 0. By noting that
f−n(x, t)/t p−1

→ α− p/n > λ1(a∞) as t→+∞ for every n ≥ n0, and applying
Lemma 28 to f−n instead of f , we see that I−n satisfies the Palais–Smale condition.
Therefore, the proof of Theorem 25(ii) implies that, for every n ≥ n0, there exists
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a critical point un ∈ W 1,p
0 (�) of I−n such that I−n(un) ≥ δn > 0. By Lemma 32,

{un} is bounded in W 1,p
0 (�). Thus, by arguing as in case (i), we find a subsequence

{un} converging to some u0 in W 1,p
0 (�). Also, Lemma 33 yields u0 6= 0 (note that

infn≥n0 I−n(un)≥ 0). This shows that u0 is a nontrivial critical point of I . �

The doubly resonant case. Choose smooth nonnegative functions ϕ and ψ on
[0,+∞) satisfying ϕ(t)= 1 if 0≤ t ≤ 2, ϕ(t)= 0 if t ≥ 4, ψ(t)= 0 if t ≤ 5, and
ψ(t)= 1 if t ≥ 10. Define approximate functionals on W 1,p

0 (�) by

Ĩ±n(u) := I (u)∓
1
n
ψ(‖u‖p

p)‖u+‖
p
p ±

1
n
ϕ(‖u‖p

p)‖u+‖
p
p.

Because Ĩ±n(u)= I∓n(u) provided ‖u‖p ≤ 2, the following result can be proved
by the same argument as in Lemma 33. We omit the proof.

Lemma 34. Assume (H0−) or (HF0−) (resp. (H0+) or (HF0+)). Let un 6= 0 be an
element of W 1,p

0 (�) satisfying ( Ĩ±n)
′(un)= 0 for every n ∈N and infn Ĩ±n(un)≥ 0

(resp. supn Ĩ±n(un)≤ 0). Then lim infn→∞ ‖un‖p > 0.

Lemma 35. If α± p/n 6= λ1(a∞), then Ĩ±n (with the matching sign) satisfies the
Palais–Smale condition.

Proof. Let {um} be a Palais–Smale sequence of Ĩ+n or Ĩ−n . If ‖um‖p→∞ occurs,
then Ĩ±n(um) = I±n(um) for sufficiently large m. So, by applying Lemma 28
to f±n (note that α ± p/n 6= λ1(a∞)), we have a contradiction if ‖um‖p →∞.
Consequently, we see that ‖um‖p is bounded. Then, by the same reason as in
Lemma 28, {um} has a convergent subsequence in W 1,p

0 (�). �

Because Ĩ±n(u)= I±n(u) provided ‖u‖p≥ 10, the following result can be proved
by the same argument as in Lemma 32. We omit the proof.

Lemma 36. If either (H+) or (HF+) (resp. either (H−) or (HF−)) and {un}

satisfies
sup
n∈N

Ĩ±n(un) <+∞ and lim
n→∞
‖( Ĩ±n)

′(un)‖W 1,p
0 (�)∗

= 0(
resp. inf

n∈N
Ĩ±n(un) >−∞ and lim

n→∞
‖( Ĩ±n)

′(un)‖W 1,p
0 (�)∗

= 0
)
,

{un} is bounded in W 1,p
0 (�).

Proof of Theorem 31(v). Note that Ĩ−n(u) = I−n(u) provided ‖u‖p ≥ 10 and
Ĩ−n(u) = I+n(u) if ‖u‖p ≤ 2. So, by a similar argument to that in (i), Ĩ−n has a
global minimizer un . Moreover, by a similar argument to that in (iii) (note that
f+n(x, t)/t p−1

→α0+ p/n>λ1(a0) as t→+0 and f−n(x, t)/t p−1
→α− p/n<

λ1(a∞) as t→+∞), we have Ĩ−n(un) < 0, whence un 6= 0. Because Lemma 36
implies the boundedness of ‖un‖, by the same argument as in (i), we see that {un}
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is a bounded Palais–Smale sequence of I . Therefore, we may assume that un

converges to some u0 in W 1,p
0 (�) by choosing a subsequence. On the other hand,

Lemma 33 yields lim infn→∞ ‖un‖p > 0. Hence u0 6= 0. This means that u0 is a
nontrivial critical point of I . �

Proof if Theorem 31(vi). Note that Ĩ+n(u) = I+n(u) provided ‖u‖p ≥ 10 and
Ĩ+n(u) = I−n(u) if ‖u‖p ≤ 2. So, because f−n(x, t)/t p−1

→ α0− p/n < λ1(a0)

as t →+0 and f+n(x, t)/t p−1
→ α + p/n > λ1(a∞) as t →+∞, by a similar

argument to those in (ii) and (iv), for each n, we have a nontrivial critical point
un of Ĩ+n with Ĩ+n(un) > 0. As a result, by a similar reasoning as in (v), we can
obtain a nontrivial critical point of I . �

Acknowledgements

The second author would like to express her sincere thanks to Professor Shizuo
Miyajima for helpful comments and encouragement.

References

[Anane 1987] A. Anane, Etude des valeurs propres et de la résonnance pour l’opérateur p-Laplacien,
Ph.D. thesis, Université Libre de Bruxelles, 1987.

[Cuesta et al. 1999] M. Cuesta, D. de Figueiredo, and J.-P. Gossez, “The beginning of the Fučik
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