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ON VOLUME GROWTH OF GRADIENT
STEADY RICCI SOLITONS

GUOFANG WEI AND PENG WU

In this paper we study volume growth of gradient steady Ricci solitons. We
show that if the potential function satisfies a uniform condition, then the
soliton has at most euclidean volume growth.

1. Introduction

(Mn, g) is a gradient Ricci soliton if there is a smooth function f : M → R and
constant λ ∈ R such that

(1-1) Ric+Hess f = λg.

We refer to f as the potential function. The soliton is called shrinking, steady, and
expanding when λ > 0, λ= 0, and λ < 0 respectively.

Ricci solitons are self-similar solutions of the Ricci flow, and play an important
role in the study of singularity formation. They are also natural extensions of
Einstein manifolds, and special cases of smooth metric measure spaces.

Volume growth of gradient Ricci solitons is of particular interest to mathemati-
cians. Estimates of the potential functions plays an important role in the study of
volume growth. Hamilton [1995] proved the following identity for gradient Ricci
solitons:

R+ |∇ f |2− 2λ f =3,

where 3 is a constant, and R is the scalar curvature.
For gradient shrinking Ricci solitons, the answer is complete. Perelman [2003]

and Cao and Zhou [2010] proved that f always grows quadratically. Cao and Zhou
[2010] further proved that any gradient Ricci shrinking soliton has at most euclidean
volume growth. Recently, Munteanu and Wang [2012] proved that any noncompact
gradient Ricci shrinking soliton has at least linear volume growth.

For gradient steady Ricci solitons, B. L. Chen [2009] proved that R ≥ 0. Hence,
3≥ 0, and equal to zero if and only if f is constant and (M, g) is Ricci flat. When
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3> 0 we can assume 3= 1 after scaling; that is,

(1-2) R+ |∇ f |2 = 1.

Combined with the trace of the steady Ricci soliton equation R+1 f = 0, we have

(1-3) 1 f − |∇ f |2 =−1.

Therefore, f has no local minimum. Equation (1-2) and R ≥ 0 give |∇ f | ≤ 1.
Namely, f decays at most linearly.

Cao and Chen [2012] proved that f decays linearly when Ricci curvature is
positive, and R attains its maximum at some point. However, the simple example
of R2 with the canonical metric g0 and f (x)= x1 shows that this is not the case;
f is constant along the x2 direction. Note that the Riemannian product of any
two steady gradient Ricci solitons is still a steady gradient Ricci soliton. Hence,
a steady gradient Ricci soliton multiplied with a trivial one ( f is a constant) will
have constant direction. Though one can take the product of two shrinking ones,
all trivial shrinking ones are compact, so they will not give a constant direction
by taking a product. Munteanu and Sesum [2013] and Wu [2013] independently
showed that the infimum of f does decay linearly. In fact,

(1-4) −r ≤ inf
y∈∂B(x,r)

f (y)− f (x)≤−r +
√

2n(
√

r + 1), r � 1.

In particular, lim infy→∞ R(y) = 0. See also [Fernández-López and García-Río
2011; Chow et al. 2011].

We note that among all known examples of steady gradient Ricci solitons, the
infimum of f is like −r + O(ln r). See the survey article [Cao 2010] for a list of
examples. One naturally asks if one can improve the second order term in (1-4)
from
√

r to ln r . We show this is indeed the case for a large class of steady gradient
Ricci solitons. To study the second order term, write the potential function in polar
coordinates:

f (r, θ)=−r +φ(r, θ),

where r(·) = d(x, ·) for some x ∈ Mn , θ ∈ Sn−1. Without loss of generality, we
assume φ(0, θ)= 0 by adding a constant to f . Since |∇ f |≤ 1, we have |∂ f/∂r |≤ 1,
so f (r)≥−r , φ(r)≥ 0 and φ(r, θ) are nondecreasing in r for any fixed θ . We show
that the estimate (1-4) can be improved to ln r if φ in one direction is comparable
to the minimum of φ among all spherical directions for all large r .

