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ON GENERALIZED WEIGHTED HILBERT MATRICES

EMMANUEL PREISSMANN AND OLIVIER LÉVÊQUE

We study spectral properties of generalized weighted Hilbert matrices. In
particular, we establish results on the spectral norm, the determinant, and
various relations between the eigenvalues and eigenvectors of such matrices.
We also study the asymptotic behavior of the spectral norm of the classical
Hilbert matrix.

1. Introduction
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
have been widely studied in the mathematical literature, for a variety of good reasons
(see [Choi 1983] for a nice survey of their astonishing properties). In this paper, we
present results and conjectures on spectral properties of these matrices and related
types of matrices. We first review known results in Section 2, and then introduce
new results in Section 3 on generalized weighted Hilbert matrices of the form

(2) bm,n(x, c)=

 0 if m = n,
cm cn

xm−xn
if m 6= n.

Our results can be summarized as follows. Theorem 1 states a surprising property of
these matrices: Their spectral norm depends monotonically on the absolute values
of their entries, a property known a priori only for matrices with positive entries.
Theorem 2 says that the determinants of such matrices are polynomials in the square
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of their entries. In Lemma 5, we prove a key relation between the eigenvalues
and eigenvectors of these matrices, which leads to a chain of nice consequences,
including Corollaries 1 and 2. Our work finds its roots in [Montgomery and Vaughan
1973], a seminal paper that initiated the study of generalized Hilbert matrices.

Notation. Let p > 1. In what follows, ‖ y‖p denotes the `p-norm of the vector
y ∈ CS:

‖ y‖p :=

( S∑
k=1

|yk |
p
)1/p

.

For an S×S matrix M , ‖M‖p denotes the matrix norm induced by this vector norm:

‖M‖p := sup
‖ y‖p=1

‖M y‖p.

In the particular case p = 2, the following simplified notation will be adopted:

‖ y‖2 = ‖ y‖ (Euclidean norm) and ‖M‖2 = ‖M‖.

When M is normal (i.e., when M M∗ = M∗M , where M∗ stands for the complex-
conjugate transpose of the matrix M), the above norm is equal to the spectral norm
of M :

‖M‖ = sup{|λ| : λ ∈ Spec(M)}.

2. A survey of classical results and conjectures

2.1. Hilbert’s inequalities. The infinite-dimensional matrices presented in (1) are
two different versions of the classical Hilbert matrix. Notice first that T∞ is a
Toeplitz matrix (i.e., a matrix whose entry n,m depends only on the difference
m−n), while H∞ is a Hankel matrix (i.e., a matrix whose entry n,m depends only
on the sum n+m). The Hilbert inequalities state (see [Hardy et al. 1952, p. 212])
that ∣∣∣∣ ∑

m,n∈Z

um (T∞)m,n vn

∣∣∣∣≤ π for u, v ∈ `2(Z;C) with ‖u‖ = ‖v‖ = 1

and ∣∣∣∣ ∑
m,n∈N

um (H∞)m,n vn

∣∣∣∣≤ π for u, v ∈ `2(N;C) with ‖u‖ = ‖v‖ = 1;

here π cannot be replaced by a smaller constant.1 This is saying that T∞ and H∞
are bounded operators in `2(Z;C) and `2(N;C), respectively, with norm π .

Titchmarsh [1926] proved that ‖T∞‖p <∞. Hardy, Littlewood and Pólya [1952,

1Hilbert originally proved these inequalities with 2π instead of π ; the optimal constant was found
later by Schur.
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p. 227] obtained the explicit expression

‖H∞‖p =
π

sin(π/p)
for all p > 1.

It is clear that ‖T∞‖p ≥ ‖H∞‖p, as H∞ may be seen as the lower left corner of
T∞ (up to a column permutation), but no exact value is known for it (except in the
case where p = 2n or p = 2n/(2n

− 1) for some integer n ≥ 1; see [Laeng 2007;
2009] for a review of the subject).

Consider the corresponding R× R matrices TR and HR , defined by

(TR)m,n =

 0 if m = n,
1

m−n
if m 6= n,

(HR)m,n =
1

m+ n− 1
for 1< m, n < R.

The Hilbert inequalities imply that for every integer R ≥ 1,

(3) ‖TR‖< π and ‖HR‖< π.

Clearly also ‖TR‖ and ‖HR‖ increase as R increases, and

lim
R→∞
‖TR‖ = lim

R→∞
‖HR‖ = π.

A question of interest is the convergence speed of ‖HR‖ and ‖TR‖ toward their
common limiting value π . Up to a column permutation, HR can be seen as the
lower left corner of T2R+1, so ‖HR‖ ≤ ‖T2R+1‖ for every integer R ≥ 1. This hints
at a slower convergence speed for the matrices HR than for the matrices TR . Indeed,
Wilf and de Bruijn (see [Wilf 1970]) have shown that

π −‖HR‖ ∼
π5

2 (log R)2
as R→∞,

whereas there exist a, b > 0 such that

(4)
a
R
< π −‖TR‖<

b log R
R

for R ≥ 2.

