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GENUS-TWO GOERITZ GROUPS
OF LENS SPACES

SANGBUM CHO

Given a genus-g Heegaard splitting of a 3-manifold, the Goeritz group is
defined to be the group of isotopy classes of orientation-preserving home-
omorphisms of the manifold that preserve the splitting. In this work, we
show that the Goeritz groups of genus-2 Heegaard splittings for lens spaces
L( p, 1) are finitely presented, and give explicit presentations of them.

1. Introduction

It is well known that every closed orientable 3-manifold M can be decomposed into
two handlebodies of the same genus. This is what we call a Heegaard splitting of
the manifold, and the genus of the handlebodies is called the genus of the splitting.
Given a genus-g Heegaard splitting of M , the Goeritz group of the splitting, which
we will denote by Gg, is the group of isotopy classes of orientation-preserving
homeomorphisms of M that preserve each of the handlebodies of the splitting
setwise. In particular, this group is interesting when the manifold is the 3-sphere
or a lens space since it is well known from [Waldhausen 1968; Bonahon 1983;
Bonahon and Otal 1983] that they have unique Heegaard splittings for each genus
up to isotopy. In this case, each Goeritz group depends only on the genus of the
splitting, and so we can define the genus-g Goeritz group Gg of each of those
manifolds without mentioning a specific Heegaard splitting. For the 3-sphere, it
was shown in [Goeritz 1933; Scharlemann 2004] that G2 is finitely generated, and
subsequently in [Akbas 2008; Cho 2008] that G2 is finitely presented and its finite
presentation was introduced. Further, in [Koda 2011], a natural generalization of
a Goeritz group is studied, namely, the group of isotopy classes of orientation-
preserving homeomorphisms of the 3-sphere preserving an embedded genus-two
handlebody which is possibly knotted.

This work is supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) and funded by the Ministry of Education, Science, and Technology
(2012006520).
MSC2010: primary 57N10; secondary 57M60.
Keywords: Heegaard splitting, Goeritz group, lens space, disk complex.

1

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2013.265-1
http://dx.doi.org/10.2140/pjm.2013.265.1


2 SANGBUM CHO

In this work, we show that the Goeritz group G2 of each of the lens spaces L(p, 1)
is finitely presented. In the main theorem, Theorem 5.4, their explicit presentations
are given. For the genus-2 Goeritz groups of the other lens spaces, and for the
higher genus Goeritz groups of the 3-sphere and lens spaces, it is conjectured that
they are all finitely presented, but it is still known to be an open problem.

We generalize the method developed in [Cho 2008]. We find a tree on which G2

for L(p, 1) acts such that the quotient of the tree by the action of G2 is a single edge,
and then apply the well known theory of groups acting on trees due to Bass and
Serre (see [Serre 1980]). Such a tree will be found in the barycentric subdivision
of the disk complex for one of the handlebodies of the splitting. For arbitrary
lens spaces L(p, q), finding such trees, if they exist, is a much more complicated
problem than L(p, 1), which will be fully discussed in [Cho and Koda 2012].

Throughout the paper, we simply denote by G the genus-2 Goeritz group G2 of a
lens space. We use the standard notation L(p, q) with p≥ 2 for a lens space with its
basic properties found in standard textbooks. For an example, we refer to [Rolfsen
1976]. For a genus-1 Heegaard splitting of L(p, 1), any oriented meridian circle of
a solid torus of the splitting is identified with a (p, 1)-curve (or a (p, p− 1)-curve)
on the boundary of the other solid torus after a suitable choice of oriented longitude
and meridian of the other solid torus is made. The triple (V,W ;6) will denote a
genus-2 Heegaard splitting of a lens space L = L(p, q). That is, L = V ∪W and
V ∩W = ∂V = ∂W =6, where V and W are handlebodies of genus two.

The disks D and E in a handlebody are always assumed to be properly embedded,
and their intersection is transverse and minimal up to isotopy. In particular, if D
intersects E , then D ∩ E is a collection of pairwise disjoint arcs that are properly
embedded in both D and E . Finally, Nbd(X) will denote a regular neighborhood
of X , and cl(X) the closure of X for a subspace X of a polyhedral space where the
ambient space will always be clear from the context.

2. Primitive elements of the free group of rank two

The fundamental group of the genus-2 handlebody is the free group Z ∗Z of rank
two. We call an element of Z ∗ Z primitive if it is a member of a generating
pair of Z ∗ Z. Primitive elements of Z ∗ Z have been well understood. For an
example we refer [Osborne and Zieschang 1981] to the reader. A key property of
the primitive elements of the free group of rank two is the following, which is a
direct consequence of Corollary 3.3 in [Osborne and Zieschang 1981]:

Proposition 2.1. Fix a generating pair {x, y} of Z ∗ Z, and let w be a primitive
element of Z∗Z. Then for some ε ∈ {1,−1} and some n ∈Z, some cyclically reduced
form of w is a product of terms of the form xε yn or xε yn+1, or else a product of
terms of the form yεxn or yεxn+1.
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From the proposition, the cyclically reduced forms of a primitive element are
very restrictive. For example, if w is a primitive element of Z∗Z, then no cyclically
reduced form of w in terms of x and y can contain x and x−1 (and y and y−1)

simultaneously.
A simple closed curve in the boundary of a genus-2 handlebody W represents

an element of π1(W ) = Z ∗Z. We call a pair of essential disks in W a complete
meridian system for W if the union of the two disks cuts up W into a 3-ball. Given
a complete meridian system {F,G}, assign symbols x and y to circles ∂F and
∂G respectively. Suppose that an oriented simple closed curve l on ∂W meets
∂F ∪ ∂G transversely and minimally. Then l determines a word in terms of x and
y which can be read off from the intersections of l with ∂F and ∂G (after a choice
of orientations of ∂F and ∂G), and hence l represents an element of the free group
π1(W )= 〈x, y〉.

In this set up, the following is a simple criterion for the primitiveness of the
elements represented by such a simple closed curve:

Lemma 2.2. With a suitable choice of orientations of ∂F and ∂G, if a word deter-
mined by the simple closed curve l contains one of the subwords yxy−1 or xyxyn

for n≥ 3, then any element in π1(W ) represented by l cannot be a primitive element.

Proof. Let 6′ be the 4-holed sphere cut up from ∂W along ∂F ∪ ∂G, and denote
by f+ and f− (respectively g+ and g−) the boundary circles of 6′ that came from
∂F (respectively ∂G).

Suppose first that a word represented by l contains a subword of the form yxy−1.
Then we may assume that there are two arcs l+ and l− of l∩6′ such that l+ connects
f+ and g+, and l− connects f+ and g− as in Figure 1, left. Since |l∩ f+| = |l∩ f−|
and |l ∩ g+| = |l ∩ g−|, we must have two other arcs m+ and m− of l ∩6′ such
that m+ connects f− and g+, and m− connects f− and g−. We see then that there
exists no arc component of l ∩6′ that meets only one of f+, f−, g+ or g−. That is,
any word determined by l contains neither x±1x∓1 nor y±1 y∓1, and so each word
is cyclically reduced, but a word determined by l already contains both y and y−1,
and so l cannot represent a primitive element of π1(W ) by Proposition 2.1.

f+

f−

g+

g−

f+

f−

h+

h−

l+
l−
m+

m−

c

x2 z2F G
H

6′ W 6′′

Figure 1. The 4-holed spheres 6′ and 6′′.
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Next, suppose that a word represented by l contains a subword of the form xyxyn

for n ≥ 3. We may assume there is an arc c of l ∩6′ connecting f+ and g+ in 6′.
Consider the circle which is the frontier of a regular neighborhood of f+ ∪ c∪ g+
in 6′. This circle bounds a disk H in W , and {F, H} forms a complete meridian
system of W . Assigning symbols x and z to ∂F and ∂H respectively, the circle l
represents an element of π1(W )= 〈x, z〉 (see Figure 1, middle).

Let 6′′ be the 4-holed sphere cut up from ∂W along ∂F ∪ ∂H , and denote by
f+ and f− (respectively h+ and h−) the boundary circles of 6′′ that came from
∂F (respectively ∂H). There are two arcs of l ∩6′′ such that one connects f+ and
f−, and the other one connects h+ and h−. We may assume that these two arcs
represent subwords of the form x2 and z2 (see Figure 1, right). Thus there exists no
arc component of l ∩6′′ that meets only one of f+, f−, h+ and h−. That is, each
word represented by l is cyclically reduced. But a word determined by l already
contains both x2 and z2, and so l cannot represent a primitive element of π1(W ) by
Proposition 2.1 again. �

3. Primitive disks in a handlebody

Recall that (V,W ;6) denotes a genus-two Heegaard splitting of a lens space
L = L(p, q) with p ≥ 2. We call an essential disk E in V primitive if there exists
an essential disk E ′ in W such that ∂E intersects ∂E ′ transversely in a single point.
Such a disk E ′ is called a dual disk of E . Note that E ′ is also primitive in W with
a dual disk E , and W ∪Nbd(E) and V ∪Nbd(E ′) are both solid tori. Primitive
disks are necessarily nonseparating. We call a pair of disjoint, nonisotopic primitive
disks in V a primitive pair in V . Similarly, a triple of pairwise disjoint, nonisotopic,
primitive disks (if it exists) is a primitive triple.

A nonseparating disk E0 properly embedded in V is called semiprimitive if there
is a primitive disk E ′ in W such that ∂E ′ is disjoint from ∂E0. With a suitable
choice of oriented meridian and longitude circles on the boundary of the solid
torus obtained by cutting up W along E ′, the oriented boundary circle ∂E0 can be
considered a (p, 1)-curve on the boundary of the solid torus, if q = 1.

Any simple closed curve on the boundary of W represents an element of π1(W ),
which is the free group of rank two. We can interpret primitive disks algebraically
as follows, which is a direct consequence of [Gordon 1987]:

Lemma 3.1. Let D be a nonseparating disk in V . Then D is primitive if and only
if ∂D represents a primitive element of π1(W ).

Note that no disk can be both primitive and semiprimitive since the boundary
circle of a semiprimitive disk in V represents the p-th power of a primitive element
of π1(W ).
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Let D and E be essential disks in V , and suppose that D intersects E transversely
and minimally. Let C ⊂ D be a disk cut up from D by an outermost arc β of D∩ E
in D such that C ∩ E = β. We call such a C an outermost subdisk of D cut up by
D∩ E . The arc β cuts E into two disks, say G and H . Then we have two essential
disks E1 and E2 in V which are isotopic to disks G ∪C and H ∪C respectively.
We call E1 and E2 the disks from surgery on E along the outermost subdisk C of
D cut up by D ∩ E . Observe that E1 and E2 each have fewer arcs of intersection
with D than E had, since at least the arc β no longer counts.

Since E and D are assumed to intersect minimally, E1 and E2 are isotopic to
neither E nor D. In particular, if both D and E are nonseparating, then the resulting
disks E1 and E2 are both nonseparating and they are not isotopic to each other.
Further, E1 and E2 are meridian disks of the solid torus V cut up by E , and the
boundary circles ∂E1 and ∂E2 are not isotopic to each other in the two holed torus
∂V cut up by ∂E .

Theorem 3.2. Let (V,W ;6) be the genus-two Heegaard splitting of the lens space
L = L(p, 1) with p ≥ 2. Let D and E be primitive disks in V which intersect each
other transversely and minimally. Then one of the two disks from surgery on E
along an outermost subdisk of D cut up by D ∩ E is primitive. Furthermore, it has
a common dual disk with E.

Proof. We will prove the theorem only for p ≥ 5. The cases of p ∈ {2, 3, 4} will be
similar but simpler.

Let C be an outermost subdisk of D cut up by D ∩ E . The choice of a dual disk
E ′ of E determines a unique semiprimitive disk E0 in V , namely, the meridian disk
E0 of V disjoint from E ∪ E ′. Among all the dual disks of E , choose one, denoted
by E ′ again, so that the semiprimitive E0 determined by E ′ intersects C minimally.
Further, there is a unique semiprimitive disk E ′0 in W disjoint from E ∪ E ′. We
give symbols x and y to oriented ∂E ′ and ∂E ′0 respectively to have π1(W )= 〈x, y〉.
For convenience, we simply identify the boundary circles ∂E ′ and ∂E ′0 with the
assigned symbols x and y respectively. Notice that the circle y is disjoint from ∂E
and intersects ∂E0 in p points in the same direction, and x is disjoint from ∂E0 and
intersects ∂E in a single point. Thus we may assume that ∂E0 and ∂E determine
the words y p and x respectively.

Let 60 be the 4-holed sphere ∂V cut up by ∂E ∪ ∂E0. We regard 60 as a
2-holed annulus where the two boundary circles came from ∂E0 and the two holes
came from ∂E . Then y ∩60 is the union of p spanning arcs which cut 60 into
p rectangles, and x is a single arc connecting two holes which are contained in a
single rectangle. See Figure 2, left.

Suppose first that C is disjoint from E0. Note that one of the disks from surgery
on E along C is E0, which is semiprimitive. The arc C ∩60 is the frontier of
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α

∂E0

∂E0

C ∩60

∂E1

∂E0

∂E0
C ∩60

Figure 2. The 2-holed annulus 60 in L(5, 1).

a regular neighborhood of the union of one boundary circle of 60 and an arc α
connecting the boundary circle to a hole. Observe that the arc α is disjoint from
y ∩60, otherwise a word of ∂D must contain yxy−1 (after changing orientation
if necessary) which contradicts that D is primitive, by Lemma 2.2. See Figure 2,
right. Consequently, if we denote by E1 the disk from surgery that is not E0, then
∂E1 intersects ∂E ′ in a single point. That is, the resulting disk E1 is primitive with
the common dual disk E ′ of E . See Figure 2, left.

From now on, we assume that C intersects E0. Let C0 be an outermost subdisk
of C cut up by C ∩ E0. The arc C0∩60 is the frontier of a regular neighborhood of
one hole of 60 and an arc, say α0, connecting the hole to a boundary circle of 60.
By the same reasoning as in the case of α, the arc α0 is disjoint from y ∩60. Thus
one of the disks from surgery on E0 along C0 is E , and the other one, denoted by E1

again, is primitive since ∂E1 intersects ∂E ′ in a single point as in the previous case.
Note that |C ∩ E1|< |C ∩ E0| from the surgery construction. See 60 in Figure 3.

Let 61 be the 4-holed sphere ∂V cut up by ∂E∪∂E1. We regard 61 as a 2-holed
annulus, like 60, where the two boundary circles came from ∂E1 and the two holes
came from ∂E . Then y ∩61 is the union of p spanning arcs which cut 61 into
p rectangles as in the case of 60, but the two holes, which came from ∂E , are
now contained in different consecutive rectangles, and x ∩61 is the union of two
arcs each joining a hole and a boundary circle of 61 as in Figure 3. If the original
subdisk C is disjoint from E1, then we are done since E1 is the desired primitive
disk resulting from the surgery.

Suppose that C also intersects E1, and let C1 be an outermost subdisk of C cut
up by C ∩ E1. Then C1 ∩61 is the frontier of a regular neighborhood of the union
of one hole of 61 and an arc, say α1, connecting the hole to a boundary circle.
The arc α1 is also disjoint from y ∩61 by the same reasoning as for α0. Thus if
we denote by E2 the disk from surgery on E1 along C1 that is not E , then ∂E2

represents a word xyxy p−1. See 61 in Figure 3.
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∂E0 ∂E1 ∂E2

∂E0 ∂E1 ∂E2

∂E3 ∂E4 ∂E5

∂E3 ∂E4 ∂E5

∂E1 ∂E2

∂E3

∂E4

∂E5

α0 α1

60 61 62

63 64 65

z

∂E4

Figure 3. The sequence of 2-holed annuli from the consecutive
surgeries for L(5, 1).

We continue such a construction repeatedly whenever C also intersects the next
disk. For each 1 ≤ j ≤ p− 1, if C intersects E j , then we obtain the disk E j+1

from surgery on E j along an outermost subdisk C j cut up by C ∩ E j . We see that
|C ∩ E j+1|< |C ∩ E j | from the surgery construction. In the 2-holed annulus 6 j ,
the arc C j ∩6 j is the frontier of a regular neighborhood of the union of a hole of
6 j and an arc α j connecting the hole to a boundary circle. The arc α j is disjoint
from y∩6 j , and so ∂E j+1 represents a word of the form (xy) j xy p− j . In particular,
notice that the disk E p is semiprimitive and E p−1 is primitive, since there is a
primitive disk E ′′ in W disjoint from ∂E p that intersects ∂E p−1 in a single point.
Such an E ′′ is not hard to find. In the final 2-holed annulus 65 in Figure 3, the arc
z is the boundary circle of E ′′ in 6p. Note that z is disjoint from x ∪ y, and so it
does bound a disk E ′′ in the 3-ball W cut up by E ′ ∪ E ′0. Also, z intersects ∂E p−1

in a single point and is disjoint from ∂E p.
We remark that each of the arcs α j , j ∈ {0, 1, . . . , p− 1}, is disjoint from the

circle y due to the fact that D is primitive. There are infinitely many arcs α0 that
are not isotopic to each other in 60, but each arc α j in 6 j with j ≥ 1 is unique up
to isotopy. Therefore, once E1 is determined, we have the unique sequence of disks
E2, E3, . . . , E p only under the condition that each α j is disjoint from y.

Claim. For each j ∈ {2, 3, . . . , p− 1}, the subdisk C intersects E j .
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Proof of claim. Suppose not, and let E j be the first disk disjoint from C . First,
suppose that j ∈ {2, 3, . . . , p−3}. Then C is disjoint from E j and intersects E j−1,
and so the arc ∂C ∩ 6 j gives a subword of ∂D of the form (yx) j y p− j which
implies that D is not primitive by Lemma 2.2 again, which is a contradiction.
Next, suppose that j = p − 2. That is, C is disjoint from E p−2 and intersects
E p−3. Then one of the resulting disks from surgery on E along C is E p−2, and the
other one is exactly E p−1, which is a disk in the sequence of disks in the previous
construction. The subdisk C is disjoint from E p−2 ∪ E p−1, and consequently, C
necessarily intersects the semiprimitive disk E p in the previous construction in a
single arc. That is, |C ∩ E p| = 1. But from the consecutive surgery constructions
for j ∈ {2, 3, . . . , p−3}, we have 1≤ |C∩E p−3|< |C∩E0|, which contradicts the
minimality of |C∩E0|. Similarly, if j = p−1, then we have the same contradiction
on the minimality, since C is disjoint from E p in this case. This proves the claim.

By the claim, we can do surgery on E p−1 along C p−1 and one resulting disk
from surgery is E p, the semiprimitive disk. But |C ∩ E j+1| < |C ∩ E j | for each
j ∈ {1, 2, . . . , p−1}, and consequently |C ∩ E p|< |C ∩ E0|, which contradicts the
minimality of |C ∩ E0| again.

Therefore the primitive disk E1 is a disk from surgery on E along C , and E ′

is also a dual disk of E1, and so we complete the proof. We note that the other
disk from surgery is either E0 or E2 depending on whether C is disjoint from E0

or not. �

Theorem 3.3. Let (V,W ;6) be the genus-two Heegaard splitting of the lens space
L = L(p, 1) with p ≥ 2. Then, for every primitive pair {D, E} of V , D and E
have a common dual disk. In particular, the two disks of each primitive pair have
a unique common dual disk if p ≥ 3, and have exactly two common dual disks if
p = 2 which form a primitive pair in W .

Proof. The proof of the existence of a common dual disk goes almost in the same
way as that of Theorem 3.2, by taking the primitive disk D disjoint from E instead
of the outermost subdisk C in Theorem 3.2. That is, when we choose a dual disk E ′

of E so that |∂D∩∂E0| is minimal where E0 is the unique semiprimitive disk in V
disjoint from Nbd(E ∪ E ′), the primitive disk D must be E1, having the common
dual disk E ′ of E .

Now, let E ′ be a common dual disk of D and E . Let E0 and E ′0 be the unique
meridian disks of V and W respectively that are disjoint from Nbd(E ∪ E ′) (see
Figure 4, left). Cut the surface 6 along ∂E ′ ∪ ∂E ′0 to obtain the 4-holed sphere 6′.
Then ∂E ∩6′ is a single arc in 6′ connecting the two holes coming from ∂E ′, and
∂D ∩6′ consists of p−1 parallel arcs connecting the two holes coming from ∂E ′0
and two arcs connecting the holes coming from ∂E ′ to ∂E ′0 on opposite sides, as in
Figure 4.
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E0
D

E

∂E ′

∂E ′0

∂E ′
+

∂E ′0

∂E ′
−

∂E ′0

∂D

∂D

∂D

∂D′ ∂E

α′

α′′

6 6′

Figure 4. The surfaces 6 and 6′ for L(2, 1).

Let D′ be a common dual disk of D and E which is not isotopic to E ′. Then
an outermost subdisk C ′ of D′ cut up by D′ ∩ (E ′ ∪ E ′0) would intersect ∂D if C ′

is incident to E ′. Denote by ∂E ′
+

and ∂E ′
−

the two holes of 6′ which came from
∂E ′. We may assume that the endpoints of the arc α′ = C ′ ∩6′ meet ∂E ′

+
. Since

|∂D′∩∂E ′
+
| = |∂D′∩∂E ′

−
|, we must have one more arc component α′′ of ∂D′∩6′

other than C ′∩6′ whose endpoints meet ∂E ′
−

(see Figure 4, right). The arc α′′ also
intersects ∂D, and so ∂D′ intersects ∂D in more than one point, which contradicts
that D′ is a dual disk of D. Similarly, if C ′ is incident to E ′0, then D′ cannot be a
dual disk of E . Thus we see that D′ is disjoint from E ′ ∪ E ′0.

If p ≥ 3, there is no possibility of such a disk D′ which is disjoint from E ′ ∪ E ′0
and is not isotopic to E ′, and so E ′ is the unique common dual disk. If p= 2, there
is a unique circle in 6′ which is not boundary parallel and which intersects ∂E and
∂D exactly once (see the circle ∂D′ in Figure 4, right). So we have exactly two
common dual disks D′ and E ′ and in this case they are disjoint from each other. �

Given a primitive disk D in V , there are infinitely many (nonisotopic) primitive
disks each of which forms a primitive pair together with D. But any primitive pair
can be contained in at most one primitive triple, proved as follows:

Theorem 3.4. Let (V,W ;6) be the genus-two Heegaard splitting of the lens space
L = L(p, 1) with p ≥ 2. Then there is a primitive triple of V if and only if p = 3.
In this case, every primitive pair is contained in a unique primitive triple.

Proof. Let {E, E1} be a primitive pair of V . Choose a common dual disk E ′ of E
and E1 given by Theorem 3.3. There are unique semiprimitive disks E0 in V and
E ′0 in W disjoint from Nbd(E ∪ E ′). Let 61 be the 4-holed sphere ∂V cut up by
∂E ∪ ∂E1, and as in Figure 3 again, consider 61 as a 2-holed annulus with two
boundary circles coming from ∂E1 and two holes from ∂E . We give symbols x
and y to ∂E ′ and ∂E ′0 respectively as in the proof of Theorem 3.2.

The boundary of any primitive disk E2 in V disjoint from E and E1, if it exists,
lies in 61, and it is the frontier of a regular neighborhood of the union of a boundary
circle, a hole of 61 and an arc α1 connecting them. This arc is disjoint from the
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E ′D′

F ′

∂E

∂D

∂F

W

Figure 5. The primitive triple {D′, E ′, F ′} of W in L(3, 1) with
the boundary circles ∂D, ∂E , and ∂F of the disks in the primitive
triple of V .

arcs y ∩61, otherwise ∂E2 represents a word containing yxy−1; that is, E2 is not
primitive. Consequently, ∂E2 is uniquely determined and it represents a word of the
form xyxy p−1, and so it is primitive if and only if p = 3. Thus, only when p = 3,
we have the unique primitive triple {E, E1, E2} containing the pair {E, E1}. �

Remark 3.5. For any primitive triple {D, E, F} of V in L(3, 1), by Theorem 3.3,
there exist unique common dual disks D′, E ′, and F ′ of the disks in the pairs {E, F},
{F, D}, and {D, E} respectively. In fact, the disks D′, E ′, and F ′ form a primitive
triple of W . Furthermore, we have |∂D′ ∩ ∂D| = |∂E ′ ∩ ∂E | = |∂F ′ ∩ ∂F | = 2.
Figure 5 illustrates the triple {D′, E ′, F, } of W together with the boundary circles
of D, E and F in ∂W =6.

4. The complex of primitive disks

Let M be an irreducible 3-manifold with compressible boundary. The disk complex
of M is a simplicial complex defined as follows: The vertices of the disk complex
are isotopy classes of essential disks in M , and a collection of k+ 1 vertices spans
a k-simplex if and only if it admits a collection of representative disks which are
pairwise disjoint. In particular, if M is a handlebody of genus g ≥ 2, then the disk
complex is (3g− 4)-dimensional and is not locally finite. The following is a key
property of a disk complex:

Theorem 4.1. If K is a full subcomplex of the disk complex satisfying the following
condition, then K is contractible:

Let E and D be disks in M representing vertices of K. If E and D intersect
transversely and minimally, then at least one of the disks from surgery on E along
an outermost subdisk of D cut up by D ∩ E represents a vertex of K.
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Figure 6. Small portions of primitive disk complexes P(V ) for
p 6= 3 (left) and p = 3 (right).

In [Cho 2008], the above theorem is proved in the case that M is a handlebody,
but the proof is still valid for an arbitrary irreducible manifold with compressible
boundary. From the theorem, we see that the disk complex itself is contractible.

Now consider the genus-two Heegaard splitting (V,W ;6) of a lens space
L(p, 1) with p ≥ 2. We define the primitive disk complex, denoted by P(V ),
to be the full subcomplex of the disk complex spanned by the vertices of primitive
disks in V . We already know that every primitive disk is a member of infinitely many
primitive pairs, and so every vertex of P(V ) has infinite valency. The following is
our main theorem, a direct consequence of Theorems 3.2, 3.4 and 4.1:

Theorem 4.2. Let (V,W ;6) be the genus-two Heegaard splitting of the lens space
L = L(p, 1) with p ≥ 2. The primitive disk complex P(V ) is contractible. In
particular, if p 6= 3 it is a tree, and if p = 3 it is 2-dimensional and every edge is
contained in a unique 2-simplex.

Figure 6 illustrates portions of the primitive disk complexes. The black vertices
are the vertices of P(V ) while the white ones are the barycenters of edges when
p 6= 3 and of 2-simplices when p = 3. Observe that the 2-dimensional P(V )
deformation retracts to a tree in its barycentric subdivision, as in the figure.

5. Genus-two Goeritz groups of lens spaces L( p, 1)

In this section, we give explicit presentation of the genus-two Goeritz group G of
each lens space L(p, 1). From Theorem 4.2, if p 6= 3, the primitive disk complex
P(V ) is a tree, and if p = 3, then P(V ) is 2-dimensional but deformation retracts
to a tree. We simply denote by T the barycentric subdivision of the tree P(V ) if
p 6= 3 and the deformation retract of P(V ) if p= 3. Each of the trees T is bipartite,
as in Figure 6, with the black vertices of (countably) infinite valence, and the white
vertices of valence 2 if p 6= 3 and of valence 3 if p = 3.

Each black vertex of T is represented by a primitive disk, while each white
vertex is represented by a primitive pair if p 6= 3 and by a primitive triple if p = 3.
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π π π

π

β ′ β α

γ

E ′0 E ′ E ′0 D′ E ′

∂E0

∂E ∂E

W W

Figure 7. Generators of the stabilizer subgroup G{E}.

An element of the group G can be considered a simplicial automorphism of T. The
tree T is invariant under the action of G for each L(p, 1). In particular, G acts
transitively on the set of black vertices and on the set of white vertices, and hence
the quotient of T by the action of G is a single edge of which one end vertex is
black and another one white. Thus, by the theory of groups acting on trees due to
Bass and Serre (see [Serre 1980]), the group G can be expressed as the free product
of the stabilizer subgroups of two end vertices with the amalgamated stabilizer
subgroup of the edge.

First, we find a presentation of the stabilizer subgroup of a black vertex of T;
that is, of (the isotopy class of) a primitive disk in V . For convenience, we will
not distinguish disks (pairs and triples of disks) and homeomorphisms from their
isotopy classes in their notations. Throughout the section, G{A1,A2,...,Ak} will denote
the subgroup of G of elements preserving A1, A2, . . . , Ak setwise, where Ai will
be (isotopy classes of) disks or unions of disks in V or in W .

Lemma 5.1. Let E be a primitive disk in V . The stabilizer subgroup G{E} of E has
the presentation 〈α |α2

= 1〉 ⊕ 〈β, γ | γ 2
= 1〉, where the generators α, β and γ

are described in Figure 7.

Proof. Let P′(W ) be the full subcomplex of the primitive disk complex P(W ) for
W spanned by the vertices of dual disks of E . There is a unique semiprimitive disk
E ′0 in W disjoint from ∂E , and it is easy to show that any dual disk of E is disjoint
from E ′0. Thus P′(W ) is 1-dimensional and further, by a similar argument used
for P(V ), we have that P′(W ) is a tree whose vertices have infinite valence. That
is, when two dual disks of E intersect each other, one of the two disks from the
surgery construction is E ′0 and the other one is again a dual disk of E . Denote by
T′ the barycentric subdivision of P′(W ). The tree T′ is invariant under the action
of the stabilizer subgroup G{E}, and the quotient of T′ by the action is a single edge.
One vertex of this edge corresponds to a dual disk E ′ of E , and the other one to a
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primitive pair {E ′, D′} of dual disks of E . Thus G{E} can be expressed as the free
product of the stabilizer subgroups G{E,E ′} ∗G{E,E ′∪D′} amalgamated by G{E,E ′,D′}.

Consider the subgroup G{E,E ′} first. Any element of G{E,E ′} also preserves the
disks E0 and E ′0, which are unique meridian disks disjoint from E ∪ E ′ in V and in
W respectively. Since V cut up by E ∪ E0 and W cut up by E ′ ∪ E ′0 are all 3-balls,
the group G{E,E ′} is identified with the group of isotopy classes of orientation-
preserving homeomorphisms of 6 = ∂V = ∂W which preserve ∂E , ∂E ′, ∂E0,
and ∂E ′0. This group has a presentation 〈β, β ′ | (ββ ′)2 = 1, ββ ′ = β ′β 〉, where the
generators β and β ′ are π -rotations (half Dehn twists) described in Figure 7, left.

Next, consider the subgroup G{E,E ′∪D′}. Any element of this group preserves
E ′ ∪ D′ in W , and further it preserves E and E0 ∪ D0 in V where E0 and D0 are
unique meridian disks in V disjoint from E ∪ E ′ and E ∪ D′ respectively. Thus
G{E,E ′∪D′} is generated by two elements α and γ , where α is the hyperelliptic
involution, and γ is the element of order 2 exchanging E ′ and D′ described in
Figure 7, right. Thus G{E,E ′∪D′} has the presentation 〈α |α2

= 1〉 ⊕ 〈γ | γ 2
= 1〉.

Similarly, G{E,E ′,D′} has the presentation 〈 α |α2
= 1〉. Observing that α satisfies

ββ ′ = α, we have the desired presentation of G{E}. �

Thus the stabilizer subgroups of black vertices have the same presentation for
each p ≥ 2, but for white vertices, we have the following cases depending on p:

Lemma 5.2. A white vertex of T corresponds to a primitive pair if p 6= 3 and to a
primitive triple if p = 3.

(1) Let {D, E} be a primitive pair of V in L(p, 1). Then the stabilizer subgroup
G{D∪E} has the presentation 〈ρ, γ | ρ4

= γ 2
= (ργ )2 = 1〉 if p = 2, and

〈α |α2
= 1〉 ⊕ 〈 σ | σ 2

= 1〉 if p ≥ 3, where the generators are described in
Figures 8 and 9.

π

π π

π/4

π/2γ

α

γ

ρ

α

D′ E ′

E ′

D′

D′

E ′

∂E

∂D

∂E

∂E

∂D ∂D

W

Figure 8. Generators of the stabilizer subgroup G{D∪E} for L(2, 1).
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π

π

σ

αD E

∂E ′

V

Figure 9. Generators of the stabilizer subgroup G{D∪E} for
L(p, 1), with p ≥ 3.

(2) Let {D, E, F} be a primitive triple of V in L(3, 1). The stabilizer subgroup
G{D∪E∪F} has the presentation 〈α |α2

= 1〉 ⊕ 〈δ, γ | δ3
= γ 2

= (γ δ)2 = 1〉,
where the generators are described in Figure 10.

Proof. (1) First, let {D, E} be a primitive pair of V in L(2, 1). Then, by Theorem 3.3,
there is a unique primitive pair {D′, E ′} of W such that D′ and E ′ are common dual
disks of D and E . Any element of G{D∪E} preserves D′ ∪ E ′, and hence G{D∪E}

is identified with the stabilizer subgroup G{D∪E,D′∪E ′}. Since D ∪ E and D′ ∪ E ′

cut up V and W into 3-balls, the group G{D∪E,D′∪E ′} is identified with the group
of isotopy classes of orientation-preserving homeomorphisms of 6 = ∂V = ∂W
which preserve ∂D ∪ ∂E and ∂D′ ∪ ∂E ′. This is the dihedral group D8 of order
8 with generators ρ and γ described in Figure 8. The 3-ball in Figure 8, right, is
obtained by cutting up W along D′ ∪ E ′. Figure 8 gives two descriptions of the

E ′
D′

F ′
∂E
∂D
∂FE ′D′

F ′

γ
γ ′

α

δ

π

π

π

π/3

W B

Figure 10. Left: The primitive triple {D′, E ′, F ′} of W and the
arcs (∂D ∪ ∂E ∪ ∂F)∩ ∂B. Right: The 3-ball B.
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elements α and γ . Thus we have the presentation 〈ρ, γ | ρ4
= γ 2

= (ργ )2 = 1〉.
We remark that the hyperelliptic involution α equals ρ2.

Next, let {D, E} be a primitive pair of V in L(p, 1) with p ≥ 3. There is a
unique common dual disk E ′ of D and E by Theorem 3.3, and hence G{D∪E}

is identified with the stabilizer subgroup G{D∪E,E ′}. As in the case of G{E,E ′∪D′}

in the proof of Lemma 5.1, this group is generated by two elements: One is the
hyperelliptic involution α, and the other one is the element, denoted by σ , of order
2 exchanging D and E described in Figure 9. Thus we have the presentation
〈α |α2

= 1〉⊕ 〈σ | σ 2
= 1〉.

(2) Let {D, E, F} be a primitive triple of V in L(3, 1). Then there exists a unique
primitive triple {D′, E ′, F ′} of W as described in Remark 3.5 and Figure 5. Thus
the stabilizer subgroup G{D∪E∪F} is identified with G{D∪E∪F,D′∪E ′∪F ′}. The union
of three disks D′∪E ′∪F ′ cuts up W into two 3-balls. One of them, say B, is shown
in Figure 10, right. Consider the group of isotopy classes of orientation-preserving
homeomorphisms of B which preserve D′ ∪ E ′ ∪ F ′ and (∂D∪ ∂E ∪ ∂F)∩ ∂B on
the boundary. This group is the dihedral group D6= 〈δ, γ

′
| δ3
= γ ′2= (γ ′δ)2= 1〉

of order 6 with generators δ and γ ′ in Figure 10, right. The element γ in Figure 10,
left, is different from γ ′, since γ exchanges the two 3-balls. But they are related
by γ = αγ ′, where α is the hyperelliptic involution exchanging the two 3-balls
as described in Figure 10, left. Thus we see that the relation (γ ′δ)2 = 1 in D6

is equivalent to (γ δ)2 = 1. Since the elements α, γ and δ extend to elements
of G{D∪E∪F,D′∪E ′∪F ′}, this group can be considered as the extension of D6 by
〈α |α2

= 1〉 with relations αγα = γ and αδα = δ. Thus we have the desired
presentation of G{D∪E∪F}. �

Finally, the stabilizer subgroups of an edge are calculated in a similar way.

Lemma 5.3. An edge of T corresponds to the pair of end vertices.

(i) Let {D, E} be a primitive pair of V in L(p, 1). Then G{E,D∪E} = G{E,D}
has a presentation 〈α |α2

= 1〉 ⊕ 〈γ | γ 2
= 1〉 if p = 2, and a presentation

〈α |α2
= 1〉 if p ≥ 3.

(ii) Let {D, E, F} be a primitive triple of V in L(3, 1). Then G{E,D∪E∪F} =

G{E,D∪F} has a presentation 〈α |α2
= 1〉⊕ 〈 γ | γ 2

= 1〉.

Combining Lemmas 5.1, 5.2, and 5.3, we obtain the main result.

Theorem 5.4. The genus-2 Goeritz group G of a lens space L(p, 1) with p ≥ 2 has
the following presentations:

(i) 〈β, ρ, γ | ρ4
= γ 2

= (γρ)2 = ρ2βρ2β−1
= 1〉 if p = 2.

(ii) 〈α |α2
= 1〉⊕ 〈β, δ, γ | δ3

= γ 2
= (γ δ)2 = 1〉 if p = 3.

(iii) 〈α |α2
= 1〉⊕ 〈β, γ, σ | γ 2

= σ 2
= 1〉 if p ≥ 4.
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A COMPACT EMBEDDING THEOREM FOR GENERALIZED
SOBOLEV SPACES

SENG-KEE CHUA, SCOTT RODNEY AND RICHARD L. WHEEDEN

We give an elementary proof of a compact embedding theorem in abstract
Sobolev spaces. The result is first presented in a general context and later
specialized to the case of degenerate Sobolev spaces defined with respect to
nonnegative quadratic forms on Rn. Although our primary interest con-
cerns degenerate quadratic forms, our result also applies to nondegener-
ate cases, and we consider several such applications, including the classical
Rellich–Kondrachov compact embedding theorem and results for the class
of s-John domains in Rn, the latter for weights equal to powers of the dis-
tance to the boundary. We also derive a compactness result for Lebesgue
spaces on quasimetric spaces unrelated to Rn and possibly without any no-
tion of gradient.