Theorem 1.1. Let (Mn, g, f ) be a complete gradient steady Ricci soliton satisfying
(1-2). Assume that there exist θ0 ∈ Sn−1, and constants C1 ≥ 0,C2 ≥ 0 such that

(1-5)
∫ r

0

(
φ(r, θ0)−φ(t, θ0)

)
dt ≤ C1 min

θ∈Sn−1

∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt +C2r
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for sufficiently large r . Then for any x ∈ Mn , there exist constants C ≥ 0 and r0 > 0
such that for r ≥ r0,

(1-6) −r ≤ inf
y∈∂B(x,r)

f (y)− f (x)≤−r +
(n

2
C1+C2

)
ln r +C.

Remark 1.2. All known examples of gradient steady Ricci solitons satisfy the
condition (1-5). We suspect that the estimate (1-6) holds for all gradient steady
Ricci solitons.

In [Munteanu and Sesum 2013], it was proven that any gradient steady Ricci
soliton has at least linear volume growth, and at most a growth rate of e

√
r . We

show that if the potential function satisfies a uniform condition in the spherical
directions, then the gradient steady Ricci soliton has at most euclidean volume
growth.

Theorem 1.3. Let (Mn, g, f ) be a complete gradient steady Ricci soliton satisfying
(1-2). Assume that there exist constants C1,C2 ≥ 0 such that

(1-7) max
θ∈Sn−1

∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt ≤C1 min

θ∈Sn−1

∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt+C2r

for sufficiently large r . Then for any x ∈ Mn , there exist constants C ≥ 0 and r0 > 0
such that for any r ≥ r0,

(1-8) −r ≤ f (y)− f (x)≤−r +C ln r

for any y ∈ ∂B(x, r). Moreover, the soliton has at most euclidean volume growth;
that is, for any x ∈ Mn there exists r0 > 0, and for any r ≥ r0,

Vol B(x, r)≤ Crn.

If , in addition, φ(r)≥ δ ln r for large r , then

Vol B(x, r)≤ Crn−δ.

Remark 1.4. (1) If φ increases uniformly along all spherical directions; that is,
maxθ ∂φ/∂r ≤ C minθ ∂φ/∂r , where θ ∈ Sn−1, then φ satisfies (1-7) with C1 = C
and C2 = 0.

(2) Theorem 1.3 can be considered an analogue of the volume growth theorem of
[Cao and Zhou 2010], valid for gradient shrinking Ricci solitons. As the potential
function for such solitons automatically satisfies a uniform condition, here too we
need to impose a uniform condition for gradient steady Ricci solitons.

(3) If the soliton is rectifiable (see [Petersen and Wylie 2009]) — i.e., f is the
distance function from a set — then φ satisfies (1-7) with C1 = 1 if the set is
bounded (this is the case with all nonproduct examples).
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To prove the results, the following estimate for φ, which holds for all gradient
steady Ricci solitons, is the key:

Proposition 1.5. Let (Mn, g, f ) be a complete gradient steady Ricci soliton satis-
fying (1-2). Then

(1-9) min
y∈∂B(x,r)

∫ r

0

(
φ(y)−φ(t)

)
dt ≤

n
2

(
r +
√

r
)
+ o

(
1
r

)
.

This estimate improves the one in [Wu 2013]. In the next section we derive a
volume comparison for the solitons by adapting the volume comparison for smooth
metric measure spaces in [Wei and Wylie 2009]. Then we prove Proposition 1.5
by combining this with (1-3). In Section 3 we prove the main theorems using this
estimate and an ODE.

2. The preliminary estimate

In this section we prove Proposition 1.5 by applying a weighted volume comparison
argument for smooth metric measure spaces as in [Wei and Wylie 2009; Wu 2013].

Recall that a smooth metric measure space is a triple (Mn, g, e− f dvolg), where
(Mn, g) is a smooth Riemannian manifold, and f : Mn

→ R is a smooth function.
Write the volume element in polar coordinates dvol = J (r, θ) dr dθ . Define the
weighted volume element as J f (r, θ) = e− f J (r, θ) and the weighted volume as
Vol f B(x, r)=

∫
B(x,r) e− f dvol.