We will prove these inequalities at the end of this paper. The lower bound has
been proved by Montgomery (see [Matthews 2002]), and it has been conjectured in
[Preissmann 1985], and independently by Montgomery, that the upper bound in the
previous inequality is tight, i.e., that

π −‖TR‖ ∼
c log R

R
as R→∞.

We also provide some numerical evidence for this conjecture at the end of the paper.



202 EMMANUEL PREISSMANN AND OLIVIER LÉVÊQUE

2.2. Toeplitz matrices and Grenander–Szegő’s theorem. We review the theory
developed by Grenander and Szegő [1958] to analyze the asymptotic spectrum of
Toeplitz matrices. In particular, we cite their result on the convergence speed of the
spectral norm of such matrices.

Let (cr )r∈Z be a sequence of complex numbers such that

(5)
∑
r∈Z

|cr |<∞,

and let us define the corresponding function, or symbol:

f (x)=
∑
r∈Z

cr exp(ir x) for x ∈ [0, 2π ].

Because of the assumption made on the Fourier coefficients cr , the function f
is continuous, and of course f (0) = f (2π). Equivalently, f can be viewed as a
continuous 2π -periodic function on R.

Now let CR be the R× R matrix defined by

(CR)m,n = cm−n for 1≤ m and n ≤ R.

One checks by direct computation that, for any vector u ∈ CR with ‖u‖2 :=∑
1≤n≤R

|un|
2
= 1, we have

(6) u∗CRu =
∫ 2π

0
f (x) |φ(x)|2 dx,

where

φ(x)=
1
√

2π

∑
1≤n≤R

un exp(i(n− 1)x).

Let us now assume that CR is a normal matrix (CRC∗R =C∗RCR); this is the case,
for example, when f is a real-valued function (in which case CR is Hermitian:
C∗R = CR). As ‖u‖ = 1, we also have

∫ 2π
0 |φ(x)|

2 dx = 1, which implies that

‖CR‖ ≤ sup
x∈[0,2π ]

| f (x)| =: M

for any integer R ≥ 1. Grenander and Szegő [1958, p. 72] proved the following
refined statement on the convergence speed of the spectral norm. If f is twice
continuously differentiable, admits a unique maximum in x0 and is such that
f ′′(x0) 6= 0, then

M −‖CR‖ ∼ f (x0)− f
(

x0+
π

R

)
∼
π2
| f ′′(x0)|

2R2 as R→∞.

This result does not apply to Hilbert matrices of the form TR: Since the harmonic
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series diverges, condition (5) is not satisfied. Correspondingly, the symbol associated
with these matrices is the function

f (x)=
∑
r≥1

− exp(ir x)+ exp(−ir x)
r

=−2i
∑
r≥1

sin(r x)
r
= i(x −π)

for x ∈ ]0, 2π [, while by Dirichlet’s theorem f (0)= f (2π)= 0. The function f
is therefore discontinuous, but relation (6) still holds in this case and allows us to
deduce Hilbert’s inequality:

‖TR‖ ≤ sup
x∈[0,2π ]

| f (x)| = π.

However, relation (6) alone does not allow us to draw conclusions on the convergence
speed toward π .

Evaluating the convergence speed of the spectral norm is a difficult problem
when f attains its maximum at a point of discontinuity. An interesting matrix of
this type was studied in detail in [Slepian 1978];2 known as the prolate matrix, it is
defined as

(PR)m,n = pm−n for 1≤ m and n ≤ R, where pr =


sin(2πwr)

r
if r 6= 0,

2πw if r = 0,

for 0 < w < 1
2 a fixed parameter. Here, again, we see that condition (5) is not

satisfied. The symbol associated with this matrix is the function

fw(x)=
∑
r∈Z

pr exp(ir x)= 2πw+ 2
∑
r≥1

sin(2πwr)
r

cos(r x)

= π 1[0,2πw]∪[2π(1−w),2π ](x)

for all x ∈ [0, 2π ]\{2πw, 2π(1−w)}. In this case, we again have for any integer
R ≥ 1

‖PR‖< sup
x∈[0,2π ]

| fw(x)| = π and lim
R→∞
‖PR‖ = π.

It is moreover shown in [Slepian 1978] that for all 0<ω< 1
2 , there exist cw, dw > 0

(given explicitly in [Varah 1993]) such that

π −‖PR‖ ∼ cw
√

R exp(−dwR).

We see here that although the function fw is discontinuous, the convergence speed
is exponential, not polynomial (as is the case with a smooth symbol). Of course, the

2See also [Varah 1993] for a recent exposition of the problem; we are thankful to Ben Adcock for
pointing out this interesting reference to us.
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situation here is quite particular, as the function fw has a plateau at its maximum
value, which is not the case for the Hilbert matrix TR .

2.3. Generalized weighted Hilbert matrices. Let x = (x1, . . . , xR) be a vector of
distinct real numbers and c= (c1, . . . , cR) any vector of real numbers. We define
the R× R matrix B(x, c) by formula (2). We also set

(7) A(x)= B(x, 1), where 1= (1, . . . , 1).