1. The general theorem

The main goal of this paper is to generalize the classical Rellich–Kondrachov
theorem concerning compact embedding of Sobolev spaces into Lebesgue spaces.
Our principal result applies not only to the classical Sobolev spaces on open sets
� � Rn but also allows us to treat the degenerate Sobolev spaces defined in
[Sawyer and Wheeden 2010] and to obtain compact embedding of them into various
Lq.�/ spaces. These degenerate Sobolev spaces are associated with quadratic
forms Q.x; �/D � 0Q.x/�, x 2�; � 2 Rn, which are nonnegative but may vanish
identically in � for some values of x. Such quadratic forms and Sobolev spaces
arise naturally in the study of existence and regularity of weak solutions of some
second order subelliptic linear/quasilinear partial differential equations; see, for
example, [Sawyer and Wheeden 2006; Rodney 2007; 2012; Monticelli et al. 2012;
Rios et al. 2013].

The Rellich–Kondrachov theorem is frequently used to study the existence of
solutions to elliptic equations, a famous example being subcritical and critical
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Yamabe equations, resulting in the solution of Yamabe’s problem; see [Yamabe
1960; Trudinger 1968; Aubin 1976; Schoen 1984]. Further applications lie in
proving the existence of weak solutions to Dirichlet problems for elliptic equations
with rough boundary data and coefficients; see [Gilbarg and Trudinger 1997]. In
a sequel to this paper, we will apply our compact embedding results to study the
existence of solutions for some classes of degenerate equations.

In this section, we state and prove our most general compact embedding results.
In Sections 2 and 3, we study some applications to classical and degenerate Sobolev
spaces, respectively. In Section 4, more general results in quasimetric spaces are
studied.

We begin by listing some useful notation. Let w be a measure on a � -algebra †
of subsets of a set �, with � 2†. For 0< p �1, let L

p
w.�/ denote the class of

real-valued measurable functions f satisfying kf kLp
w.�/

<1, where kf kLp
w.�/
D�R

� jf j
p dw

�
1=p if p<1 and kf kL1

w .�/D ess sup�jf j, the essential supremum
being taken with respect to w-measure. When dealing with generic functions in
L

p
w.�/, we will not distinguish between functions which are equal a.e.-w. For

E 2†, w.E/ denotes thew-measure of E, and if 0<w.E/<1, fE;w denotes the
w-average of f over E: fE;w D

R
E f dw=w.E/. Throughout the paper, positive

constants are denoted by C or c and their dependence on important parameters is
indicated.

For k 2N, let X.�/ be a normed linear space of measurable Rk-valued functions
g defined on � with norm kgkX.�/. We assume that there is a subset †0 �† such
that .X.�/;†0/ satisfies the following properties:

(A) For any g 2 X.�/ and F 2†0, the function g�
F
2 X.�/, where �

F
denotes

the characteristic function of F .

(Bp) There are constants C1;C2;p satisfying 1� C1;C2;p <1 and such that if
fFlg is a finite collection of sets in †0 with

P
l �Fl

.x/ � C1 for all x 2�,
then X

l

kg�Fl
k

p

X.�/
� C2kgk

p

X.�/
for all g 2 X.�/.

For 1�N �1, we will often consider the product space LN
w .�/�X.�/. This

is a normed linear space with norm

(1-1) k.f;g/kLN
w .�/�X.�/ D kf kLN

w .�/
CkgkX.�/:

A set S�LN
w .�/�X.�/ will be called a bounded set in LN

w .�/�X.�/ if

sup
.f;g/2S

k.f;g/kLN
w .�/�X.�/ <1:
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Projection maps such as the one defined by

(1-2) � W .f;g/! f; .f;g/ 2LN
w .�/�X.�/;

play a role in our results. If w.�/<1, �.LN
w .�/�X.�//�L

q
w.�/ if 1� q�N .

Theorem 1.1. Let w be a finite measure on a �-algebra † of subsets of a set �,
with�2†. Let 1�p<1, 1<N �1, X.�/ be a normed linear space satisfying
properties (A) and (Bp) relative to a collection †0 �†, and let S be a bounded set
in LN

w .�/�X.�/.
Suppose that S satisfies the following: given � > 0, there are a finite number of

pairs fEl ;Flg
J
lD1

with El 2 † and Fl 2 †0 (the pairs and J may depend on �)
satisfying these properties:

(i) w
�
� n

S
l El

�
< � and w.El/ > 0.

(ii) fFlg has bounded overlaps independent of � with the same overlap constant
as in (Bp), that is,

(1-3)
JX

lD1

�Fl
.x/� C1; x 2�;

for C1 as in (Bp).

(iii) For every .f;g/ 2 S, the local Poincaré-type inequality

(1-4) kf �fEl ;wkL
p
w.El /

� �kg�Fl
kX.�/

holds for each .El ;Fl/.

Let OS be the set defined by

(1-5) OSD ff 2LN
w .�/ W there exists f.f j ;gj /g1jD1 � S with f j

! f a.e.-wg:

Then OS is compactly embedded in L
q
w.�/ if 1� q <N in the sense that, for every

sequence ffkg �
OS, there is a single subsequence ffki

g and a function f 2LN
w .�/

such that fki
! f pointwise a.e.-w in � and in L

q
w.�/ norm for 1� q <N .

Before proceeding with the proof of Theorem 1.1, we make several simple
observations. First, in the definition of OS, the property that f 2 LN

w .�/ follows
by Fatou’s lemma since the associated functions f j are bounded in LN

w .�/, as
S is bounded in LN

w .�/�X.�/ by hypothesis. Fatou’s lemma also shows that
OS is a bounded set in LN

w .�/. Moreover, since N > 1, if ff j g is bounded in
LN
w .�/ and f j ! f a.e.-w, then .f j /E;w! fE;w for all E 2†; in fact, in this

situation, by using Egorov’s theorem, we have
R
� f

j' dw!
R
� f ' dw for all

' 2LN 0

w .�/; 1=N C 1=N 0 D 1.
Next, while the hypothesis w.El/ > 0 in assumption (i) ensures that the averages

fEl ;w in (1-4) are well-defined, it is not needed since we can discard any pair
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El ;Fl with w.El/D 0 without affecting the inequality w.� n
S

El/ < � or (1-3)
and (1-4).

Finally, since OS contains the first component f of any pair .f;g/ 2 S, a simple
corollary of Theorem 1.1 is that the projection � defined in (1-2) is a compact
mapping of S into L

q
w.�/, 1 � q < N , in the sense that, for every sequence

f.fk ;gk/g � S, there is a subsequence ffki
g and a function f 2LN

w .�/ such that
fki
! f pointwise a.e.-w in � and in L

q
w.�/ norm for 1� q <N .

Proof of Theorem 1.1. Let S satisfy the hypotheses and suppose ffkgk2N �
OS.

For each fk , use the definition of OS to choose a sequence f.f j

k
;g

j

k
/gj � S with

f
j

k
! fk a.e.-w as j ! 1. Since S is bounded in LN

w .�/ � X.�/, there is
M 2 .0;1/ such that

k.f
j

k
;g

j

k
/kLN

w .�/�X.�/ �M

for all k and j . Also, as noted above, ffkg is bounded in LN
w .�/ norm; in fact

kfkkLN
w .�/

�M for the same constant M and all k.
Since ffkg is bounded in LN

w .�/, if 1 < N <1, it has a weakly convergent
subsequence, while if N D1, it has a subsequence which converges in the weak-
star topology. In either case, we relabel the subsequence as ffkg to preserve the
index. Fix � > 0 and let fEl ;Flg

J
lD1

satisfy the hypotheses of the theorem relative
to �. Setting �� D

S
El , we have by assumption (i) that

(1-6) w.� n��/ < �:

Let us show that there is a positive constant C independent of � such that

(1-7)
X

l

kfk � .fk/El ;wk
p

L
p
w.El /

� C�p for all k.

Fix k and let � denote the expression on the left side of (1-7). Since

f
j

k
� .f

j

k
/El ;w! fk � .fk/El ;w

a.e.-w as j !1, Fatou’s lemma gives

��
X

l

lim inf
j!1

kf
j

k
� .f

j

k
/El ;wk

p

L
p
w.El /

:

Consequently, by using the Poincaré inequality (1-4) for S and superadditivity of
lim inf, we obtain

�� lim inf
j!1

X
l

�p
kg

j

k
�Fl
k

p

X.�/
:

By (1-3), the sets Fl have finite overlaps uniformly in �, with the same overlap
constant C1 as in property (Bp) of X.�/. Hence, by applying property (Bp) to the
last expression together with boundedness of S, we get
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�� C2�
p lim inf

j!1
kg

j

k
k

p

X.�/
� C2M p�p:

This proves (1-7) with C D C2M p.
Next note that

(1-8)
Z
��
jfm�fk j

p dw �
X

l

Z
El

jfm�fk j
p dw � 2p�1.IC II/;

where

I WD
X

l

Z
El

jfm�fk�.fm�fk/El ;wj
p dw; II WD

X
l

j.fm�fk/El ;wj
pw.El/:

We estimate I and II separately. We have

(1-9) I� 2p�1

�X
l

kfm� .fm/El ;wk
p

L
p
w.El /

C

X
l

kfk � .fk/El ;wk
p

L
p
w.El /

�
� 2p�1.C�p

CC�p/D 2pC�p;

by (1-7). To estimate II , first note that

II D

JX
lD1

j.fm�fk/El ;wj
pw.El/D

JX
lD1

1

w.El/
p�1

ˇ̌̌̌Z
�

.fm�fk/�El
dw

ˇ̌̌̌p
:

Since w.�/ <1, each characteristic function �
El
2 LN 0

w .�/, 1=N C 1=N 0 D 1

(with N 0 D 1 if N D1). As ffkg converges weakly in LN
w .�/ when 1<N <1

or converges in the weak-star sense when N D 1, for m; k sufficiently large
depending on �, and for all 1� l � J ,

1

w.El/
p�1

ˇ̌̌̌ Z
�

.fm�fk/�El
dw

ˇ̌̌̌p
�
�p

J
:

Thus II � �p for m; k sufficiently large depending on �. Combining this estimate
with (1-8) and (1-9) shows that

(1-10) kfm�fkkLp
w.��/

< C�

for m; k sufficiently large and C D C.M;C2/.
Let us now show that ffkg is a Cauchy sequence in L1

w.�/. For m; k as in
(1-10), Hölder’s inequality and the fact that kfkkLN

w .�/
�M for all k yield

kfm�fkkL1
w.�/

� kfm�fkkL1
w.��/

Ckfm�fkkL1
w.�n��/

� kfm�fkkLp
w.��/

w.��/1=p
0

Ckfm�fkkLN
w .�n��/

w.� n��/1=N
0

< C�w.��/1=p
0

C 2Mw.� n��/1=N
0

< C�w.�/1=p
0

C 2M�1=N 0

by (1-6):
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Since N 0<1, it follows that ffkg is Cauchy in L1
w.�/. Hence it has a subsequence

(again denoted by ffkg) that converges in L1
w.�/ and pointwise a.e.-w in � to a

function f 2L1
w.�/. If N D1, ffkg is bounded in L1w .�/ by hypothesis, so its

pointwise limit f 2L1w .�/. If N <1, since ffkg is bounded in LN
w .�/, Fatou’s

Lemma implies that f 2LN
w .�/. This completes the proof in case q D 1.

For general q, we use the same subsequence ffkg as above. Thus we only need
to show that ffkg converges in L

q
w.�/ for 1< q <N . We use Hölder’s inequality.

Given q 2 .1;N /, choose � 2 .0; 1/, namely, �D .1=q�1=N /=.1�1=N /. Hence
�D 1=q if N D1. Then

(1-11) kfm�fkkLq
w.�/

� kfm�fkk
�

L1
w.�/
kfm�fkk

1��

LN
w .�/

:

As before, kfkkLN
w .�/

�M , and therefore

kfm�fkk
1��

LN
w .�/

� .2M /1��:

Hence, by (1-11), ffkg is Cauchy in L
q
w.�/ as it is Cauchy in L1

w.�/. This
completes the proof of Theorem 1.1. �

A compact embedding result is also proved in [Franchi et al. 1997, Theorem 3.4]
by using Poincaré type estimates. However, Theorem 1.1 applies to situations not
considered in [Franchi et al. 1997] since it is not restricted to the context of Lipschitz
vector fields in Rn. Other abstract compact embedding results can be found in
[Hajłasz and Koskela 1998, Theorem 4; Hajłasz and Koskela 2000, Theorem 8.1],
including a version [Hajłasz and Koskela 1998, Theorem 5] for weighted Sobolev
spaces with nonzero continuous weights, and a version [Hajłasz and Koskela 2000]
for metric spaces with a single doubling measure. The proof in [Hajłasz and Koskela
1998] assumes prior knowledge of the classical Rellich–Kondrachov compactness
theorem (see, for example, [Gilbarg and Trudinger 1997, Theorem 7.22(i)] and
below).

By making minor changes in the proof of Theorem 1.1, we can obtain a sufficient
condition for a bounded set in LN

w .�/ to be precompact in L
q
w.�/, 1 � q < N ,

without mentioning the sets fFlg, the space X.�/, properties (A) and (Bp), or
conditions (1-3) and (1-4). We state this result in the next theorem. An application
is given in Section 4.

Theorem 1.2. Let w be a finite measure on a �-algebra † of subsets of a set �,
with � 2†. Let 1� p <1, 1<N �1, and P be a bounded subset of LN

w .�/.
Suppose there is a positive constant C such that, for every � > 0, there are a finite
number of sets El 2† with

(i) w
�
� n

S
l El

�
< � and w.El/ > 0;
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(ii) for every f 2 P,

(1-12)
X

l

kf �fEl ;wk
p

L
p
w.El /

� C�p:

Let bPD ˚f 2LN
w .�/ W there exists ff j

g � P with f j ! f a:e:-w
	
:

Then, for every sequence ffkg �
bP, there is a single subsequence ffki

g and a
function f 2LN

w .�/ such that fki
! f pointwise a.e.-w in� and in L

q
w.�/ norm

for 1� q <N .

Remark 1.3. (1) Given � > 0, let fElg satisfy hypothesis (i) of Theorem 1.2.
Hypothesis (ii) of Theorem 1.2 is clearly true for fElg if, for every f 2 P, there
are nonnegative constants falg such that

(1-13) kf �fEl ;wkL
p
w.El /

� �al

and

(1-14)
X

a
p

l
� C

with C independent of f; �. The constants falg may vary with f and �.

(2) Theorem 1.1 is a corollary of Theorem 1.2. To see why, suppose that the
hypothesis of Theorem 1.1 holds. Define

PD �.S/D ff W .f;g/ 2 Sg:

Let � > 0 and choose f.El ;Fl/g as in Theorem 1.1. Given f 2 P, choose any
g such that .f;g/ 2 S and set al D kg�Fl

kX.�/ for all l . Then (1-4), (1-3), and
property (Bp) of X.�/ imply (1-13) and (1-14). The preceding remark shows that
the hypothesis of Theorem 1.2 holds. The conclusion of Theorem 1.1 now follows
from Theorem 1.2.

Proof of Theorem 1.2. Theorem 1.2 can be proved by checking through the proof
of Theorem 1.1. In fact, the nature of hypothesis (1-12) allows simplification of
the proof. First recall that if f j ! f a.e.-w and ff j g is bounded in LN

w .�/,
.f j /E;w! fE;w for every E 2†. Therefore, by the definition of bP and Fatou’s
lemma, the truth of (1-12) for all f 2 P implies its truth for all f 2 bP. Given a
sequence ffkg in bP, we follow the proof of Theorem 1.1, but we no longer need to
introduce the ff j

k
g or prove (1-7) since (1-7) now follows from the fact that (1-12)

holds for bP. Further details are left to the reader. �

We close this section by listing an alternate version of Theorem 1.1 that we use
in Section 3D when we consider local results.
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Theorem 1.4. Let w be a measure (not necessarily finite) on a �-algebra † of
subsets of a set �, with � 2 †. Let 1 � p <1, 1 < N �1, X.�/ be a normed
linear space satisfying properties (A) and (Bp) relative to a set †0 �†, and let S

be a collection of pairs .f;g/ such that f is †-measurable and g 2 X.�/.
Suppose that S satisfies the following conditions relative to a fixed set �0 2† (in

particular �0 ��): for each � D �j D 1=j with j 2N, there are a finite number of
pairs fE�

l
;F �

l
gl with E�

l
2† and F �

l
2†0 satisfying these conditions:

(i) w
�
�0 n

S
l E�

l

�
D 0 and 0<w.E�

l
/ <1.

(ii) fF �
l
gl has bounded overlaps independent of � with the same overlap constant

as in (Bp), that is, X
l

�F �
l
.x/� C1; x 2�;

for C1 as in (Bp).

(iii) For every .f;g/ 2 S, the local Poincaré-type inequality

kf �fE�
l
;wkLp

w.E
�
l
/ � �kg�F �

l
kX.�/

holds for each .E�
l
;F �

l
/.

Then, for every sequence f.fk ;gk/g in S with

(1-15) sup
k

ŒkfkkLN
w .
S

l;j E
1=j

l
/
CkgkkX.�/� <1;

there is a subsequence ffki
g of ffkg and a function f 2LN

w .�
0/ such that fki

! f

pointwise a.e.-w in �0 and in L
q
w.�

0/ norm for 1 � q � p. If p < N , then also
fki
! f in L

q
w.�

0/ norm for 1� q <N .

The principal difference between the assumptions in Theorems 1.1 and 1.4 occurs
in hypothesis (i). When we apply Theorem 1.4 in Section 3D, the sets fE�

l
g will

satisfy �0 �
S

l E�
l

for each �, and consequently the condition in hypothesis (i)
that w

�
�0 n

S
l E�

l

�
D 0 for each � will automatically be true. Unlike Theorem 1.1,

the value of q in Theorem 1.4 is always allowed to equal p. Although w.�/ is
not assumed to be finite in Theorem 1.4, w.�0/ <1 is true due to hypothesis (i)
and the fact that the number of E�

l
is finite for each �. As in Theorem 1.1, the

hypothesis w.E�
l
/ > 0 is dispensable.

Proof of Theorem 1.4. The proof is like that of Theorem 1.1, with minor changes and
some simplifications. We work directly with the pairs .fk ;gk/ without considering
approximations .f j

k
;g

j

k
/. Due to the form of assumption (i) in Theorem 1.4, neither

the set �� nor estimate (1-6) is now needed. Since w.�0 n
S

l E�
l
/D 0 for each

� D 1=j , we can replace �� by �0 in the proof, obtaining the estimate

(1-16) kfm�fkkLp
w.�0/ < C�
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as an analogue of (1-10). In deriving (1-16), the weak and weak-star arguments are
guaranteed since, by (1-15),

sup
k

kfkkLN
w .
S

l;j E
1=j

l
/
<1:

The main change in the proof comes by observing that the entire argument formerly
used to show that ffkg is Cauchy in L1

w.�/ is no longer needed. In fact, (1-16)
proves that ffkg is Cauchy in L

p
w.�

0/, and therefore it is also Cauchy in L
q
w.�

0/

if 1� q � p since w.�0/ <1. The first conclusion in Theorem 1.4 then follows.
To prove the second one, assuming that p; q < N , we use an analogue of (1-11)
with �0 in place of � and the same choice of �, namely,

kfm�fkkLq
w.�0/ � kfm�fkk

�

L1
w.�0/

kfm�fkk
1��

LN
w .�0/

:

The desired conclusion then follows as before since we have already shown that
the first factor on the right side tends to 0. �

2. Applications in the nondegenerate case

Roughly speaking, a consequence of Theorem 1.1 is that a set of functions which
is bounded in LN

w .�/ is precompact in L
q
w.�/ for 1� q <N if the gradients of

the functions are bounded in an appropriate norm and a local Poincaré inequality
holds for them. The requirement of boundedness in LN

w .�/ will be fulfilled if, for
example, the functions satisfy a global Poincaré or Sobolev estimate with exponent
N on the left side. In order to illustrate this principle more precisely, we first consider
the classical gradient operator and functions on Rn with the standard Euclidean
metric. We include a simple way to see that the Rellich–Kondrachov compactness
theorem follows from our results. Our derivation of this fact is different from those
in [Adams and Fournier 2003; Gilbarg and Trudinger 1997]; in particular, it avoids
using the Arzelá–Ascoli theorem and regularization of functions by convolution. We
also list compactness results for the special class of s-John domains in Rn. Hajlasz
and Koskela [1998] mention that such results follow from their development without
giving specific statements. See also [Hajłasz and Koskela 2000, Theorem 8.1]. We
list results for degenerate quadratic forms and vector fields in Section 3.

We begin by proving a compact embedding result for some Sobolev spaces
involving two measures. Let w be a measure on the Borel subsets of a fixed open set
�� Rn, and let � be a measure on the � -algebra of Lebesgue measurable subsets
of �. We also assume that � is absolutely continuous with respect to Lebesgue
measure. If 1� p <1, let E

p
�.�/ denote the class of locally Lebesgue integrable

functions on � with distributional derivatives in L
p
�.�/. If 1 � N �1, we say

that a set Y �LN
w .�/\E

p
�.�/ (intersection of function spaces instead of normed
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spaces of equivalence classes) is bounded in LN
w .�/\E

p
�.�/ if

sup
f 2Y

fkf kLN
w .�/

Ckrf kLp
�.�/
g<1:

We use D to denote a generic open Euclidean ball. The radius and center of D

will be denoted r.D/ and xD , and if C is a positive constant, CD will denote the
ball concentric with D whose radius is C r.D/.

Theorem 2.1. Let z��� be open sets in Rn. Let w be a Borel measure on � with
w. z�/ D w.�/ <1 and � be a measure on the Lebesgue measurable sets in �
which is absolutely continuous with respect to Lebesgue measure. Let 1� p <1,
1<N �1, and S�LN

w .�/\E
p
�.�/, and suppose that, for all � > 0, there exists

ı� > 0 such that

(2-1) kf �fD;wkLp
w.D/

� �krf kLp
�.D/

for all f 2 S

and all Euclidean balls D with r.D/ < ı� and 2D � z�. Then, for any sequence
ffkg � S that is bounded in LN

w .�/\E
p
�.�/, there is a subsequence ffki

g and
a function f 2LN

w .�/ such that ffki
g ! f pointwise a.e.-w in � and in L

q
w.�/

norm for 1� q <N .

Before proving Theorem 2.1, we give typical examples of z� and w with w. z�/D
w.�/ <1. For any two nonempty sets E1;E2 � Rn, let

(2-2) �.E1;E2/D inffjx�yj W x 2E1;y 2E2g

denote the Euclidean distance between E1 and E2. If x 2 Rn and E is a nonempty
set, we write �.x;E/ instead of �.fxg;E/. Let z� be an open subset of �. If �
is bounded and � n z� has Lebesgue measure 0, the measure w on � defined by
dw D �.x;Rn n z�/˛ dx clearly has the desired properties if ˛ � 0. The range of ˛
can be increased to ˛>�1 if� is a Lipschitz domain and�n z� is a finite set. Indeed,
if @� is described in local coordinates x D .x1; : : : ;xn/ by xn D F.x1; : : : ;xn�1/

with F Lipschitz, the distance from x to @� is equivalent to jxn�F.x1; : : : ;xn�1/j,
and, consequently, the restriction ˛ > �1 guarantees that w is finite near @� by
using Fubini’s theorem; see also [Chua 1995, Remark 3.4(b)]. If � is bounded
and � n z� is finite, but with no restriction on @�, the range can clearly be further
increased to ˛ >�n for the measure �.x; �n z�/˛ dx. Also note that any w without
point masses satisfies w. z�/Dw.�/ if z� is obtained by deleting a countable subset
of �.

Proof of Theorem 2.1. We verify the hypotheses of Theorem 1.1. Let

X.�/D

�
g D .g1; : : : ;gn/ W jgj D

� nX
iD1

g2
i

�1=2

2Lp
�.�/

�
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and kgkX.�/ D kgkLp
�.�/

. Then

krf kX.�/ D krf kLp
�.�/

if f 2E
p
�.�/.

If f 2 E
p
�.�/, we may identify f with the pair .f;rf / since the distributional

gradientrf is uniquely determined by f up to a set of Lebesgue measure zero. Then
LN
w .�/\E

p
�.�/ can be viewed as a subset of LN

w .�/�X.�/. In Theorem 1.1,
choose S to be the particular sequence ffkg � S in the hypothesis of Theorem 2.1,
† to be the Lebesgue measurable subsets of �, and †0 to be the collection of balls
D ��. Then hypotheses (A) and (Bp) are valid with C2 D C1 for any C1. Given
� > 0, since w. z�/Dw.�/<1, there is a compact set K � z� with w.�nK/ < �.
Let 0 < ı0� < �.K;R

n n z�/ (where �.K;Rn n z�/ is interpreted as1 if z�D Rn).
Let ı� be as in (2-1), and fix r� with 0< r� <minfı�; ı0�g. By considering the triples
of balls in a maximal collection of pairwise disjoint balls of radius r�=6 centered
in K, we obtain a collection fE�

l
gl of balls of radius r�=2 which satisfy 2E�

l
� z�,

have bounded overlaps with overlap constant independent of �, and whose union
covers K. Since K is compact, we may assume the collection is finite. Also,

w
�
� n

S
l

E�
l

�
� w.� nK/ < �;

and (1-4) holds with Fl D El D E�
l

by (2-1). Theorem 2.1 now follows from
Theorem 1.1 applied to �. �

In particular, we obtain the following result when w D � is a Muckenhoupt
Ap.R

n/ weight, that is, when d�D dw D � dx, where �.x/ satisfies�
1

jDj

Z
D

� dx

��
1

jDj

Z
D

��1=.p�1/ dx

�p�1

� C

if 1<p<1, and satisfies jDj�1
R

D � dx�C ess infDw if pD 1, for all Euclidean
balls D, with C independent of D. As is well known, such a weight also satisfies
the classical doubling condition

(2-3) w.Dr .x//� C
�

r

r 0

��
w.Dr 0.x//; 0< r 0 < r <1;

with � D np� � for some � > 0 if p > 1, and with � D n if p D 1, where C and �
are independent of r; r 0;x.

We denote by W 1;p;w.�/ the weighted Sobolev space defined as all functions
in L

p
w.�/ whose distributional gradient is in L

p
w.�/. Therefore W 1;p;w.�/ D

L
p
w.�/\E

p
w.�/. If w.�/ <1, it follows that LN

w .�/\E
p
w.�/�W 1;p;w.�/

when N � p, and that the opposite containment holds when N � p.

Theorem 2.2. Let 1 � p < 1, w 2 Ap.R
n/, and � be an open set in Rn with

w.�/ < 1. If 1 < N � 1, then any bounded subset of LN
w .�/ \ E

p
w.�/ is
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precompact in L
q
w.�/ if 1� q <N . Consequently, if N > p and S is a subset of

W 1;p;w.�/ with

(2-4) kf kLN
w .�/

� C.kf kLp
w.�/
Ckrf kLp

w.�/
/ for all f 2 S;

then any set in S that is bounded in W 1;p;w.�/ is precompact in L
q
w.�/ for

1� q <N .
If � is a John domain, then there exists N > p (N can be �p=.� �p/ for some

� > p as described after (2-3)) such that W 1;p;w.�/ is compactly embedded in
L

q
w.�/ for 1� q <N . In particular, the embedding of W 1;p;w.�/ into L

p
w.�/ is

compact when w 2Ap.R
n/ and � is a John domain.

Remark 2.3. When w D 1 and p < n, the choices N D np=.n � p/ and S D

W
1;p

0
.�/— the closure in W 1;p.�/ of the class of Lipschitz functions with com-

pact support in�— guarantee (2-4) by the classical Sobolev inequality for functions
in W

1;p
0

.�/ (see, for example, [Gilbarg and Trudinger 1997, Theorem 7.10]). Con-
sequently, the classical Rellich–Kondrachov theorem giving the compact embedding
of W

1;p
0

.�/ in Lq.�/ for 1� q < np=.n�p/ follows as a special case of the first
part of Theorem 2.2.

Proof. We apply Theorem 2.1 with w D �. Fix p and w with 1 � p <1 and
w 2Ap.R

n/. By [Fabes et al. 1982], there is a constant C such that the weighted
Poincaré inequality

kf �fD;wkLp
w.D/

� C r.D/krf kLp
w.D/

; f 2 C1.�/;

holds for all Euclidean balls D � �. Then since C1.�/ is dense in LN
w .�/\

E
p
w.�/ if 1�N <1 (see, for example, [Turesson 2000]), by fixing any � > 0 we

obtain from Fatou’s lemma that, for all balls D �� with C r.D/� �,

kf �fD;wkLp
w.D/

� �krf kLp
w.D/

if f 2LN
w .�/\Ep

w.�/:

The same holds when N D 1 since L1w .�/ D L1.�/ � L
p
w.�/ due to the

assumptions w 2Ap.R
n/ and w.�/ <1. With 1<N �1, the first statement of

the theorem now follows from Theorem 2.1, and the second statement is a corollary
of the first one.

Next, let� be a John domain. Choose � >p such thatw satisfies (2-3) and define
N D �p=.� �p/. Then N > p and, by [Chua and Wheeden 2008, Theorem 1.8(b)
or Theorem 4.1],

kf �f�;wkLN
w .�/

� Ckrf kLp
w.�/

; 8f 2 C1.�/:

Again, the inequality remains true for functions in W 1;p;w.�/ by density and
Fatou’s lemma. It is now clear that (2-4) holds, and the last part of the theorem
follows. �
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Our next example involves domains in Rn which are more restricted. For special
�, there are values N > 1 such that

(2-5) kf kLN .�/ � C.kf kL1.�/Ckrf kLp.�//

for all f 2 L1.�/\Ep.�/. Note that if � has finite Lebesgue measure, then
W 1;p.�/�L1.�/\Ep.�/. As we will explain, (2-5) is true for some N > 1 if
� is an s-John domain in Rn and 1� s < 1Cp=.n�1/. Recall that, for 1� s <1,
a bounded domain �� Rn is called an s-John domain with central point x0 2� if
for some constant c > 0 and all x 2� with x ¤ x0, there is a curve � W Œ0; l �!�

such that �.0/D x; �.l/D x0,

j�.t1/��.t2/j � t2� t1 for all Œt1; t2�� Œ0; l �,

�.�.t/;�c/� ct s for all t 2 Œ0; l �.

The terms 1-John domain and John domain are the same. When � is an s-John
domain for some s 2 Œ1; 1Cp=.n�1//, it is shown in [Kilpeläinen and Malý 2000;
Chua and Wheeden 2008; 2011] that (2-5) holds for all finite N with

(2-6)
1

N
�

s.n� 1/�pC 1

np

and for all f 2 W 1;p.�/ without any support restrictions. Note that the right
side of (2-6) is strictly less than 1=p for such s, and consequently there are values
N > p which satisfy (2-6). For N as in (2-6), the global estimate

(2-7) kf �f�kLN .�/ � Ckrf kLp.�/; f� D

Z
�

f .x/ dx=j�j;

is shown to hold if f 2 Liploc.�/ [Chua and Wheeden 2011], and then follows
for all f 2L1.�/\Ep.�/; see the proof of Theorem 2.4 for related comments.
Inequality (2-5) is clearly a consequence of (2-7).

More generally, weighted versions of (2-7) hold for s-John domains and lead to
weighted compactness results, as we now show. Let 1 � p <1, and, for real ˛
and �.x; �c/ as in (2-2), let L

p

�˛ dx
.�/ be the class of Lebesgue measurable f on

� with

kf kLp

�˛ dx
.�/ D

�Z
�

jf .x/jp�.x; �c/˛ dx

�1=p

<1:

Theorem 2.4. Suppose that 1 � s <1 and � is an s-John domain in Rn. Let
p; a; b satisfy 1� p <1, a� 0, b 2 R, and b� a< p.

(i) If

(2-8) nC a> s.n� 1C b/�pC 1;
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then, for any 1� q <1 such that

(2-9)
1

q
>max

n
1

p
�

1

n
;
s.n�1Cb/�pC1

.nCa/p

o
;

L1
�a dx

.�/\E
p

�b dx
.�/ is compactly embedded in L

q

�a dx
.�/.

(ii) If p > 1 and

(2-10) nC ap > s.n� 1C b/�pC 1� nC a;

then, for any 1� q <1 such that

(2-11)
a

q
>max

n
b

p
� 1;

s.n�1Cb/�p�nC1

p

o
;

L1
�a dx

.�/\E
p

�b dx
.�/ is compactly embedded in L

q

�a dx
.�/.

Remark 2.5. (1) If aD b D 0, (2-8) is the same as s < 1Cp=.n� 1/. If aD 0,
(2-10) never holds.

(2) The requirement that b�a<p follows from (2-8) and (2-9) by considering the
cases n�1Cb� 0 and n�1Cb< 0 separately. Hence b�a<p automatically
holds in Theorem 2.4(i), but it is an assumption in (ii). Also, (2-10) and (2-11)
imply that q < p, and consequently that p > 1.

(3) Conditions (2-8) and (2-9) imply there exists N 2 .p;1/ with

(2-12)
1

q
>

1

N
>max

n
1

p
�

1

n
;
s.n�1Cb/�pC1

.nCa/p

o
:

Conversely, (2-8) holds if there exists N 2 .p;1/ such that (2-12) holds.

(4) Assumption (2-11) ensures that there exists N 2 .q;1/ such that (2-11) holds
with q replaced by N .

Proof of Theorem 2.4. This result is also a consequence of Theorem 2.1, but we
deduce it from Theorem 1.1 by using arguments like those in the proofs of Theorems
2.1 and 2.2. Fix a; b;p; q as in the hypothesis and denote �.x/D �.x; �c/. Choose
w D �a dx and note that w.�/ <1 since a� 0 and � is now bounded. Define

X.�/D fg D .g1; : : : ;gn/ W jgj 2L
p

�b dx
.�/g

and kgkX.�/ D kgkLp

�b dx
.�/. Fix � > 0 and choose a compact set K �� with

j� nKj�a dx WD

Z
�nK

�a dx < �:

Also choose ı0� with 0< ı0� < �.K; �
c/, where �.K; �c/ is the Euclidean distance

between K and �c .
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If D is a Euclidean ball with center xD 2K and r.D/ < 1
2
ı0� , then 2D �� and

�.x/ is essentially constant on D; in fact, for such D,

1
2
�.xD/� �.x/�

3
2
�.xD/; x 2D:

We claim that, for such D, the simple unweighted Poincaré estimate

kf �fDkLp.D/ � C r.D/krf kLp.D/; f 2 Liploc.�/;

where fD D fD;dx , implies that for f 2 Liploc.�/,

(2-13) kf �fD;�a dxkLp

�a dx
.D/

� zC .r.D/.a�b/=p
C diam.�/.a�b/=p/r.D/krf kLp

�b dx
.D/;

where fD;�a dx D
R

D f�
a dx=

R
D �

a dx and zC depends on C; a; b but is indepen-
dent of D; f . To show this, first note that, for such D, since � � �.xD/ on D, the
simple Poincaré estimate immediately gives

kf �fDkLp

�a dx
.D/ �

zC�.xD/
.a�b/=pr.D/krf kLp

�b dx
.D/; f 2 Liploc.�/;

and then a similar estimate with fD replaced by fD;�a dx follows by standard
arguments. Clearly (2-13) will now follow if we show that

�.xD/
.a�b/=p

� r.D/.a�b/=p
C diam.�/.a�b/=p for such D.

However, this is clear since r.D/� �.xD/� diam.�/ for D as above, and (2-13)
is proved.

We can now apply the weighted density result of [Hajłasz 1993; Hajłasz and
Koskela 1998] to conclude that (2-13) holds for all f 2 L1

�a dx
.�/\E

p

�b dx
.�/

and all balls D with xD 2K and r.D/ < 1
2
ı0�.

Recall that .a� b/=pC 1> 0. Thus there exists r� with 0< r� <
1
2
ı0� and

zC .r .a�b/=p
� C diam.�/.a�b/=p/r� < �:

Let † and †0 be as in the proof of Theorem 2.1, and let fElgl D fFlgl be the
triples of balls in a maximal collection of pairwise disjoint balls centered in K

with radius 1
3
r� . Then (2-13) and the choice of r� give the desired version of (1-4),

namely
kf �fD;�a dxkLp

�a dx
.D/ � �krf kLp

�b dx
.D/

for D D El and f 2 L1
�a dx

.�/ \ E
p

�b dx
.�/. Next, use the last two parts of

Remark 2.5 to choose N 2 .q;1/ such that either (2-9) or (2-11) holds with q
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replaced by N . Every f 2L1
�a dx

.�/\E
p

�b dx
.�/ then satisfies the global Poincaré

estimate

(2-14) kf �f�;�a dxkLN
�a dx

.�/ � Ckrf kLp

�b dx
.�/;

f 2L1
�a dx.�/\E

p

�b dx
.�/;

where

f�;�a dx D

Z
�

f�a dx
.Z

�

�a dx:

In fact, under the hypothesis of Theorem 2.4, this is proved for example in [Chua
and Wheeden 2011] for f 2 Liploc.�/\L1

�a dx
.�/\E

p

�b dx
.�/, and then follows

for all f 2L1
�a dx

.�/\E
p

�b dx
.�/ by the density result of [Hajłasz 1993; Hajłasz

and Koskela 1998] and Fatou’s lemma. By (2-14),

kf kLN
�a dx

.�/ � Ckf kL1
�a dx

.�/CCkrf kLp

�b dx
.�/

for the same class of f . The remaining details of the proof are left to the reader. �

In passing, we mention that the role played by the distance function �.x; �c/ in
Theorem 2.4 can instead be played by

�0.x/D inffjx�yj W y 2�0g; x 2�;

for certain �0 ��
c ; see [Chua and Wheeden 2011, Theorem 1.6] for a description

of such �0 and the required Poincaré estimate, and note that the density result in
[Hajłasz and Koskela 1998] holds for positive continuous weights.