Wei and Wylie [2009] obtained the following f -volume comparison theorem for
smooth metric measure spaces:

Theorem 2.1 ( f -volume comparison). Suppose (Mn, g, e− f dvol) is a smooth
metric measure space with Ric f ≥ (n − 1)H. Fix x ∈ M. If | f | ≤ 3, then for
R ≥ r > 0 (and R ≤ π/4

√
H if H > 0),

Vol f B(x, R)
Vol f B(x, r)

≤
V n+43

H (BR)

V n+43
H (Br )

where V n
H (Br ) is the volume of the ball of radius r in Mn

H (the simply connected
model space of dimension n with constant sectional curvature H ).

One observes that the dimension of the model space in the volume comparison
depends on the potential function f . Further investigation of the dimension will
lead to Proposition 1.5.

Denote the f -mean curvature by m f = (ln J f )
′. For 0< r1≤ r2, let A(x, r1, r2)=

{y|r1 ≤ d(x, y)≤ r2} be the annulus, and

a = min
y∈A(x,r1,r2)

2
r(y)2

∫ r(y)

0

(
φ(y)−φ(t)

)
dt.
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Clearly a ≥ 0. By (1-4), we have a ≤ C/
√

r1 for r1� 1. For the rest we assume
r1� 1 and therefore we can assume a < 1.

Proposition 2.2. For a gradient steady Ricci soliton, we have

m f (r, θ)≤
n− 1

r
+ 1−

2
r2

∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt ≤

n− 1
r
+ 1,(2-1)

Vol f ∂B(x, r2)

Vol f A(x, r1, r2)
≤

n/r2+ 1− a
1− (r1/r2)n+(1−a)r2

.(2-2)

Proof. For a smooth metric space (Mn, g, f ) with Ric f ≥ 0, recall the following
estimate for m f from [Wei and Wylie 2009, (3.19)]:

m f (r, θ)≤
n− 1

r
+

2
r2

∫ r

0

(
f (t)− f (r)

)
dt.

Plugging in f =−r +φ gives (2-1).
Now let

m(r)=


n−1

r
+ 1 if r ≤ r1,

n−1+(1−a)r2
r

if r1 < r ≤ r2.

Then

(2-3) m f (r)≤ m(r) for 0< r ≤ r2.

Let A(r) = e
∫ r

0 m(t) dt and V (r0, r) =
∫ r

r0
A(t) dt . From the mean curvature

relation (2-3), we have (A f /A)′ ≤ 0; therefore

Vol f ∂B(x, r2)

Vol f A(x, r1, r2)
≤

A(r2)

V (r1, r2)
.

We compute

A(r2)

V (r1, r2)
=

e
∫ r2

0 m(t) dt∫ r2
r1

e
∫ s

0 m(t) dt ds
=

e
∫ r2

r1
m(t) dt∫ r2

r1
e
∫ s

r1
m(t) dt ds

=
(r2/r1)

n−1+(1−a)r2∫ r2
r1
(s/r1)n−1+(1−a)r2 ds

=
n/r2+ 1− a

1− (r1/r2)n+(1−a)r2
.

This gives (2-2). �

Proof of Proposition 1.5. Integrating (1-3) and using |∇ f | ≤ 1 we have, for any
x ∈ M , ∫

B(x,r)
1 · e− f dvol=−

∫
B(x,r)

(1 f − |∇ f |2) · e− f dvol

=−

∫
∂B(x,r)

∂ f
∂n

e− f dvol≤
∫
∂B(x,r)

e− f dvol.
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Therefore,

(2-4)
Vol f ∂B(x, r)
Vol f B(x, r)

≥ 1.

Combining (2-2) and (2-4) we have

a ≤
n
r2
+

(
r1

r2

)n+(1−a)r2

.

Let r1 = r and r2 = r +
√

r . Then r1/r2 = (1+ 1/
√

r)−1. When r is large,(
1+

1
√

r

)−(n+(1−a)(r+
√

r))

= O
(
e−(1−a)

√
r).

Therefore, for all r large enough,

a = min
y∈A(x,r,r+

√
r)

2
r(y)2

∫ r(y)

0

(
φ(y)−φ(t)

)
dt ≤

n
r +
√

r
+ O

(
e−(1−a)

√
r).