If there is no risk of confusion, we write A and B instead of A(x) and B(x, c).
Thus A(x) is the classical Hilbert matrix. To motivate the study of the gen-

eralization B(x, c), we mention that Montgomery and Vaughan [1973] proved
that

‖A(x)‖ ≤
π

δ
, with δ = inf

1≤m,n≤R
m 6=n

|xn − xm |,

and that

‖B(x, c)‖ ≤
3π
2
, with cn =

√
min

1≤m≤R
m 6=n

|xm − xn|.(8)

They also conjectured that the tightest upper bound is ‖B(x, c)‖ ≤ π . Montgomery
and Vaughan’s result was improved in [Preissmann 1984] to ‖B(x, c)‖ ≤ 4π/3, but
the conjecture remains open so far.

We conclude this section with some applications.

Large sieve inequalities. Suppose the real numbers x1, . . . , xR are distinct modulo 1.
Let ‖t‖ denote the distance from a real number t to the closest integer, and let

δ := min
r,s, r 6=s

‖xr − xs‖ and δr := min
s, s 6=r
‖xr − xs‖.

For an arbitrary sequence of complex numbers (an)M+1≤n≤M+N , we write

S(x) :=
∑

M+1≤n≤M+N

an exp(2π inx).

A large sieve inequality has the generic form∑
1≤r≤R

|S(xr )|
2
≤1(N , δ)

∑
M+1≤n≤M+N

|an|
2.

Using Hilbert’s inequality (3), one can show that the previous inequality holds with
1(N , δ)= N + δ−1

− 1. Equivalently, this says that if

B := {exp(2π inxr )}M+1≤n≤M+N , 1≤r≤R

then
‖B‖2 ≤1(N , δ).
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Generalized Hilbert inequalities of type (8) are particularly useful when studying
irregularly spaced xr (such as Farey sequences), as they allow us to prove the
following refined large sieve inequality:∑

1≤r≤R

(
N + 3

2δ
−1
r
)−1
|S(xr )|

2
≤

∑
M+1≤n≤M+N

|an|
2.

This last result is useful for arithmetic applications. It allows us to show, for
example, that π(M + N )−π(M)≤ 2π(N ), where π(N ) is the number of primes
smaller than or equal to N (see [Montgomery and Vaughan 1973]). By contrast,
the inequality π(M + N )−π(M)≤ π(N ) stands as a conjecture so far.

The Bombieri–Vinogradov theorem, which is related to various conjectures on
the distribution of primes, is another important application of large sieve inequalities
(see [Bombieri et al. 1986], for instance).

Other Hilbert inequalities. Montgomery and Vaughan [1974] studied variants of
Hilbert’s inequality (with, for instance, 1/(xr−xs) replaced by csc(xr−xs)), which
allow them to show that if

∑
n≥1 n|an|

2 <∞, then∫ T

0

∣∣∣∣∑
n≥1

ann−i t
∣∣∣∣2 dt =

∑
n≥1

|an|
2 (T + O(n)).

The key idea behind the proof of the main result in their paper is the identity

csc(xk − xl) csc(xl − xm)= csc(xk − xm) (cot(xk − xl)+ cot(xl − xm)),

which is of the same type as our relation (10) below. A further generalization of
Hilbert’s inequalities has been built on this in [Preissmann 1987], where we solved
the functional equations

1
θ(x)θ(y)

=9(x)−9(y)+
φ(x − y)
θ(x − y)

and
1

θ(x)θ(y)
=
σ(x)− σ(y)
θ(x − y)

+ τ(x)τ (y) with τ(0)= 0.

3. New results

3.1. Spectral norm of B(x, c). In this subsection we state and prove our first main
result, on the monotonicity of the spectral norm of matrices B(x, c).

Theorem 1. If x, x′, c and c′ are vectors of real numbers such that

|bm,n(x, c)| ≤ |bm,n(x′, c′)| for 1≤ m and n ≤ R,

then

(9) ‖B(x, c)‖ ≤ ‖B(x′, c′)‖.
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Remark. For matrices Y and Z with positive entries, if 0≤ ym,n≤ zm,n for all m and
n, then ‖Y‖ ≤ ‖Z‖. Indeed, consider the normalized eigenvector u corresponding
to the largest eigenvalue of Y ∗Y : Since Y ∗Y has positive entries, u is also positive,
so ‖Y‖ = ‖Y u‖ ≤ ‖Z u‖ ≤ ‖Z‖. The above result states that a similar result holds
for matrices of the form B(x, c), even though these do not have positive entries.

We decompose the proof of Theorem 1 into a sequence of lemmas. We will use
several times the relation

(10) ak,l al,m = ak,m (ak,l + al,m) for k, l,m distinct,

where am,n = 1/(xm − xn).

Lemma 1. If k is a positive integer and 1 ≤ n ≤ R, then, denoting by B−n the
matrix B with the n-th row and column removed, we have

(11) S :=
∑

1≤l,m≤R
l 6=n,m 6=n, l 6=m

bn,l bm,n (Bk
−n)l,m = 0.