3. Applications in the degenerate case

In this section, � will denote a fixed open set in Rn, possibly unbounded. For
.x; �/ 2��Rn, we consider a nonnegative quadratic form � 0Q.x/� which may
degenerate, that is, which may vanish for some � ¤ 0. Such quadratic forms occur
naturally in the context of subelliptic equations and give rise to degenerate Sobolev
spaces as discussed below. Our goal is to apply Theorem 1.1 to obtain compact
embedding of these degenerate spaces into Lebesgue spaces related to the gain in
integrability provided by Poincaré–Sobolev inequalities. The framework that we
use contains the subelliptic one developed in [Sawyer and Wheeden 2006; 2010],
where regularity theory for weak solutions of linear subelliptic equations of second
order in divergence form is studied.

3A. Standing assumptions. We now list some notation and assumptions that will
be in force everywhere in Section 3, even when not explicitly mentioned.
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Definition 3.1. A function d is called a finite symmetric quasimetric (or simply a
quasimetric) on � if d W���! Œ0;1/ and there is a constant � � 1 such that,
for all x;y; z 2�,

(3-1)

d.x;y/D d.y;x/;

d.x;y/D 0 () x D y;

d.x;y/� �Œd.x; z/C d.z;y/�:

If d is a quasimetric on �, we refer to the pair .�; d/ as a quasimetric space.
In some applications, d is closely related to Q.x/. For example, d is sometimes
chosen to be the Carnot–Carathéodory control metric related to Q; cf. [Sawyer and
Wheeden 2006].

Given x 2�, r > 0, and a quasimetric d , the subset of � defined by

Br .x/D fy 2� W d.x;y/ < rg

will be called the quasimetric d-ball centered at x of radius r . Note that every
d -ball B D Br .x/ satisfies B �� by definition.

It is sometimes possible, and desirable in case the boundary of � is rough, to
be able to work only with d-balls that are deep inside � in the sense that their
Euclidean closures B lie in �. See Remark 3.6(ii) for comments about being able
to use such balls.

Recall that Ds.x/ denotes the ordinary Euclidean ball of radius s centered at x.
We always assume that d is related to the standard Euclidean metric as follows:

(3-2) 8x 2� and r > 0, 9s D s.x; r/ > 0 such that Ds.x/� Br .x/:

Remark 3.2. Condition (3-2) is clearly true if d-balls are open, and it is weaker
than the well-known condition of C. Fefferman and Phong stating that for each
compact K ��, there are constants ˇ; r0 > 0 such that Drˇ .x/ � Br .x/ for all
x 2K and 0< r < r0.

Throughout Section 3, Q.x/ denotes a fixed Lebesgue measurable n� n non-
negative symmetric matrix on � and we assume that every d-ball B centered in
� is Lebesgue measurable. We deal with three locally finite measures w; �; � on
the Lebesgue measurable subsets of �, each with a particular role. In Section 3C,
where only global results are developed, we assume w.�/<1, but this assumption
is not required for the local results of Section 3D. The measure � is assumed to be
absolutely continuous with respect to Lebesgue measure; the comment following
(3-4) explains why this assumption is natural. In Section 3, we sometimes assume
that w is absolutely continuous with respect to �, but we drop this assumption
completely in the Appendix.
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We do not require the existence of a doubling measure for the collection of
d-balls, but we always assume that .�; d/ satisfies the weaker local geometric
doubling property given in the next definition; see [Hytönen and Martikainen 2012]
for a global version.

Definition 3.3. A quasimetric space .�; d/ satisfies the local geometric doubling
condition if for every compact K ��, there exists ı0D ı0.K/ > 0 such that, for all
x 2K and all 0< r 0 < r < ı0, the number of disjoint d -balls of radius r 0 contained
in Br .x/ is at most a constant Cr=r 0 depending on r=r 0 but not on K.

3B. The degenerate Sobolev spaces W
1;p
�;� .�; Q/ and W

1;p

�;�;0
.�; Q/. We will

define weighted degenerate Sobolev spaces by using an approach like the one
in [Sawyer and Wheeden 2010] or [Monticelli et al. 2012] for the unweighted
case. We first define an appropriate space of vectors, including vectors which
will eventually play the role of gradients, where size is measured relative to the
nonnegative quadratic form

Q.x; �/D � 0Q.x/�; .x; �/ 2��Rn:

For 1� p <1, consider the collection of measurable Rn-valued functions Eg.x/D
.g1.x/; : : : ;gn.x// satisfying

(3-3) kEgkL
p
�.�;Q/

D

�Z
�

Q.x; Eg.x//p=2d�

�1=p

D

�Z
�

j
p

Q.x/Eg.x/jpd�

�1=p

<1:

We identify any two functions Eg; Eh in the collection for which kEg� EhkL
p
�.�;Q/

D 0.
Then (3-3) defines a norm on the resulting space of equivalence classes. The form-
weighted space L

p
�.�;Q/ is defined to be the collection of these equivalence classes,

with norm (3-3). By using methods similar to those in [Sawyer and Wheeden 2010],
it follows that L2

�.�;Q/ is a Hilbert space and L
p
�.�;Q/ is a Banach space for

1� p <1.
Now consider the (possibly infinite) norm on Liploc.�/ defined by

(3-4) kf k
W

1;p
�;� .�;Q/

D kf kLp
� .�/
Ckrf kL

p
�.�;Q/

:

We comment here that our standing assumption that�.Z/D0 when Z has Lebesgue
measure 0 assures that krf kL

p
�.�;Q/

is well-defined if f 2 Liploc.�/; in fact, for
such f , the Rademacher–Stepanov theorem implies that rf exists a.e. in � with
respect to Lebesgue measure.
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Definition 3.4. Let 1� p <1.

(1) The degenerate Sobolev space W
1;p
�;� .�;Q/ is the completion under the norm

(3-4) of the set

LipQ;p.�/D LipQ;p;�;�.�/D ff 2 Liploc.�/ W kf kW 1;p
�;� .�;Q/

<1g:

(2) The degenerate Sobolev space W
1;p
�;�;0

.�;Q/ is the completion under the
norm (3-4) of the set LipQ;p;0.�/D Lip0.�/\LipQ;p.�/, where Lip0.�/

denotes the collection of Lipschitz functions with compact support in �. If
Q 2L

p=2
loc .�/, LipQ;p;0.�/D Lip0.�/ since � and � are locally finite.

We now make some comments about W
1;p
�;� .�;Q/, most of which have analogues

for W
1;p
�;�;0

.�;Q/. By definition, W
1;p
�;� .�;Q/ is the Banach space of equivalence

classes of Cauchy sequences of LipQ;p.�/ functions with respect to the norm (3-4).
Given a Cauchy sequence ffj g of LipQ;p.�/ functions, denote its equivalence class
by Œffj g�. If fvj g 2 Œffj g�, then fvj g is a Cauchy sequence in L

p
� .�/ and frvj g is a

Cauchy sequence in L
p
�.�;Q/. Hence there is a pair .f; Eg/ 2L

p
� .�/�L

p
�.�;Q/

so that
kvj �f kLp

� .�/
! 0 and krvj � EgkL

p
�.�;Q/

! 0

as j !1. The pair .f; Eg/ is uniquely determined by the equivalence class Œffj g�,
that is, it is independent of a particular fvj g2 Œffj g�. We say that .f; Eg/ is represented
by fvj g. We obtain a Banach space isomorphism J from W

1;p
�;� .�;Q/ onto a closed

subspace W
1;p
�;�.�;Q/ of L

p
� .�/�L

p
�.�;Q/ by setting

(3-5) J.Œffj g�/D .f; Eg/:

We often do not distinguish between W
1;p
�;� .�;Q/ and W

1;p
�;�.�;Q/. Similarly,

W
1;p
�;�;0

.�;Q/ denotes the image of W
1;p
�;�;0

.�;Q/ under J, but we often consider
these spaces to be the same.

It is important to think of a typical element of W
1;p
�;�.�;Q/, or W

1;p
�;� .�;Q/,

as a pair .f; Eg/ as above, and not simply as the first component f . In fact, if
.f; Eg/ 2 W

1;p
�;�.�;Q/, the vector Eg may not be uniquely determined by f ; see

[Fabes et al. 1982, Section 2.1] for a well-known example.
If f 2LipQ;p.�/, the pair .f;rf /may be viewed as an element of W

1;p
�;� .�;Q/

by identifying it with the equivalence class Œff g� corresponding to the sequence each
of whose entries is f . When viewed as a class, .f;rf / generally contains pairs
whose first components are not Lipschitz functions; for example, if f 2 LipQ;p.�/

and F is any function with F D f a.e.-�, then .f;rf /D .F;rf / in W
1;p
�;� .�;Q/.

However, in what follows, when we consider a pair .f;rf / with f 2 LipQ;p.�/,
we do not adopt this point of view. Instead we identify an f 2 LipQ;p.�/ with
the single pair .f;rf / whose first component is f (defined everywhere in �)
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and whose second component is rf , which exists a.e. with respect to Lebesgue
measure by the Rademacher–Stepanov theorem. This convention lets us avoid
assuming that w is absolutely continuous with respect to �, written w � �, in
Poincaré–Sobolev estimates for LipQ;p.�/ functions. We reserve the notation H

for subsets of LipQ;p.�/ viewed in this way.

On the other hand, W denotes various subsets of W
1;p
�;� .�;Q/ with elements

viewed as equivalence classes. When our hypotheses are phrased in terms of such
W, we assume that w� � in order to avoid technical difficulties associated with
sets of measure 0; see the comment after (3-18). In the Appendix, we drop the
assumption w� � altogether.

We abuse the notation (3-4) by writing

(3-6) k.f;rf /k
W

1;p
�;� .�;Q/

D kf kLp
� .�/
Ckrf kL

p
�.�;Q/

; f 2 LipQ;p.�/;

and we extend this to generic .f; Eg/ 2W
1;p
�;� .�;Q/ by writing

(3-7)
k.f; Eg/k

W
1;p
�;� .E;Q/

D kf kLp
� .E/
CkEgkL

p
�.E;Q/

for any measurable E ��.

3C. Global compactness results for degenerate spaces. In this section, we state
and prove compactness results which apply to the entire set �. Results which are
more local are given in Section 3D.

In order to apply Theorem 1.1 in this setting, we use the following version of
Poincaré’s inequality for d -balls.

Definition 3.5. Let 1 � p < 1, let LipQ;p.�/ be as in Definition 3.4, and let
H� LipQ;p.�/. We say that the Poincaré property of order p holds for H if there
is a constant c0 � 1 such that for every � > 0 and every compact set K ��, there
exists ıD ı.�;K/ > 0 such that, for all f 2H and every d -ball Br .y/ with y 2K

and 0< r < ı,

(3-8)
�Z

Br .y/

jf �fBr .y/;wj
p dw

�1=p

� �k.f;rf /k
W

1;p
�;� .Bc0r .y/;Q/

:

Remark 3.6. (i) Inequality (3-8) is not of standard Poincaré form. A more typical
form is

(3-9)
�

1

w.Br .y//

Z
Br .y/

jf �fBr .y/;wj
p dw

�1=p

� C r

�
1

�.Bc0r .y//

Z
Bc0r .y/

j
p

Qrf jpd�

�1=p

for some c0 � 1. In [Sawyer and Wheeden 2006; 2010; Rodney 2007; 2012], the
unweighted version of (3-9) with p D 2 is used. Let �.x; @�/ and �.E; @�/ be as
in (2-2). In [Sawyer and Wheeden 2010], the unweighted form of (3-9) with pD 2
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is assumed for all f 2 LipQ;2.�/ and all Br .y/ with y 2� and 0< r <ı0�.y; @�/

for some ı0 2 .0; 1/ independent of y; r . If K is a compact set in �, this version
would then hold for all Br .y/ with y 2K and 0 < r < ı0�.K; @�/. For general
p; w, and �, if for every compact K ��, (3-9) is valid for all Br .y/ with y 2K

and 0< r < ı0�.K; @�/, then (3-8) follows easily, provided

(3-10) lim
r!0

�
sup
y2K

rp w.Br .y//

�.Bc0r .y//

�
D 0

for every compact K ��. Note that (3-10) automatically holds if w D �.
If both (3-9) and (3-10) hold, then (3-8) is true for any choice of �. In this

situation, one can pick � D w in order to avoid technicalities encountered below
when w is not absolutely continuous with respect to �.

(ii) Especially when @� is rough, it is simplest to deal only with d -balls B which
stay away from @�, that is, which satisfy

(3-11) B ��:

We can always assume this for the balls in (3-8) if the converse of (3-2) is also true,
namely, if

(3-12) 8x 2� and r > 0; 9s D s.r;x/ > 0 such that Bs.x/�Dr .x/:

To see why, let us first show that given a compact set K and an open set G with
K �G ��, there exists t > 0 so that Bt .y/�G for all y 2K. Indeed, for such
K and G, let t 0 D 1

2
�.K;Gc/. By (3-12), for each x 2 K, there exists r.x/ > 0

such that Br.x/.x/ � Dt 0.x/. Further, by (3-2), there exists s.x/ > 0 such that
Ds.x/.x/ � Br.x/=.2�/.x/, where � is as in (3-1). Since K is compact, we may
choose finite collections fBri=.2�/.xi/g and fDsi

.xi/g with xi 2 K, ri D r.xi/,
si D s.xi/, and K �

S
Dsi

.xi/�
S

Bri=.2�/.xi/. Now set t Dminfri=.2�/g. Let
y 2 K and choose i such that y 2 Bri=.2�/.xi/. By (3-1), Bt .y/ � Bri

.xi/ and,
consequently, Bt .y/ � Dt 0.xi/. Since Dt 0.xi/ � G, we obtain Bt .y/ � G for
every y 2K, as desired. In particular, Bt .y/�� for all y 2K. Since the validity
of (3-8) for some ı D ı.�;K/ implies its validity for min fı; tg, it follows that we
may assume (3-11) for every Br .y/ in (3-8) when (3-12) holds. Similarly, since the
constant c0 in (3-8) is independent of K, we may also assume that every Bc0r .y/

in (3-8) has closure in �.

(iii) We can often slightly weaken the assumption in Definition 3.5 that K is an
arbitrary compact set in �. For example, in our results where w.�/ <1, it is
generally enough to assume that for each � > 0, there is a particular compact K

with w.� nK/ < � such that (3-8) holds. However, in Section 3D, where we do
not assume w.�/ <1, it is convenient to keep the hypothesis that K is arbitrary.
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Given a set H� LipQ;p.�/, define

(3-13) bHD ff W there exists ff j
g �H with f j

! f a.e.-wg:

It will be useful later to note that if H is bounded in LN
w .�/ for some N , thenbH is also bounded in LN

w .�/ by Fatou’s lemma; in particular, every f 2 bH then
belongs to LN

w .�/. See (3-15) for a relationship between bH and the closure of H

in W
1;p
�;� .�;Q/ in case w� �.

We now state our simplest global result. Its proof is given after Corollary 3.11.

Theorem 3.7. Let the assumptions of Section 3A hold, w.�/ <1, 1 � p <1,
1<N �1, and H� LipQ;p.�/. Suppose that the Poincaré property of order p

in Definition 3.5 holds for H and that

(3-14) sup
f 2H

fkf kLN
w .�/

Ckf kLp
� .�/
Ckrf kL

p
�.�;Q/

g<1:

Then any sequence ffkg �
bH has a subsequence that converges in L

q
w.�/ norm for

every 1� q <N to a function belonging to LN
w .�/.

Let H � LipQ;p.�/ and bH be as in (3-13). We reserve the notation H for the
closure of H in W

1;p
�;� .�;Q/, that is, for the closure of the collection

f.f;rf / W f 2Hg

with respect to the norm (3-6). Elements of H are viewed as equivalence classes. If
w� �,

(3-15) ff W there exists Eg such that .f; Eg/ 2Hg � bH:
Indeed, if .f; Eg/2H, there is a sequence ff j g�H such that .f j ;rf j /! .f; Eg/ in
W

1;p
�;� .�;Q/ norm, and consequently f j! f in L

p
� .�/. By using a subsequence,

we may assume that f j ! f pointwise a.e.-�, and hence, by absolute continuity,
that f j ! f pointwise a.e.-w. This proves (3-15). In fact, it can be verified by
using Egorov’s theorem that

(3-16) ff W there exists f.f j ; Egj /g �H with f j
! f a.e.-wg � bH:

Theorem 3.7 and (3-15) immediately imply the following corollary.

Corollary 3.8. Let the assumptions of Section 3A hold, w.�/ <1, and w� �.
Let 1 � p < 1, 1 < N � 1, H � LipQ;p.�/, and H be the closure of H in
W

1;p
�;� .�;Q/. Suppose that the Poincaré property of order p in Definition 3.5 holds

for H and that

(3-17) sup
f 2H

fkf kLN
w .�/

Ck.f;rf /k
W

1;p
�;� .�;Q/

g<1:
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Then any sequence ffkg in

ff W there exists Eg such that .f; Eg/ 2Hg

has a subsequence that converges in L
q
w.�/ norm for 1� q <N to a function that

belongs to LN
w .�/.

Remark 3.9. Corollary 3.8 may be thought of as an analogue in the degenerate
setting of the Rellich–Kondrachov theorem since it contains this classical result as
a special case. To see why, set Q.x/D Id and w D � D � to be Lebesgue measure.
Then, given a bounded sequence f.fk ; Egk/g �W

1;p
0

.�/DW
1;p

dx;dx;0
.�;Q/, we

may choose ff j

k
g�Lip0.�/ with .f j

k
;rf

j

k
/! .fk ; Egk/ in W 1;p.�/ norm. Thus,

setting HD ff
j

k
gk2N;j>Jk

where each Jk is chosen sufficiently large to preserve
boundedness, the classical Sobolev inequality gives (3-17) with N D np=.n�p/

for 1� p < n. The Rellich–Kondrachov theorem now follows from Corollary 3.8.

We next mention analogues of these results when H is replaced by a set

W�W 1;p
�;� .�;Q/

with elements viewed as equivalence classes, assuming that w� �. We then modify
Definition 3.5 by replacing (3-8) with the analogous estimate
(3-18)�Z

Br .y/

jf �fBr .y/;wj
p dw

�1=p

� �k.f; Eg/k
W

1;p
�;� .Bc0r .y/;Q/

if .f; Eg/ 2W:

The assumption w� � guarantees that the left side of (3-18) does not change when
the first component of a pair is arbitrarily altered in a set of �-measure zero.

If Poincaré’s inequality is known to hold for subsets of Lipschitz functions in the
form (3-8), it can often be extended by approximation to the similar form (3-18) for
subsets of W

1;p
�;� .�;Q/. Indeed, let us show without using weak convergence that

if w� � and the Radon–Nikodym derivative dw=d� 2L
p0

� .�/; 1=pC 1=p0 D 1,
then (3-18) holds with WDW

1;p
�;� .�;Q/ if (3-8) holds with HDLipQ;p.�/. This

follows easily from Fatou’s lemma since if .f; Eg/ 2W
1;p
�;� .�;Q/ and we choose

ffj g � LipQ;p.�/ with .fj ;rfj /! .f; Eg/ in W
1;p
�;� .�;Q/, then, for any ball B,

since fj ! f in L
p
� .�/, we have

.fj /B;w D
1

w.B/

Z
B

fj
dw

d�
d�!

1

w.B/

Z
B

f
dw

d�
d� D fB;w:

Of course we may also assume that fj ! f a.e.-w by selecting a subsequence of
ffj g which converges to f a.e.-�. The same argument shows that if (3-18) holds for
all pairs in any set W�W

1;p
�;� .�;Q/, then it also holds for pairs in the closure W of

W in W
1;p
�;� .�;Q/. Moreover, if all balls B in question satisfy B �� (cf. (3-11)),

the assumption can clearly be weakened to dw=d� 2L
p0

�;loc.�/. As we observed in
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Remark 3.6(ii), the balls in (3-8) can be assumed to satisfy (3-11) provided (3-12)
is true.

Analogues of Theorem 3.7 and Corollary 3.8 for a set W �W
1;p
�;� .�;Q/ are

given in the next result, which also includes the Rellich–Kondrachov theorem as a
special case.

Theorem 3.10. Let the assumptions of Section 3A hold, w.�/ <1, and w� �.
Let 1 � p <1, 1 < N �1, and W �W

1;p
�;� .�;Q/. Suppose that the Poincaré

property in Definition 3.5 holds, but in the modified form given in (3-18), and that

(3-19) sup
.f;Eg/2W

fkf kLN
w .�/

Ck.f; Eg/k
W

1;p
�;� .�;Q/

g<1:

Let bWD ff W there exists f.f j ; Egj /g �W with f j
! f a.e.�wg:

Then any sequence in bW has a subsequence that converges in L
q
w.�/ norm for

every 1� q <N to a function belonging to LN
w .�/. In particular, if W denotes the

closure of W in W
1;p
�;� .�;Q/, the same is true for any sequence in

ff W there exists Eg such that .f; Eg/ 2Wg:

As a corollary, we obtain a result for arbitrary sequences f.fk ; Egk/g which are
bounded in W

1;p
�;� .�;Q/ and whose first components ffkg are bounded in LN

w .�/.

Corollary 3.11. Let the assumptions of Section 3A hold, w.�/ < 1, w � �,
1� p <1, and 1<N �1. Suppose that the Poincaré property in Definition 3.5
holds for all of W

1;p
�;� .�;Q/, that is, Definition 3.5 holds with (3-8) replaced by

(3-18) for WDW
1;p
�;� .�;Q/. Then if f.fk ; Egk/g is any sequence in W

1;p
�;� .�;Q/

such that
sup

k

ŒkfkkLN
w .�/

Ck.fk ; Egk/kW 1;p
�;� .�;Q/

� <1;

there is a subsequence of ffkg that converges in L
q
w.�/ norm for 1� q <N to a

function belonging to LN
w .�/. If in addition dw=d� 2 L

p0

� .�/; 1=pC 1=p0 D 1,
the conclusion remains valid if the Poincaré property holds just for LipQ;p.�/.

In fact, the first conclusion in Corollary 3.11 follows by applying Theorem 3.10
with W chosen to be the specific sequence f.fk ; Egk/gk in question, and the second
statement follows from the first one and our observation above that (3-18) holds
with WDW

1;p
�;� .�;Q/ if dw=d� 2 L

p0

� .�/; 1=pC 1=p0 D 1, and if (3-8) holds
with HD LipQ;p.�/.

Proofs of Theorems 3.7 and 3.10. We will concentrate on the proof of Theorem 3.7.
The proof of Theorem 3.10 is similar and omitted. We begin with a useful covering
lemma.



A COMPACT EMBEDDING THEOREM FOR GENERALIZED SOBOLEV SPACES 41

Lemma 3.12. Let the assumptions of Section 3A hold and let w.�/ < 1. Fix
p 2 Œ1;1/ and a set H � LipQ;p.�/. Suppose the Poincaré property of order p

in Definition 3.5 holds for H, and let � be as in (3-1) and c0 be as in (3-8). Then,
for every � > 0, there are positive constants r D r.�; �; c0/;M DM.�; c0/, and a
finite collection fBr .yk/gk of d -balls, such that

w
�
� n

S
k

Br .yk/
�
< �;(3-20) P

k

�Bc0r .yk/
.x/�M for all x 2�;(3-21)

kf �fBr .yk/;wkL
p
w.Br .yk//

� �k.f;rf /k
W

1;p
�;� .Bc0r .yk/;Q/

(3-22)

for all f 2H and all k. Note that M is independent of �.

Proof. We first recall the “swallowing” property of d -balls: there is a constant 
 � 1

depending only on � such that if x;y2�, 0< r1� r2<1 and Br1
.x/\Br2

.y/¤∅,
then

(3-23) Br1
.x/� B
 r2

.y/:

Indeed, by [Chua and Wheeden 2008, Observation 2.1], 
 can be chosen to be
�C 2�2.

Fix � > 0. Since w.�/ <1, there is a compact set K �� with w.� nK/ < �.
Let ı0D ı0.�/ be as in Definition 3.3 for K, and let ıD ı.�/ be as in (3-8). Fix r with
0< r <minfı; ı0=.c0
 /g where c0 is as in (3-8). For each x 2K, use (3-2) to pick
s.x; r/ > 0 so that Ds.x;r/.x/ � Br=
 .x/. Since K is compact, there are finitely
many points fxj g in K such that K �

S
j Br=
 .xj /. Choose a maximal pairwise

disjoint subcollection fBr=
 .yk/g of fBr=
 .xj /g. We show that the collection
fBr .yk/g satisfies (3-20)–(3-22).

To verify (3-20), it is enough to show that K �
S

k Br .yk/. Let y 2K. Then
y 2Br=
 .xj / for some xj . If xj D yk for some yk then y 2Br .yk/. If xj ¤ yk for
all yk , there exists yl such that Br=
 .yl/\Br=
 .xj /¤∅. Then Br=
 .xj /�Br .yl/

by (3-23), and so y 2 Br .yl/. In either case, we obtain y 2
S

k Br .yk/ as desired.
To verify (3-21), suppose that fkig

L
iD1

satisfies \L
iD1

Bc0r .yki
/¤∅. Then, by

(3-23), Bc0r .yki
/� Bc0
 r .yk1

/ for 1� i �L. Since 
; c0 � 1, we have

Br=
 .yk/� Bc0r .yk/

for all k, and consequentlyS
Br=
 .yki

/�
S

Bc0r .yki
/� Bc0
 r .yk1

/:

By construction, fBr=
 .yk/g is pairwise disjoint in k. Since 0< r=
 < c0
 r < ı0,
the corresponding constant C in the definition of geometric doubling depends only
on .c0
 r/=.r=
 /D c0


2, that is, C depends only on � and c0. Choosing M to be
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this constant, we obtain that L�M as desired. The same argument shows that the
collection fBc0r .yk/g has the stronger bounded intercept property with the same
bound M , that is, any ball in the collection intersects at most M � 1 others.

Finally, let us verify (3-22). Recall that 0< r < ı by construction. Hence (3-8)
implies that for each k and all f 2H,

(3-24) kf �fBr .yk/;wkL
p
w.Br .yk//

� �k.f;rf /k
W

1;p
�;� .Bc0r .yk/;Q/

. �

We deduce the proof of Theorem 3.7 from Theorem 1.1 by choosing X.�/D

L
p
� .�/�L

p
�.�;Q/ and considering the product space

BN;X.�/ DLN
w .�/� .L

p
� .�/�Lp

�.�;Q//:

We always choose † to be the Lebesgue measurable subsets of � and

†0 D fBr .x/ W r > 0;x 2�g:

Note that X.�/ and BN;X.�/ are normed linear spaces (even Banach spaces), and
the norm in BN;X.�/ is

(3-25) k.h; .f; Eg//kBN;X.�/
D khkLN

w .�/
Ckf kLp

� .�/
CkEgkL

p
�.�;Q/

:

The roles of g and .f;g/ in Section 1 are now played by .f; Eg/ and .h; .f; Eg//
respectively.

Let us verify properties (A) and (Bp) in Section 1 with X.�/ and †0 chosen as
above. To verify (A), fix B 2†0 and .f; Eg/ 2 X.�/. Clearly f �

B
2L

p
� .�/ since

f 2L
p
� .�/. Also,Z

�

..Eg�B/
0Q.Eg�B//

p=2 d�D

Z
B

.Eg 0Q.x/Eg/p=2 d�

�

Z
�

.Eg 0Q.x/Eg/p=2d� <1:

Thus .f; Eg/�
B
2 X.�/ and property (A) is proved.

To verify (Bp), let fBlg be a finite collection of d -balls satisfying
P

l �Bl
.x/�C1

for all x 2�. Then if .f; Eg/ 2 X.�/,X
l

k.f; Eg/�Bl
k

p

X.�/
D

X
l

.kf �Bl
kLp

� .�/
CkEg�Bl

kL
p
�.�;Q/

/p

� 2p�1
X

l

.kf �Bl
k

p

L
p
� .�/
CkEg�Bl

k
p

L
p
�.�;Q/

/

D 2p�1

Z
�

jf jp
�X

l

�Bl

�
d�C

Z
�

.Eg0QEg/p=2
�X

l

�Bl

�
d�

� 2p�1C1.kf k
p

L
p
� .�/
CkEgk

p

L
p
�.�;Q/

/� 2pC1k.f; Eg/k
p

X.�/
:
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This verifies (Bp) with C2 chosen to be 2pC1.
The proof of Theorem 3.7 is now very simple. Let H satisfy its hypotheses and

choose S in Theorem 1.1 to be the set

SD f.f; .f;rf // W f 2Hg:

Note that S is a bounded subset of BN;X.�/ by hypothesis (3-14). Next, in or-
der to choose the pairs fEl ;Flgl and verify conditions (i)–(iii) of Theorem 1.1
(see (1-3) and (1-4)), we appeal to Lemma 3.12. Given � > 0, let fEl ;Flgl D

fBr .yk/;Bc0r .yk/gk where fykg and r are as in Lemma 3.12. Then El ;Fl 2†0,
and conditions (i)–(iii) of Theorem 1.1 are guaranteed by Lemma 3.12. Finally, by
noting that the set bH defined in (3-13) is the same as the set OS defined in (1-5), the
conclusion of Theorem 3.7 follows from Theorem 1.1. �

For special domains � and special choices of N , the boundedness assumption
(3-14) (or (3-17)) can be weakened to

(3-26) sup
f 2H

fkf kLp
� .�/
Ckrf kL

p
�.�;Q/

g D sup
f 2H

k.f;rf /k
W

1;p
�;� .�;Q/

<1:

This is clearly the case for any � and N for which there exists a global Sobolev–
Poincaré estimate that bounds kf kLN

w .�/
by

k.f;rf /k
W

1;p
�;� .�;Q/

for all f 2 H. We now formalize this situation assuming that w � �. In the
Appendix, we consider a case when w� � fails.

The form of the global Sobolev–Poincaré estimate we will use is given in the
next definition. It guarantees that (3-14) and (3-26) are the same when N D p� .

Definition 3.13. Let 1 � p <1 and H � LipQ;p.�/. Then the global Sobolev
property of order p holds for H if there are constants C > 0 and � > 1 such that

(3-27) kf kLp�
w .�/ � Ck.f;rf /k

W
1;p
�;� .�;Q/

for all f 2H:

If w � �, (3-27) extends to .f; Eg/ 2 H. In fact, let .f; Eg/ 2 H and choose
ffj g �H with .fj ;rfj /! .f; Eg/ in W

1;p
�;� .�;Q/. Then fj ! f in L

p
� .�/ norm,

and by choosing a subsequence we may assume that fj ! f a.e.-�. Hence fj ! f

a.e.-w because w� �. Since each fj satisfies (3-27), it follows that

(3-28) kf kLp�
w .�/ � Ck.f; Eg/k

W
1;p
�;� .�;Q/

if .f; Eg/ 2H:

Under the same assumptions, namely, that Definition 3.13 holds for a set

H� LipQ;p.�/
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and that w� �, the same sequence ffj g as above is also bounded in L
p�
w .�/ norm

and so satisfies .fj /E;w! fE;w for measurable E by the same weak convergence
argument given after the statement of Theorem 1.1. Hence the Poincaré estimate in
Definition 3.5 also extends to H in the same form as (3-18), with W replaced by H,
that is,

(3-29)
�Z

Br .y/

jf �fBr .y/;wj
p dw

�1=p

� �k.f; Eg/k
W

1;p
�;� .Bc0r .y/;Q/

if .f; Eg/2H:

Hence we immediately obtain the next result by choosing WDH and N D p� in
Theorem 3.10.

Theorem 3.14. Let the assumptions of Section 3A hold, w.�/ <1, and w� �.
Fix p 2 Œ1;1/ and a set H� LipQ;p.�/. Suppose the Poincaré and global Sobolev
properties of order p in Definitions 3.5 and 3.13 hold for H, and let � be as in
(3-27). If f.fk ; Egk/g is a sequence in H with

(3-30) sup
k

k.fk ; Egk/kW 1;p
�;� .�;Q/

<1;

then ffkg has a subsequence which converges in L
q
w.�/ for 1� q < p� , and the

limit of the subsequence belongs to L
p�
w .�/.

A result for the entire space W
1;p
�;� .�;Q/ follows by choosing HD LipQ;p.�/

in Theorem 3.14 or Corollary 3.8:

Corollary 3.15. Suppose the hypotheses of Theorem 3.14 hold with HDLipQ;p.�/.
If f.fk ; Egk/g � W

1;p
�;� .�;Q/ and (3-30) is true, ffkg has a subsequence which

converges in L
q
w.�/ for 1� q < p� , and the limit of the subsequence belongs to

L
p�
w .�/.

See the Appendix for analogues of Theorem 3.14 and Corollary 3.15 without
the assumption w� �.

3D. Local compactness results for degenerate spaces. In this section, for general
bounded open sets �0 with �0 ��, we study compact embedding of subsets of
W

1;p
�;� .�;Q/ into L

q
w.�

0/ without assuming a global Sobolev estimate for � or
�0 and without assuming w.�/ <1. For some applications, see the comment at
the end of the section.

The theorems below assume a much weaker condition than the global Sobolev
estimate (3-27), namely, the following local estimate.

Definition 3.16. Let 1� p <1. We say that the local Sobolev property of order
p holds if, for some fixed constant � > 1 and every compact set K ��, there is a
constant r1 > 0 such that, for all d -balls B D Br .y/ with y 2K and 0< r < r1,

(3-31) kf kLp�
w .B/�C.B/k.f;rf /k

W
1;p
�;� .�;Q/

if f 2Lip0.�/ with suppf �B;
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where C.B/ is a positive constant independent of f .

Remark 3.17. (i) A more standard assumption than (3-31) is a normalized inequal-
ity that includes a factor r in the gradient term on the right side:

(3-32)
�

1

w.Br .y//

Z
Br .y/

jf jp� dw

�1=.p�/

�C

�
1

�.Br .y//

Z
Br .y/

jf jp d�

�1=p

CC r

�
1

�.Br .y//

Z
Br .y/

j
p

Qrf jp d�

�1=p

;

with C independent of r;y; see, for example, [Sawyer and Wheeden 2006; Rodney
2007; 2012] in the unweighted case with p D 2. Clearly (3-32) is a stronger
requirement than (3-31).

(ii) In the classical n-dimensional elliptic case for linear second order equations
in divergence form, Q satisfies cj�j2 �Q.x; �/� C j�j2 for some fixed constants
c;C >0 and d is the standard Euclidean metric d.x;y/Djx�yj. For 1�p<n and
� Dn=.n�p/, (3-31) then holds with dwDd�Dd�Ddx since the corresponding
version of (3-32) is true with j

p
Qrf j replaced by jrf j.

We also use a notion of Lipschitz cutoff functions on d -balls:

Definition 3.18. For s � 1, we say that the cutoff property of order s holds for �
if, for each compact K ��, there exists ı D ı.K/ > 0 such that, for every d-ball
Br .y/ with y 2K and 0< r < ı, there is a function � 2 Lip0.�/ and a constant

 D 
 .y; r/ 2 .0; r/ satisfying

(i) 0� � � 1 in �,

(ii) supp� � Br .y/ and � D 1 in B
 .y/,

(iii) r� 2 Ls
�.�;Q/.

Since� is always assumed to be locally finite, the strongest form of Definition 3.18,
namely, the version with s D1, automatically holds if Q is locally bounded in �
and (3-12) is true; recall that we always assume (3-2). To see why, fix a compact
set K �� and consider Br .y/ with y 2K and r < 1. Use (3-2) to choose open
Euclidean balls D0;D with common center y such that D0 � D � Br .y/ (� �
by definition). Construct a smooth function � in � with support in D such that
0� � � 1 and � D 1 on D0. By (3-12), there is 
 > 0 such that B
 .y/�D0. Then
� satisfies Definition 3.18(i)–(iii) with s D1; for (iii), we use the fact that r� has
compact support in� together with local boundedness of Q and local finiteness of�.

To compensate for the lack of a global Sobolev estimate, given H� LipQ;p.�/,
we assume in conjunction with the cutoff property of some order s � p� 0 that, for
every compact set K ��, there exists ı D ı.K/ > 0 such that, for every d -ball B
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with center in K and radius less than ı, there is a constant C1.B/ such that

(3-33) kf k
L

pt0

� .B/
� C1.B/k.f;rf /kW 1;p

�;� .�;Q/
if f 2H;

where t D s=p and 1=t C 1=t 0 D 1. Note that 1� t 0 � � since s � p� 0.

Remark 3.19. Inequality (3-33) is different in nature from (3-31) even if t 0 D �

and w D � since there is a restriction on supports in (3-31) but not in (3-33).
However, (3-33) implies (3-31) when sDp� 0, wD�, and H contains all functions
in Lip0.�/ with support in any ball. On the other hand, (3-33) is often automatic
if �D �. For example, as mentioned earlier, if Q is locally bounded and (3-12) is
true, the cutoff property holds with s D1, giving t D1 and t 0 D 1. In this case,
when � D �, the left side of (3-33) is clearly smaller than the right side (in fact
smaller than kf kLp

� .�/
).

We can now state our main local result.

Theorem 3.20. Let the assumptions of Section 3A and condition (3-12) hold, and
let w � �. Fix p 2 Œ1;1/ and suppose the Poincaré property of order p in
Definition 3.5 holds for a fixed set H� LipQ;p.�/ and the local Sobolev property
of order p in Definition 3.16 holds. Assume the cutoff property of some order
s � p� 0 is true for �, with � as in (3-31), and that (3-33) holds for H with t D s=p.
Then, for every f.fk ; Egk/g � H that is bounded in W

1;p
�;� .�;Q/ norm, there is a

subsequence ffki
g of ffkg and an f 2 L

p�
w;loc.�/ such that fki

! f pointwise
a.e.-w in � and in L

q
w.�

0/ norm for all 1 � q < p� and every bounded open �0

with �0 ��.