Suppose the minimum above is attained at y0= (r0, θ1) with r ≤ r0 ≤ r+
√

r . Then

min
y∈∂B(x,r)

∫ r

0

(
φ(y)−φ(t)

)
dt ≤

∫ r0

0

(
φ(y0)−φ(t)

)
dt

≤
r2

0

2

(
n

r +
√

r
+ O

(
e−(1−a)

√
r))

≤
n
2

(
r +
√

r
)
+ o

(
1
r

)
. �

3. Proof of main results

Proof of Theorem 1.1. From (1-9) and (1-5), we have

(3-1)
∫ r

0

(
φ(r, θ0)−φ(t, θ0)

)
dt ≤

nC1

2

(
r +
√

r
)
+C2r + o

(
1
r

)
.

For simplicity, when there is no confusion we omit θ0 in the function. Let 8(r)=∫ r
0 φ(t) dt ; then (3-1) can be written as

(3-2) 8′(r)−
1
r
8(r)≤

nC1

2
+C2+ O

(
1
√

r

)
.

Multiplying by the integrating factor 1/r and integrating from some fixed t0� 1 to
r , we get

8(r)
r
≤

(
nC1

2
+C2

)
ln r +C3.
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So, we have

φ(r, θ0)=8
′(r, θ0)≤

8(r, θ0)

r
+

nC1

2
+C2+ O

(
1
√

r

)
≤

(
nC1

2
+C2

)
ln r +C4

f (r, θ0)=−r +φ(r, θ0)≤−r +
(

nC1

2
+C2

)
ln r +C4.

This gives (1-6). �

Proof of Theorem 1.3. From (1-9) and (1-7), we have∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt ≤

nC1

2

(
r +
√

r
)
+C2r + o

(
1
r

)
for all θ ∈ Sn−1. Therefore, (1-6) holds for all y. Namely, for all y ∈ ∂B(x, r),

−r ≤ f (y)− f (x)≤−r +
(

nC1

2
+C2

)
ln r +C4.

By (2-1), for all r > 0,

∂

∂r
ln J = m f (r)+〈∇ f,∇r〉

≤
n− 1

r
+ 1−

2
r
φ(r)+

2
r2

∫ r

0
φ(t) dt +〈∇ f,∇r〉.

Integrating from 1 to r and performing integration by parts for the double integral,
we get

(3-3) ln J (r)− ln J (1)

≤ (n− 1) ln r + (r − 1)−
∫ r

1

2
s
φ(s) ds+

(
−

2
s

∫ s

0
φ(t) dt

) ∣∣∣r
1

+

∫ r

1

2
s
φ(s) ds+ f (r)− f (1)

= (n− 1) ln r +φ(r)−
2
r

∫ r

0
φ(t) dt + 2

∫ 1

0
φ(t) dt − f (1)− 1

= (n−1) ln r−φ(r)+ 2
(
φ(r)−

1
r

∫ r

0
φ(t) dt

)
+ 2

∫ 1

0
φ(t) dt− f (1)−1.

Using (3-2) we have, for large r ,

ln J (r)≤ (n− 1) ln r −φ(r)+C ≤ (n− 1) ln r +C.

Hence,
J (r)≤ eC e(n−1) ln r

= eCrn−1,
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and the volume of a geodesic ball centered at x satisfies

VolB(x, r)≤ C ′rn.

If further φ(s)≥ δ ln s, then we have

J (r)≤ Crn−1 exp
(
−φ(r)

)
≤ Crn−δ−1,

therefore the volume growth is strictly less than euclidean volume growth:

VolB(x, r)≤ Crn−δ. �

For general gradient steady Ricci solitons, the estimate of a potential function
can be reduced to the following:

Question 3.1. Suppose φ is nondecreasing along any minimal geodesic starting
from x . Assume that for sufficiently large r , infy∈∂B(x,r) φ(y)≤ C

√
r , and

inf
y∈∂B(x,r)

∫ r

1

(
φ(y)−φ(γy(t)

)
dt ≤

nr
2
.

Does the following hold?

inf
y∈∂B(x,r)

φ(y)≤ C ln r

Remark 3.2. From (3-3), we see that if

−r ≤ f (y)− f (x)≤−r +C ln r

for y ∈ ∂B(x, r), then for any x ∈ Mn , there exists r0 > 0 such that for any r ≥ r0,

VolB(x, r)≤ C ′rn+C .
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