Proof. Using (10), we obtain

S =
∑

1≤l,m≤R
l 6=n,m 6=n,l 6=m

cl cm c2
n am,n an,l (Bk

−n)l,m

=

∑
1≤l,m≤R

l 6=n,m 6=n, l 6=m

cl cm c2
n am,l (am,n + an,l) (Bk

−n)l,m =: S1+ S2,

where

S1 =
∑

1≤l,m≤R
l 6=n,m 6=n, l 6=m

cl cm c2
n am,l am,n (Bk

−n)l,m

=

∑
1≤l,m≤R

l 6=n,m 6=n, l 6=m

c2
nbm,l am,n (Bk

−n)l,m =
∑

1≤m≤R
m 6=n

c2
n am,n (Bk+1

−n )m,m

and

S2 =
∑

1≤l,m≤R
l 6=n,m 6=n, l 6=m

cl cm c2
n am,l an,l (Bk

−n)l,m

=

∑
1≤l≤R

l 6=n

c2
n an,l (Bk+1

−n )l,l =−
∑

1≤l≤R
l 6=n

c2
n al,n (Bk+1

−n )l,l =−S1,

since A is antisymmetric. �
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Lemma 2. Let 1≤ n ≤ R and k ≥ 2 be an integer. Then

(Bk)n,n =
∑

0≤r≤k−2

∑
1≤l,m≤R
l 6=n,m 6=n

bn,l (Br
−n)l,m bm,n (Bk−r−2)n,n

=−

∑
0≤r≤k−2

∑
1≤l≤R

b2
n,l (B

r
−n)l,l (B

k−r−2)n,n.

Proof. Notice first that

(Bk)n,n =
∑

1≤n1,...,nk−1≤R

bn,n1 bn1,n2 . . . bnk−2,nk−1 bnk−1,n.

As bn,n = 0, we may consider n1, nk−1 6= n in this sum. For each (n1, . . . , nk−1),
define

s = inf{t ∈ {2, . . . , k} | n1 6= n, . . . , nt−1 6= n, nt = n},

where, by convention, nk = n. Ordering the terms in the above sum according to
the value of s, we obtain

(Bk)n,n =
∑

2≤s≤k

∑
n1, ns−1 6=n

bn,n1 (B
s−2
−n )n1,ns−1 bns−1,n (B

k−s)n,n

=

∑
0≤r≤k−2

∑
n1, nr+1 6=n

bn,n1 (B
r
−n)n1,nr+1 bnr+1,n (B

k−r−2)n,n,

which is the first equality in the lemma. The second follows from (11) and the fact
that B is antisymmetric. �

Lemma 3. Let 1≤ n ≤ R and let k ≥ 2 be an integer.

• If k is odd, then (Bk)n,n = 0.

• If k is even, then (−1)k/2 (Bk)n,n is a polynomial in the b2
l,m , 1 ≤ l < m ≤ R,

with positive coefficients.

Proof. Since B is antisymmetric, the first statement is obvious. The second follows
by induction from Lemma 2. �

Proof of Theorem 1. Observe that since the matrix i B is Hermitian, it has R real
eigenvalues µ1, . . . , µR corresponding to an orthonormal basis of eigenvectors, so

‖B‖ = max
1≤r≤R

|µr |.

And for a positive integer k, we have

Tr(B2k)=
∑

1≤r≤R

(−1)kµ2k
r .
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Therefore, we obtain

‖B‖ = lim
k→∞

(
(−1)k Tr(B2k)

)1/2k
,

and the theorem follows from Lemma 3. �

3.2. Determinant of B(x, c). Our next result shows that the determinant of B(x, c)
is a polynomial in the b2

l,m .

Theorem 2. If R is odd, then det(B(x, c))= 0. If R = 2T is even, then

(12) det(B(x, c))=
R∏

k=1

c2
k

∑
(mi ,ni )

T
1 ∈E

T∏
i=1

a2
mi ,ni
=

∑
(mi ,ni )

T
1 ∈E

T∏
i=1

b2
mi ,ni

,

where

E :=
{
(mi , ni )

T
1

∣∣∣ T⋃
i=1
{mi , ni }={1, . . . , R}, mi <ni for all i, and m1< · · ·<mT

}
.

Lemma 4. Let l be an integer, with 3≤ l ≤ R. Denoting by Sl the set of permuta-
tions of {1, . . . , l}, we have

(13) S :=
∑
σ∈Sl

aσ(1),σ (2) aσ(2),σ (3) . . . aσ(l−1),σ (l) aσ(l),σ (1) = 0.

Proof. We define

S1 :=
∑
σ∈Sl

aσ(1),σ (2) aσ(2),σ (3) . . . aσ(l−1),σ (1) aσ(l−1),σ (l),

S2 :=
∑
σ∈Sl

aσ(1),σ (2) aσ(2),σ (3) . . . aσ(l−1),σ (1) aσ(l),σ (1).

By (10), we have S = S1 + S2. Now let τ ∈ Sl be the permutation defined by
τ(1)= l − 1, τ (2)= 1, τ (3)= 2, . . . , τ (l − 1)= l − 2, τ (l)= l. We obtain

S2 =
∑
σ∈Sl

aστ(1),στ(2) aστ(2),στ(3) . . . aστ(l−1),στ(1) aστ(l),στ(1)

=

∑
σ∈Sl

aσ(l−1),σ (1) aσ(1),σ (2) . . . aσ(l−2),σ (l−1) aσ(l),σ (l−1) =−S1,

which completes the proof. �

Proof of Theorem 2. By definition,

det(B)=
∑
σ∈SR

ε(σ )
∏

1≤n≤R

an,σ (n) c2
n.