See the Appendix for a version of Theorem 3.20 without assuming w� �.
Recall that HDW

1;p
�;� .�;Q/ if HD LipQ;p.�/. In the important case when

Q 2L1loc.�/, Theorem 3.20 and Remark 3.19 immediately imply the next result.

Corollary 3.21. Let Q be locally bounded in � and suppose that (3-12) holds. Fix
p 2 Œ1;1/, and with w D � D �, assume the Poincaré property of order p holds
for LipQ;p.�/ and the local Sobolev property of order p holds. Then, for every
bounded sequence f.fk ; Egk/g �W

1;p
w;w.�;Q/, there is a subsequence ffki

g of ffkg

and a function f 2 L
p�
w;loc.�/ such that fki

! f pointwise a.e.-w in � and in
L

q
w.�

0/ norm, 1� q < p� , for every bounded open �0 with �0 ��.

Proof of Theorem 3.20. We begin by using the cutoff property in Definition 3.18 to
construct a partition of unity relative to d -balls and compact subsets of �.

Lemma 3.22. Fix � and s � 1, and suppose the cutoff property of order s holds
for �. If K is a compact subset of � and r > 0, there is a finite collection of
d-balls fBr .yj /g with yj 2K together with functions f j g in Lip0.�/ such that
supp j � Br .yj / and
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(a) K �
S

j Br .yj /,

(b) 0�  j � 1 in � for each j and
P

j  j .x/D 1 for all x 2K,

(c) r j 2 Ls
�.�;Q/ for each j .

Proof. The argument is an adaptation of one in [Rudin 1987] for the usual Euclidean
case. The authors thank D. D. Monticelli for related discussions. Fix r > 0 and a
compact set K ��, and set ˇ Dminfı=2; rg for ı D ı.K/ as in Definition 3.18.
Since ˇ < ı, Definition 3.18 implies that, for each y 2K, there exist 
 .y/ 2 .0; ˇ/
and �y.x/ 2 Lip0.�/ such that 0 � �y � 1 in �, supp�y � Bˇ.y//, �y D 1 in
B
.y/.y/ and r�y 2 Ls

�.�;Q/. The collection fB
.y/.y/gy2K covers K, so by
(3-2) and the compactness of K, there is a finite subcollection fB
.yj /.yj /g

m
jD1

whose union covers K. Part (a) follows since 
 .yj / < r . Next let �j .x/D �yj .x/

and define f j g
m
jD1

as follows: set  1 D �1 and

 j D .1��1/ � � � .1��j�1/�j

for j D 2; : : : ;m. Then each  j 2 Lip0.�/, and supp�j � Br .yj / since ˇ < r .
Also, 0�  j � 1 in � and

mX
jD1

 j .x/D 1�

mY
jD1

.1��j .x//; x 2�:

If x 2 K, x 2 B
.yj /.yj / for some j . Hence some �j .x/ D 1 and consequentlyP
j  j .x/ D 1. This proves part (b). Lastly, we use Leibniz’s product rule to

compute r j and then apply Minkowski’s inequality j times to obtain part (c)
from the fact that r�j 2 Ls

�.�;Q/. �

The next lemma shows how the local Sobolev estimate (3-31) and Lemma 3.22
lead to a local analogue of the global Sobolev estimate (3-27).

Lemma 3.23. Let �0 be a bounded open set with �0 � �. Suppose that both
Definition 3.16 and the cutoff property for � of some order s � p� 0 hold, and also
that (3-33) holds with t D s=p for a fixed set H� Liploc.�/. Then there is a finite
constant C.�0/ such that

(3-34) kf kLp�
w .�0/ � C.�0/k.f;rf /k

W
1;p
�;� .�;Q/

if f 2H:

Proof. Let r1 be as in Definition 3.16 relative to the compact set �0 ��, and let ı
be as in (3-33). Use Lemma 3.22 to cover �0 by the union of a finite number of
d-balls fBj g each of radius smaller than minfr1; ıg. Associated with this cover is
a collection f j g � Lip0.�/ with supp j � Bj ,

P
j  j D 1 in �0, and

r j 2 Ls
�.�;Q/:
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If f 2H, then

(3-35) kf kLp�
w .�0/ D





f X
j

 j






L

p�
w .�0/

�

X
j

k jf kLp�
w .Bj /

:

Since  jf 2 Lip0.�/ and supp. jf /� Bj , the estimate (3-31) and the product
rule give

(3-36) k jf kLp�
w .Bj /

� C.Bj / k. jf;r. jf //kW 1;p
�;� .Bj ;Q/

D C.Bj /
�
k jf kLp

� .Bj /
Ck

p
Qr. jf /kLp

�.Bj /

�
� C.Bj /

�
k jf kLp

� .Bj /
Ck j

p
Qrf kLp

�.Bj /
Ckf

p
Qr jkLp

�.Bj /

�
� C.Bj /.k.f;rf /kW 1;p

�;� .�;Q/
Ckf

p
Qr jkLp

�.Bj /
/;

where we have used j j j � 1. We estimate the second term on the right of (3-36)
by using (3-33). Recall that t D s=p � � 0 and 1=t C 1=t 0 D 1. Let

C Dmax
j
k
p

Qr jkLs
�.Bj /:

By Hölder’s inequality and (3-33),

(3-37)
kf
p

Qr jkLp
�.Bj /

� kf k
L

pt0

� .Bj /
k
p

Qr jkLs
�.Bj /

� C C1.Bj /k.f;rf /kW 1;p
�;� .�;Q/

:

Combining this with (3-36) gives

k jf kLp�
w .Bj /

� C.Bj /
�
1CC C1.Bj /

�
k.f;rf /k

W
1;p
�;� .�;Q/

:

By (3-35), for any f 2H,

kf kLp�
w .�0/ � k.f;rf /kW 1;p

�;� .�;Q/

X
j

C.Bj /.1CC C1.Bj //

D C.�0/k.f;rf /k
W

1;p
�;� .�;Q/

: �

Theorem 3.20 follows from Lemma 3.23 and Theorem 1.4. We sketch the proof,
omitting some familiar details. By choosing a sequence of compact sets increasing
to � and using a diagonalization argument, it is enough to prove the conclusion
for a fixed open �0 with compact closure �0 in �. Fix such an �0 and select a
bounded open �00 with �0 � �00 � �00 � �. For H as in Theorem 3.20, apply
Lemma 3.23 to the set �00 to obtain

(3-38) kf kLp�
w .�00/ � C.�00/k.f;rf /k

W
1;p
�;� .�;Q/

; f 2H:
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By assumption, w� �, so (3-38) extends to H in the form

(3-39) kf kLp�
w .�00/ � C.�00/k.f; Eg/k

W
1;p
�;� .�;Q/

; .f; Eg/ 2H:

Let � > 0. By hypothesis, H satisfies the Poincaré estimate (3-8) for balls Br .y/

with y 2�0 and r < ı.�;�0/. Since the Euclidean distance between �0 and @�00 is
positive and we have assumed (3-12), we may also assume by Remark 3.6(ii) that
all such balls lie in the larger set �00. Next we claim that (3-8) extends to H, that
is,

(3-40)
�Z

Br .y/

jf �fBr .y/;wj
pdw

�1=p

��k.f; Eg/k
W

1;p
�;� .Bc0r .y/;Q/

if .f; Eg/2H;

for the same class of balls Br .y/. In fact, if .f; Eg/ 2 H and ff j g � H satisfies
.f j ;rf j /! .f; Eg/ in W

1;p
�;� .�;Q/ norm, then there is a subsequence, still denoted

ff j g, with f j ! f a.e.-� in �, and so with f j ! f a.e.-w in � since w� �.
By (3-38), ff j g is bounded in L

p�
w .�00/. Hence, since the balls in (3-40) satisfy

Br .y/ � �
00, we obtain f j

Br .y/;w
! fBr .y/;w by our usual weak convergence

argument, and (3-40) follows by Fatou’s lemma from its analogue (3-8) for the
.f j ;rf j /.

Now let f.fk ; Egk/g�H be bounded in W
1;p
�;� .�;Q/ norm and apply Theorem 1.4

with X.�/DL
p
� .�/�L

p
�.�;Q/ to the set S defined by

SD f.fk ; .fk ; Egk//gk ;

and with f.E�
l
;F �

l
/gl chosen to be a finite number of pairs f.Br .yl/;Bc0r .yl/gl

as in (3-40), but now with r fixed depending on �, and with �0 �
S

l Br .yl/. Such
a finite choice exists by (3-2) and the Heine–Borel theorem since �0 is compact;
cf. the proof of Lemma 3.12. Since�0 is completely covered by

S
l E�

l
, assumption

(i) of Theorem 1.4 is fulfilled. Moreover, the collection fF �
l
g has bounded overlaps

uniformly in � by the geometric doubling argument used to prove Lemma 3.12.
Finally, (1-15) follows from (3-39) applied to the bounded sequence f.fk ; Egk/g

since
S

l;� E�
l
��00. Thus Theorem 1.4 implies that there is a subsequence ffki

g of
ffkg and a function f 2L

p�
w .�0/ such that fki

! f a.e.-w in �0 and in L
q
w.�

0/

norm, 1� q < p� . This completes the proof of Theorem 3.20. �

For functions which are compactly supported in a fixed bounded open �0 with
�0 ��, the proof of Theorem 3.20 can be modified to yield compact embedding
into L

q
w.�

0/ for the same�0 without assuming (3-12). Of course we always require
(3-2). Given such �0 and a set H� LipQ;p;0.�

0/, we may view H as a subset of
LipQ;p;0.�/ simply by extending functions in H to all of � as 0 in � n�0. In
this way, the proof of Theorem 3.20 works without (3-12). For example, choosing
HD LipQ;p;0.�

0/, we obtain:
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Theorem 3.24. Let the assumptions of Section 3A hold and w � �. Let �0 be
a bounded open set with �0 � �. Fix p 2 Œ1;1/ and suppose the Poincaré
property of order p in Definition 3.5 holds for LipQ;p;0.�

0/, with LipQ;p;0.�
0/

viewed as a subset of LipQ;p;0.�/ using extension by 0, and suppose the local
Sobolev property of order p in Definition 3.16 holds. Assume the cutoff property
of some order s � p� 0 is true for �, with � as in (3-31), and that (3-33) holds for
LipQ;p;0.�

0/ with t D s=p. Then, for every sequence f.fk ; Egk/g �W
1;p
�;�;0

.�0;Q/

which is bounded in W
1;p
�;� .�

0;Q/ norm, there is a subsequence ffki
g of ffkg and

a function f 2L
p�
w .�0/ such that fki

! f pointwise a.e.-w in �0 and in L
q
w.�

0/

norm, 1� q < p� .

The full force of the local Sobolev estimate in Definition 3.16 is not needed to
prove Theorem 3.24. In fact, it is enough to assume that (3-31) holds only for balls
centered in the fixed compact set �0.

The proof of Theorem 3.24 is like that of Theorem 3.20, working with the
set �0 that occurs in the hypotheses of Theorem 3.24. However, now (3-34) in
the conclusion of Lemma 3.23 (with H D LipQ;p;0.�

0/) remains valid if �0 is
replaced on the left side by � since every f 2 LipQ;p;0.�

0/ vanishes on � n�0.
The resulting estimate serves as a replacement for (3-38), so it is not necessary
to demand that the E�

l
are subsets of a compact set �00 ��. Hence (3-12) is no

longer required. Finally, the Poincaré estimate extends as usual to W
1;p
�;�;0

.�0;Q/

(the closure of LipQ;p;0.�
0//, and due to support considerations, the E�

l
can be

restricted to subsets of�0 by replacing E�
l

by E�
l
\�0; this guarantees w.E�

l
/ <1

since w is locally finite by hypothesis.
Recalling the comments immediately after Definition 3.18 and in Remark 3.19,

we obtain a useful special case of Theorem 3.24:

Corollary 3.25. Let the assumptions of Section 3A hold,� and Q be bounded,wD
� D �, and (3-12) be true. Let �0 be an open set with �0 ��. Fix p 2 Œ1;1/ and
suppose the Poincaré property of order p in Definition 3.5 holds for LipQ;p;0.�

0/

and the local Sobolev property of order p in Definition 3.16 holds. Then, for
every f.fk ; Egk/g �W

1;p
�;�;0

.�0;Q/ which is bounded in W
1;p
�;� .�;Q/ norm, there

is a subsequence ffki
g of ffkg and a function f 2 L

p�
w .�0/ such that fki

! f

pointwise a.e.-w in �0 and in L
q
w.�

0/ norm, 1� q < p� .

In the case where p D 2 and all measures are Lebesgue measure, Corollary 3.25
is used in [Rodney 2007; 2012] to show the existence of weak solutions to Dirichlet
problems for some linear subelliptic equations. It is also used in [Rodney 2010]
to derive the following global Sobolev inequality from the local estimate (3-32),
where �0 is open and �0 ��:

(3-41) kf kL2� .�0/ � C

�Z
�0

j
p

Qrf j2 dx

�1=2

:
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4. Precompact subsets of LN in a quasimetric space

In this section, we consider the situation of an open set � in a topological space
X when X is also endowed with a quasimetric d . As there is no easy way to
define Sobolev spaces on general quasimetric spaces, this section concentrates on
establishing a simple criterion not directly related to Sobolev spaces ensuring that
bounded subsets of LN

w .�/ are precompact in L
q
w.�/ when 1� q <N �1.

We begin by further describing the setting for our result. The topology on X is
expressed in terms of a fixed collection T of subsets of X which may not be related
to the quasimetric d . Thus when we say that a set O � X is open, we mean that
O 2 T. Given an open �, we assume the following:

(i) 8x 2X and r > 0, the d -ball Br .x/D fy 2X W d.x;y/ < rg is a Borel set.

(ii) 8x 2X and r > 0, there is an open set O such that x 2 O� Br .x/.

(iii) If X 6D�, then 8x 2�, d.x; �c/D inffd.x;y/ W y 2�cg> 0.

Property (ii) serves as a substitute for (3-2).
Unlike the situation in Section 3, d -balls centered in � may not be subsets of �

unless X D�. However, we note the following fact.

Remark 4.1. Properties (ii) and (iii) guarantee that for any compact set K ��,
there exists ".K/ > 0 such that Br .x/ � � if x 2K and r < ".K/. In fact, first
note that for any x 2�, (iii) implies that the d -ball B.x/ with center x and radius
rx D d.x; �c/=.2�/ lies in �. If K is a compact set in �, (ii) shows that K can be
covered by a finite number of such balls fB.xi/g. With ".K/ chosen to be a suitably
small multiple (depending on �) of minfrxi

g, the remark then follows easily from
the swallowing property of d -balls.

Further, we assume that .�; d/ satisfies the local geometric doubling condition
in Definition 3.3, that is, for each compact set K ��, there exists ı0.K/ > 0 such
that, for all x 2K and all 0 < r 0 < r < ı0.K/, the number of disjoint d-balls of
common radius r 0 contained in Br .x/ is at most a constant Cr=r 0 depending on
r=r 0 but not on K. We will choose ı0.K/� ".K/.

With this framework in force, we now state the main result of the section.

Theorem 4.2. Let � � X be as above, and let w be a finite Borel measure on �
such that, given any � > 0, there is a compact set K �� with w.� nK/ < �. Let
1 � p <1 and 1 <N �1, and suppose S� LN

w .�/ has the property that, for
any compact set K ��, there exists ıK > 0 such that
(4-1)
kf �fB;wkLp

w.B/
� b.f;B/ if f 2 S and B D Br .x/, x 2K, 0< r < ıK ;

where b.f;B/ is a nonnegative ball set function. Furthermore, suppose there is a
constant c0 � 1 such that for every � > 0 and every compact set K ��, there exists
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Qı�;K > 0 such that

(4-2)
X
B2F

b.f;B/p � �p for all f 2 S

for every finite family FD fBg of d-balls centered in K with common radius less
than Qı�;K for which fc0Bg is a pairwise disjoint family of subsets of �. Then any
sequence in S that is bounded in LN

w .�/ has a subsequence that converges in
L

q
w.�/ for 1� q <N to a function in LN

w .�/.

Proof. Let � > 0 and choose a compact set K �� with w.� nK/ < �. Next, for
c0� 1, as in the proof of Lemma 3.12, there is a positive constant r D r.�;K; c0/ <

minfıK ; Qı�;K ; ı0.K/; ".K/=.
 c0/g (see (4-1),(4-2), Definition 3.3 and Remark 4.1),
where 
 D � C 2�2 with � as in (3-1), and a finite family fBr .yk/gk of d-balls
centered in K satisfying K �

S
k Br .yk/ and whose dilates fBc0r .yk/gk lie in �

and have the bounded intercept property (with intercept constant M independent
of �). Since fBc0r .yk/gk has bounded intercepts with bound M , it can be written
as the union of at most M families of disjoint d -balls; see, for example, the proof
of [Chua and Wheeden 2008, Lemma 2.5]. By (4-2), we conclude thatX

k

b.f;Br .yk//
p
�M�p:

Theorem 4.2 follows then immediately from Theorem 1.2; see also Remark 1.3(1).
�

As an application of Theorem 4.2 we present a version of [Hajłasz and Koskela
2000, Theorem 8.1] in the case p� 1. Our version improves the one in [Hajłasz and
Koskela 2000] by allowing two different measures and by relaxing the assumptions
made about embedding and doubling. Furthermore, while the analogue in [Hajłasz
and Koskela 2000] of our (4-3) uses only the L1

w.B/ norm on the left side, it
automatically self-improves to the L

p
w.B/ norm due to the doubling assumption,

with a further fixed enlargement of the ball c0B on the right side; see, for example,
[Hajłasz and Koskela 2000, Theorem 5.1].

Corollary 4.3. Let X; d; �;w be as above, and let � be a Borel measure on �.
Fix 1� p <1, 1<N �1, and c0 � 1. Consider a sequence of pairs

f.fi ;gi/g �LN
w .�/�Lp

�.�/

such that, for any compact set K ��, there exists NıK > 0 with

(4-3) kfi � .fi/B;wkLp
w.B/

� a�.B/kgikLp
�.c0B/

for all i and all d-balls B centered in K with c0B � � and r.B/ < NıK , where
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a�.B/ is a nonnegative ball set function satisfying

(4-4) lim sup
r!0

f sup
y2K

a�.Br .y//g D 0:

Then if ffig and fgig are bounded in LN
w .�/ and L

p
�.�/, respectively, ffig has

a subsequence converging in L
q
w.�/ for 1 � q < N to a function belonging to

LN
w .�/.

Proof. Given � > 0 and compact set K � �, use (4-4) to choose r0 > 0 such
that a�.Br / < �=ˇ for any d-ball Br centered in K with r < r0, where ˇ D
supi kgikLp

�.�/
<1. In Theorem 4.2, choose S D ffig, ıK D NıK , b.fi ;B/ D

a�.B/kgikLp
�.c0B/, and

Qı�;K DminfNıK ; ı0.K/; r0; ".K/=c0g:

If B is a d -ball with center in K and r.B/ < Qı�;K , then c0B ��. HenceX
B2F

.a�.B/kgikLp
�.c0B//

p
� �p
kgik

p

L
p
�.�/

=ˇp
� �p

for every F as in Theorem 4.2. The conclusion now follows from Theorem 4.2. �

Remark 4.4. (1) The gi in (4-3) are usually the modulus of a fixed derivative of
the corresponding fi , such as jrfi j when X is a Riemannian manifold. More
generally, gi may be the upper gradient of fi (see [Heinonen 2001] for the
definition).

(2) Theorem 4.2 can also be used to obtain an extension of Theorem 2.4 to s-John
domains in quasimetric spaces; see [Chua and Wheeden 2011, Theorem 1.6].

Appendix

We briefly consider analogues of Theorem 3.14, Corollary 3.15, and Theorem 3.20
without assuming w � �, but adding the assumption that H is linear. In this
case, (3-27) can be extended by continuity to obtain a bounded linear map from
H into L

p�
w .�/. Here, as always, H denotes the closure of f.f;rf / W f 2 Hg

in W
1;p
�;� .�;Q/. However, when w� � fails, there is no natural way to obtain

the extension for every .f; Eg/ 2 H keeping the same f on the left side. In fact,
let .f; Eg/ 2 H and choose ffj g � H with .fj ;rfj / ! .f; Eg/ in W

1;p
�;� .�;Q/.

Linearity of H allows us to apply (3-27) to differences of the fj and conclude that
ffj g is a Cauchy sequence in L

p�
w .�/. Therefore fj ! f � in L

p�
w .�/ for some

f � 2L
p�
w .�/, and

kf �kLp�
w .�/ � Ck.f; Eg/k

W
1;p
�;� .�;Q/

if .f; Eg/ 2H:
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The function f � is determined by .f; Eg/, that is, f � is independent of the par-
ticular sequence ffj g � H above. Indeed, if f Qfj g is another sequence in H with
. Qfj ;r Qfj /! .f; Eg/ in W

1;p
�;� .�;Q/, and if Qfj !

Qf � in L
p�
w .�/, then, by (3-27)

and linearity of H,

k Qfj �fjkLp�
w .�/ � Ck. Qfj �fj ;r Qfj �rfj /kW 1;p

�;� .�;Q/
! 0:

Consequently k Qf ��f �kLp�
w .�/ D 0. Thus .f; Eg/ determines f � uniquely as an

element of L
p�
w .�/. Define a mapping

(A-1) T WH!Lp�
w .�/ by setting T .f; Eg/D f �:

Note that H is a linear set in W
1;p
�;� .�;Q/ since H is linear, and that T is a bounded

linear map from H into L
p�
w .�/. Also note that T satisfies T .f;rf /D f when

restricted to those .f;rf / with f 2H. Furthermore, if w� �, then T .f; Eg/D f

for all .f; Eg/ 2 H, that is, f � D f a.e.-w for all .f; Eg/ 2 H. This follows since
fj ! f in L

p
� .�/ norm and fj ! f � in L

p�
w .�/ norm. In this appendix, where

it is not assumed that w� �, f � plays a main role. One can find a function h such
that h D f � a.e.-w and h D f a.e.-�, but as this fact is not needed, we omit its
proof.

An analogue of Theorem 3.14 is given in the next result.

Theorem A.1. Let all the assumptions of Theorem 3.14 hold except that now the
set H is linear and we do not assume w � �. Then the map T W H! L

q
w.�/

defined in (A-1) is compact if 1� q < p� . Equivalently, if f.fk ; Egk/g is a sequence
in H with supk k.fk ; Egk/kW 1;p

�;�
.�;Q/ <1, then ff �

k
g has a subsequence which

converges in L
q
w.�/ for 1� q < p� , where f �

k
D T .fk ; Egk/. Moreover, the limit

of the subsequence belongs to L
p�
w .�/.

Proof. Let H satisfy the hypothesis of the theorem and let f.fk ; Egk/g � H be
bounded in W

1;p
�;� .�;Q/. For each k, choose hk 2H such that

(A-2) k.fk ; Egk/� .hk ;rhk/kW 1;p
�;� .�;Q/

� 2�k :

Set H1 D fhkgk � H. Then f.hk ;rhk/ W hk 2 H1g is bounded in W
1;p
�;� .�;Q/.

Furthermore, (3-27) implies a version of (3-14), namely,

sup
f 2H1

fkf kLp�
w .�/Ck.f;rf /kW 1;p

�;� .�;Q/
g<1:

Theorem 3.7 now applies to H1 with N D p� and gives that any sequence incH1 has a subsequence which converges in L
q
w.�/ norm for 1 � q < p� to a

function belonging to L
p�
w .�/. The sequence fhkg lies in cH1, as is easily seen by

considering, for each fixed k, the constant sequence ff j g defined by f j D hk for
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all j . We conclude that fhkg has a subsequence fhkl
g converging in L

q
w.�/ norm

for 1� q <p� to a function h2L
p�
w .�/. By linearity and boundedness of T from

H to L
p�
w .�/ together with (A-2), we have (writing f �

k
D T .fk ; Egk/)

kf �k � hkkLp�
w .�/ D kT .fk ; Egk/�T .hk ;rhk/kLp�

w .�/ � C 2�k
! 0:

Restricting k to fklg and using w.�/ <1, we conclude that ff �
kl
g also converges

to h in L
q
w.�/ for 1� q < p� , which completes the proof. �

Setting HD LipQ;p.�/ in Theorem A.1 gives an analogue of Corollary 3.15.

Corollary A.2. Let the hypotheses of Theorem A.1 hold for HD LipQ;p.�/. Then
the map T defined by (A-1) is a compact map of W

1;p
�;� .�;Q/ into L

q
w.�/ for 1�

q < p� , that is, if f.fk ; Egk/g �W
1;p
�;� .�;Q/ and supk k.fk ; Egk/kW 1;p

�;� .�;Q/
<1,

then ff �
k
g has a subsequence which converges in L

q
w.�/ for 1 � q < p� , where

f �
k
D T .fk ; Egk/. Moreover, the limit of the subsequence belongs to L

p�
w .�/.

Theorem 3.20 also has an analogue without assuming w � � provided H is
linear, and in this instance (3-27) is not required: the subsequence ffki

g of ffkg in
the conclusion is then replaced by a subsequence of ff �

k
g, where f �

k
is constructed

as above but now using bounded open �0 whose closures increase to �. Now f �

arises when (3-38) is extended to H, namely, instead of (3-39), we obtain

kf �kLp�
w .�00/ � C.�00/ k.f; Eg/k

W
1;p
�;� .�;Q/

if .f; Eg/ 2H

where f � is constructed for a pair .f; Eg/ 2 H by using linearity of H and (3-38)
for a particular .�0; �00/. It is easy to see that f � 2L

p�
w;loc.�/ by letting �0%�.

The Poincaré inequality analogous to (3-40) is�Z
Br .y/

jf ��f �Br .y/;w
j
p dw

�1=p

� �k.f; Eg/k
W

1;p
�;� .Bc0r .y/;Q/

if .f; Eg/ 2H;

obtained by extending (3-8) from H to H. Further details are omitted.

References

[Adams and Fournier 2003] R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure and
Applied Mathematics 140, Academic Press, New York, 2003. MR 2009e:46025 Zbl 1098.46001

[Aubin 1976] T. Aubin, “Équations différentielles non linéaires et problème de Yamabe concernant la
courbure scalaire”, J. Math. Pures Appl. .9/ 55:3 (1976), 269–296. MR 55 #4288 Zbl 0336.53033

[Chua 1995] S.-K. Chua, “Weighted Sobolev interpolation inequalities on certain domains”, J. London
Math. Soc. .2/ 51:3 (1995), 532–544. MR 96d:46033 Zbl 0845.26008

[Chua and Wheeden 2008] S.-K. Chua and R. L. Wheeden, “Self-improving properties of inequalities
of Poincaré type on measure spaces and applications”, J. Funct. Anal. 255:11 (2008), 2977–3007.
MR 2010f:46050 Zbl 1172.46020

http://msp.org/idx/mr/2009e:46025
http://msp.org/idx/zbl/1098.46001
http://msp.org/idx/mr/55:4288
http://msp.org/idx/zbl/0336.53033
http://dx.doi.org/10.1112/jlms/51.3.532
http://msp.org/idx/mr/96d:46033
http://msp.org/idx/zbl/0845.26008
http://dx.doi.org/10.1016/j.jfa.2008.05.012
http://dx.doi.org/10.1016/j.jfa.2008.05.012
http://msp.org/idx/mr/2010f:46050
http://msp.org/idx/zbl/1172.46020


56 SENG-KEE CHUA, SCOTT RODNEY AND RICHARD L. WHEEDEN

[Chua and Wheeden 2011] S.-K. Chua and R. L. Wheeden, “Self-improving properties of inequalities
of Poincaré type on s-John domains”, Pacific J. Math. 250:1 (2011), 67–108. MR 2012c:46068
Zbl 1214.26014

[Fabes et al. 1982] E. B. Fabes, C. E. Kenig, and R. P. Serapioni, “The local regularity of solu-
tions of degenerate elliptic equations”, Comm. Partial Differential Equations 7:1 (1982), 77–116.
MR 84i:35070 Zbl 0498.35042

[Franchi et al. 1997] B. Franchi, R. Serapioni, and F. Serra Cassano, “Approximation and imbedding
theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields”, Boll. Un.
Mat. Ital. B .7/ 11:1 (1997), 83–117. MR 98c:46062 Zbl 0952.49010

[Gilbarg and Trudinger 1997] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations
of second order, 3rd ed., Grundlehren der mathematischen Wissenschaften 224, Springer, Berlin,
1997. MR 2001k:35004 Zbl 1042.35002

[Hajłasz 1993] P. Hajłasz, “Note on Meyers–Serrin’s theorem”, Exposition. Math. 11:4 (1993),
377–379. MR 94e:46060 Zbl 0799.46042

[Hajłasz and Koskela 1998] P. Hajłasz and P. Koskela, “Isoperimetric inequalities and imbedding
theorems in irregular domains”, J. London Math. Soc. .2/ 58:2 (1998), 425–450. MR 99m:46079
Zbl 0922.46034

[Hajłasz and Koskela 2000] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc.
688, American Mathematical Society, 2000. MR 2000j:46063 Zbl 0952.46022

[Heinonen 2001] J. Heinonen, Lectures on analysis on metric spaces, Springer, New York, 2001.
MR 2002c:30028 Zbl 0985.46008

[Hytönen and Martikainen 2012] T. Hytönen and H. Martikainen, “Non-homogeneous T b theorem
and random dyadic cubes on metric measure spaces”, J. Geom. Anal. 22:4 (2012), 1071–1107.
MR 2965363 Zbl 06124339

[Kilpeläinen and Malý 2000] T. Kilpeläinen and J. Malý, “Sobolev inequalities on sets with irregular
boundaries”, Z. Anal. Anwendungen 19:2 (2000), 369–380. MR 2001g:46075 Zbl 0959.46020

[Monticelli et al. 2012] D. D. Monticelli, S. Rodney, and R. L. Wheeden, “Boundedness of weak
solutions of degenerate quasilinear equations with rough coefficients”, Differential Integral Equations
25:1-2 (2012), 143–200. MR 2906551 Zbl 1249.35117

[Rios et al. 2013] C. Rios, E. T. Sawyer, and R. L. Wheeden, “Hypoellipticity for infinitely degenerate
quasilinear equations and the Dirichlet problem”, J. d’Analyse Math. 119 (2013), 1–62. MR 3043146
Zbl 06186919

[Rodney 2007] S. W. Rodney, Existence of weak solutions to subelliptic partial differential equations
in divergence form and the necessity of the Sobolev and Poincare inequalities, Ph.D. thesis, McMaster
University, 2007, available at http://search.proquest.com/docview/304819194. MR 2711279

[Rodney 2010] S. Rodney, “A degenerate Sobolev inequality for a large open set in a homogeneous
space”, Trans. Amer. Math. Soc. 362:2 (2010), 673–685. MR 2011f:35055 Zbl 1190.35010

[Rodney 2012] S. Rodney, “Existence of weak solutions of linear subelliptic Dirichlet problems with
rough coefficients”, Canad. J. Math. 64:6 (2012), 1395–1414. MR 2994671 Zbl 06111146

[Rudin 1987] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, New York, 1987.
MR 88k:00002 Zbl 0925.00005

[Sawyer and Wheeden 2006] E. T. Sawyer and R. L. Wheeden, Hölder continuity of weak solutions to
subelliptic equations with rough coefficients, Mem. Amer. Math. Soc. 847, American Mathematical
Society, 2006. MR 2007f:35037 Zbl 1096.35031

http://dx.doi.org/10.2140/pjm.2011.250.67
http://dx.doi.org/10.2140/pjm.2011.250.67
http://msp.org/idx/mr/2012c:46068
http://msp.org/idx/zbl/1214.26014
http://dx.doi.org/10.1080/03605308208820218
http://dx.doi.org/10.1080/03605308208820218
http://msp.org/idx/mr/84i:35070
http://msp.org/idx/zbl/0498.35042
http://msp.org/idx/mr/98c:46062
http://msp.org/idx/zbl/0952.49010
http://msp.org/idx/mr/2001k:35004
http://msp.org/idx/zbl/1042.35002
http://msp.org/idx/mr/94e:46060
http://msp.org/idx/zbl/0799.46042
http://dx.doi.org/10.1112/S0024610798006346
http://dx.doi.org/10.1112/S0024610798006346
http://msp.org/idx/mr/99m:46079
http://msp.org/idx/zbl/0922.46034
http://tinyurl.com/Sobolev-Poincare-PDF
http://msp.org/idx/mr/2000j:46063
http://msp.org/idx/zbl/0952.46022
http://dx.doi.org/10.1007/978-1-4613-0131-8
http://msp.org/idx/mr/2002c:30028
http://msp.org/idx/zbl/0985.46008
http://dx.doi.org/10.1007/s12220-011-9230-z
http://dx.doi.org/10.1007/s12220-011-9230-z
http://msp.org/idx/mr/2965363
http://msp.org/idx/zbl/06124339
http://www.emis.de/journals/ZAA/1902/jmalypri.pdf
http://www.emis.de/journals/ZAA/1902/jmalypri.pdf
http://msp.org/idx/mr/2001g:46075
http://msp.org/idx/zbl/0959.46020
http://projecteuclid.org/euclid.die/1356012830
http://projecteuclid.org/euclid.die/1356012830
http://msp.org/idx/mr/2906551
http://msp.org/idx/zbl/1249.35117
http://dx.doi.org/10.1007/s11854-013-0001-6
http://dx.doi.org/10.1007/s11854-013-0001-6
http://msp.org/idx/mr/3043146
http://msp.org/idx/zbl/06186919
http://search.proquest.com/docview/304819194
http://search.proquest.com/docview/304819194
http://msp.org/idx/mr/2711279
http://dx.doi.org/10.1090/S0002-9947-09-04809-0
http://dx.doi.org/10.1090/S0002-9947-09-04809-0
http://msp.org/idx/mr/2011f:35055
http://msp.org/idx/zbl/1190.35010
http://dx.doi.org/10.4153/CJM-2012-029-1
http://dx.doi.org/10.4153/CJM-2012-029-1
http://msp.org/idx/mr/2994671
http://msp.org/idx/zbl/06111146
http://tinyurl.com/Rudin-Complex-Analysis-PDF
http://msp.org/idx/mr/88k:00002
http://msp.org/idx/zbl/0925.00005
http://www.math.mcmaster.ca/~sawyer/Publications/swmemoirsrev.pdf
http://www.math.mcmaster.ca/~sawyer/Publications/swmemoirsrev.pdf
http://msp.org/idx/mr/2007f:35037
http://msp.org/idx/zbl/1096.35031


A COMPACT EMBEDDING THEOREM FOR GENERALIZED SOBOLEV SPACES 57

[Sawyer and Wheeden 2010] E. T. Sawyer and R. L. Wheeden, “Degenerate Sobolev spaces and regu-
larity of subelliptic equations”, Trans. Amer. Math. Soc. 362:4 (2010), 1869–1906. MR 2010m:35077
Zbl 1191.35085

[Schoen 1984] R. Schoen, “Conformal deformation of a Riemannian metric to constant scalar
curvature”, J. Differential Geom. 20:2 (1984), 479–495. MR 86i:58137 Zbl 0576.53028

[Trudinger 1968] N. S. Trudinger, “Remarks concerning the conformal deformation of Riemannian
structures on compact manifolds”, Ann. Scuola Norm. Sup. Pisa .3/ 22 (1968), 265–274. MR 39
#2093 Zbl 0159.23801

[Turesson 2000] B. O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture
Notes in Mathematics 1736, Springer, Berlin, 2000. MR 2002f:31027 Zbl 0949.31006

[Yamabe 1960] H. Yamabe, “On a deformation of Riemannian structures on compact manifolds”,
Osaka Math. J. 12 (1960), 21–37. MR 23 #A2847 Zbl 0096.37201

Received July 25, 2012.

SENG-KEE CHUA

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

10, LOWER KENT RIDGE ROAD

SINGAPORE 119076
SINGAPORE

matcsk@nus.edu.sg

SCOTT RODNEY

DEPARTMENT OF MATHEMATICS, PHYSICS, AND GEOLOGY

CAPE BRETON UNIVERSITY

P.O. BOX 5300, 1250 GRAND LAKE ROAD

SYDNEY, NS B1P 6L2
CANADA

scott_rodney@cbu.ca

RICHARD L. WHEEDEN

DEPARTMENT OF MATHEMATICS

RUTGERS UNIVERSITY

110 FRELINGHUYSEN ROAD

PISCATAWAY, NJ 08854
UNITED STATES

wheeden@math.rutgers.edu

http://dx.doi.org/10.1090/S0002-9947-09-04756-4
http://dx.doi.org/10.1090/S0002-9947-09-04756-4
http://msp.org/idx/mr/2010m:35077
http://msp.org/idx/zbl/1191.35085
http://projecteuclid.org/euclid.jdg/1214439291
http://projecteuclid.org/euclid.jdg/1214439291
http://msp.org/idx/mr/86i:58137
http://msp.org/idx/zbl/0576.53028
http://www.numdam.org/item?id=ASNSP_1968_3_22_2_265_0
http://www.numdam.org/item?id=ASNSP_1968_3_22_2_265_0
http://msp.org/idx/mr/39:2093
http://msp.org/idx/mr/39:2093
http://msp.org/idx/zbl/0159.23801
http://dx.doi.org/10.1007/BFb0103908
http://msp.org/idx/mr/2002f:31027
http://msp.org/idx/zbl/0949.31006
http://projecteuclid.org/euclid.ojm/1200689814
http://msp.org/idx/mr/23:A2847
http://msp.org/idx/zbl/0096.37201
mailto:matcsk@nus.edu.sg
mailto:scott_rodney@cbu.ca
mailto:wheeden@math.rutgers.edu


PACIFIC JOURNAL OF MATHEMATICS
Vol. 265, No. 1, 2013

dx.doi.org/10.2140/pjm.2013.265.59

PARTIAL INTEGRABILITY OF ALMOST COMPLEX
STRUCTURES AND THE EXISTENCE OF SOLUTIONS FOR

QUASILINEAR CAUCHY–RIEMANN EQUATIONS

CHONG-KYU HAN AND JONG-DO PARK

We study the local solvability of the system of quasilinear Cauchy–Riemann
equations for d unknown functions in n complex variables, which is a sys-
tem of elliptic type and overdetermined if n ≥ 2. We consider an associated
almost complex structure on Cn+d and its partial integrability and prove by
using the Newlander–Nirenberg theorem and its algebraic generalizations
that the existence of a pseudoholomorphic function on the zero set is equiv-
alent to the local solvability of the original quasilinear system. We discuss
an algorithm for finding pseudoholomorphic functions on the zero set and
then present examples.