Every permutation σ is a product of k cycles, with 1 ≤ k ≤ n. We denote by
F1, . . . , Fk the supports of these cycles and by n1, n2, . . . , nk their cardinalities,
and we set
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S(Fi ) :=
1
ni

∑
s1,s2,...,sni |{s1,s2,...,sni }=Fi

as1,s2 as2,s3 . . . asni−1,sni
asni ,s1 .

In the above expression for det(B), the contribution of the permutations having
F1, . . . , Fk as supports for their cycles is of the

(−1)n1+n2+···+nk−k
k∏

i=1

S(Fi )

R∏
r=1

c2
r .

Hence, by (13) and the fact that the main diagonal is zero, a nonzero contribution
can only occur when all cycles are of cardinality 2, which proves the theorem. �

Remark. The above statement allows us to recover part of the conclusion of
Lemma 3. First notice that by Theorem 2 and for all J ⊂ {1, . . . , R}, det(BJ ),
where BJ = (bl,m)l,m∈J , is also a polynomial in the b2

l,m . Define

σk =
∑

J⊂{1,...,R}
|J |=k

∏
i∈J

λi ,

where λ1, . . . , λR are the eigenvalues of B. Notice that

(14) σk =
∑

J⊂{1,...,R}
|J |=k

det(BJ ).

Indeed, let P be the polynomial defined as P(x)=
∏

1≤i≤R(x − λi ). We observe
that, on one hand, the matrix-valued version of this polynomial is given by

P(x)=
∏

1≤i≤R

(x−λi I )= x R
+

R∑
k=1

x R−k(−1)k
∑

J⊂{1,...,R}
|J |=k

∏
i∈J

λi= x R
+

∑
1≤k≤R

x R−k(−1)kσk,

while, on the other hand,

P(x)=
R∏

i=1

(x − λi )= det(x I − B)= x R
+

R∑
k=1

x R−k (−1)k
∑

J⊂{1,...,R}
|J |=k

det(BJ ),

so by identifying the coefficients we obtain equality (14). This implies that σk is
also a polynomial in the b2

l,m . Finally, for sl =
∑

1≤i≤R λ
l
i , we have the following

recursion, also known as Newton–Girard’s formula:

sl =
∑

1≤i≤l−1

(−1)i−1σi sl−i + (−1)l−1 l σl .

For example, s0 = n, s1 = σ1, s2 = s1 σ1 − 2σ2, s3 = s2 σ1 − s1σ2 + 3σ3, etc.
We therefore find by induction that for all k, (−1)k Tr(B2k) = (−1)k s2k is also
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a polynomial in the b2
l,m , but this alone does not guarantee the positivity of the

coefficients obtained in Lemma 3 above.

3.3. Formulas regarding the eigenvalues and eigenvectors of A(x) and B(x, c).
We first state the following lemma, which has important consequences for the
eigenvalues of the matrices A(x) and B(x, c), as we will see. The approach taken
below generalizes the method initiated by Montgomery and Vaughan [1973].

Lemma 5. (a) Let u= (u1, . . . , u R)
T be an eigenvector of A(x) for the eigenvalue

iµ. Then for 1≤ n ≤ R, we have

(15) µ2
|un|

2
=

∑
1≤m≤R

a2
m,n (|um |

2
+ 2<(un um)).

(b) Let u = (u1, . . . , u R)
T be an eigenvector of B(x, c) for the eigenvalue iµ.

Then for 1≤ n ≤ R, we have

(16) µ2
|un|

2
=

∑
1≤m≤R

a2
m,n (c

2
n c2

m |um |
2
+ 2 c3

n cm <(un um)).

Proof. We prove (16), from which (15) follows by specializing to the case c= 1.
Our starting assumption is Bu = iµu, i.e.,

∑
1≤m≤R bn,m um = iµ un . Taking

the modulus square on both sides, we obtain

µ2
|un|

2
=

∑
1≤l,m≤R
l 6=n,m 6=n

bn,m bn,l um ul .

(Notice that the sum can be taken over l 6= n and m 6= n, as bn,n = 0.) Therefore,

(17) µ2
|un|

2
= c2

n

∑
1≤l,m≤R
l 6=n,m 6=n

cl cm an,m an,l um ul = c2
n (S1+ S2),

where S1 corresponds to the terms in the sum with l =m and S2 is its complement:

(18) S1 =
∑

1≤m≤R
m 6=n

c2
m a2

m,n |um |
2, S2 =

∑
1≤l,m≤R

l 6=m, l 6=n,m 6=n

cl cm an,m an,l um ul .

As l, m, and n are all distinct in this last sum, we can use (10) and the antisymmetry
of A to obtain

an,m an,l = al,m an,l + am,l an,m,

so

(19) S2 =
∑

1≤l,m≤R
l 6=m, l 6=n,m 6=n

cl cm (al,m an,l + am,l an,m) um ul = S3+ S4
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with

S3 =
∑

1≤l,m≤R
l 6=m, l 6=n,m 6=n

cl cm al,m an,l um ul

=

∑
1≤l,m≤R

l 6=m, l 6=n,m 6=n

bl,m an,l um ul =
∑

1≤l≤R
l 6=n

an,l ul

∑
1≤m≤R

m 6=l, m 6=n

bl,m um .