Introduction

A classical method for solving partial differential equations (PDE) of first order
is the method of characteristics which originated from [Monge 1803]. One finds
curves along which a PDE becomes a system of ordinary differential equations
and constructs a solution whose graph, or 1-jet graph, is a union of those curves.
Consider a quasilinear equation

(0-1)
n∑
λ=1

aλ(x, u)
∂u
∂xλ
= b(x, u)

for a real-valued function u in n real variables x = (x1, . . . , xn), where aλ and b
are smooth (C∞) and aλ, λ= 1, . . . , n, are not all zero. The characteristic vector
field of (0-1) is a smooth vector field

X =
n∑
λ=1

aλ
∂

∂xλ
+ b

∂

∂u
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on Rn+1
= {(x, u)} and a smooth real-valued function φ(x, u) is a first integral

of X if Xφ = 0. Then, by the implicit function theorem, any first integral φ with
φu 6= 0 gives an implicit solution φ(x, u)= 0 to (0-1). The same method works for
systems. Consider

(0-2)
n∑
λ=1

aλj (x, u)
∂u
∂xλ
= b j (x, u), j = 1, . . . , p, p ≤ n,

for a real-valued function u in n real variables x = (x1, . . . , xn). We assume the
matrix (aλj ) has maximal rank p. If p ≥ 2, then (0-2) is overdetermined; therefore,
there are no solutions generically. To discuss the existence of solutions let

(0-3) X j =

n∑
λ=1

aλj
∂

∂xλ
+ b j

∂

∂u
, j = 1, . . . , p,

be vector fields on Rn+1
= {(x, u)}. For a smooth function u(x), a normal vector

to the graph S = {(x, u(x)) ∈ Rn+1
} is (∇u,−1) = (∂u/∂x1, . . . , ∂u/∂xn,−1).

Then (0-2) is equivalent to X j · (∇u,−1) = 0, which implies that X j is tangent
to the graph S at every point. A smooth real-valued function F is said to have
invariant zero-level with respect to vector fields X1, . . . , X p if (X j F)(x)= 0 for
all j = 1, . . . , p and for all x with F(x)= 0. We have:

Theorem 0.1. Let (x0, u0) ∈ Rn
×R. On a neighborhood of (x0, u0) there exists

a solution u(x) of (0-2) with u(x0) = u0 if and only if there is a function F(x, u)
with ∂F/∂u 6= 0 and F(x0, u0)= 0 that has invariant zero-level with respect to the
set of vector fields (0-3).

Proof. Suppose that u = f (x), x = (x1, . . . , xn), is a solution of (0-2). Let
F(x, u) := f (x)− u. Then we see that Fu 6= 0 and that, for each j = 1, . . . , p,

X j F = 0 on {F = 0}.

Conversely, suppose that F(x, u) is a function with Fu 6= 0, F(x0, u0)= 0, that has
invariant zero-level. Differentiating the implicit function F(x, u)= 0 with respect
to xλ using the chain rule, we have

(0-4)
∂F
∂xλ
=−

∂F
∂u

∂u
∂xλ

for each λ= 1, . . . , n.

On the other hand, since F has invariant zero-level we have

(0-5) X j F =
n∑
λ=1

aλj
∂F
∂xλ
+ b j

∂F
∂u
= 0 on {F = 0}.
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Substituting (0-4) for ∂F/∂xλ in (0-5) we have

−
∂F
∂u

(
n∑
λ=1

aλj
∂u
∂xλ
− b j

)
= 0 on {F = 0};

that is, u = f (x) satisfies (0-2). �

For more details on (0-2) we refer the readers to [Han and Park 2013]. In this
paper we study the complex analogue of Theorem 0.1. Let z = (z1, . . . , zn) for
z j
= x j
+
√
−1y j be complex variables and let

∂

∂ z̄ j :=
1
2

(
∂

∂x j +
√
−1

∂

∂y j

)
and

∂

∂z j :=
1
2

(
∂

∂x j −
√
−1

∂

∂y j

)
.

Consider a system of PDE for a complex-valued unknown function w = w(z, z̄):

(0-6)
∂w

∂ z̄ j +

n∑
k=1

Ak
j (z, z̄, w, w̄)

∂w

∂zk = B j (z, z̄, w, w̄), j = 1, . . . , n,

where Ak
j and B j are complex-valued C∞ functions that are defined on a neigh-

borhood of the origin of Cn+1
= {(z, w)} and Ak

j are sufficiently small. If n ≥ 2,
then (0-6) is overdetermined. We shall call (0-6) quasilinear Cauchy–Riemann
equations. We prove the local solvability in the C∞ category by purely formal
arguments based on the Newlander–Nirenberg theorem and its algebraic gener-
alizations. We observed that a function ζ(z, z̄, w, w̄) = 0 is an implicit solution
to (0-6) if and only if ζ is pseudoholomorphic on the zero set (see Definition 1.6)
with respect to an almost complex structure J on Cn+1

= {(z, w)} determined by
the coefficients Ak

j and B j (Theorem 3.3). Another observation is that a function
ζ(z, z̄, w, w̄) with dζ ∧ d ζ̄ 6= 0 is pseudoholomorphic on the zero set if and only
if the zero locus ζ = 0 is a J -invariant submanifold of (Cn+1, J ) (Theorem 2.5).
To check the partial integrability of the almost complex structure we make use of
Theorem 1.3, which is due to L. Nirenberg and F. Treves.

Section 4 is a generalization of our results of Section 3 to the cases of multiple
unknown functions w = (w1, . . . , wd):

(0-7)
∂wα

∂ z̄ j +

n∑
k=1

Ak
j (z, z̄, w, w̄)

∂wα

∂zk = Bαj (z, z̄, w, w̄)

for each j = 1, . . . , n (n≥ 1) and α= 1, . . . , d , where Ak
j and Bαj are C∞ functions

defined on a neighborhood of the origin of Cn+d and Ak
j are sufficiently small.

We discuss in Section 5 the determined case n = 1. In Section 6 we present
examples of n = 2 including the equations for the pseudoanalytic functions, which
will be introduced in Section 7. In the last section of this paper we briefly survey
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the history of the perturbed Cauchy–Riemann equations and overdetermined PDE
systems.

Finally we mention the regularity of solutions to (0-6) or (0-7): it is well-known
(see [Gilbarg and Trudinger 1998]) that a linear elliptic partial differential equation
is hypoelliptic; that is, any distribution solution is C∞ whenever all the coefficients
of the differential operators are C∞. In general, a nonlinear differential equation is
said to be elliptic if its linearization is an elliptic differential operator (see [Taylor
1997]). It was proved in [Douglis and Nirenberg 1955] that nonlinear elliptic
systems are hypoelliptic by Schauder-type a priori estimates. Since the linearization
of each quasilinear equation in (0-6) or (0-7) is elliptic, any C1,α solution to (0-6)
or (0-7) is always C∞.

1. J-holomorphic functions on almost complex manifolds

Let M be a smooth (C∞) manifold of dimension 2m, m ≥ 2, with smooth al-
most complex structure J . Then the complexified tangent bundle CTM has the
decomposition

CTM = T 1,0(M)⊕ T 0,1(M),

where T 1,0(M) (T 0,1(M), respectively) is the subbundle of rank-m of eigenvectors
of J associated with the eigenvalue i (−i , respectively). The dual decomposition
of the complexified cotangent bundle CT ∗M is

CT ∗M = (T ∗M)1,0⊕ (T ∗M)0,1.

We can find real vector fields X j , j = 1, . . . ,m, such that

X1, J X1, . . . , Xm, J Xm

spans the real tangent bundle TM . Let

Z j =
1
2(X j − i J X j ) and Z̄ j =

1
2(X j + i J X j )

for each j = 1, . . . ,m. Then {Z1, . . . , Zm} spans T 1,0(M) and {Z̄1, . . . , Z̄m}

spans T 0,1(M). Let {θ1, . . . , θm
} be a set of independent 1-forms that anni-

hilates T 0,1(M) and thus {θ̄1, . . . , θ̄m
} annihilates T 1,0(M). Then the subbun-

dles (T ∗M)1,0 and (T ∗M)0,1 of the complexified cotangent bundle are the linear
spans of {θ1, . . . , θm

} and {θ̄1, . . . , θ̄m
}, respectively.

A complex-valued function ζ is called J -holomorphic (or pseudoholomorphic) if

(1-1) Z̄ jζ = 0, j = 1, . . . ,m.

Equation (1-1) is an overdetermined system of linear PDE, and thus, in general,
there are no solutions other than constants. J -holomorphic functions ζ 1, . . . , ζ q
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are said to be independent if

dζ 1
∧ · · · ∧ dζ q

6= 0.

Equation (1-1) is equivalent to saying that dζ is a section of (T ∗M)1,0, so that there
exist at most m independent J -holomorphic functions. J is said to be integrable if

(1-2) [T 1,0(M), T 1,0(M)] ⊂ T 1,0(M),

which means that the bracket of any two sections of T 1,0(M) is again a section
of T 1,0(M). For the theory of general integrable structures, we refer the readers to
[Berhanu et al. 2008].

We consider the exterior algebra of differential forms with complex coefficients:

�∗ =�0
⊕�1

⊕ · · ·⊕�2m,

where �0 is the ring of smooth complex-valued functions and �r (r = 1, . . . , 2m)
is the module over �0 of complex-valued smooth r -forms on M .

Definition 1.1. A subalgebra I of �∗ is called an algebraic ideal if the following
conditions hold:

(i) I∧�∗ ⊂ I,

(ii) if φ =
∑2m

r=0 φr ∈ I, where φr ∈ �
r , then each component φr belongs to I

(homogeneity condition).

The homogeneity condition implies that I is a two-sided ideal; that is,�∗∧I⊂I.

In this paper we consider ideals generated by finitely many complex-valued
functions and finitely many 1-forms. Let ρ = (ρ1, . . . , ρd) and φ = (φ1, . . . , φq)

be a system of functions and 1-forms, respectively. We denote by I(ρ, φ), or simply
by (ρ, φ), the algebraic ideal generated by ρ and φ, which is the set of all elements
of �∗ of the form

d∑
α=1

ραωα +

q∑
k=1

φk
∧ψk for some ωα, ψk

∈�∗.

For two elements α and β of �∗,

α ≡ β mod (ρ, φ)

means that α−β ∈ I(ρ, φ).
The integrability condition (1-2) can be written as

(1-3) [Z j , Zk] ∈ 0(T 1,0(M)) for all j, k = 1, . . . ,m,

where 0 denotes the set of all smooth sections. Equation (1-3) is equivalent to

dθ` ≡ 0 mod (θ) for all `= 1, . . . ,m,
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where θ = (θ1, . . . , θm).

Theorem 1.2 [Newlander and Nirenberg 1957]. Let (M2m, J ) be a C∞ almost
complex manifold. If J is integrable then there exist m independent J -holomorphic
functions.

The converse is also true, which is rather trivial. Now we fix notations: for any
subbundle I ⊂ (T ∗M)1,0 we denote by I the module over �0 of smooth sections
of I and by (I ) the algebraic ideal of �∗ generated by the smooth sections of I . By
using Theorem 1.2 and the Frobenius theorem the following was proved in [Trèves
1981]:

Theorem 1.3. Suppose that T ′ is a subbundle of (T ∗M)1,0 of rank q (q < m) and
that T ′ is closed; that is, dT ′⊂ (T ′). Then there exist q independent J -holomorphic
functions ζ 1, . . . , ζ q whose differentials dζ 1, . . . , dζ q span T ′.

The problem of determining conditions for the existence of J -holomorphic
functions on almost complex manifolds has been examined in [Mushkarov 1981;
1986] by studying the involutivity of the Nijenhuis bundle. Criteria for the existence
of J -holomorphic mappings into other almost complex manifolds are given in
[Kruglikov 1998] in terms of Nijenhuis tensors and their generalizations. The
following theorem is found in [Han and Kim 2012].

Theorem 1.4. Let M2m (m ≥ 2) be a C∞ manifold with C∞ almost complex
structure J . Let (T ∗M)1,0 be the bundle of (1, 0)-forms. Then there exist a sequence
of subbundles (T ∗M)1,0 := I (0) ⊃ I (1) ⊃ I (2) ⊃ · · · and a nonnegative integer ν
such that for k = 0, 1, 2, . . . :

(i) I (k+1) ( I (k), if k < ν,

(ii) I (k+1)
= I (k), if k ≥ ν,

(iii) d I (k+1)
≡ 0 mod I (k),

under a generic assumption in each step of the construction of the sequence. More-
over, a function f is J -holomorphic if and only if d f ∈ I (ν); thus the number of
independent J -holomorphic functions is equal to the rank of I (ν).

Definition 1.5. The integer ν of Theorem 1.4 is called the type of the almost
complex structure J . We also say that the Pfaffian system (θ1, . . . , θm) has derived
length ν.

Proof of Theorem 1.4. We shall find the largest closed subbundle of (T ∗M)1,0

starting with I = I (0) = (T ∗M)1,0: the exterior derivative d : I → �2 is not a
module homomorphism, but composition with the projection

I
d
−→�2 π

−→�2/(I )
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is an �0-module homomorphism. Let δ = π ◦ d. Consider the submodule I (1) :=
ker δ of I . We assume that I (1) has constant rank on M , and hence defines a
subbundle I (1) of (T ∗M)1,0. We have a short exact sequence of �0-modules

0→ I (1)→ I
δ
−→ d I/(I )→ 0.

The subbundle I (1) is called the first derived system of (T ∗M)1,0. Assuming
that I (k−1) has constant rank, we define inductively the k-th derived system I (k) by

0→ I (k)→ I (k−1) δ
−→ d I (k−1)/(I (k−1))→ 0.

Let ν be the smallest integer with I (ν) = I (ν+1). Then we have the sequence of
subbundles

(1-4) (T ∗M)1,0 := I := I (0) ⊃ I (1) ⊃ · · · ⊃ I (ν−1)
⊃ I (ν).

Notice that d I (ν) ⊂ (I (ν)); that is, I (ν) is closed. Assume that I (ν) has constant
rank q. Then by Theorem 1.3 there exist independent J -holomorphic functions
ζ 1, . . . , ζ q , which completes the proof of Theorem 1.4. �

The idea of Theorem 1.4 came from the theory of first integrals for Pfaffian
systems due to E. Cartan and R. Gardner [Gardner 1967], which is a real version of
Theorem 1.4. A generalized notion of the first integral has been used in [Ahn and
Han 2012; Han and Park 2013]. Our standard reference for the theory of Pfaffian
systems is [Bryant et al. 1991]. In this paper we need a notion of J -holomorphicity
on the zero set that we define as follows:

Definition 1.6. A system of complex-valued functions ζ = (ζ 1, . . . , ζ d) is said to
be J -holomorphic on the zero set if, for each α= 1, . . . , d , we have (Z̄ jζ

α)(x)= 0,
j = 1, . . . ,m, for all x with ζ(x)= 0, or, equivalently, if

(1-5) dζ α ≡ 0 mod (ζ, ζ̄ , θ).

Assuming further that θ j are dual to Zk , that is,

θ j (Zk)= δ
j
k ,

we define ∂ f and ∂̄ f for any complex-valued function f by

∂ f :=
m∑

j=1

(Z j f )θ j , ∂̄ f :=
m∑

j=1

(Z̄ j f )θ̄ j .

Then we have

d f = ∂ f + ∂̄ f.
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We may write (1-5) as

∂̄ζ α ≡ 0 mod (ζ, ζ̄ ) for each α = 1, . . . , d.

2. J-invariant submanifolds

A submanifold N ⊂ M is said to be J -invariant if J Tx N = Tx N at every point
x ∈ N . J -invariant submanifolds are even dimensional. In this section we shall
discuss the properties of a system of real-valued functions

ρ = (ρ1, . . . , ρ2d)

that defines a J -invariant submanifold N . The system ρ shall be called nondegen-
erate if

dρ1
∧ · · · ∧ dρ2d

6= 0.

Given a set of finitely many differential 1-forms {φ1, φ2, . . . , }, we shall mean by
the rank at x ∈ M the number of independent 1-forms at x .

Now we consider a submanifold N 2n of (M2m, J ) locally defined as the common
zero set of a nondegenerate set of real-valued functions ρ1, . . . , ρ2d with d =m−n.

Proposition 2.1. Suppose that (ρ1, . . . , ρ2d) is a nondegenerate set of real-valued
functions on a neighborhood of a point x of (M2m, J ) with d ≤ m. Then we have

d ≤ rank(∂ρ1, . . . , ∂ρ2d)≤ 2d.

Proof. Consider

(2-1) dρ1
∧· · ·∧dρ2d

= (∂ρ1
+ ∂̄ρ1)∧· · ·∧ (∂ρ2d

+ ∂̄ρ2d)

= (∂ρ1
∧· · ·∧ ∂ρ2d)+mixed terms+ (∂̄ρ1

∧· · ·∧ ∂̄ρ2d),

where “mixed terms” means those terms that contain both ∂ρα’s and ∂̄ρα’s. If
rank(∂ρ1, . . . , ∂ρ2d)≤ d− 1 then each term in the last line of (2-1) contains either
∂ρα’s more than d times or ∂̄ρα’s more than d times. Hence, each term of the last
line of (2-1) is zero at x , which contradicts the nondegeneracy condition. �

Proposition 2.2. Let u be a C∞ complex-valued function on M and X ∈ TM. Then

∂u(X)= 1
2

{
du(X)−

√
−1du(J X)

}
and ∂̄u(X)= 1

2

{
du(X)+

√
−1du(J X)

}
.

Proof. Since ∂u annihilates any (0, 1)-vector, we have

∂u(X)= ∂u(X1,0
+ X0,1)= ∂u(X1,0)= du(X1,0)

=
1
2 du

{
X −
√
−1J X

}
=

1
2

{
du(X)−

√
−1du(J X)

}
.

We prove the second equality similarly. �
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Theorem 2.3. Let N 2n be a submanifold of (M2m, J ) given as a common zero set
of a nondegenerate system of real-valued functions ρ1, . . . , ρ2d with d = m − n.
Let T 1,0 N =

{
X −
√
−1J X : X ∈ TN ∩ J TN

}
and T 0,1 N =

{
X +
√
−1J X :

X ∈ TN ∩ J TN
}
. Then the following are equivalent:

(i) N is J -invariant.

(ii) T 1,0
x N and T 0,1

x N have complex dimension n for each x ∈ N.

(iii) rank(∂ρ1, . . . , ∂ρ2d)(x)= d for each x ∈ N.

Proof. (i)⇒ (ii): Suppose that N is J -invariant. Then it is easy to see that there
exist linearly independent real vector fields

X1, J X1, . . . , Xn, J Xn

that are tangent to N . Thus 2n complex vectors X1,0
k :=

1
2

(
Xk −

√
−1J Xk

)
and

X0,1
k :=

1
2

(
Xk +

√
−1J Xk

)
, k = 1, . . . , n, are linearly independent and tangent

to N , which implies (ii).

(ii)⇒ (iii): Suppose that, for each x ∈ N , T 1,0
x N has complex dimension n. Since

T 1,0 N =
{

Z ∈ T 1,0 M : dρα(Z)= ∂ρα(Z)= 0, α = 1, . . . , 2d
}

=

2d⋂
α=1
(Ker ∂ρα ∩ T 1,0 M)=

( 2d⋂
α=1
(Ker ∂ρα)

)
∩ T 1,0 M

has a fiber of complex dimension n at each point x ∈N , it follows that (∂ρ1, . . . ,∂ρ2d)

has rank m− n = d at x .

(iii) ⇒ (i): Since T 1,0
x M is of complex dimension m and (∂ρ1, . . . , ∂ρ2d) has

rank d , the intersection of the null spaces of ∂ρα : T 1,0
x M→C, α= 1, . . . , 2d , is of

complex dimension m− d = n, and therefore contains linearly independent vectors
X1,0

1 , . . . , X1,0
n , where X1,0

k =
1
2

(
Xk −

√
−1J Xk

)
for some real vector Xk . Then

for each α = 1, . . . , 2d and each k = 1, . . . , n we have, by Proposition 2.2,

0= ∂ρα(X1,0
k )= ∂ρα(Xk)=

1
2

(
dρα(Xk)−

√
−1dρα(J Xk)

)
,

which implies that dρα(Xk)=0 and dρα(J Xk)=0 since the ρα are real-valued func-
tions. Therefore, {Xk, J Xk :k=1, . . . ,n} are tangent to N . Since {X1,0

k ,k=1, . . . ,n}
are independent, the set of vectors X j , J X j ( j = 1, . . . , n) forms a J -invariant
basis for Tx N . Therefore, N is J -invariant. �

The J -invariance of submanifolds has been studied in [Han and Lee 2010]. As
for the special cases of real codimension 2 (d = 1) we have the following:

Corollary 2.4. Let (s,t) be a nondegenerate set of real-valued functions of (M2m, J )
and let N 2(m−1) be the common zero set of s and t. Then N is J -invariant if and



68 CHONG-KYU HAN AND JONG-DO PARK

only if

(2-2) ∂s ∧ ∂t ≡ 0 mod (s, t).

Proof. In the case of d = 1 in Theorem 2.3 the rank condition (iii),

rank(∂s, ∂t)(x)= 1 for each x ∈ N ,

can be written as (2-2). �

Theorem 2.5. Let (M2m, J ) be an almost complex manifold. A submanifold N 2n

of real codimension 2d, where d = m − n, is J -invariant if and only if N is the
common zero set of a set of complex-valued functions ζ = (ζ 1, . . . , ζ d) that are
J -holomorphic on the zero set.

Proof. Suppose that N is a J -invariant submanifold of real codimension 2d. Let
(ρ1, . . . , ρ2d) be a nondegenerate set of real-valued functions whose common zero
set is N . Since (∂ρ1, . . . , ∂ρ2d) has rank d by Theorem 2.3, we may assume that
∂ρ1
∧ · · · ∧ ∂ρd

6= 0. Then, for each α = 1, . . . , d, ∂ρd+α is a linear combination
of (∂ρ1, . . . , ∂ρd), or, equivalently,

(2-3)

∂̄ρ
d+1

...

∂̄ρ2d

= A

∂̄ρ
1

...

∂̄ρd


for some invertible matrix A = (aαβ ) of smooth functions. Define ζ = (ζ 1, . . . , ζ d)

by ζ
1

...

ζ d

=
ρ

d+1

...

ρ2d

− A

ρ
1

...

ρd

 .
By (2-3) we have

∂̄ζ α ≡ 0 mod (ρ) for each α = 1, . . . , d.

Since I(ρ) = I(ζ, ζ̄ ) it follows that the set of complex-valued functions ζ =
(ζ 1, . . . , ζ d) is J -holomorphic on the zero set. Conversely, suppose that ζ =
(ζ 1, . . . , ζ d) with dζ 1

∧ · · · ∧ dζ d
6= 0 is J -holomorphic on the zero set. Let

ζ α = sα + i tα. Then ∂̄ζ α = ∂̄sα + i ∂̄tα ≡ 0 mod (ζ, ζ̄ ), which implies

(2-4) ∂tα ≡−i∂sα mod (ζ, ζ̄ ).

Hence the rank of (∂s1, ∂t1, . . . , ∂sd , ∂td) is at most d . On the other hand, since

dζ α ≡ ∂ζ α mod (ζ, ζ̄ )

≡ 2∂sα, by (2-4),
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we have
2d∂s1

∧ · · · ∧ ∂sd
≡ ∂ζ 1

∧ · · · ∧ ∂ζ d mod (ζ, ζ̄ )

≡ dζ 1
∧ · · · ∧ dζ d mod (ζ, ζ̄ )

6= 0.

Hence (∂s1, ∂t1, . . . , ∂sd , ∂td) has rank d. Then it follows from Theorem 2.3
that N is J -invariant. �

3. Nonlinearly perturbed Cauchy–Riemann equations

Let z = (z1, . . . , zn) ∈ Cn , n ≥ 1, z j
= x j
+
√
−1y j . In this section we discuss the

local solvability of the quasilinear Cauchy–Riemann equations for one unknown
function w:

(3-1)
∂w

∂ z̄ j +

n∑
k=1

Ak
j (z, z̄, w, w̄)

∂w

∂zk = B j (z, z̄, w, w̄), j = 1, . . . , n,

where Ak
j and B j are complex-valued C∞ functions defined on a neighborhood of

the origin of Cn+1
= {(z, w)}.

We consider a system (Z1, . . . , Zn+1) of complex vector fields whose complex
conjugates are given by

(3-2) Z̄ j =
∂

∂ z̄ j +

n∑
k=1

Ak
j
∂

∂zk + B j
∂

∂w
, j = 1, . . . , n, Z̄n+1 =

∂

∂w̄
.

Then Z̄1, . . . , Z̄n+1 are annihilated by the following set of independent 1-forms:

(3-3) θα = dzα −
n∑

j=1

Aαj dz̄ j , α = 1, . . . , n, θn+1
= dw−

n∑
j=1

B j dz̄ j .

Let 〈θ〉 be the linear span of θ = (θ1, . . . , θn+1). Then there exists the unique
almost complex structure for which θ1, . . . , θn+1 are (1, 0) forms, provided that

(3-4) 〈θ〉 ∩ 〈θ̄〉 = {0},

where θ̄ is the complex conjugate of θ . Equation (3-4) holds if and only if
θ1, . . . , θn+1, θ̄1, . . . , θ̄n+1 are linearly independent. Note that

θ1
∧ · · · ∧ θn+1

∧ θ̄1
∧ · · · ∧ θ̄n+1

= {1+ P(Aαj , Aαj )}dz1
∧ dz̄1

∧ · · · ∧ dzn
∧ dz̄n

∧ dw∧ dw̄,

where P is a polynomial in the arguments (Aαj , Aαj ) without a constant term.
Thus (3-4) holds if

(3-5) |P(Aαj , Aαj )|< 1.
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In particular, if each Aαj vanishes at the origin, then (3-5) holds. Henceforth we
shall mean (3-5) by the Aαj being sufficiently small.

Proposition 3.1. For each j, k = 1, . . . , n, let Ak
j and B j be C∞ complex-valued

functions defined on a neighborhood of the origin of Cn+1
= {(z, w)}. Let J be the

almost complex structure whose (0, 1)-vectors and (1, 0)-forms are given by (3-2)–
(3-3) assuming Ak

j are sufficiently small. Suppose that J has type ν and that I (ν)

has rank q. Then there exist q independent J -holomorphic functions ζ 1, . . . , ζ q .
A function ζ is a J -holomorphic function if and only if ζ is holomorphic in the
variables ζ 1, . . . , ζ q .

Proof. The first part of the conclusion follows from Theorems 1.3 and 1.4. To prove
the second assertion, suppose that ζ is J -holomorphic. Since dζ ∈ I (ν) we have

(3-6) dζ =
q∑
α=1

aαdζ α

for some C∞ functions aα. Without loss of generality assume

(z1, . . . , z p, ζ 1, . . . , ζ q), p+ q = n+ 1,

are independent functions, so that they serve as C∞ local coordinates of Cn+1.
Then (3-6) implies

∂ζ

∂z j =
∂ζ

∂ z̄ j =
∂ζ

∂ζ̄ α
= 0

for all j = 1, . . . , p and α = 1, . . . , q, which means that ζ is holomorphic in
(ζ 1, . . . , ζ q). Conversely, if ζ is a function in the variables ζ 1, . . . , ζ q , then we
have

dζ ∈ I(dζ 1, . . . , dζ q)= I (ν).

Therefore, ζ is J -holomorphic. �

Theorem 3.2. Under the same hypotheses as in Proposition 3.1, let ζ be a J-
holomorphic function with ∂ζ/∂w 6= 0. Then

(3-7) ζ = constant

is an implicit solution of (3-1).

Proof. Since ∂ζ/∂w 6= 0 and ∂ζ/∂w̄ = 0, by implicit function theorem we can
solve (3-7) for w to have w = f (z, z̄); that is,

(3-8) ζ(z, z̄, f (z, z̄), f (z, z̄))= 0.

Differentiating (3-8) in z̄ j and in zk , respectively, we obtain

(3-9)
∂ζ

∂ z̄ j +
∂ζ

∂w

∂ f
∂ z̄ j = 0,

∂ζ

∂zk +
∂ζ

∂w

∂ f
∂zk = 0, j, k = 1, . . . , n.
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Since ζ is J -holomorphic we have L jζ = 0, j = 1, . . . , n; namely,

(3-10)
∂ζ

∂ z̄ j +

n∑
k=1

Ak
j
∂ζ

∂zk + B j
∂ζ

∂w
= 0, j = 1, . . . , n.

From (3-9) and (3-10) it follows that

(3-11) −
∂ζ

∂w

(
∂ f
∂ z̄ j +

n∑
k=1

Ak
j
∂ f
∂zk − B j

)
= 0,

which implies the conclusion. �

Theorem 3.3. Let (Z̄1, . . . , Z̄n+1) and (θ1, . . . , θn+1) be the same as in (3-2)–(3-3)
and let J be the almost complex structure with (0, 1)-vectors Z̄ j (or, equivalently,
(1, 0)-forms θ j ). Then there exists a solution w = f (z, z̄) of (3-1) if and only if
there exists a function ζ(z, z̄, w, w̄) with ∂ζ/∂w 6= 0 which is J -holomorphic on
the zero set.

Proof. Suppose that w = f (z, z̄) is a solution of (3-1). Then

ζ(z, z̄, w, w̄) := f (z, z̄)−w

satisfies Z̄ jζ ≡ 0, mod (ζ, ζ̄ ), for all j = 1, . . . , n+ 1. Conversely, suppose that
ζ(z, z̄, w, w̄) with ∂ζ/∂w 6= 0 is J -holomorphic on the zero set. Since ∂ζ/∂w̄ = 0
on the zero set, by the implicit function theorem we can solve ζ = 0 for w, to obtain
w = f (z, z̄); that is,

(3-12) ζ(z, z̄, f (z, z̄), f (z, z̄))= 0.

Then by differentiating (3-12) with respect to z̄ j and zk and restricting to the zero
set of ζ we have (3-9)–(3-11) and the proof is same as that of Theorem 3.2. �

For the existence of solutions of (3-1) the coefficients Ak
j and B j must satisfy

certain conditions. To discuss this we first define smooth functions T α
i j by setting

(3-13) dθα ≡
∑

1≤i< j≤n+1

T α
i j dz̄i

∧ dz̄ j mod (θ), α = 1, . . . , n+ 1,

where zn+1
= w, z̄n+1

= w̄. Arranging the pairs (i j) with i < j in lexicographical
order, we write (3-13) in matrices as dθ1

...

dθn+1

≡
 T 1

12 T 1
13 · · · T 1

n,n+1
...

...
...

T n+1
12 T n+1

13 · · · T n+1
n,n+1


︸ ︷︷ ︸

T


dz̄1
∧ dz̄2

dz̄1
∧ dz̄3

...

dz̄n
∧ dz̄n+1

 mod (θ).
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The matrix T of size (n + 1)×
(n+1

2

)
shall be called the torsion of the Pfaffian

system (3-3).
If T has rank zero, that is, if all T α

i j are zero, this is the case I = I (1), and I
is closed. Then by Theorem 1.2 there exist n + 1 independent J -holomorphic
functions.

Theorem 3.4. Suppose there exist J -holomorphic functions ζ 1, . . . , ζ q , q ≤ n+ 1,
with dζ 1

∧ · · · ∧ dζ q
6= 0. Then T has rank at most (n+ 1)− q.

Proof. For each λ= 1, . . . , q , let

(3-14) dζ λ =
n+1∑
α=1

aλαθ
α

for some functions aλα. Applying d to (3-14) we have

(3-15) 0≡
∑
α

aλαdθα mod (θ)

for each λ= 1, . . . , q . Substituting (3-13) in (3-15) we have

0≡
n+1∑
α=1

aλα
∑

1≤i< j≤n+1

T α
i j dz̄i

∧ dz̄ j mod (θ),

which is written in matrices as0
...

0

≡
a1

1 · · · a1
n+1

...
...

aq
1 · · · aq

n+1


︸ ︷︷ ︸

A

 T 1
12 T 1

13 · · · T 1
n,n+1

...
...

...

T n+1
12 T n+1

13 · · · T n+1
n,n+1


︸ ︷︷ ︸

T


dz̄1
∧ dz̄2

dz̄1
∧ dz̄3

...

dz̄n
∧ dz̄n+1

 mod (θ).

Since dζ 1
∧ · · ·∧dζ q

6= 0, (3-14) implies that A has maximal rank q . Each row
of A gives a linear relation among the rows of T. Therefore, T has rank at most
(n+ 1)− q. �

We construct the sequence (1-4) of subbundles as follows: an element φ =∑n+1
α=1 aαθα of I belongs to I (1) if and only if (a1, . . . , an+1) is a null vector of the

matrix T, because

dφ ≡
n+1∑
α=1

aαdθα mod (θ)

≡

∑
1≤i< j≤n+1

n+1∑
α=1

aαT α
i j dz̄i

∧ dz̄ j mod (θ)
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is zero if and only if (a1, . . . , an+1) is a null vector of T; that is,

n+1∑
α=1

aαT α
i j = 0 for all pairs (i j).

Inductively, let φ = (φ1, . . . , φr ) be a set of generators of I (k). Then a 1-form
ψ =

∑r
β=1 bβφβ is an element of I (k+1) if and only if (b1, . . . , br ) is a null vector

of the torsion matrix of the Pfaffian system φ. Now suppose that (3-3) has derived
length ν. In the construction of I (ν) the coefficients Ak

j , B j in (3-3) are differentiated
up to ν times and then the condition

(3-16) d I (ν) ⊂ (I (ν))

raises the order of the derivatives by one. Thus we have:

Proposition 3.5. Let J be the almost complex structure on Cn+1 whose (1, 0)-forms
are given in (3-3). Then its type condition is a system of partial differential equations
on (Ak

j , B j ): condition (3-16) being of type ν is a PDE system of order ν+ 1. If J
has type ν and I (ν) has rank q, then there exists a complex q-parameter family of
solutions of (3-1).

Summarizing our previous discussions in Theorems 3.3 and 2.5 and Corollary 2.4
we have:

Theorem 3.6. Given a system of quasilinear Cauchy–Riemann equations (3-1)
with coefficients Aαj sufficiently small, let J be the almost complex structure on
Cn+1

= {(z, w)}, z = (z1, . . . , zn), n ≥ 2, with (1, 0)-forms (3-3). Then (3-1)
has a solution if and only if there exists a nondegenerate system of real-valued
functions (s, t) having the following properties:

(i) The determinant of any square submatrices of maximal size of T is zero
modulo (s, t).

(ii) ∂s ∧ ∂t ≡ 0 mod (s, t).

Condition (ii) means that the common zero set of s and t is J -invariant. Condi-
tion (i) means that we construct s and t by finding a nondegenerate set of real-valued
functions that generates an ideal to which the determinants of n× n submatrices of
the torsion belong.

4. Cases of several unknown functions

Our arguments of the previous section can easily be generalized to the cases of sev-
eral unknown functions. Let z= (z1, . . . , zn)∈Cn , n≥1, z j

= x j
+
√
−1y j . We con-

sider the system of quasilinear Cauchy–Riemann equations for w = (w1, . . . , wd),
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d ≥ 2:

(4-1)
∂wα

∂ z̄ j +

n∑
k=1

Ak
j (z, z̄, w, w̄)

∂wα

∂zk = Bαj (z, z̄, w, w̄)

for each j = 1, . . . , n and α = 1, . . . , d , where Ak
j and Bαj are complex-valued C∞

functions defined on a neighborhood of the origin of Cn+d
= {(z, w)}. We consider

a system (Z1, . . . , Zn+d) of complex vector fields on an open neighborhood of the
origin of Cn+d

= {(z, w)} whose complex conjugates are given by

(4-2) Z̄ j =
∂

∂ z̄ j +

n∑
k=1

Ak
j
∂

∂zk +

d∑
α=1

Bαj
∂

∂wα
, j = 1, . . . , n,

Z̄n+β =
∂

∂w̄β
, β = 1, . . . , d.

Then Z̄1, . . . , Z̄n+d are annihilated by the following set of independent 1-forms:

(4-3) θ k
= dzk

−

n∑
j=1

Ak
j dz̄ j , k = 1, . . . , n,

θn+α
= dwα −

n∑
j=1

Bαj dz̄ j , α = 1, . . . , d.

If Ak
j are sufficiently small, then the functions Ak

j and Bαj define an almost complex
structure J on Cn+d , for which Z̄ j , Z̄n+β are (0, 1)-vector fields, or, equivalently,
θ k , θn+α are (1, 0)-forms. The following is a generalization of Theorem 3.3.

Theorem 4.1. Let (Z̄1, . . . , Z̄n+d) and (θ1, . . . , θn+d) be the same as in (4-2)–
(4-3) and let J be the almost complex structure with (0, 1)-vectors Z̄ j (or, equiv-
alently, (1, 0)-forms θ j ). Then there exists a set of solutions wα = f α(z, z̄),
α = 1, . . . , d, of (4-1) if and only if there exists a set of functions ζ α(z, z̄, w, w̄),
α = 1, . . . , d with det(∂ζ α/∂wβ) 6= 0 that is J -holomorphic on the zero set.