As u is an eigenvector of B, it follows that

S3 =
∑

1≤l≤R
l 6=n

an,l ul (iµ ul − bl,nun).

Likewise, noticing that u is also an eigenvector of B (with the corresponding
eigenvalue −iµ), we obtain

S4 =
∑

1≤m≤R
m 6=n

an,m um

∑
1≤l≤R

l 6=n

bm,l ul =
∑

1≤m≤R
m 6=n

an,m um (−iµum − bm,n un).

From (19), we deduce that

S2 = S3+ S4 =−
∑

1≤m≤R
m 6=n

an,m bm,n (um un+um un)= 2
∑

1≤m≤R
m 6=n

am,n bm,n <(um un).

Now, using this together with (17) and (18), we finally obtain

µ2
|un|

2
=

∑
1≤m≤R

m 6=n

c2
n
(
c2

m a2
m,n |um |

2
+ 2 cm cn a2

m,n <(um un)
)
,

which completes the proof. �

One of the many consequences of Lemma 5 is the following.

Corollary 1. If c1, . . . , cR are all nonzero, then the eigenvalues of B(x, c) are all
distinct.

Proof. If in the basis of eigenvectors of B there were two corresponding to the
same eigenvalue, it would be possible to find a linear combination of them (also an
eigenvector) such that one component (say, un) would be equal to zero. Then by
(16) we would have ∑

1≤m≤R

a2
m,n c2

n c2
m |um |

2
= 0,

which is impossible, given the assumption made. �

A more precise version of Lemma 5(b) reads as follows.
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Lemma 6. Let u= v+ iw (v,w ∈ RR) be an eigenvector of −iµ corresponding to
the eigenvalue B(x, c). Then

(20) µ2 v2
n =

∑
1≤m≤R

b2
n,m w

2
m + 2 c2

n

∑
1≤m≤R

m 6=n

an,m wm (µ vm − bm,n wn).

Moreover, if µ 6= 0, then ‖v‖ = ‖w‖, while if µ= 0, then det(B)= 0, so one of the
eigenvectors corresponding to this eigenvalue is real.

Proof. Applying the proof method of Lemma 5 gives

µ2 v2
n =

( ∑
1≤m≤R

bn,m wm

)2

=

∑
1≤m≤R

b2
n,m w

2
m+

∑
1≤l,m≤R

l 6=m

bn,m bn,l wm wl =: S1+S2.

We can write

S2 = c2
n

∑
1≤l,m≤R

l 6=m

cl cm an,m an,l wm wl = c2
n (S3+ S4),

with

S3 =
∑

1≤l,m≤R
l 6=m, l 6=n,m 6=n

cl cm al,m an,l wm wl =
∑

1≤l≤R
l 6=n

an,lwl

∑
1≤m≤R

m 6=n,m 6=l

bl,m wm

=

∑
1≤l≤R

l 6=n

an,l wl (µ vl − bl,n wn),

and, likewise,

S4 =
∑

1≤m≤R
m 6=n

an,m wm

∑
1≤l≤R

l 6=m,l 6=n

bm,l wl =
∑

1≤m≤R
m 6=n

an,m wm (µ vm − bm,nwn).

Observing that S3 = S4, we obtain the formula (20).
Finally, we have by assumption that B(v+ iw)= iµ (v+ iw), so

B w = µ v and B v =−µw.

Consequently, we have

µ ‖w‖2 = µwT w = (−B v)T w = (BT v)T w = vT B w = µ ‖v‖2,

so for µ 6= 0, we have ‖v‖ = ‖w‖. �

Finally, let us mention the following nice formula.

Lemma 7. Let u be an eigenvector of B corresponding to the eigenvalue µ. Then∣∣∣∣ ∑
1≤r≤R

cr ur

∣∣∣∣2 = ∑
1≤r≤R

|cr ur |
2.
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Proof. Let C = diag(c1, . . . , cR) and X = diag(x1, . . . , xR). Then

uT (XC AC −C AC X) u = uT M u,

where mr,s = cr cs for r 6= s and 0 otherwise. Therefore,

uT M u =
∣∣∣∣ ∑
1≤r≤R

cr ur

∣∣∣∣2− ∑
1≤r≤R

|cr ur |
2.

On the other hand,

uT (XC AC −C AC X) u = uT (X B− B X) u = uT X iµ u− iµ uT X u = 0,

as uT (−B)= uT BT
= (B u)T = (−iµu)T =−iµ uT . The result follows. �

3.4. Back to the spectral norm. Lemma 5 also allows us to deduce the following
bounds on the spectral norm of A(x).

Corollary 2. max
1≤m≤R

∑
1≤n≤R

a2
m,n ≤ ‖A(x)‖2 ≤ 3 max

1≤m≤R

∑
1≤n≤R

a2
m,n.

Proof. The first inequality is clear, as the m-th column of A is the image by A of
the m-th canonical vector. For the second inequality, we use (16), choosing n such
that |un|

2
≥ |um |

2 for all 1≤ m ≤ R, and µ= ‖A‖. We therefore obtain

‖A‖2 |un|
2
=

∑
1≤m≤R

a2
m,n(|um |

2
+2<(un um))≤

∑
1≤m≤R

a2
m,n(|um |

2
+|um |

2
+|un|

2),

so
‖A‖2 |un|

2
≤ 3

∑
1≤m≤R

a2
m,n |un|

2. �

3.5. The classical Hilbert matrix TR. The upper bound in Corollary 2 allows us
to recover to the original upper bound on ‖TR‖, where TR is the Hilbert matrix
defined in the introduction:

‖TR‖
2
≤ max

1≤m≤R
3
∑

1≤n≤R
n 6=m

1
(m− n)2

< 3 · 2
∑
n≥1

1
n2 = π

2.

We now come back to the convergence speed of ‖TR‖ toward π , already mentioned
in Section 2. We prove inequality (4), namely that there exist positive constants a
and b such that

a
R
< π −‖TR‖<

b log(R)
R

, where R ≥ 2.

The lower bound can be deduced from Lemma 5. From (16), we indeed see that if
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R = 2S+ 1, then

‖TR‖
2 < 6

S∑
k=1

1
k2 = π

2
− 6

∑
k>S

1
k2 < π

2
− 6

∑
k>S

1
k(k+ 1)

= π2
−

6
S+ 1

,

so

π −‖TR‖>
6

(S+ 1) (π +‖TR‖)
>

3
π (S+ 1)

,

which is of the type a/R < π −‖TR‖. Another way to prove this lower bound is to
follow the Grenander–Szegő approach of Section 2.2. Let us first recall (6):

u∗TRu =
∫ 2π

0
f (x) |φ(x)|2 dx,

where f (x)= i (x−π) for x ∈ (0, 2π) and φ(x)= 1
√

2π

∑
1≤n≤R un exp(i(n−1)x),

and where
∫ 2π

0 |φ(x)|
2 dx = ‖u‖2 = 1. Hence,

(21) π − u∗iTRu =
∫ 2π

0
x |φ(x)|2 dx,

or, with E(R)=
{
φ(x)= 1

√
2π

∑
1≤n≤R

un exp(i(n−1)x)
∣∣ u∈CR,

∑
1≤n≤R

|un|
2
=1

}
,

(22) π −‖TR‖ = inf
φ∈E(R)

∫ 2π

0
x |φ(x)|2 dx .

It remains to show that the term on the right-hand side of (22) is bounded below by
a term of order 1/R. To this end, let us consider φ ∈ E(R) and c > 0. Using the
Cauchy–Schwarz inequality, we have∫ c

0
|φ(x)|2 dx =

1
2π

∑
1≤m,n≤R

um un

∫ c

0
exp(i(m− n)x) dx

≤
c

2π

∑
1≤m,n≤R

|um | |un| =
c

2π

( ∑
1≤n≤R

1 |un|

)2

≤
cR
2π

∑
1≤n≤R

|un|
2
=

cR
2π
.

Setting c = π/R, we obtain
∫ π/R

0 |φ(x)|2 dx ≤ 1
2 . This in turn implies that∫ 2π

0
x |φ(x)|2 dx ≥

∫ 2π

π/R
x |φ(x)|2 dx ≥

π

R

∫ 2π

π/R
|φ(x)|2 dx ≥

π

2R

for all φ ∈ E(R), which settles the lower bound in (4).
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To establish the upper bound, we need to find a function φ ∈ E(R) such that

(23)
∫ 2π

0
x |φ(x)|2 dx ≤

b log R
R

for some constant b > 0. This will indeed ensure the existence of a vector u —
namely, the one associated to the function φ ∈ E(R)— such that |u∗TRu| ≥
π − (b log R)/R, thus implying the result.

In view of (23), our goal is to find φ ∈ E(R) such that, for c and ε small,

(24)
∫ 2π

c
|φ(x)|2 dx ≤ ε,

which does imply that

(25)
∫ 2π

0
x |φ(x)|2 dx ≤ c

∫ c

0
|φ(x)|2 dx + 2π

∫ 2π

c
|φ(x)|2 dx ≤ c+ 2πε.

Let M and N be positive integers such that N (M − 1)+ 1≤ R, and let

g(x)=
( ∑

0≤m≤M−1

exp(imx)
)N

.

The function defined by

(26) φ(x)=
g(x − c/2)√∫ 2π
0 |g(x)|

2 dx

belongs to E(R). We claim that, for M and N appropriately chosen, φ satisfies
(24) with both c and ε small. We first estimate

∫ 2π
0 |g(x)|

2 dx .

Lemma 8.
M2N

N (M − 1)+ 1
≤

1
2π

∫ 2π

0
|g(x)|2 dx ≤ M2N−1.

Proof. Let K be a positive integer and define the polynomial

PK (t)=
( ∑

0≤m≤M−1

tm
)K

=

∑
0≤l≤K (M−1)

bl,K t l .

Clearly, bl,K = bm,K if l +m = K (M − 1). Moreover,

|g(x)|2 =
∣∣PN (exp(i x))

∣∣2 = ∑
0≤l,m≤N (M−1)

bl,N bm,N exp(i(l −m)x),

so ∫ 2π

0
|g(x)|2 dx = 2π

∑
0≤l≤N (M−1)

b2
l,N = 2π

∑
0≤l≤N (M−1)

bl,N bN (M−1)−l,N

= 2π bN (M−1),2N .
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Therefore, what remains to be proven is

M2N

N (M − 1)+ 1
≤ bN (M−1),2N ≤ M2N−1.