Proof. Suppose wα = f α(z, z̄), α = 1, . . . , d, is a solution of (4-1). Let ζ α =
f α(z, z̄)−wα. Then, for each j = 1, . . . , n and each α = 1, . . . , d, we have

Z̄ jζ
α
=
∂ f α

∂ z̄ j + Ak
j
∂ f α

∂zk − Bαj ≡ 0 mod (ζ, ζ̄ ), Z̄n+βζ
α
= 0.

Therefore, ζ = (ζ 1, . . . , ζ d) is J -holomorphic on the zero set that satisfies the
nondegeneracy condition as in the statement of the theorem. Conversely, suppose
that ζ = (ζ 1, . . . , ζ d) is J -holomorphic on the zero set as in the statement of the
theorem. Since det(∂ζ α/∂wβ) 6= 0 and ∂ζ α/∂w̄β = 0 mod (ζ, ζ̄ ), we can solve
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ζ = 0 for w= (w1, . . . , wd) by implicit function theorem, to obtain wα = f α(z, z̄);
that is,

(4-4) ζ α(z, z̄, f (z, z̄), f (z, z̄))= 0, α = 1, . . . , d,

where f = ( f 1, . . . , f d). By applying ∂/∂ z̄ j and ∂/∂zk , respectively, to (4-4) we
have

(4-5)
∂ζ α

∂ z̄ j +

d∑
β=1

∂ζ α

∂wβ

∂ f β

∂ z̄ j = 0,
∂ζ α

∂zk +

d∑
β=1

∂ζ α

∂wβ

∂ f β

∂zk = 0.

Then, for each j = 1, . . . , n and each α = 1, . . . , d , we have

(4-6) Z̄ jζ
α
=
∂ζ α

∂ z̄ j +

n∑
k=1

Ak
j (z, z̄, w, w̄)

∂ζ α

∂zk +

d∑
β=1

Bβj (z, z̄, w, w̄)
∂ζ α

∂wβ

≡ 0 mod (ζ, ζ̄ ).

Combining (4-5) and (4-6) we have

−

d∑
β=1

∂ζ α

∂wβ

∂ f β

∂ z̄ j −

n∑
k=1

d∑
β=1

Ak
j
∂ζ α

∂wβ

∂ f β

∂zk +

d∑
β=1

Bβj
∂ζ α

∂wβ
≡ 0 mod (ζ, ζ̄ ),

which can be written in matrices as

∂ζ

∂w
E ≡

0 · · · 0
...
. . .

...

0 · · · 0


d×n

mod (ζ, ζ̄ ),

where

∂ζ

∂w
=


∂ζ 1

∂w1 · · ·
∂ζ 1

∂wd
...

. . .
...

∂ζ d

∂w1 · · ·
∂ζ d

∂wd

 ,

E =


−
∂ f 1

∂ z̄1 −
n∑

k=1
Ak

1
∂ f 1

∂zk + B1
1 · · · −

∂ f 1

∂ z̄n −
n∑

k=1
Ak

n
∂ f 1

∂zk + B1
n

...
. . .

...

−
∂ f d

∂ z̄1 −
n∑

k=1
Ak

1
∂ f d

∂zk + Bd
1 · · · −

∂ f n

∂ z̄n −
n∑

k=1
Ak

n
∂ f d

∂zk + Bd
n


d×n

.

Since ∂ζ/∂w is invertible E is identically zero on the zero set of ζ , which implies
that w = f (z, z̄) is a solution of (4-1). �
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Then the almost complex structure on Cn+d whose (0, 1)-forms are given by (4-2)
has torsion T of dimension (n+d)×

(n+d
2

)
. By the same argument as in the previous

section we have:

Theorem 4.2. Given a system of quasilinear Cauchy–Riemann equations (4-1),
let J be the almost complex structure on Cn+d

= {(z, w)}, z = (z1, . . . , zn),
w = (w1, . . . , wd), with (1, 0)-forms (4-3). Then (4-1) has a solution if and only if
there exists a nondegenerate system of real-valued functions (s1, . . . , s2d) having
the following properties:

(i) The determinant of any n× n submatrix of the (n+ d)×
(n+d

2

)
matrix of the

torsion T is zero modulo (s1, . . . , s2d).

(ii) (∂s1, . . . , ∂s2d) has rank d.

Condition (ii) means that the common zero set of s1, . . . , s2d is J -invariant.
Condition (i) means that we construct s1, . . . , s2d by finding a nondegenerate set
of real-valued functions that generates an ideal to which the determinants of n× n
submatrices of the torsion belong.

5. Quasilinear Cauchy–Riemann equations in one complex variable

Consider the following equation for a complex-valued function w = w(z, z̄):

(5-1)
∂w

∂ z̄
+ A(z, z̄, w, w̄)

∂w

∂z
= B(z, z̄, w, w̄), |A(z, z̄, w, w̄)|< 1.

This is a determined system of two real equations for two real unknown functions<w
and =w. Equation (5-1) is always solvable for the following reason: in C2

={(z, w)}
we consider complex vector fields

Z̄1 =
∂

∂ z̄
+ A

∂

∂z
+ B

∂

∂w
, Z̄2 =

∂

∂w̄

and 1-forms that annihilate Z̄ j , j = 1, 2:

θ1
= dz− Adz̄, θ2

= dw− Bdz̄.

An almost complex structure J on C2 is uniquely determined by the functions A
and B so that Z̄ j , j = 1, 2, are (0, 1)-vectors and θ j , j = 1, 2, are (1, 0)-forms. A
fundamental theorem of [Nijenhuis and Woolf 1963] states that for any real tangent
vector V of C2 at the origin there exists a J -holomorphic curve γ (z)= (z, f (z)) :
D→C2, where D is a small open disk centered at the origin in C, satisfying initial
conditions γ (0)= 0 and dγ (0)(∂/∂x)= V . The graph γ is the zero set of

ζ := f (z, z̄)−w,

which is J -holomorphic on its zero set. Thus (5-1) is solvable by Theorem 3.3.
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Now we check the type of J . Since[
dθ1

dθ2

]
≡ Tdz̄ ∧ dw̄ mod (θ), where T=

[
Aw̄
Bw̄

]
,

if Aw̄= Bw̄=0 the almost complex structure is integrable, and hence by Theorem 1.2
there exist two independent J -holomorphic functions (ζ 1, ζ 2). For any function ζ
that is analytic in (ζ 1, ζ 2) such that ζw 6= 0,

ζ = constant

is an implicit solution of (5-1). This is the case of type 0. Next, we assume Aw̄ 6= 0.
Then (−Bw̄, Aw̄) is a null vector of the torsion T, so that

(5-2) φ := −Bw̄θ1
+ Aw̄θ2

generates I (1). If

(5-3) dφ ≡ 0 mod φ

then I (1) is closed. Equation (5-3) is a PDE system of second order for A and B.
In summary we have the following table:

rank T type ν
number of

J -holomorphic
functions

order of PDE
for A, B integrability

0 0 2 1 integrable
1 1 1 2 I (1) is closed

Let us consider the following special case of type 1:

(5-4)
∂w

∂ z̄
+ A(z, z̄, w, w̄)

∂w

∂z
= B(z̄, w), Aw̄ 6= 0.

Since Bw̄ = 0, from (5-2), φ = Aw̄θ2 generates I (1). Then computation shows

dφ ≡ 0 mod (φ).

Thus I (1) has rank 1 and there is a nondegenerate J -holomorphic function ζ . Since
dζ ∈ I(θ2) we see that ζw 6= 0. Therefore,

ζ = constant

is a complex 1-parameter family of solutions of (5-4).
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6. Examples

Example 6.1. Consider the following system for w(z1, z̄1, z2, z̄2):

(6-1)
∂w

∂ z̄1 +w
∂w

∂z2 =
−2w
1+ z̄1 ,

∂w

∂ z̄2 + w̄
∂w

∂z1 + z̄1 ∂w

∂z2 = 0.

Then the associated almost complex structure on C3
= {(z1, z2, w)} has (1, 0)-

forms
θ1
= dz1

− w̄ dz̄2,

θ2
= dz2

−w dz̄1
− z̄1dz̄2,

θ3
= dw +

2w
1+ z̄1 dz̄1.

Then we have dθ1

dθ2

dθ3

=
 0 0 1
−1 0 0
0 0 0


︸ ︷︷ ︸

T

dz̄1
∧ dz̄2

dz̄1
∧ dw̄

dz̄2
∧ dw̄

 mod (θ).

Hence, I (1) is spanned by θ3. Since

dθ3
≡ 0 mod (θ3),

this is the case of type 1. There exists a J -holomorphic function ζ . Since dζ is
a nonzero multiple of θ3 we see that ζw 6= 0. Each level set ζ = constant is an
implicit solution of (6-1).

Example 6.2. Consider the following system for w(z1, z̄1, z2, z̄2):

(6-2)
∂w

∂ z̄1 +w
∂w

∂z2 =
−2w
1+ z̄1 ,

∂w

∂ z̄2 + w̄
∂w

∂z1 + [z
2
+w(1+ z̄1)]

∂w

∂z2 = 0.

Then the associated almost complex structure on C3
= {(z1, z2, w)} has (1, 0)-

forms
θ1
= dz1

− w̄ dz̄2,

θ2
= dz2

−w dz̄1
− [z2

+w(1+ z̄1)]dz̄2,

θ3
= dw +

2w
1+ z̄1 dz̄1.
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Let
ζ := z2

+w(1+ z̄1).

Then we see that
dζ = θ2

+ (1+ z̄1)θ3
+ ζdz̄2.

Therefore, ζ is J -holomorphic on its zero set. Thus ζ = 0 is an implicit solution
of (6-2).

A pseudoanalytic function in several complex variables satisfies

∂w

∂ z̄ j = α j (z)w(z)+β j (z)w(z) for j = 1, . . . , n,

for some functions α j (z) and β j (z). See the details in Section 7.

Example 6.3. Consider the system (7-4) of pseudoanalytic functions in C2:

∂w

∂ z̄1
= α1(z, z̄)w+β1(z, z̄)w̄,

∂w

∂ z̄2
= α2(z, z̄)w+β2(z, z̄)w̄.

Let B j (z, z̄, w, w̄)=α j (z, z̄)w+β j (z, z̄)w̄ for j = 1, 2. Then the associated almost
complex structure on C3

= {(z1, z2, w)} has (1, 0)-forms

θ1
= dz1, θ2

= dz2, θ3
= dw− B1dz̄1

− B2dz̄2.

By applying d to θ1, θ2, θ3, we obtain the components of the torsion T as follows:

T α
i j = 0 for α = 1, 2,

T 3
12 =

∂B1

∂ z̄2 +
∂B1

∂w
B2−

∂B2

∂ z̄1 −
∂B2

∂w
B1

=

(
∂α1

∂ z̄2 −
∂α2

∂ z̄1

)
w+

(
∂β1

∂ z̄2 −
∂β2

∂ z̄1 +α1β2−α2β1

)
w̄,

T 3
13 =

∂B1

∂w̄
= β1, T 3

23 =
∂B2

∂w̄
= β2.

Then T has rank 0 if and only if β1 = β2 = 0 and

∂α1

∂ z̄2 =
∂α2

∂ z̄1 .

This is the involutive case and there exist three independent pseudoholomorphic func-
tions for the associated almost complex structure. One of them satisfies ∂ζ/∂w 6= 0,
which gives implicit solutions ζ = constant.

If rank T = 1, then φ1
= θ1 and φ2

= θ2 generates I (1). Since dφk
= 0 for

k = 1, 2, this is the case of type 2. However, it is easy to check that there cannot be
a function ζ with ∂ζ/∂w 6= 0 that is pseudoholomorphic on the zero set. Therefore,
there are no solutions in this case.
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7. Perturbed Cauchy–Riemann equations and overdetermined PDE systems:
a brief survey of history

The main object of complex analysis is the family of holomorphic functions
w = w(z) which are characterized by the Cauchy–Riemann equations

∂w

∂ z̄ j = 0, j = 1, . . . , n.

It is not surprising that mathematical literature abounds in natural generalizations of
the Cauchy–Riemann equations. For the cases n = 1 the theories of quasiconformal
functions and pseudoanalytic functions were developed in the mid-20th century
[Ahlfors 1954; 1966; Bers 1956; 1977]. A quasiconformal mapping w = w(z)
satisfies the Beltrami equation

(7-1)
∂w

∂ z̄
+µ(z)

∂w

∂z
= 0

for some complex-valued Lebesgue measurable function µ(z) with |µ(z)|< 1. Of
central importance in the theory of quasiconformal mappings in the complex plane
is the measurable Riemann mapping theorem [Morrey 1938], which generalizes the
Riemann mapping theorem from conformal to quasiconformal homeomorphisms.

Pseudoanalytic functions [Bers 1953; Vekua 1962] are solutions of

(7-2)
∂w

∂ z̄
= α(z)w(z)+β(z)w(z)

for some functions α(z) and β(z). Recall that every harmonic function φ(x, y)
is locally the real part of an analytic function h(z) and the complex gradient
w(z)= ∂φ/∂x − i∂φ/∂y is analytic and w(z)= h′(z). On the other hand, a linear
elliptic equation for a real-valued function φ(x, y) of second order with Hölder
continuously differentiable coefficients can be transformed into the canonical form

φxx +φyy + Aφx + Bφy = 0.

Then w := ∂φ/∂x− i∂φ/∂y is a pseudoanalytic function which satisfies (7-2) with
α =− 1

4(A+ i B) and β =− 1
4(A− i B).

In Cn with n ≥ 2, fundamental questions including the Levi problem were
solved by means of the inhomogeneous Cauchy–Riemann equations of (p, q)-type
(see [Oka 1953; Kohn 1963; Hörmander 1965]), which are generalizations of the
(0, 1)-type equations

∂w

∂ z̄ j = b j for j = 1, . . . , n.
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A multidimensional version of (7-1) is

(7-3) L jw :=
∂w

∂ z̄ j (z)+
n∑

k=1

ak
j (z)

∂w

∂zk (z)= 0 for j = 1, . . . , n,

where the ak
j vanish at the origin. If the coefficients ak

j (z) are sufficiently smooth, it
was shown in [Newlander and Nirenberg 1957] that there exist n linearly independent
solutions to (7-3) if and only if L j commutes. We state this fundamental result as
Theorem 1.2.

A pseudoanalytic function in several complex variables satisfies

(7-4)
∂w

∂ z̄ j = α j (z)w(z)+β j (z)w(z) for j = 1, . . . , n,

for some functions α j (z) and β j (z). The properties of solutions to (7-4) were
investigated in [So’n 1990; Hayashi 1996]. In particular, it was proved in [So’n
1990] that (7-4) with β j (z)= 0 has the extension property: if D ⊂ Cn is a domain
and K is a compact subset of D such that D \ K is connected, then any solution
to (7-4) with β j (z) = 0 on D \ K extends to D. The extension phenomenon of
holomorphic functions in several complex variables is the special case of this
extension property for (7-4) with α j (z) = β j (z) = 0, which was discovered in
[Hartogs 1906].

In the 1960s, the theory of overdetermined systems of linear partial differential
equations was intensively studied from the algebraic viewpoint based on Spencer
complexes [1962; 1965; 1969]. Quillen [1964], Goldschmidt [1967], MacKichan
[1968] and Sweeney [1968] investigated the condition for the exactness of the
Spencer complexes. The question was whether the Spencer complex is exact if it
is elliptic. When the coefficients are real analytic the Spencer complex is exact
in the elliptic case. In the C∞ category, however, one needs to prove an estimate
that implies the solvability of the associated Neumann boundary value problem. It
turned out that, if the linear elliptic overdetermined system satisfies the so-called
δ-estimate, then the Neumann problem for the elliptic system is solvable so that the
Spencer sequence is exact and hence such a system is locally solvable.
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AN OVERDETERMINED PROBLEM IN POTENTIAL THEORY

DMITRY KHAVINSON, ERIK LUNDBERG AND RAZVAN TEODORESCU

We investigate a problem posed by L. Hauswirth, F. Hélein, and F. Pacard
(Pacific J. Math. 250:2 (2011), 319–334): characterize all the domains in the
plane admitting a positive harmonic function that solves simultaneously the
Dirichlet problem with null boundary data and the Neumann problem with
constant boundary data. Hauswirth et al. suggested that essentially only
three possibilities exist: the exterior of a disk, a half-plane, and a nontrivial
example they found — the image of the strip |=ζ |<π/2 under ζ 7→ζ+sinh ζ .
We partially prove their conjecture, showing that these are indeed the only
possibilities if the domain is Smirnov and it is either simply connected or
its complement is bounded and connected. We also show the nonexistence
in R4 of an analogous nontrivial example among axially symmetric domains
containing their axis of symmetry.

1. Introduction

In [Hauswirth et al. 2011], the authors posed the following problem: find a smooth
bounded domain � in a Riemannian manifold Mg with metric g, such that the first
eigenvalue λ1 of the Laplace–Beltrami operator on � has a corresponding real,
positive eigenfunction u1 satisfying u1 = 0, ∂u1/∂n = 1 on the boundary of �.
Any such domain is called extremal because it provides a critical point for the first
eigenvalue λ1 of the Laplace–Beltrami operator, under the constraint of fixed total
volume of � (see [Hauswirth et al. 2011] and references therein).

In special cases, one can find a sequence of extremal domains {�t }with increasing
volumes, such that the limit domain�=�t→∞ is unbounded, and its first eigenvalue
vanishes as t→∞. This limit extremal domain is then called exceptional, and the
corresponding limit function (u1,t)t→∞→ u is a positive, harmonic function on �
which solves simultaneously the overdetermined boundary value problem with null
Dirichlet data and constant Neumann data.

The problem of finding exceptional domains in Rn and their corresponding
functions u (called roof functions by the authors of [Hauswirth et al. 2011]) is a
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nontrivial problem of potential theory. There is no obvious variational principle to
use, on the one hand because � is unbounded (so the Dirichlet energy of u [Astala
et al. 2009, Chapter 1] will diverge), and, on the other hand, because the constant
Neumann data constraint is not conformally invariant.

In the absence of a suitable variational formulation, we may interpret the scaling
t→∞ described above as a dynamical process, in which the pair (�t , ut) evolves
so that the limit t→∞ solves the overdetermined problem. In other words, we can
turn this observation into a constructive method for finding (building) exceptional
domains. In order to do this, it is helpful to note that, upon compactification of the
boundary ∂� (with metric dσ 2), the pair (�, u) with flat metric becomes conformal
to the half-cylinder N :=R+×∂�, with metric ds2

= e−2u(du2
+dσ 2). Under this

reformulation, scaling of (�t , ut)t→∞ becomes equivalent to scaling of the metric
structure given above, defined over the fixed space N. This is reminiscent of the
Ricci flow, in which the metric structure g evolves with respect to a deformation
parameter t ∈ R according to the equation

dgi j

dt
=−2Ri j ,

with the right side of the equation given by the covariant Ricci tensor. It is known
from [Topping 2006] that for the case of a two-dimensional manifold, with metric
given by

ds2
= e−2u(dx2

+ dy2),

the Ricci flow equations reduce to a single nonlinear equation

∂u
∂t
=∇

2
gu

(since in two dimensions the Riemann tensor has only one independent component).
This is a heat equation with the generator given by the Laplace–Beltrami operator
corresponding to the metric ds2. Therefore, if there is a stationary solution ∂u/∂t→
0 as t→∞, it will correspond to the scaling of the first eigenvalue λ1(t)→ 0 and,
by conformally mapping back N using the solution u(t→∞), we will obtain the
solution (�, u).

In other words, we can summarize this constructive method for finding excep-
tional domains in R2 as follows: starting from a 2-dimensional Riemannian manifold
with finite volume and metric encoded through the positive real function u, and
boundary set defined via u = 0, consider the time evolution given by the Ricci flow,
without volume renormalization. Then the manifold will remain Riemannian at all
times [ibid.], and in the t→∞ limit, the function u will become a solution of the
nonlinear Laplace–Beltrami equation. Furthermore, if u remains finite everywhere in
the domain, then it is harmonic and satisfies both Dirichlet and Neumann conditions
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at all finite boundary components, so it is a solution for the overdetermined potential
problem. Considered together with the (boundary) point at infinity, the manifold is
equivalent to a pseudosphere — flat everywhere except at the point at infinity, with
overall positive curvature. (We wish to emphasize that there is no reason to assume
that such constructive methods would be exhaustive.)

Thus, so motivated, it is natural to try to characterize exceptional domains in flat
Euclidean spaces. Hauswirth et al. [2011] suggested that in two dimensions there
are only three examples: a complement of a disk, a half-plane, and a nontrivial
example they found [ibid., Section 2]: the image of the strip |=ζ | ≤ π/2 under the
mapping ζ 7→ ζ + sinh ζ . They posed as an open problem to determine if these are
the only examples [ibid., Section 7]. (They gave some evidence by characterizing
the half-plane under a global assumption on the gradient of the roof function [ibid.,
Proposition 6.1].) They also posed the problem of finding nontrivial examples in
higher dimensions and suggested the possibility of axially symmetric examples
similar to the nontrivial example in the plane [ibid., Remark 2.1].

We address both of these problems. The paper is organized as follows. In
Section 2, we review the theory of Hardy spaces in order to address a subtlety
that arises in connection with the regularity of the boundary of an exceptional
domain. This leads us to assume in our theorems that the domain � is Smirnov. In
Section 3, we characterize exteriors of disks as being the only exceptional domain
whose boundary is compact. In Section 4, we establish a connection between the
roof function of an exceptional domain and the so-called Schwarz function of its
boundary, and we also show that the boundary of a simply connected exceptional
domain � can pass either once or twice through infinity. We then show that in the
first case � is a half-plane (Section 5) and in the second case � is the nontrivial
example of Hauswirth et al. (Section 6). In each of these theorems we assume
that � is Smirnov, but we allow the roof function to be a weak solution merely
satisfying the boundary conditions almost everywhere.

In Section 7, we extend the result of Section 3 to higher dimensions. In Section 8,
we show that the nontrivial example from Section 6 does not allow an extension to
axially symmetric domains in four dimensions, contrary to what was suggested in
[Hauswirth et al. 2011, Remark 2.1] (and we conjecture that this example has no
analogues in any number of dimensions greater than two).

Sections 3 through 6 together partially confirm what was suggested in [Hauswirth
et al. 2011, Section 7], under some assumptions on the topology of � and assuming
that � is Smirnov. In Section 9, we give concluding remarks, including a conjecture
that, up to similarity, there are only three finitely connected exceptional domains.
The additional assumption of finite connectivity is due to a remarkable example of
an infinitely connected exceptional domains that appeared in the fluid dynamics
literature [Baker et al. 1976]. See Section 9 for discussion.
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Remark. After this paper was submitted, Martin Traizet [2013] announced a more
complete classification of exceptional domains after developing an exciting new
connection to minimal surfaces. He characterized the three examples as the only
ones having finitely many boundary components. Traizet’s preprint, which appeared
while we were revising this paper, finds a new beautiful connection of the problem
with the theory of minimal surfaces. From this point of view, he noticed the
above-mentioned family of infinitely connected examples [Baker et al. 1976] and
characterized them as the only periodic exceptional domains for which the quotient
by the period has finitely many boundary components [Traizet 2013, Theorem 13].
For this latter result, he invokes a powerful theorem of W. H. Meeks and M. Wolf.
Our methods mostly rely on classical function theory (H p spaces) and potential
theory and in most parts are different from Traizet’s. Interestingly, as noted by
Traizet [2013, Remark 5], if one could prove his Theorem 13 by only invoking pure
function theory, this would give a new and independent proof of the Meeks–Wolf
result from minimal surfaces. An attractive challenge!

2. Classical versus weak solutions, regularity of the boundary,
and Hardy spaces

From the rigidity of the Cauchy problem, one might expect to obtain, for free, regu-
larity of the boundary of an exceptional domain (as is often the case for solutions of
free boundary problems). Unfortunately, the problem at hand is complicated by a re-
markable family of examples with rectifiable but nonsmooth boundaries, also known
as non-Smirnov domains; see [Duren 1970, Chapter 10]. This results in adding
a Smirnov condition to the assumptions on the domains if we desire to consider
weak solutions, i.e., harmonic roof functions satisfying the Dirichlet and Neumann
boundary conditions almost everywhere with respect to the Lebesgue measure.

In order to address this subtlety, we first give some background from H p theory;
see [Duren 1970] for details.

An analytic function f : D → C is said to belong to the Hardy class H p,
0< p <∞, if the integrals ∫ 2π

0
| f (reiθ )|p dθ

remain bounded as r→ 1.
Recall that a Blaschke product is a function of the form

B(z)= zm
∏

n

|an|

an

an − z
1− anz

,

where m is a nonnegative integer and
∑
(1−|an|)<∞. The latter condition ensures

convergence of the product [Duren 1970, Theorem 2.4].
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A function analytic in D is called an inner function if its modulus is bounded
by 1 and its modulus has radial limit 1 almost everywhere on the boundary. If S(z)
is an inner function without zeros, then S(z) is called a singular inner function.

An outer function for the class H p is a function of the form

(2-1) F(z)= eiγ exp
{

1
2π

∫ 2π

0

ei t
+ z

ei t − z
logψ(t) dt

}
,

where γ is a real number, ψ(t)≥ 0, logψ(t) ∈ L1, and ψ(t) ∈ L p.
The following theorem [Duren 1970, Chapter 2, Chapter 5] (see also [Fisher

1983]) provides the parametrization of functions in Hardy classes by their zero sets,
associated singular measures, and moduli of their boundary values.

Theorem 2.1. Every function f (z) of class H p (p > 0) has a unique (up to a
unimodular constant factor) factorization of the form f (z)= B(z)S(z)F(z), where
B(z) is a Blaschke product, S(z) is a singular inner function, and F(z) is an outer
function for the class H p.

Suppose � is a Jordan domain with rectifiable boundary and f : D→ � is a
conformal map. Then f ′ ∈ H 1 by Theorem 3.12 in [Duren 1970]. By Theorem 2.1,
f ′ has a canonical factorization f ′(z)= B(z)S(z)F(z), and since f is a conformal
map f ′ does not vanish, so f ′(z)= S(z)F(z). Then � is called a Smirnov domain
if S(z) ≡ 1 so that f ′(z) = F(z) is purely an outer function. This definition is
independent of the choice of conformal map.

There are examples of non-Smirnov domains with, as above, f ′(z)= S(z)F(z),
but now F(z) ≡ 1 and the singular inner function S(z) is not constant. Such
examples were first constructed by M. Keldysh and M. Lavrentiev [1937] using
complicated geometric arguments. Their existence was somewhat demystified by an
analytic proof provided by P. Duren, H. S. Shapiro, and A. L. Shields [Duren et al.
1966; Shapiro 1966]. Like the disk, such a domain has harmonic measure at zero
(assuming f (0)= 0) proportional to arclength. Thus, its boundary is sometimes
called a pseudocircle.

Similarly, there are exterior pseudocircles, arising as the boundary of an un-
bounded non-Smirnov domain [Jones and Smirnov 1999] for which the harmonic
measure at infinity is proportional to arclength, and thus Green’s function with
singularity at infinity provides a roof function that is a weak solution satisfying
the boundary conditions almost everywhere. Thus, this provides a pathological
example of an exceptional domain in a weak sense. In order to construct such an
unbounded non-Smirnov domain, let us follow the method above-mentioned [Duren
et al. 1966], which is presented in Duren’s book [1970, Section 10.4]. We recall
that the construction is carried out by working backwards, first writing down a
singular inner function S(z) as a candidate for the derivative f ′(z) of the conformal
map f (z). The difficulty is then to show that f (z) is not only analytic, but is also
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univalent, so that it actually gives a conformal map from D to some domain �.
Univalence is established using a univalence criterion of Nehari (and Ahlfors and
Weill), which states that the growth condition

(2-2) |(S f )(z)| ≤
k

(1− |z|2)2
, with k < 2,

on the Schwarzian derivative S f implies that f maps D univalently onto a Jordan
domain on the Riemann sphere.

We follow this procedure, indicating the step that needs to be modified. Start
with a nondecreasing measure µ≤ 0, singular with respect to Lebesgue measure
on the circle, yet sufficiently smooth, so that it belongs to the Zygmund class 3∗
[Duren 1970, Section 10.4].

We will also require µ to have first moment zero:

(2-3)
∫ 2π

0
eiθ dµ(θ)= 0.

This can always be achieved by symmetrizing µ around the origin, thus replacing µ
by 1

2(dµ(θ)+ dµ(θ +π)). Then the center of mass is at the origin, which is (2-3).
As in [Duren 1970, p. 177], let F(z) be the Schwarz integral of µ:

F(z)=
1

2π

∫ 2π

0

eiθ
+ z

eiθ − z
dµ(θ).

Let g(z) be the exponential of a constant (to be chosen later) times F :

g(z)= exp{−aF(z)}.

Having chosen µ in 3∗ and nondecreasing, for a small enough the antiderivative of
g maps the disk onto a bounded Jordan domain with rectifiable boundary [Duren
1970, Theorem 10.9]. Here is where we depart slightly from [Duren 1970], to get
an unbounded domain as the image of f (z). Instead of taking g(z) as a candidate
for f ′(z), we take

f ′(z)= g(z)/z2.

and we check that the same estimates used in the proof of [Duren 1970, Theorem
10.9] also apply to this case. The residue of f ′(z) is zero (since we made the first
moment of µ zero), so its antiderivative f (z) is analytic in D except for a simple
pole at z = 0. Also, | f ′(z)| = 1 a.e. on ∂D.

A calculation shows that the Schwarzian derivative S f of f is given by

(S f )(z)= (SG)(z)+
2
z

g′(z)
g(z)
=−aF ′′(z)−

a2

2
F ′(z)2−

2a
z

F ′(z),

where G is an antiderivative of g. As explicitly stated in [Duren 1970, Section 10.4],
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F ′′(z), F ′(z)2, and F ′(z) are each O((1− |z|)−2). Moreover, F ′(0) = 0 by the
vanishing of the first moment of µ, so that F ′(z)/z is also O((1− |z|)−2). Thus, if
a is chosen small enough, S f satisfies the Nehari criterion for univalence, (2-2).

Hence, f (z) is a conformal map taking {|z|< 1} onto the complement of a Jordan
domain with rectifiable boundary. To see why the boundary is rectifiable, note that,
as stated in [Duren 1970, Section 10.4]), g(z) ∈ H 1, and so f ′(z)= g(z)/z2 is in
H 1 in an annulus 0< r < |z|< 1.

This seemingly excessive construction of an exterior pseudocircle cannot be
avoided by simply taking an inversion of an interior pseudocircle; the result will be
non-Smirnov, but it will not be an exterior pseudocircle. Nor can one simply take
the complement. As proved by P. Jones and S. Smirnov [1999], the complement
of a non-Smirnov domain is often Smirnov! (This unexpected resolution of a long
standing problem put to rest all hopes of characterizing the Smirnov property in
terms of a boundary curve.)

Remark. Closely related examples of similar function-theoretic problems can be
found in [Ebenfelt et al. 2002; Shahgholian 1992]. These examples of non-Smirnov
exceptional domains lead to assuming � is Smirnov in our main theorems; but we
allow u to be a weak solution.

An alternative approach is to require the roof function u to be a classical solution
that satisfies the boundary condition everywhere (and not just a.e.). Then the
domain must be Smirnov. This is because the boundary is locally real-analytic,
as stated in the next lemma. Thus, the boundary is smooth except possibly at
infinity. The preimage of infinity under a conformal map from the disc (or a circular
domain, in the multiply connected case) can consist of at most countably many
points on the boundary, i.e., infinity represents at most countably many “prime
ends” [Markushevich 1977]. Indeed, the complement of � is a disjoint union of
domains, and for each boundary component of� going to infinity there is a separate
component of the complement. None of these are void, since boundary components
must be petals as opposed to slits — on a slit the normal vector would jump at the
finite end point of the slit (violating the local real analyticity stated in the lemma
below). There can be at most countably many such boundary components, because
otherwise the complement of � would consists of uncountably many disjoint
nonempty domains (impossible). Thus, the point at infinity can represent at most
countably many prime ends (for the definition of prime end, see [Markushevich
1977, Chapter 2]). So, if the Smirnov condition is violated, meaning the derivative
f ′ of the conformal map has a factor that is a nontrivial singular inner function,
then the associated singular measure would consist of atoms. The derivative f ′ then
decays exponentially at those points. This violates basic estimates on the derivatives
of univalent functions, as given by Koebe’s distortion theorem [Pommerenke 1975,
Theorem 1.3].
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Lemma 2.2. If �⊂R2 is exceptional and the roof function u is a classical solution
in C1(�), then ∂� is locally real-analytic.

Proof. The analytic completion f (z)= u+ iv (possibly multivalued) maps � into
the right half-plane, since u is positive. The Neumann condition for u implies that
| f ′(z)| = 1 on ∂�. Also, u ∈ C1(�) implies that f ′ ∈ C(�).

Choose a point z0 ∈ ∂�, and let ζ0 = f (z0). Let g(ζ ) = f −1(ζ ) denote the
local inverse of f (z). Choose a neighborhood U of ζ and let F :=U ∩ {<(ζ )≥ 0}.
Choose U small enough so that g ∈ C(F).

Since |g′(ζ )| = 1 on ∂�, we can also choose U small enough that g′ does not
vanish in F . This implies that h(ζ )= log(g′(ζ )) is analytic in the interior of F and
continuous in F . Further, <{h(ζ )} vanishes on the imaginary axis, since |g′(ζ )| = 1
there. Thus h(ζ ) extends to a neighborhood of ζ0 by the Schwarz reflection principle.
This allows us to extend g′(z), and therefore g(z) and f (z) extend analytically
across z0, since u := < f = 0 on ∂� and |∇u| = 1 on ∂� near z0. �

Corollary 2.3. If ∂� is C2-smooth and � is exceptional, then ∂� is locally real-
analytic.

Proof. C2-smoothness of ∂� implies that u is in C1(�). Now use Lemma 2.2. �

Using Kellogg’s theorem [1929] on regularity of conformal maps up to the
boundary (see also [Pommerenke 1992, Chapter 3]), one easily extends the corollary
to C1,α boundaries (α > 0) and even C1 boundaries. We shall not pursue these
details here. It would be interesting to find sharp necessary and sufficient conditions
for the a priori regularity of the boundary that would guarantee the conclusion
of Corollary 2.3. As we have mentioned in the beginning of this section, it is
necessary to assume that the domain is Smirnov, but it is not at all obvious that this
is sufficient. See [Castro and Khavinson 2013a; 2013b] for a related discussion
regarding nonconstant functions in E p classes with real boundary values.

3. The case when infinity is an isolated boundary point

Theorem 3.1. Suppose � is an exceptional domain whose complement C \� is
bounded and connected, and assume � is Smirnov. Then � is the exterior of a disk.

Proof. Let u be a roof function for �. Positivity of u implies, by Bôcher’s theorem
[Axler et al. 1992, Chapter 3], u(z)= u0(z)+C log|z| for some constant C , where
u0(z) is harmonic in�∪{∞}, and u0(z) approaches a constant at infinity (the Robin
constant of ∂� provided C = 1). Thus, in view of the Dirichlet data of u, u(z) is a
multiple of the Green’s function of � with a pole at infinity, and taking v(z) to be
the harmonic conjugate of u(z)/C , we have a conformal map g(z)= eu(z)/C+iv(z)

from � to the exterior of the unit disk (note that g(z) is single-valued in �).
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Using both the Dirichlet and Neumann data, we have |g′(z)| = 1/C a.e. on ∂�,
and therefore

|(g−1)′(ζ )| =
1

|g′(g−1(ζ ))|
= C

a.e. on ∂D. Since g−1 has a simple pole at infinity, (g−1)′ is analytic. Also, (g−1)′

is in H 1(C \D) since ∂� is rectifiable. Since � is Smirnov, the latter function is
outer and also has constant modulus on the unit circle a.e., which together imply
that it is constant. (Recall from (2-1) that an outer function is determined from its
boundary values.) Hence, g−1 is a linear function and ∂� is a circle. �

We defer proving a higher-dimensional version of this result until Section 7, but
we mention here that under more smoothness assumptions, the higher-dimensional
case can be proved using a theorem of W. Reichel [1997].

Under additional smoothness assumptions, the hypothesis of Theorem 3.1 guar-
antees that � is a special type of arclength quadrature domain. The following is
then an immediate corollary of a result of B. Gustafsson [1987, Remark 6.1].

Theorem 3.2. Suppose� is a finitely connected exceptional domain, with piecewise
C1 boundary, and infinity is not a point on the boundary of�. Then� is the exterior
of a disk.

This removes the condition that the complement of � is connected.

Proof. We will show that � is an arclength null-quadrature domain (this term is
defined in Section 9.3) for analytic functions vanishing at infinity. At first, take the
class of test functions to be integrated over ∂� to consist of rational functions r(z)
in � vanishing at infinity.

Let f (z)= u(z)+ iv(z) be the analytic completion of the roof function u. Note
that f ′(z) is single-valued (since it is the conjugate of the gradient of u), and, by
the theorem of Bôcher already cited, f ′(z)= O(|z|−1). The inward normal of ∂�
coincides with the gradient of u, which equals f ′(z)= 1/ f ′(z). The unit tangent
vector dz/ds is a 90◦ rotation of the normal vector 1/ f ′(z). Thus, i f ′(z) dz = ds.
We then have a quadrature formula for integration of r(z) with respect to arclength:

(3-1)
∫
∂�

r(z) ds = i
∫
∂�

r(z) f ′(z) dz = 0,

where the vanishing of this integral is obtained by deforming the contour to infinity
where f ′(z) r(z) = O(|z|−2). Indeed, r(z) = O(|z|−1) by our choice of the test
class, and f ′(z)= O(|z|−1) as mentioned above.