Using the Cauchy–Schwarz inequality, we obtain

bN (M−1),2N =
∑

0≤l≤N (M−1)

b2
l,N ≥

( ∑
0≤l≤N (M−1)

bl,N

)2

N (M−1)+1
=

PN (1)2

N (M−1)+1

=
M2N

N (M−1)+1
.

On the other hand, P2N (t)= P1(t) P2N−1(t), so

bN (M−1),2N =
∑

(N−1)(M−1)≤l≤N (M−1)

bl,2N−1 ≤ P2N−1(1)≤ M2N−1,

which completes the proof. �

We now set out to prove (24). We retain the same φ from (26). As a result of
the previous lemma, we have∫ 2π

c
|φ(x)|2 dx ≤

N (M − 1)+ 1
M2N

1
2π

∫ 2π

c
|g(x − c/2)|2 dx

=
N (M − 1)+ 1

M2N

1
2π

∫ 2π−c/2

c/2
|g(x)|2 dx .

Notice that

|g(x)|2 =
∣∣∣∣ ∑

0≤m≤M−1

exp(imx)
∣∣∣∣2N

=

(
sin(Mx/2)
sin(x/2)

)2N

,

so ∫ 2π−c/2

c/2
|g(x)|2 dx = 2

∫ π

c/2
|g(x)|2 dx ≤ 2

∫ π

c/2

(
π sin(Mx/2)

x

)2N

dx

because sin x
2
≥

x
π

for 0≤ x ≤ π . This implies∫ 2π−c/2

c/2
|g(x)|2 dx≤2

∫
∞

c/2

(π
x

)2N
dx=2π

∫
∞

c/2π

1
y2N dy=

2π
2N − 1

(
2π
c

)2N−1

,

and, correspondingly,

ε =

∫ 2π

c
|φ(x)|2 dx ≤

N (M − 1)+ 1
M2N

1
2N − 1

(
2π
c

)2N−1

.

Assuming R ≥ 3 and defining
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M :=
⌊

2R
log R

⌋
, N :=

⌊
log R

2

⌋
, c :=

πe log R
R

(where bxc denotes the integer part of x), we verify that M(N − 1)+ 1 ≤ R (so
φ ∈ E(R)) and prove below that (24) is satisfied with ε = O(1/R). Indeed, as
M ≥ R/log R and N (M − 1)+ 1≤ M(2N − 1), we obtain

N (M−1)+1
M2N (2N−1)(c/2π)2N−1 =

(cM
2π

)1−2N 1+N (M−1)
M(2N−1)

≤

(cM
2π

)1−2N
≤e1−2N

≤
e3

R
,

as 1− 2N < 3− log R. According to (25), this finally leads to∫ 2π

0
x |φ(x)|2 dx ≤

πe log R
R

+
2πe3

R
,

which completes the proof of the upper bound in (4). As already mentioned, it has
been conjectured in [Preissmann 1985] that of the two bounds in (4), the upper
bound is tight. We provide below some numerical simulation data that supports this
fact. In Figure 1, the expression

f (R) := (π −‖TR‖)
R

log R

is represented as a function of R, for values of R ranging from 1 to 10,000. Detailed
facts can also be established about the eigenvectors of TR . In order to ease the
notation, suppose that R = 2S+ 1 and that TR is indexed from −S to S.

Lemma 9. Let u be an eigenvector of TR corresponding to the eigenvalue iµ, and
assume without loss of generality that u0 = 1. For 0≤ n ≤ S, we have

u−n =−un.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 1. Rescaled gap f (R) between the spectral norm of the infinite-
dimensional operator T∞ and that of the matrix TR , for 1≤ R≤ 10,000.
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Figure 2. Amplitude {|un| : −R ≤ n ≤ R} of the eigenvector corre-
sponding to the largest eigenvalue of TR , with R = 1000.

Proof. Define v by vn =−u−n . Then

(TRv)−m =
∑

−S≤n≤S

vn

−m− n
=

∑
−S≤n≤S

v−n

−m+ n
=−

∑
−S≤n≤S

v−n

m− n
,

so

(TRv)−m =
∑

−S≤n≤S

un

m− n
= (TRu)m = (−iµ u)m = iµv−m,

i.e., v is an eigenvector corresponding to the eigenvalue iµ, with v0 = 1. Thus,
v = u (as the eigenspace corresponding to iµ is of dimension 1). �

We finally make the following conjecture. Let u be the eigenvector corresponding
to the largest eigenvalue µ in absolute value. Then

|um |< |un| for all 0≤ m < n ≤ S.

This conjecture is confirmed numerically; in Figure 2, we represent |un| as a function
of n ∈ {−S, . . . , S}, for S = 1000.

From the theoretical point of view, the conjecture also seems reasonable, as
(−1)k (T 2k

R )n,n (see Lemma 2) should decrease as n increases (in absolute value).
If true, this fact would therefore hold in the limit k→∞, which would imply the
conjecture on the eigenvector.
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