If the boundary of � is piecewise C1, rational functions are dense in E p classes
(see [Duren 1970, Theorem 10.7] and, for the multiply connected case, [Tumarkin
and Havinson 1958a; 1958b; 1960]). In particular, rational functions r(z) vanishing
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at infinity are dense in the space of functions E(�) considered in [Gustafsson 1987].
Thus, (3-1) shows that � is an arclength null-quadrature domain for this space of
functions, and the result now follows from Remark 6.1 in [Gustafsson 1987]. �

4. The Schwarz function of an exceptional domain

The Schwarz function of a real-analytic curve 0 is the (unique and guaranteed to
exist near 0) complex-analytic function that coincides with z̄ on 0. For the basics
on the Schwarz function, we refer to [Davis 1974] and [Shapiro 1992].

We recall two basic facts needed in the proof of the next proposition.

(i) On 0, |S′(z)| = 1.

(ii) The complex conjugate of
√
−S′(z) is normal to 0.

Statement (i) follows from the chain rule and the fact that the complex conjugate
of the Schwarz function, S(z), is an involution; see [Davis 1974, Chapter 7].
Statement (ii) follows from Formula (7.5) of the same reference, expressing the
tangent vector along 0 (i.e., the derivative of z with respect to arclength):

(4-1) T (z)= dz/ds = 1/
√

S′(z).

Proposition 4.1. If� is an exceptional domain such that the roof function is a classi-
cal solution, then the z-derivative of the roof function is given by uz(z)= c

√
−S′(z),

where c is a real constant and S(z) is the Schwarz function of ∂�. In particular,
S′(z) is analytic throughout �.

Remark. If, for instance, the constant Neumann data for the roof function is 1,
then the constant above c =± 1

2 , where the sign depends on the orientation of the
boundary.

Proof. Lemma 2.2 implies that 0 is locally real-analytic. So 0 has a Schwarz
function S(z). The complex conjugate of the analytic function uz is normal to
0 (since u has zero Dirichlet data). In light of the constant Neumann data, we
then have |uz(z)| = |(uz(z))∗| = 1

2 |ux + iu y| =
1
2

√

u2
x + u2

y is constant on 0. This,
along with the statements (i) and (ii) above, shows that on 0 the vectors uz(z)
and
√
−S′(z) are parallel and each have constant length. Therefore, for some real

constant c, the equation uz(z)= c
√
−S′(z) holds on 0. But since uz and

√
−S′(z)

are both analytic, the equation is true everywhere that either side is defined. In
particular, this guarantees analytic continuation of S′(z) throughout �. �

Let us use the Schwarz function to give a heuristic argument that the boundary
of an exceptional domain can pass through infinity at most twice. In fact, the angle
between consecutive arcs at infinity must be π (and obviously there cannot be more
than two such angles at infinity). Suppose the boundary of a domain has a corner
where two arcs meet at an angle different from 0, π , or 2π . Then the derivatives
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of the Schwarz functions of the two arcs have a branch cut along a third arc that
propagates into the domain from the corner. To see why this is the case, note that
the Schwarz function of an arc can be approximated near a point by the Schwarz
function of the tangent line. Thus, to first order, the jump along the branch cut is
linear, so to zeroth order, the jump of S′ is determined by the slopes of the tangent
lines. If the angle is 0 or 2π , then the tangent line is the same for each arc, but the
orientation changes, so there is still a jump due to the sign change. In the case of an
angle of π , both the tangent line and the orientation are unchanged. Thus, for any
angle other than π , S′(z) has a jump across a branch cut between the two boundary
components. For an exceptional domain, u is a global solution throughout �, and
so Proposition 4.1 indicates that the Schwarz function cannot have such branch
cuts. Thus, the angle between consecutive boundary arcs at infinity can only be π ,
and there can be at most two such angles.

In the informal argument above, we have assumed that each arc is real-analytic
at infinity, so that the Schwarz function has a Taylor expansion there. A. Eremenko
(private communication, 2012) related to us the following proof using ideas from
[Barrett and Eremenko 2012] that extend techniques due to C. Pommerenke. Its
indisputable advantage is that no regularity assumptions on ∂� are required. Also,
an important part of the theorem readily extends to higher dimensions.

We recall that a Martin function is a positive harmonic function M in a region �
with the property that for any positive harmonic function v in �, the condition
v ≤ M implies that v = cM , where c > 0 is a constant. (Martin functions are also
called minimal harmonic functions, as in [Heins 1950].) Martin functions on finitely
connected domains are simply Poisson kernels evaluated at points of the Martin
boundary, the boundary under Carathéodory compactification (prime ends) of the
domain (see [Brelot 1971]).

Theorem 4.2 (A. Eremenko). The roof function u of any exceptional domain � is
a convex combination of at most two Martin functions of � at infinity. Moreover,
u(z)= O(|z|), and in two dimensions we also have ∇u(z)= O(1) in �.

Remark. M. Traizet [2013] obtained the estimate |∇u| ≤ 1 in � for domains with
finitely many boundary components using the Phragmén–Lindelöf principle. For
Smirnov domains �, it suffices to show that uz belongs to the class N+ (see [Castro
and Khavinson 2013a]) in order to conclude that the analytic function uz is bounded
by 1 in �. However, even this assumption is not needed here, and it is possible to
establish the estimate on ∇u in full generality. Eremenko has kindly permitted us
to include his argument here.

Proof. First we note that, as observed in [Barrett and Eremenko 2012, Lemma 1], if
u is a positive harmonic function in a disk (or a ball in higher dimensions), D(a, R)
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of radius R centered at a, and u(z1)= 0 for some boundary point z1, then

(4-2) u(a)≤ 2R|∇u(z1)|.

This immediately follows from Harnack’s inequality for D(a, R) as for z ∈ D(a, R)

u(a)
R+ |z− a|

≤
u(z)

R− |z− a|
=

u(z)− u(z1)

R− |z− a|
,

and letting z→ z1 establishes (4-2).
Applying (4-2) when a ∈ � and R is the distance from a to ∂�, gives u(a) ≤

2RC ≤ 2(|a| + const)C , where C is the constant value of the Neumann data. So
u(z)= O(|z|), as z→∞, showing that u(z) has order at most one.

That u is a combination of at most two Martin functions now follows directly
from [Kjellberg 1950, Theorem II], which states that if � has n ≥ 2 different
(nonproportional) Martin functions of respective orders ρ1, ρ2, . . . , ρn , then

n∑
j=1

1/ρ j ≤ 2.

(This is proved using an application of Carleman’s inequality [1926].) In higher
dimensions, one must use [Friedland and Hayman 1976] instead of [Kjellberg
1950].

Next we show, in the two-dimensional case, the additional claim that ∇u(z)=
O(1). Let R > 0 and consider an auxiliary function

wR =
|∇u|

u+ R
,

where R > 0 is a parameter. A direct computation shows that

(4-3) 1 logwR = w
2
R,

and wR(z)= C/R for z ∈ ∂D. We claim that

(4-4) wR(z)≤ 2C/R for z ∈�,

from which the result follows by letting R→∞, which gives |∇u| ≤ 2C in �.
Suppose, contrary to (4-4), that wR(z0) > 2/R for some z0 ∈�. Here and in the

next lines, we assume for simplicity that C = 1. Let

v(z)=
2R

R2− |z− z0|2
for z ∈ D(z0, R)= {z : |z− z0|< R}.

Obviously, v(z)≥ 2/R. A computation reveals that 1 log v = v2. Let

K = {z ∈�∩ D(z0, R) : wR(z) > v(z)}.



AN OVERDETERMINED PROBLEM IN POTENTIAL THEORY 97

We have z0 ∈ K , since v(z0)= 2/R. Let K0 be the component of K containing z0.
Then we have wR(z)= v(z) on ∂K0, since wR(z) < v(z) on ∂�∩ D(z0, R) while
v(z)=+∞ on ∂D(z0, R). On the other hand,

1(logwR − log v)≥ w2
R − v

2 > 0 in K0.

So the subharmonic function logwR − log v is positive in K0 and vanishes on the
boundary, a contradiction. �

Remark. This a priori estimate implies the following corollary showing that the
boundaries of exceptional domains are extremely regular. Namely, they are locally
real-analytic and can even be parametrized from the unit circle via an antiderivative
of a rational function. In particular, it validates the preceding argument using the
Schwarz function, and establishes that the boundary passes at most twice through
infinity each time with an angle of π . The only additional assumptions needed here
are that the domain is Smirnov (compare Section 2) and simply connected.

Corollary 4.3. Let � be a simply connected Smirnov domain, and let h(ζ ) be the
conformal map from D to �. If � is exceptional, then h′(ζ ) is a rational function,
and we are in one of two cases:

(i) h′ has one pole on ∂D.

(ii) h′ has two poles on ∂D.

Proof. Let u be a roof function for �, and f (z)= u+ iv its analytic completion.
Since u > 0, f (z) takes � into the right half-plane, and f (h(ζ )) takes the unit
disk D into the right half-plane. Adding an imaginary constant if necessary, we
may assume that f (h(0)) > 0 is real. Then, by Herglotz’s theorem [Hoffman 1962,
Chapter 3; Duren 1970, Chapter 1], we can represent f (h(ζ )) as

(4-5) f (h(ζ ))=
∫

T

eiθ
+ z

eiθ − z
dµ(θ),

with µ positive.
Now, since < f (h(ζ )) is the pullback to D of the roof function u, which by

Theorem 4.2 is a convex combination of at most two Martin functions, µ consists
of at most two atoms.

Thus, differentiating (4-5),

(4-6) f ′(h(ζ )) · h′(ζ )= R(ζ ),

where R(ζ ) is a rational function with either one or two double poles on ∂D

(at the atoms of µ). Since by Theorem 4.2, f ′(h(ζ )) = 2uz(h(ζ )) is a bounded
analytic function in D with | f ′(h(ζ ))| = 1 a.e. on ∂�, f ′(h(ζ )) is an inner function.
Moreover, h′(ζ ) is an outer function, since � is Smirnov.
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For a rational function such as R(ζ ), the canonical factorization given by
Theorem 2.1 reduces to

R(ζ )= B(ζ ) · F(ζ ),

with B a Blaschke product and F a (rational) outer function. (The singular factor
S(ζ ) is trivial, since R(ζ ) has no essential singularities.) By the uniqueness of the
canonical factorization, h′(ζ ) and f ′(h(ζ )) equal F(ζ ) and B(ζ ) respectively (up
to multiplication by a unimodular constant). Hence, h′(ζ )= F(ζ ) is rational, and
f ′(h(ζ ))= B(z) is a Blaschke product. �

Remarks. (i) It is also possible to see that f ′(h(ζ )) = B(z) has either no zeros
or a single simple zero in D. The reason is that the increment of the argument
of R′(ζ ) dζ = d R over ∂� is zero, since f ′(z) dz is positive. Thus, the winding
number of R′(ζ ) over ∂� is negative one. If R′(ζ ) has one double pole on the
boundary (recall that a pole on the boundary counts half [Bell 1992, p. 48]), then
R′ has no zeros inside D. If R′(ζ ) has two double poles (each counts half), then
R′(ζ ) has one simple zero.

(ii) It seems of interest to discuss to what extent the Corollary extends to the multiply
connected case (Theorem 4.2 does not assume the domain is simply connected.) Let
us make a few comments in this direction. Suppose� is a finitely connected Smirnov
exceptional domain with the boundary passing through infinity and n−1 additional
boundary components that are rectifiable Jordan curves. Let z = h(w) : K →� be
a conformal map from a bounded circular domain into �, with the outer circle Cn

mapped onto the unbounded component of ∂�. Then it is possible to show that
u(h(ζ )) is a Poisson integral of a positive measure µ supported at one or two points
on the circle Cn . Now du(h(ζ ))/dζ = uz(h(ζ ))h′(ζ ) is a single-valued analytic
function in K with at most two double poles at ζ1, ζ2, the support of µ. Since
the Poisson kernel ∂ng of K is analytic in a neighborhood of K except for ζ1, ζ2

on Cn , the function g(ζ ) := du(h(ζ ))/dζ extends to a meromorphic function in a
neighborhood of Cn \ {ζ1, ζ2} and has poles at those points. (This gives us local
real-analyticity of the contour going through∞ on ∂�.) Applying the argument
principle as in the first part of this remark, we see that the total increment of the
argument of uz(h(ζ ))h′(ζ ) is n− 2, and uz(h(ζ )) has either n or n− 1 zeros in K .
From an extension of the factorization theorem [Khavinson 1983] to the multiply
connected case, it follows that B(ζ )= uz(h(ζ )) is either a constant or a covering
of the disk D with n sheets. It is at most n sheets by the above, and at least n since
each boundary component of K is mapped to the circle and must have winding
number at least one. Otherwise B ′(ζ ) vanishes somewhere on the boundary of K ,
and a local expansion of B ′ at that point indicates that B maps part of K outside
of D, a contradiction. Putting all this together, either h′(ζ ) has two double poles
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or B(ζ ) is constant. Thus, if Cn passes through infinity only once, then � is a
half-plane.

5. Infinity as a single point on the boundary

We now characterize the half-plane as the only simply connected exceptional domain
having infinity as a single point on the boundary. This extends Proposition 6.1
of [Hauswirth et al. 2011] by removing a hypothesis (∂x u > 0 in �) on the roof
function.

Theorem 5.1. A domain � as in case (i) of Corollary 4.3 is a half-plane.

Remarks. (i) As mentioned in the introduction and Section 9, M. Traizet [2013]
recently used minimal surfaces to establish this result under the assumption of
finitely many boundary components. We note that, in the simply connected case,
this assumption is stronger than ours, since infinitely many boundary components
were allowed in Eremenko’s result (Theorem 4.2). The final remark in the previous
section explains how to use pure function theory in order to argue that � is a
half-plane without the assumption that � is simply connected.

(ii) We have not been able to prove a higher-dimensional version of Theorem 5.1
(see also Section 7).

Proof. Using the same notation f and h from the proof of Corollary 4.3,

f (h(ζ ))=
∫
∂D

eiθ
+ ζ

eiθ − ζ
dµ(θ)

for some finite positive measure µ on ∂D. By assumption, we are in the case when
h′ has one pole, and according to the proof of Corollary 4.3, µ is an atomic measure
with a single point mass. Without loss of generality, we can place it at the point
eiθ
= 1.

Thus, f (h(ζ ))= C 1+ζ
1−ζ

, which upon differentiation gives

(5-1) f ′(h(ζ ))h′(ζ )= 2C
1

(1− ζ )2
.

As asserted in the proof of Corollary 4.3, f ′(h(ζ )) is the Blaschke factor of the
right side, which has no zeros, so f ′(h(ζ )) is a unimodular constant. Therefore,
f = u+ iv is a linear function and � is a half-plane. �

6. Infinity as a double point of the boundary

In this section we characterize the nontrivial example found in [Hauswirth et al.
2011]. Suppose � is a simply connected domain and � is exceptional. By
Corollary 4.3, recall that the derivative h′(ζ ) of the conformal map from the disk
onto � is a rational function with either one or two double poles on ∂D.
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Theorem 6.1. A domain � as in case (ii) of Corollary 4.3 is, up to similarity, the
image of the strip |=w| ≤ π/2 under the conformal map g(w)= w+ sinhw, while
the analytic completion of the function u(g(w)) is the function f (g(w))= coshw.

Remark. Together with Theorems 3.1, 4.2 and 5.1, this shows that, under an
assumption on the topology, the image of the strip under ζ 7→ ζ+sinh ζ is essentially
the only nontrivial example of an exceptional domain in R2. The topological
assumption is necessary, since there is a whole one-parameter family of nonsimilar
infinitely connected exceptional domains (see Figure 3 on page 106). However,
under the assumption of finitely many boundary components, the example described
in Theorem 6.1 is the only nontrivial example, as recently proved in [Traizet 2013].

Proof. Using the same notation as in the proofs of Corollary 4.3 and Theorem 5.1,
we have that h′(ζ ) is a rational function, and according to (4-6), f ′(h(ζ )) is as
well. This justifies applying the argument principle to study f (h(ζ )) and f ′(h(ζ )).
Namely, we will prove the following.

Claim. The function f solves the differential equation

(6-1) f ′ =
√
( f − 1)/( f + 1), z ∈�,

after simple normalizations described below.

Before proving this, we solve the differential equation to see that it gives the
desired result. Separating variables,∫ √

( f + 1)/( f − 1) d f = z+C.

Making the substitution f = coshw, we obtain z =w+ sinhw (fixing the constant
of integration C = 0). Now using the conditions < f (z(w)) = 0 for z ∈ ∂� and
< f (z(w)) > 0 for ζ ∈�, and the identity < cosh(x + iy)= cosh x cos y, we find
that the preimage of the domain in the w-plane is the strip |=w| ≤ π/2. Therefore,
� can be described as the image of the strip under the map z(w) = w+ sinhw,
concluding the proof of the theorem.

Ω
Γ

Figure 1. Local geometry of the boundary 0 = ∂� near infinity.
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To prove the claim, we will use the argument principle to show that both sides
of (6-1) provide a conformal map from � to D. From the formula

T (z)=
dz
ds
=
−i

f ′(z)
=

1
√

S′(z)
,

which relates the tangent vector T (z) on ∂� to the derivative of the analytic com-
pletion f of u(z), we obtain using the continuity of T (z) through the double point
at infinity (see Figure 1) that ∮

∂�

d log f ′(z)= 2π i.

We conclude that f ′ is a single-sheeted covering of the unit disk by the domain �,
and that it has only one zero, at some point z0 ∈�.

We may assume that f (z0) = 1. If not, say f (z0) = a + ib, a > 0, then one
may subtract the constant ib from f (this just amounts to choosing a different
harmonic conjugate for the same roof function), so we have f (z0)= a. Then one
may simply replace 1 with a in the claim, and integrating the differential equation
is done similarly resulting in a dilation of the original solution.

Now consider the function g(z) :=
√
( f (z)− 1)/( f (z)+ 1), defined on � and

taking values in the unit disk D. This too is a univalent map from � into D. Indeed,
by the argument principle, ( f (z)−1)/( f (z)+1) is a branched, two-sheeted covering
of the disk, since it maps each of the two boundary components shown in Figure 1
onto T, Since the single branch point z0 is mapped to the origin, taking the square
root gives a single-valued analytic function.

Also, f ′(z0) = g(z0) = 0. This uniquely determines the conformal map up to
a unimodular constant, which we may assume is 1 (after a rotation), and we then
arrive at the differential equation (6-1). �

7. An extension of Theorem 3.1 to higher dimensions

In this section, we notice that some results in Section 3 extend to higher dimensions.

Theorem 7.1. Suppose� is an exceptional domain in Rn whose exterior is bounded
and connected. If ∂� is C2,α-smooth, α > 0, then ∂� is a sphere.

Proof. Let u be a roof function for �, and let v(s)= 1/|s|n−2 denote the Newtonian
kernel. Fix y ∈� and take a small ball Bε centered at y. Take also a large ball BR

of radius R that contains both Bε and the complement of �.
Since u(x) and v(x − y) are harmonic in � \ Bε, Green’s second identity gives

(7-1)
∫
∂BR+∂�−∂Bε

(
v(x − y) ∂nu(x)− u(x) ∂nv(x − y)

)
dσx = 0.
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Letting R→∞, we can drop the integration over ∂BR , since again by Bôcher’s
theorem [Axler et al. 1992, Chapter 3], near infinity u(x)≈ |x |2−n .

Since, u(x)= 0 on ∂� and ∂nu(x)= 1 on ∂�,

(7-2)
∫
∂�

v(x − y) dσx =

∫
∂Bε

(
v(x − y) ∂nu(x)− u(x) ∂nv(x − y)

)
dσx .

Let U be a bounded domain such that Rn
\U =�. The outward normal for ∂U

is opposite to that of ∂�, and since v(x − y)= 1/εn−2 on ∂Bε,

(7-3)
∫
∂U
v(x − y) dσx =

∫
∂Bε

(
−ε−(n−2) ∂nu(x)+ u(x) ∂nv(x − y)

)
dσx .

For the first term on the right, we have∫
∂Bε

ε−(n−2) ∂nu(x) dσx =

∫
Bε
1u(x) dV = 0.

So, ∫
∂U
v(x − y) dσx =

∫
∂Bε

u(x) ∂nv(x − y) dσx → u(y),

as ε→ 0. So, u(y) is the single layer potential with charge density 1 on the surface
∂U . That U is a ball now follows from Theorem 1 of [Reichel 1997]. �

Remark. Reichel’s result holds for more general elliptic operators than the Lapla-
cian. In the setting of the Laplacian, J. L. Lewis and A. Vogel [1992] characterized
the sphere in terms of its interior Green’s function under weaker regularity as-
sumptions, namely, the boundary is assumed Lipschitz. In that case, the Neumann
condition can be assumed to hold almost everywhere on the boundary. Thus, the
hypothesis of Theorem 7.1 could be weakened by checking that the proof in [Lewis
and Vogel 1992] works for the exterior case we are interested in. Yet, we have
chosen an easier and more transparent path to apply Reichel’s result directly, even
though it requires a stronger regularity on the boundary.

8. Nonexistence of a higher-dimensional analog of the cosh z example

The authors in [Hauswirth et al. 2011] expressed a suspicion (see Remark 2.1 in
[Hauswirth et al. 2011]) that there exist n-dimensional, rotationally symmetric
examples similar to the two-dimensional example {(x, y)∈R2

: |y|<π/2+cosh x},
which appeared in Section 6. We show that there does not exist an exceptional
domain in R4 whose boundary is generated by rotation about the x-axis of the
(two-dimensional) graph of an even function.

Theorem 8.1. There does not exist a rotationally symmetric exceptional domain �
in R4 that contains its own axis of symmetry and whose boundary is obtained by
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rotating the (two-dimensional) graph of an even real-analytic function about the
x-axis.

Our proof will rely heavily on two tricks, one exploiting the assumption that
n = 4, and the other using the assumption that the generating curve is symmetric.
However, we strongly suspect a more general nonexistence of such examples in Rn

for any n > 2.
Therefore, we conjecture the following.

Conjecture. For n > 2, there does not exist an axially symmetric, exceptional
domain in Rn that contains its own axis of symmetry.

Remark. The assumption that the domain contains its axis of symmetry rules
out the exteriors of balls and circular (or spherical) cylinders, respectively (which
are clearly exceptional domains as was noted in [Hauswirth et al. 2011]). Also,
A. Petrosyan and K. Ramachandran pointed out to us (private communication, 2012)
that the nonconvex component of the exterior of a certain cone is also an exceptional
domain. In R4, using the x-axis as the axis of rotation, the cone is the rotation of
{(x, y) : y2

− x2
= 0}, and the roof function in the meridian coordinates x, y where

y is the distance to the x-axis in R4, is u(x, y)= (y2
− x2)/y for y > 0.

Proof of Theorem 8.1. Suppose that� is such a domain in R4. Namely, the boundary
∂� is obtained from rotation of γ := {(x, y) ∈ R2

: y = g(x)}, with g(−x)= g(x).
That is, the boundary of � is given by

{(x1, x2, x3, x4) ∈ R4
:

√
x2

2 + x2
3 + x2

4 = g(x1)}.

Considering the boundary data, the rotational symmetry of the domain will be
passed to the roof function (this requires uniqueness of the roof function guaranteed
by the Cauchy–Kovalevskaya theorem, which may be applied since the boundary is
assumed to be real-analytic), so that, abusing notation, we can write

u(x1, x2, x3, x4)= u(x, y).

For clarity, we emphasize that the x-axis corresponds to the axis of symmetry and
the y-coordinate gives the distance from the axis of symmetry.

For axially symmetric potentials v in Rn , the cylindrical reduction of Laplace’s
equation is

1(x,y)v+ (n− 2)vy/y = 0,

where x = x1 and y =
√

x2
2 + · · ·+ x2

n . Moreover, in the case we are considering,
when n = 4, u satisfies the equation 1u+ (2u y)/y = 0, if and only if yu(x, y) is a
harmonic function of two variables x and y. Indeed,

1(yu)= y1u+ 2∇u · ∇ y+ u1y = y1u+ 2u y .
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(The trick that reduces axially symmetric potentials in R4 to harmonic functions in
the meridian plane is well known: compare [Khavinson 1991; Karp 1992].)

Since yu(x, y) is then harmonic in the unbounded two-dimensional domain D
bounded by γ and its reflection (which we denote by γ̄ ) with respect to the x-axis,
this implies ∂(yu(x, y))/∂z is analytic in the domain D, where as usual z = x+ iy.
The Cauchy data (originally posed in R4) imply that uz =

1
2(ux − iu y) coincides

with
√
−S′(z) on γ and γ̄ . This implies that the analytic function

(8-1) W (z) := (yu)z = (−i/2)u+ yuz

coincides with
(
(z− S(z))/2i

)√
−S′(z) on γ and γ̄ . The latter function is analytic,

so this actually gives a formula for W (z) whose validity is not limited to γ and γ̄ :

(8-2) W (z)=
z− S(z)

2i

√
−S′(z).

We note that (8-2) can be used to analytically continue S(z) to all of D, but this is
not needed in our proof.

Let f (ζ ) be the conformal map from the strip 6 := {|=ζ |< 1
2} to D such that

f (0) = 0 and arg{ f ′(0)} = 0. The two-fold symmetry of D implies that f (ζ ) is
an odd function. Indeed, otherwise h(ζ )=− f (−ζ ) gives another conformal map
from the strip 6 to D. But, h(0)=− f (0)= 0 and h′(0)= f ′(0) implies h = f , by
the uniqueness of the conformal map (up to choice of f (0) and argument of f ′(0)).

The Schwarz functions St , Sb of the top and bottom edges of the strip 6 are
St(ζ )= ζ − i and Sb(ζ )= ζ + i . In terms of the conformal map f (ζ ), the pullbacks
to the ζ -plane of the Schwarz functions S+ and S− of γ and γ̄ , respectively, satisfy
(see [Davis 1974, Chapter 8, Equation 8.7])

S±( f (ζ ))= f (ζ ∓ i) and S′
±
( f (ζ ))=

f ′(ζ ∓ i)
f ′(ζ )

.

Substituting these into (8-2), we obtain two expressions for the pullback of W (z)
to the strip 6:

(8-3)
f (ζ )− f (ζ ∓ i)

2i

√
−

f ′(ζ ∓ i)
f ′(ζ )

Even though W ( f (ζ )) is analytic throughout 6, we caution that these two
expressions (one expression for+ and one for−) may only be valid near the bottom
and top sides (respectively) of the strip 6.

Claim. The function W ( f (ζ )) is odd.

In view of the claim, W (0) = W ( f (0)) = 0. By (8-1), we then have that
(−i/2)u+ yuz = 0 at z = 0, which implies that u(0, 0)= 0. This contradicts the
positivity of u, proving the theorem.
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There remains to prove the claim. Set V (ζ ) = W ( f (ζ ))+W ( f (−ζ )). Using
(8-3), we can write

V (ζ )=
f (ζ )− f (ζ − i)

2i

√
−

f ′(ζ − i)
f ′(ζ )

+
f (−ζ )− f (−ζ + i)

2i

√
−

f ′(−ζ + i)
f ′(−ζ )

We show that this formula vanishes where it is valid, which then implies that
V (ζ ) vanishes identically throughout 6. For this, we use the fact that f is odd and
consequently f ′ is even.

V (ζ )=
f (ζ )− f (ζ − i)

2i

√
−

f ′(ζ − i)
f ′(ζ )

+
− f (ζ )+ f (ζ − i)

2i

√
−

f ′(ζ − i)
f ′(ζ )

= 0.

This establishes the claim. �

9. Concluding remarks and main conjecture

9.1. It is tempting to conjecture that the three examples in the plane studied above
are the only exceptional domains in the plane, as suggested in [Hauswirth et al.
2011]. However, there is a remarkable family of infinitely connected exceptional
domains. They were discovered as solutions to a fluid dynamics problem by Baker,
Saffman, and Sheffield [Baker et al. 1976]. (See also [Crowdy and Green 2011]
for a more detailed account.) The original problem there was to find hollow vortex
equilibria with an infinite periodic array of vortices, known as spinning bubbles,
amid a stationary flow of ideal fluid. The domain occupied by fluid turns out to be
an exceptional domain with an infinite periodic array of holes, and the roof function
is a stream function of the fluid flow; see Figure 2. The constant Dirichlet condition
corresponds to the requirement that the boundary of each hollow vortex is a stream
line, and the constant Neumann condition corresponds to the requirement that the
fluid pressure should be balanced at the interface by the pressure inside each bubble
which is assumed constant. The latter correspondence is more subtle; in order to
have constant pressure along a stream line, the fluid velocity (which equals the
normal derivative of stream function) should be constant, by Bernoulli’s law.

This infinitely connected example leads us to add to the conjecture the assumption
that the domain is finitely connected.

Conjecture. The only finitely connected exceptional domains in R2 are the exterior
of the unit disk, the half-plane, and the domain described in Theorem 6.1.

Remark. As mentioned in the introduction, Martin Traizet [2013] recently an-
nounced a classification of exceptional domains. His results confirm our conjecture
for domains having finitely many boundary components and also show that the above
infinitely connected example is the only periodic exceptional domain for which
the quotient by the period has finitely many boundary components. His methods
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Figure 2. An infinitely connected exceptional domain that also
provides a hollow vortex equilibrium. Level curves of the roof
function are stream lines. The shape of the bubbles ensures that the
pressure dictated by Bernoulli’s law is constant at the fluid-bubble
interface.

0.1

��0.1
��0.5 0.5 1.0��1.0

��0.4

0.4

Figure 3. One-parameter family of bubble shapes associated with
exceptional domains. As stated in [Traizet 2013], each of the three
previously known examples can be recovered as scaling limits of
this family. In that sense, this family includes all known examples.

use a remarkable nontrivial correspondence to minimal surfaces, perturbing an
exceptional domain by harmonically mapping it to another domain in such a way
that the graph of the new height function (which pulls back to the roof function
in the original domain) satisfies the minimal surface equation. A miraculous (and
crucial to his approach) by-product is that, whereas the graph of the roof function
meets its boundary at a 45◦ angle, the minimal graph meets its boundary vertically
so that gluing it to its own reflection over the xy-plane results in a smooth minimal
surface (without boundary!) embedded in R3.

9.2. Regarding the higher-dimensional case, we conjecture the following extension
of Theorem 5.1 to higher dimensions.

Conjecture. Suppose � is an exceptional domain in Rn that is homeomorphic to a
half-space. Then � is a half-space.
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9.3. The connection to the Schwarz function in Section 4 reveals that exceptional
domains are arclength null-quadrature domains. That is, for any function f , say an-
alytic in�, continuous in �, integrable over the boundary, and decaying sufficiently
at infinity, we have

∫
∂�

f ds = 0. Indeed,
∫
∂�

f ds =
∫
∂�

f (z)(1/T (z))T (z) ds =∫
∂�

f (z)
√

S′(z) dz, where T (z) is the complex unit tangent vector (see Section 4),
and now this integral vanishes as long as the integrand decays sufficiently at infinity.
Null-quadrature domains were previously studied in the case of area measure. They
were characterized in the plane by M. Sakai [1981]. Our current study can be seen
as a step toward characterizing null-quadrature domains for arclength.

9.4. Other interesting connections involve differentials on Riemann surfaces. The
study of Gustafsson [1987] used half-order differentials on the Schottky double of
an arclength quadrature domain. From a different point of view, the boundary of
an exceptional domain is a trajectory of the positive quadratic differential −(d f )2,
where f (z) is the analytic completion of the roof function.

9.5. The differential equation (6-1) can be solved by a more general substitution
using Jacobi elliptic functions [Abramowitz and Stegun 1964, p. 567, §16]:

f (ζ, k)= cos θ cn(ζ, k)+ sin θ sn(ζ, k),(9-1)

z(ζ )= cos θ sn(ζ, k)− sin θ cn(ζ, k)+
∫ ζ dn(ξ, k) dξ,(9-2)

where θ is an arbitrary phase, θ ∈ [0, 2π ].
For a given value of the elliptic modulus k ∈ [0, 1], we define the corresponding

domain F through its fundamental periods

T1(k)= 4K (
√

1− k2) and T2(k)= 4K (k),

where

K (k)≡
∫ π/2

0

1√
1− k2 sin2 θ

dθ

is the complete elliptic integral of the first kind [Abramowitz and Stegun 1964, p.
590, §17.3]. It diverges for k = 1 and equals π/2 for k = 0.

Then it is straightforward to check that (6-1) is satisfied by f (z), due to the
identity [Abramowitz and Stegun 1964, p. 573, §16.9]

1= (−sn z cos θ + cn z sin θ)2+ (cn z cos θ + sn z sin θ)2.

Let γ be the preimage of ∂� under z(ζ ): it consists of two pieces γ±, γ−=−γ+,
dividing the fundamental domain F into three subdomains. Denote the component
which contains the origin by D0. Since f (0)= 1, we conclude that < f (z) > 0 for
z ∈ D0 \ γ±, and we have proven the following result.
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Proposition. The exceptional domain � is the image of the domain D0(k) under
the map ζ 7→ z(ζ ) defined in (9-2).

Remark. The case discussed in the proof of the theorem corresponds to the degen-
erate elliptic modulus k = 0. Then the domain F becomes the infinite strip

T1(0)= 4K (1)→∞, T2(0)= 4K (0)= 2π,

while the functions f , g become (using the fact that dn(z, 1)≡ 1)

z(ζ )= ζ + sinh ζ, f (z(ζ ))= cosh ζ.

As noted before, the conditions < f (ζ )|γ± = 0 give the preimage γ± := z−1(∂�)=

{=ζ =±π/2}, and the preimage of the domain, D0, becomes the strip |=ζ | ≤ π/2.

9.6. The domain D0(k) is the preimage of the unit disk under the map ζ : F→ D

defined by

ζ(w)=
sn(w, k)− i
sn(w, k)+ i

, k ∈ [0, 1],

with the support of µ at points ζ± =±(1− ik)/(1+ ik), where µ is the measure
discussed in the proof of Corollary 4.3. The case k→ 0 corresponds to the strip
domain and to ζ± = ±1. The reparametrization invariance noted above for the
solution f (z) of (6-1) under rescaling of the elliptic modulus k is indicative of a
deeper invariance of the solution: all the specific solutions in C discussed here are
associated with fixed points in the moduli space of Riemann surfaces.

Again let f (h(z)) be the analytic completion of a solution, and denote by G the
group of transformations that leaves supp(µ) invariant up to a global rotation. It
follows that f is an automorphism of the quotient of the group of linear fractional
transformations by G, which can be in general a Kleinian group.. The limit set
(accumulation points of the orbits of the group) can be finite (in which case it can
consist of only 0, 1, or 2 points), or infinite. It is known (see [Astala et al. 2009,
Theorem 10.3.4]) that the set of homeomorphic solutions for a quasilinear elliptic
equation of Laplace–Beltrami type forms a group only in the case of finite limit
set. The Kleinian groups are called degenerate in this case, and they correspond
to either finite groups (with empty limit set), or cyclic groups (generated by one
element, with limit set consisting of 1 or 2 points). These correspond to the solutions
described in the present paper (isolated point at infinity, respectively simple and
double boundary point at infinity).
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QUASISYMMETRIC HOMEOMORPHISMS
ON REDUCIBLE CARNOT GROUPS

XIANGDONG XIE

We show that quasisymmetric homeomorphisms between (most) reducible
Carnot groups are bilipschitz. This implies rigidity for quasi-isometries be-
tween certain negatively curved homogeneous manifolds. The proof uses
Pansu’s differentiability theorem for quasisymmetric homeomorphisms be-
tween Carnot groups.

1. Introduction

We study quasisymmetric homeomorphisms between reducible Carnot groups. The
main result says that in most cases, the quasisymmetric homeomorphism must be
bilipschitz.

A Carnot group is reducible if it is isomorphic to the direct product of two Carnot
groups. Otherwise, a Carnot group is called irreducible. A reducible Carnot group
G can be written as G =G0×G1×· · ·×Gm , where G0 is abelian (i.e., isomorphic
to some Rn), and G j (1≤ j ≤ m) is nonabelian irreducible. Such a decomposition
is not unique in general; see Example 2.1.

All Carnot groups in this paper are equipped with the Carnot metric (see
Section 3).

Theorem 1.1. Let F : G → G ′ be a quasisymmetric map between two Carnot
groups. Suppose G is reducible and admits a direct product decomposition of
irreducible Carnot groups where at least two of the factors are not isomorphic.
Then F is bilipschitz.

The same claim remains open in the case when G is isomorphic to a direct
product N × · · ·× N , where N is nonabelian irreducible.

Quasisymmetric homeomorphisms between general metric spaces are quasi-
conformal. In the case of Carnot groups (and of Loewner spaces more generally),
a map is quasisymmetric if and only if it is quasiconformal (see [Heinonen and
Koskela 1998]).

Partially supported by NSF grant DMS-1265735.
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Theorem 1.1 has consequences for the rigidity of quasi-isometries between
certain negatively curved homogeneous manifolds. Recall that a quasi-isometry
between two metric spaces is an almost isometry if it preserves distance up to
an additive constant. A quasi-isometry between two negatively curved spaces
induces a quasisymmetric homeomorphism between the ideal boundaries (of the
negatively curved spaces), where the ideal boundaries are equipped with visual
metrics. Conversely, under mild conditions on the negatively curved spaces, each
quasisymmetric homeomorphism between the ideal boundaries is the boundary map
of a quasi-isometry; see [Bonk and Schramm 2000]. Similarly, almost isometries
between negatively curved spaces correspond to bilipschitz maps between the ideal
boundaries [ibid.]. On the other hand, Carnot groups arise as the ideal boundary
of certain negatively curved homogeneous manifolds (see below for more details).
Hence a direct consequence of Theorem 1.1 is that each quasi-isometry between
certain negatively curved homogeneous manifolds is an almost isometry.

Heintze [1974] characterized homogeneous manifolds with negative sectional
curvature (HMNs): Each HMN is isometric to a simply connected solvable Lie group
S equipped with a left invariant Riemannian metric, and furthermore S = N oR

is a semidirect product of a nilpotent Lie group N with R, where R acts on N by
expanding (and contracting) automorphisms; conversely, every semidirect product
as above admits a left invariant Riemannian metric with negative sectional curvature
(hence is an HMN). The ideal boundary of an HMN S = N oR can be naturally
identified with (the one-point compactification of) N . On the other hand, each
Carnot group N is a simply connected nilpotent Lie group having a one-parameter
family of dilations (see Section 3 for more details). These dilations induce an action
of R on the Carnot group by expanding (and contracting) automorphisms, so there
is an HMN N oR associated with each Carnot group N . It follows that each Carnot
group can be identified with the ideal boundary of some HMN. Hence Theorem 1.1
implies that each quasi-isometry between these HMNs is an almost isometry.

We next make some comments about the proof of Theorem 1.1. A main step in
the proof is to show that the quasisymmetric homeomorphism preserves a certain
foliation. Then the arguments in [Shanmugalingam and Xie 2012] show that the
quasisymmetric homeomorphism is bilipschitz. To show that the quasisymmetric
homeomorphism preserves a foliation, one first proves that infinitesimally it pre-
serves a foliation. The global result then follows by integration. Recall that Pansu’s
differentiability theorem (see [Pansu 1989] or Section 3) says that a quasisymmetric
homeomorphism F :G→G ′ between Carnot groups is Pansu-differentiable a.e., and
the Pansu differential is a.e. a graded isomorphism between the two Carnot groups.
Under the assumption of Theorem 1.1, we show that there are (proper) connected
and simply connected subgroups N ⊂ G and N ′ ⊂ G ′ such that φ(N ) = N ′ for
every graded isomorphism φ : G→ G ′; see Section 2.
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In Section 2 we show that graded isomorphisms between reducible Carnot alge-
bras preserve certain subalgebras, which implies that graded isomorphisms between
reducible Carnot groups preserve certain subgroups (as indicated in the preceding
paragraph). And in Section 3 we show that quasisymmetric homeomorphisms are
bilipschitz.

2. Graded isomorphisms of Carnot algebras

In this section we show that graded isomorphisms between reducible Carnot algebras
preserve certain subalgebras. This implies that graded isomorphisms between
reducible Carnot groups preserve certain subgroups (see Section 3).

A Carnot Lie algebra is a finite-dimensional Lie algebra G together with a
direct sum decomposition G = V1⊕ V2⊕ · · · ⊕ Vr of vector subspaces such that
[V1, Vi ] = Vi+1 for all 1≤ i ≤ r , where we set Vr+1 = {0}. The integer r is called
the degree of nilpotency of G. Every Carnot algebra G = V1 ⊕ V2 ⊕ · · · ⊕ Vr

admits a one-parameter family of automorphisms λt : G→ G for t ∈ (0,∞), where
λt(x) = t i x for x ∈ Vi . Let G = V1⊕ V2⊕ · · · ⊕ Vr and G′ = V ′1⊕ V ′2⊕ · · · ⊕ V ′s
be two Carnot algebras. A Lie algebra homomorphism φ : G→ G′ is graded if φ
commutes with λt for all t > 0; that is, if φ◦λt =λt ◦φ. We observe that φ(Vi )⊂ V ′i
for all 1≤ i ≤ r .

A Carnot algebra G is called reducible if there exist two nontrivial Carnot algebras
G1 and G2 and a graded isomorphism between G and G1⊕G2. It is called irreducible
otherwise. The finite dimensionality implies that every reducible Carnot algebra G

can be written as a direct sum of Carnot algebras G= G0⊕G1⊕ · · ·⊕Gm , where
G0 is abelian, and each Gi with i ≥ 1 is nonabelian and irreducible.

Let G= V1⊕V2⊕· · ·⊕Vr be a Carnot algebra. When G is reducible, it also has
a decomposition G= G0⊕G1⊕ · · ·⊕Gm as a direct sum of an abelian factor and
irreducible nonabelian factors. We are interested in the question whether graded
isomorphisms preserve such decompositions (after possibly permuting the factors).
This question is equivalent to the uniqueness problem of such a decomposition.
In general the decomposition is not unique, as the following example shows. The
author thanks Bruce Kleiner for suggesting the example.

Example 2.1 (Kleiner). Let G be a nonabelian irreducible Carnot algebra, and let
f : G→ Rm be a nontrivial Lie algebra homomorphism into an abelian group.
Let G( f ) ⊂ G⊕ Rm be the graph of f . Then G( f ) is a Carnot algebra (being
isomorphic to G), and G⊕Rm has two different decompositions G⊕Rm

=G( f )⊕Rm .
Alternatively, let g :G⊕Rm

→G⊕Rm be the map given by g(x, a)= (x, a+ f (x)).
Then g is a graded isomorphism and it does not preserve the factor G.

Despite this example, we show that graded isomorphisms always preserve the
abelian factor (Proposition 2.4) and, in the case of a trivial abelian factor, preserve
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the decomposition after possibly permuting the factors (Proposition 2.5).

Definition 2-1. Let G be a Lie algebra and x ∈ G. Define d(x)= dim(ker(ad x)),
where ad x : G→ G is the linear map given by ad x(y)= [x, y].

Lemma 2.2. If d(x)= dim G> 1 for some x ∈ V1\{0}, then G is reducible.

Proof. Note [x, y] = 0 for all y ∈ G. Let G1 be the one-dimensional subspace
of V1 spanned by x , and let W be a complementary subspace of G1 in V1. Set
G2 = W ⊕ V2⊕ · · · ⊕ Vr . Then G = G1⊕G2 is a direct sum of vector subspaces.
The assumption on x now implies that G1 and G2 are ideals of G and that both G1

and G2 are Carnot algebras. Hence G is reducible. �

The next lemma provides an intrinsic characterization of the abelian factor G0.

Lemma 2.3. Let G = V1 ⊕ V2 ⊕ · · · ⊕ Vr be a Carnot algebra, and consider a
direct sum decomposition G= G0⊕G1⊕ · · ·⊕Gm of G into an abelian factor and
irreducible nonabelian factors. Let x ∈ V1. Then x ∈ G0 if and only if d(x)= dim G.

Proof. It is clear that x ∈ G0 implies d(x)= dim G. We assume d(x)= dim G and
shall prove that x ∈G0. Note [x, y]=0 for all y∈G. Write x= x0+x1+· · ·+xm with
xi ∈Gi ∩V1. Suppose x /∈G0. Then xi 6= 0 for some i ≥ 1. Since [xi , y] = [x, y] = 0
for all y ∈ Gi , Lemma 2.2 implies Gi is reducible, contradicting the assumption. �

Recall that the goal of this section is to show that a graded isomorphism of
reducible Carnot algebras preserves certain Lie subalgebras. The case when the
abelian factor is nontrivial is covered by Proposition 2.4.

Proposition 2.4. Let G = G0 ⊕ G1 ⊕ · · · ⊕ Gm and G′ = G′0 ⊕ G′1 ⊕ · · · ⊕ G′n be
two reducible Carnot algebras written as direct sums of an abelian factor and
irreducible nonabelian factors. Let φ : G→ G′ be a graded isomorphism. Then
φ(G0)= G′0.

Proof. By Lemma 2.3, φ(G0) ⊂ G′0. Since φ is an isomorphism, the conclusion
follows by considering φ−1. �

Proposition 2.5 treats the case when the abelian factor is trivial.

Proposition 2.5. Let G = G0 ⊕ G1 ⊕ · · · ⊕ Gm and G′ = G′0 ⊕ G′1 ⊕ · · · ⊕ G′n be
two reducible Carnot algebras written as direct sums of an abelian factor and
irreducible nonabelian factors. Let φ : G→ G′ be a graded isomorphism. Suppose
G has no abelian factor (that is, G0 = {0}). Then G′0 = {0}, m = n and after possibly
permuting the factors G′1, . . . ,G′m , there exist graded isomorphisms φi : Gi → G′i
such that φ = φ1⊕ · · ·⊕φm .

Now we start the proof of Proposition 2.5. First observe that Proposition 2.4
implies G′0 = {0}. In the following proofs, we shall use both decompositions
G= V1⊕ · · ·⊕ Vr = G1⊕ · · ·⊕Gm of G, as well as those for G′.
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Lemma 2.6. Let x ∈ V1. Write x = xi1 + · · · + xik (1 ≤ i1 < · · · < ik ≤ m) with
xi j ∈ (Gi j ∩ V1)\{0}. If k ≥ 2, then d(xi j ) > d(x).

Proof. We first show that ker(ad x)⊂ ker(ad xi j ) for all 1≤ j ≤ k. Let y ∈ ker(ad x).
Write y = y1+· · ·+ ym with yi ∈ Gi . Then 0= [x, y] = [xi1, yi1]+ · · ·+ [xik , yik ].
Since [xi j , yi j ] ∈ Gi j , we have [xi j , yi j ] = 0. Hence [xi j , y] = [xi j , yi j ] = 0; that is,
y ∈ ker(ad xi j ).

Next we shall find an element y ∈ ker(ad xi j )\ ker(ad x). Since k ≥ 2, there is
some 1≤ l ≤ k with l 6= j . By Lemma 2.2, since Gil is nonabelian and irreducible,
there is some y ∈ Gil such that [xil , y] 6= 0. Now notice that [xi j , y] = 0 and
[x, y] = [xil , y] 6= 0. �

For each 1≤ i ≤ m, set

Ai = {x ∈ Gi ∩ V1 : φ(x) ∈ G′j for some j}.

Let Ni ⊂Gi∩V1 be the vector subspace spanned by Ai . Similarly, for each 1≤ j ≤n
set

A′j = {y ∈ G′j ∩ V ′1 : φ
−1(y) ∈ Gi for some i}.

Let N ′j ⊂ G′j ∩ V ′1 be the vector subspace spanned by A′j .

Lemma 2.7. We have Ni = Gi ∩ V1 for each i and N ′j = G′j ∩ V ′1 for each j .

Proof. We prove by contradiction. Suppose Ni 6=Gi∩V1 for some i or N ′j 6=G′j∩V ′1
for some j . Let d1 = 0 if Ni = Gi ∩ V1 for all i ; otherwise, let

d1 =max{d(x) : x ∈ (Gi ∩ V1)\Ni for some i}.

Similarly, let d2 = 0 if N ′j = G′j ∩ V ′1 for all j ; otherwise, let

d2 =max{d(y) : y ∈ (G′j ∩ V ′1)\N
′

j for some j}.

Let d0=max{d1, d2}. After possibly replacing φ with φ−1, we may assume d0= d1.
Pick x ∈ (Gi ∩V1)\Ni (for some i) with d(x)= d0. By the definition of Ni we have
x /∈ Ai . Hence φ(x) can be written as

(2-2) φ(x)= y1+ · · ·+ yk,

where k ≥ 2 and ys ∈ (G
′

js ∩V ′1)\{0} for each 1≤ s ≤ k, and 1≤ j1 < · · ·< jk ≤ n.
By Lemma 2.6, d(ys) > d(φ(x))= d(x)= d0. It follows from the definition of d0

that ys ∈ N ′js . Hence there is an expression

(2-3) ys = zs,1+ · · ·+ zs,us +ws,1+ · · ·+ws,vs
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with zs,p, ws,q ∈ A′js such that φ−1(zs,p) ∈ Gi ∩ V1 and φ−1(ws,q) ∈ Gt ∩ V1 for
some t 6= i (here t may depend on q). Notice that (2-2) and (2-3) imply

x =
∑
s,p

φ−1(zs,p)+
∑
s,q

φ−1(ws,q).

Since x ∈ Gi and G = G1 ⊕ · · · ⊕ Gm is a direct sum decomposition, we obtain
x =

∑
s,p φ

−1(zs,p). Notice that each φ−1(zs,p) ∈ Ai . It follows that x ∈ Ni ,
contradicting the assumption. �

Lemma 2.8. For each i , there is some j such that φ(Gi ∩ V1)⊂ G′j ∩ V ′1.

Proof. Fix i . By Lemma 2.7, Gi ∩ V1 = Ni . Hence there is a vector space basis
B of Gi ∩ V1 consisting of elements of Ai . Write B as a disjoint union B = tB j ,
where B j consists of those elements of B that are mapped into G′j under φ. Since
φ is an isomorphism and G′j1 and G′j2 commute for j1 6= j2, we see that [X, Y ] = 0
for X ∈ B j1 and Y ∈ B j2 . Let E j ⊂ Gi be the subalgebra of Gi generated by B j .
Observe that E j is an ideal of Gi and Gi admits the direct sum decomposition
Gi = E1⊕ · · ·⊕ En . Since Gi is irreducible, E j = {0} for all j except exactly one.
It follows that for some j , all the elements in B are mapped into G′j . Since B is a
basis of Gi ∩ V1, we have φ(Gi ∩ V1)⊂ G′j . �

Applying Lemma 2.8 to φ−1, we see that for each j , there is some i such that
φ−1(G′j ∩ V ′1)⊂ Gi ∩ V1. From this it is easy to see that m = n, and after possibly
permuting the factors G′j we have φ(Gi )= G′i . Proposition 2.5 follows.

3. Quasisymmetric homeomorphisms are bilipschitz

In this section we show that in most cases quasisymmetric homeomorphisms be-
tween reducible Carnot groups are bilipschitz.

A simply connected nilpotent Lie group is a Carnot group if its Lie algebra is
a Carnot algebra. Let G be a Carnot group with Lie algebra G = V1 ⊕ · · · ⊕ Vr .
The subspace V1 defines a left invariant distribution H G ⊂ T G on G. We fix a
left invariant inner product on H G. An absolutely continuous curve γ in G whose
velocity vector γ ′(t) is contained in Hγ (t)G for a.e. t is called a horizontal curve.
By Chow’s theorem ([Bellaïche and Risler 1996], Theorem 2.4), any two points
of G can be connected by horizontal curves. Let p, q ∈ G; the Carnot distance
d(p, q) between them is defined as the infimum of length of horizontal curves that
join p and q .

Since the inner product on H G is left invariant, the Carnot metric on G is also
left invariant. Different choices of inner product on H G result in Carnot metrics
that are bilipschitz equivalent. The Hausdorff dimension of G with respect to a
Carnot metric is given by

∑r
i=1 i · dim Vi . We use the corresponding Hausdorff

measure on G. When G = G1×G2 is a direct product of two Carnot groups (with
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a suitable choice of inner product on H G), the Carnot metric on G is the product of
the Carnot metrics on G1 and G2, and the Hausdorff measure on G is the product
of the Hausdorff measures on G1 and G2.

Recall that, for a simply connected nilpotent Lie group G with Lie algebra
G, the exponential map exp : G → G is a diffeomorphism. Furthermore, the
exponential map induces a one-to-one correspondence between Lie subalgebras of
G and connected Lie subgroups of G.

Let G be a Carnot group with Lie algebra G= V1⊕ · · ·⊕ Vr . Since λt : G→ G

(t > 0) is a Lie algebra automorphism and G is simply connected, there is a unique
Lie group automorphism 3t : G→ G whose differential at the identity is λt . For
each t > 0, 3t is a similarity with respect to the Carnot metric: d(3t(p),3t(q))=
t d(p, q) for any two points p, q ∈ G. A Lie group homomorphism f : G→ G ′

between two Carnot groups is a graded homomorphism if it commutes with 3t

for all t > 0; that is, if f ◦3t =3t ◦ f . Notice that a Lie group homomorphism
f : G→ G ′ between two Carnot groups is graded if and only if the corresponding
Lie algebra homomorphism is graded.

A Carnot group is reducible if its Lie algebra is reducible. Equivalently, a Carnot
group is reducible if it is isomorphic to the direct product of two Carnot groups. A
Carnot group is called irreducible otherwise.

Proposition 2.4 and Proposition 2.5 respectively immediately imply Corollary 3.1
and Corollary 3.2, which say that a graded isomorphism of reducible Carnot groups
preserves certain Lie subgroups.

Corollary 3.1. Let G = G0 × G1 × · · · × Gm and G ′ = G ′0 × G ′1 × · · · × G ′n be
two reducible Carnot groups written as direct products of an abelian factor and
irreducible nonabelian factors. Let f : G→ G ′ be a graded isomorphism. Then
f (G0)= G ′0.

Corollary 3.2. Let G = G0 × G1 × · · · × Gm and G ′ = G ′0 × G ′1 × · · · × G ′n be
two reducible Carnot groups written as direct products of an abelian factor and
irreducible nonabelian factors. Let f : G→ G ′ be a graded isomorphism. Suppose
G has no abelian factor (that is, G0={e}). Then G ′0={e}, m= n and after possibly
permuting the factors G ′1, . . . ,G ′m , there exist graded isomorphisms fi : Gi → G ′i
such that f = f1× · · ·× fm .

Definition 3-1. Let G and G ′ be two Carnot groups endowed with Carnot metrics.
A map F : G → G ′ is Pansu-differentiable at x ∈ G if there exists a graded
homomorphism L : G→ G ′ such that

lim
y→x

d
(
F(x)−1 F(y), L(x−1 y)

)
d(x, y)

= 0.
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In this case, the graded homomorphism L : G→ G ′ is called the Pansu differential
of F at x , and is denoted by d F(x).

Definition 3-2. Let η : [0,∞)→[0,∞) be a homeomorphism. A homeomorphism
of metric spaces F : X → Y is an η-quasisymmetric homeomorphism if for all
distinct triples x, y, z ∈ X , we have

d(F(x), F(y))
d(F(x), F(z))

≤ η

(
d(x, y)
d(x, z)

)
.

A map F : X→Y is a quasisymmetric homeomorphism if it is an η-quasisymmetric
homeomorphism for some η.

The following result (except the terminology) is due to Pansu [1989].

Theorem 3.3. Let F : G→ G ′ be a quasisymmetric homeomorphism between two
Carnot groups. Then F is a.e. Pansu-differentiable. Furthermore, at a.e. x ∈ G, the
Pansu differential d F(x) : G→ G ′ is a graded isomorphism.

In Theorem 3.3 and the proofs below, “a.e.” is with respect to the Hausdorff
measure on G.

For the proof of Theorem 1.1, we need the following:

Proposition 3.4. Let G and G ′ be two Carnot groups, W ⊂ V1, W ′ ⊂ V ′1 be
subspaces. Denote by GW ⊂ G and G′W ′ ⊂ G′, respectively, the Lie subalgebras
generated by W and W ′. Let H ⊂ G and H ′ ⊂ G ′, respectively, be the connected
Lie subgroups of G and G ′ corresponding to GW and G′W ′ . Let F : G→ G ′ be a
quasisymmetric homeomorphism. If d F(x)(W )⊂W ′ for a.e. x ∈ G, then F sends
left cosets of H into left cosets of H ′.

Proof. For each nonzero vector u ∈W , the set {exp(tu) : t ∈ R} is a subgroup of G.
It is a geodesic with respect to the Carnot metric and shall be called a horizontal line.
For each nonzero vector u ∈W , let Fu be the set of left cosets of {exp(tu) : t ∈R} in
G. By the main result in [Balogh et al. 2007], F : G→ G ′ is absolutely continuous
on almost every curve. It follows that for almost every L ∈Fu , the map F |L : L→G ′

is an absolutely continuous curve in G ′. On the other hand, by Pansu’s theorem, F
is a.e. Pansu-differentiable and the Pansu differential d F(x) : G→ G ′ is a graded
isomorphism for a.e. x ∈G. Also by assumption, d F(x)(W )⊂W ′ for a.e. x ∈G. It
follows from Fubini’s theorem that, for almost every L ∈Fu , the Pansu differential
d F(x) : G→ G ′ exists, is a graded isomorphism and satisfies d F(x)(W )⊂W ′ for
a.e. x ∈ L . Hence, the tangent vectors of the curve F |L lie in W ′ almost everywhere.
It follows that for almost every L ∈ Fu , F(L) lies in a left coset of H ′. Now the
continuity of F and a limiting argument show that the same is true for all L ∈Fu .
Conceivably, it might be possible for distinct L1, L2 ∈ Fu to lie in the same left



QUASISYMMETRIC HOMEOMORPHISMS ON REDUCIBLE CARNOT GROUPS 121

coset of H , while their images F(L1) and F(L2) lie in distinct cosets of H ′. We
next show that this cannot happen.

In a Carnot group, every two points can be joined by a piecewise geodesic, where
each piece is a left translation of a segment in a horizontal line. The preceding
paragraph shows that the image under F of each piece lies in a left coset of H ′. It
follows that the image of the entire piecewise geodesic lies in a left coset of H ′.
Hence F sends left cosets of H into left cosets of H ′. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let F : G → G ′ be a quasisymmetric homeomorphism
between two Carnot groups. Suppose G is reducible and admits a direct product
decomposition of irreducible Carnot groups where at least two of the factors are not
isomorphic. We first use Proposition 3.4 to show that F preserves a certain foliation.
The arguments in [Shanmugalingam and Xie 2012] then show that F is bilipschitz.

Write G = G0×G1× · · ·×Gm and G ′ = G ′0×G ′1× · · ·×G ′n , where G0, G ′0
are abelian and Gi , G ′j are irreducible nonabelian factors.

First consider the case when G0 is nontrivial. Let F be the foliation of G
consisting of the cosets of G0, and similarly let F′ be the foliation of G ′ con-
sisting of the cosets of G ′0. The leaf space of F can be naturally identified with
N := G1× · · ·×Gm , and that of F′ with N ′ := G ′1× · · ·×G ′n . By Corollary 3.1
and Proposition 3.4, the map F sends the leafs of F to the leafs of F′. Hence F
induces a map F1 : N → N ′. Notice that G = G0 × N with the Carnot metric
is isometric to the product of G0 and N (also equipped with the Carnot metric);
similarly for G ′. The arguments in [Shanmugalingam and Xie 2012] go through
and imply that F1 is also quasisymmetric. Since both the leafs and the leaf spaces
are geodesic metric spaces, the arguments further show that F is bilipschitz.

Next we consider the case when G0 is trivial. Then G = G1 × · · · ×Gm is a
direct product of nonabelian irreducible Carnot groups. We combine all isomorphic
factors in the above decomposition to obtain G = N1 × · · · × Ns . Each N j is a
direct product of isomorphic nonabelian irreducible Carnot groups, and the factors
in Ni and N j are not isomorphic for i 6= j . Similarly, G ′ can also be written as such
a product G ′ = N ′1× · · ·× N ′t . Notice that the assumption of Theorem 1.1 implies
that s ≥ 2. Corollary 3.2 implies that s = t , and after possibly permuting the factors
N ′i , the Pansu differential satisfies d F(x)(Ni )= N ′i for all i and a.e. x ∈ N . Now
the arguments in the preceding paragraph show that F is bilipschitz. The proof of
Theorem 1.1 is now complete. �
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CAPILLARITY AND
ARCHIMEDES’ PRINCIPLE

JOHN MCCUAN AND RAY TREINEN

We consider some of the complications that arise in attempting to generalize
a version of Archimedes’ principle concerning floating bodies to account for
capillary effects. The main result provides a means to relate the floating
position (depth in the liquid) of a symmetrically floating sphere in terms of
other observable geometric quantities.

A similar result is obtained for an idealized case corresponding to a sym-
metrically floating infinite cylinder.

These results depend on a definition of equilibrium for capillary systems
with floating objects which to our knowledge has not formally appeared in
the literature. The definition, in turn, depends on a variational formula for
floating bodies which was derived in a special case earlier (Pacific J. Math.
231:1 (2007), 167–191) and is here generalized to account for gravitational
forces.

A formal application of our results is made to the problem of a ball float-
ing in an infinite bath asymptotic to a prescribed level. We obtain existence
and nonuniqueness results.

1. Introduction

Archimedes stated the principle that bears his name in a work titled On floating
bodies. The principle is commonly stated as follows:

A body immersed in a fluid is buoyed up with a force equal to the weight
of the displaced fluid.

This is actually a reformulation of Archimedes’ principle and, as Erlend Graf
[2004] points out, it is deficient (and incorrect) in various respects.

Archimedes considered three distinct cases. The first case is that in which the
density of the body is equal to the density of the liquid. The assertion is that the
body, after it is deposited into the liquid and comes to rest, will not project above
the surface of the liquid nor sink lower in the liquid (On floating bodies, part I,
Proposition 3; see [Archimedes/Heath 1897, p. 255]).
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The second case is that in which the density of the body is less than that of
the liquid. The assertion is that the body, if left to interact freely with the liquid
bath, will project above the surface of the bath and will displace a volume of liquid
having the same weight as the object (Propositions 4 and 5; [ibid., pp. 256–257]).
Furthermore, if the object is not allowed to float freely, but is manually pushed
downward into the liquid from its floating position, then the object will experience
an upward force equivalent to the difference of the weight of the object and the
weight of the displaced liquid (Proposition 6; [ibid., p. 257]).

Finally, if the body is more dense than the liquid it will sink to the bottom and, if
weighed while in the liquid will be found lighter than its true weight by the weight
of the displaced liquid (Proposition 7; [ibid., p. 258]).

The reformulation is about the force experienced by a body deposited in a
liquid bath (and nothing else). The original principle of Archimedes specifically
addresses two additional questions:

(1) Will the body float1 or sink?

(2) At what height will the object come to rest?

The first question is conditional; the second is geometric. The fact that the refor-
mulation ignores these aspects of the problem is a deficiency of the reformulation
and no reflection on the acuity of Archimedes.

An aspect of the problem that does seem to have escaped the notice of Archi-
medes involves the effect of surface tension or surface energy associated with
wetting. Indeed, simple experiments show that it is possible, under certain circum-
stances, for even a convex2 object with density greater than that of a given liquid
bath to float (only) partially submerged on the surface of the bath, contradicting
Archimedes’ Proposition 7; see Figure 1.

Finn [2011] has recently given the first rigorous mathematical proof of this fact,
at least in an idealized situation which we describe in Section 4 below. Finn and
Vogel [2009] wrote: “One may assume that [Archimedes] was unaware of observa-
tions of Aristotles a century earlier” (concerning heavy floating objects). This may
be true, or perhaps Archimedes restricted himself to a problem whose solution used
the mathematical tools he had at hand. In either case, we find connections with
the results of Archimedes, and derive from our new results what can be viewed as
a generalization of results which follow from Archimedes’ approach. Notice also

1That is, will the object project above the surface of the liquid?
2Convexity is mentioned here in contrast to something like a hollow boat hull often considered in

connection with the density considerations of Archimedes. In fact, the possibility that objects with
density greater than water might float on the surface of water was already considered by Aristotle a
century before Archimedes, and it is surprising Archimedes makes no mention of it. The fact that
a thin metal paper clip can float on water makes it clear convexity is not a necessary hypothesis.
Nevertheless, we did not know if a sphere could float until we tried it (Figure 1).
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Figure 1. Photos of a plastic ball in a bath of water: sinking to the
bottom (left), being raised to the surface (middle), floating (right)

that the results of [Finn 2011] and [Finn and Vogel 2009] initiate a return to the
question addressed by Archimedes: Does the body sink or swim?

Our work below assumes the answer to the question of floating versus sinking
is affirmative for floating and seeks to answer a version of Archimedes’ second
question: What is the geometry? More precisely: What is the height of the floating
body and what is the geometry of the interface? We are able to give a partial answer
under the assumption of rotational symmetry of the object and the interface. This
symmetry appears to hold in the physical system of Figure 1, and similar symmetric
interfaces have been shown to exist mathematically in [Treinen 2012] and [Elcrat
et al. 2004b]. For further discussion of this point, see Section 6.

For purposes of comparison, we describe briefly this problem of a floating ball as
we imagine Archimedes might have considered it.3 Given the diagram in Figure 2,
with an assumed planar interface meeting a floating sphere 6 along a circular
contact line determined by an azimuthal angle φ, and assuming a density ρ of the
ball less than the density ρl of the liquid, Archimedes’ Proposition 5 then becomes

(1) ρl Vd = ρ|6|

where Vd is the volume of displaced liquid. Equating this volume of liquid with
the volume of the spherical cap below the plane of the interface,

Vd =
1
3πa3 (sin2 φ cosφ+ 2+ 2 cosφ

)
,

3The explanation of Vitruvius (in De architectura) is of particular interest for this discussion, as it
provides some details not contained in Archimedes’ work directly. In particular, Vitruvius identified
the “displaced fluid” as that which overflows a vessel into which an object is deposited.
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φ

Figure 2. Azimuthal angle determined by a horizontal contact
line.

we obtain this:

Theorem 1. According to Archimedes’ principle, a homogeneous sphere of density
ρ > ρl will sink to the bottom of a bath of density ρl , and a homogeneous sphere
of density ρ < ρl will float at a level determined by

(2) cos3 φ− 3 cosφ = 2
(

1− 2ρ
ρl

)
.

It is easily checked that the function F(φ) = cos3 φ − 3 cosφ is increasing
from −2 to 2 on [0, π], with zero derivative at the endpoints and strictly positive
derivative interior to the interval. Thus, for each positive value 0 ≤ ρ ≤ ρl , the
condition (2) determines a unique azimuthal angle. See Figure 3.

Definitions of equilibria. From a more sophisticated point of view, liquid inter-
faces are rarely planar. Even without the introduction of a floating object, the
interface of liquid in a cylinder is usually noticeably curved around the edges.
With the introduction of a rigid floating object, one may assume the interface will
be further deformed in possibly unexpected ways.

The modern theory of equilibrium capillary configurations developed by Young,
Laplace, Gauss, and others (see [Finn 1986]) is now founded on the consideration
of energies associated with the area of the outer surface of the liquid where it
contacts the surrounding atmosphere and where it contacts the bounding container.
This theory has been primarily pursued in the context of solid structures that are
rigid and fixed. This has led to a commonly adopted definition of a capillary equi-
librium [ibid.]:

Up to the determination of a single real parameter (λ below) the problem
of finding a capillary surface is a purely geometric one: to find a surface
whose mean curvature is a prescribed function of position and which
meets prescribed (rigid) bounding walls in a prescribed angle γ .
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In terms of equations commonly used to model equilibrium capillary surfaces in a
gravity field, we have

(3) 2H = κz− λ and cos γ = β,

where H denotes the mean curvature of the interface, z denotes the vertical height
of a point on the interface, κ = ρl g/σ is the capillary constant, constructed us-
ing the gravitational acceleration g and the surface tension σ , and λ is a single
real (Lagrange) parameter related to the constraints of the problem; in the second
equation one finds the relative adhesion coefficient β defined by the assumption
that σβ is the local energy density4 associated with contact between the liquid
volume and solid structures; one integrates σβ over the area of contact, or wetted
area, to obtain the total energy of wetting. The angle γ is assumed to be defined
along a curve where the liquid, the container, and the surrounding atmosphere all
meet. This curve is called the contact line and γ is referred to as the contact angle.

While the problem of a floating object considered here is still purely geometric,
the conditions (3) are inadequate to characterize equilibria, even if the object is
rigid and the Lagrange parameter λ is known. One still has recourse to the general
principle of virtual work, that is, the energy is stationary with respect to variations
compatible with the constraints of the problem. Nevertheless, attaining a collec-
tion of fundamental necessary conditions analogous to (3) that may be taken as a
working definition of equilibrium in particular cases is of evident utility both for
applications and the mathematical theory of capillarity. A preliminary discussion
of the need for this development was suggested in [McCuan 2007] in the absence
of external forces (i.e., zero gravity), and we provide here a general flux condition
(13) to augment (3), thus providing a new definition of equilibrium in this context.
A discussion of this formula for capillary surfaces is in Section 2.

From the flux formula we obtain the following result which may be compared
to Theorem 1 and is proved in Section 3.

Theorem 2. A sphere of radius a that floats in a centrally symmetric position as
described above under the effects of surface tension and adhesion effects of an
axially symmetric bath must float at a level determined by the azimuthal angle φ
satisfying

(4) cos3 φ− 3 cosφ+
6
κa

(
H +

cos γ
a

)
sin2 φ−

3 sin γ
κa2 sin(2φ)= 2

(
1− 2ρ

ρl

)
,

4In [Finn 1986], the relative adhesion coefficient is given on page 6 as the difference β∗ − β̂∗

of energy densities associated with contact between one fluid and the container (β∗) and a comple-
mentary fluid and the container (β̂∗). Using the approximation β̂∗ ≈ 0, the formulation used here is
equivalent. For simplicity, we will also assume σ and β are constants; the reasoning below extends
in a straightforward manner to the general case.
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Figure 3. The azimuthal angles determined by Theorems 1 (top
left) and 2 (top right); plotted together on the bottom.

where κ is the capillary constant described above, H is the mean curvature of the
liquid interface at the contact line, and γ ∈ (0, π) is the contact angle of the liquid
interface with the floating sphere.

The function F(φ) appearing on the left side of (4) takes the values −2 and 2
at the endpoints φ = 0 and π respectively. However, F is decreasing at φ = 0
and decreases to a unique local interior minimum at φ = φ1. On the interval from
φ = φ1 to φ = π the function F has a unique interior local maximum at φ = φ2.

If γ = 0, π , then the value of the azimuthal angle is uniquely determined by the
same function F , which is increasing and satisfies F ′(0)= 0= F ′(π) but is distinct
from the function appearing in Theorem 1.

The existence of the unique local interior minimum at φ = φ1 allows values
of ρ > ρl and leads to the determination of a unique maximum density ρmax =

ρmax(a, γ, κ, H̄) for which ρ > ρmax implies no floating is possible. It will be
noted from the properties of F that a unique azimuthal angle φ is determined for
all values 0<ρ <ρl , and that two values are possible for certain values ρ ≥ ρl (as
long as ρ is not too large). We presume by continuity that the physically observed
value for heavy floating spheres is the larger one determined by (4). The physical
relevance of the other value is discussed in Section 6 of the paper.

We note also that the graph of F takes values corresponding to negative den-
sities ρ. This can be imagined to have physical relevance in a situation where a
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gravitational field acts on the floating object, but one with the opposite direction
as that acting on the liquid. It is not readily apparent how such a physical situation
would arise, but one can easily imagine a magnetic field producing an upward force
on a floating object in a downward gravity field, which would be quite similar.

Further remarks. The quantity H appearing in the formula (4) of Theorem 2 is
presumed to depend in some manner on other parameters, and perhaps globally
imposed geometric constraints in the problem. Perhaps the quantity H and its
appearance in (4) is best viewed in contrast to the following specific quantities:
the enclosed volume of liquid (n.b., the Lagrange parameter λ), the outer radius R
of the cylindrical vessel, and the contact angle γout between the interface and the
outer wall, all of which are conspicuously absent from formula (4). As far as we
know, this paper and [McCuan 2007] are the first to consider the global floating
configuration for a floating ball including a finite outer bounding wall. Indeed, one
might be tempted to dismiss the effects of the interface at the outer bounding wall.
Several authors have considered floating objects in an infinite bath asymptotic to
a plane (and we do so below in § 6 as well). Under certain assumptions, estimates
have been derived [Siegel 1980] to establish the fact that such an interface con-
verges to the planar asymptote exponentially with distance from a floating object.

We offer the following description of an experiment as a caution against assum-
ing the influence of an outer wall is not important.

If a cylinder of water is partially filled, and a ball of density ρ < ρl is deposited
in the center of the resulting interface, it will move rapidly to the outer wall. See
Figure 4. If the same cylinder is subsequently slightly overfilled so that the (roughly
flat) interface curves downward at the edges, then the ball will move rapidly to the
center of the interface and remain there in an apparently stable configuration; if the
ball is manually moved away from the center it will return.

This experiment brings up a question that is fundamentally different from the
one considered in this paper, but it indicates in broad terms that the question of

Figure 4. Photos of a plastic ball in a bath of water: tending to
the edge (left), stable in the middle (center and right).



130 JOHN MCCUAN AND RAY TREINEN

how an object floats on a liquid interface can have an answer depending strongly
on nonlocal conditions involving the outer bounding wall.

Ideally one would like a formula for the azimuthal angle φ̄ in terms of the volume
of liquid in the bath V , the radii a and R of the ball and the container respectively,
and the contact angles γ between the liquid interface and the surface of the floating
object and γout between the liquid interface and the surface of the container, and
from the classical point of view, this is what one would expect. We were unable to
attain such a result, and the result we obtain (4) may be viewed simply as a relation
between H and φ̄ for any equilibrium. The interpretation we give in the context of
Archimedes’ geometric question may then be viewed as the most explicit currently
available information arising from (13).

The barrier to getting a more definitive result lies in the complicated nature of the
system of ordinary differential equations determining the rotationally symmetric
interface. For a survey of recent progress in understanding the family of solutions to
these equations, see [Finn 1986; Vogel 1982; Siegel 2006; Siegel 1980; Nickolov
2002; Elcrat et al. 2004a; Turkington 1980; Johnson and Perko 1968; Treinen
2012].

2. Variational formulation

The general assumptions of our model are outlined in [McCuan 2007] though
the derivation given there was aimed at the zero gravity case in which buoyancy
plays no role, and the effects of gravity were not properly considered. For the
sake of making this paper somewhat more self-contained we include a short re-
view/summary of the model and amend the deficiencies in the former derivation.

Quite generally, we consider a solid structure

6 =6s ∪6m

consisting of a stationary part 6s and a movable, or floating, part 6m . In addition,
we hypothesize an equilibrium liquid interface3with corresponding wetted region
W=Ws ∪Wm , so that the liquid volume V satisfies ∂V=3∪W and the contact
line/triple interface is given by ∂3 = ∂W. Under these assumptions, we consider
the variational problem associated with

(5) E= σ |3| − σβ|W| +G

where G =
∫

V∪6m
G and G is a position dependent function representing field

forces such as gravity.5

One specific application of the discussion which now follows is that it justifies
the following fundamental definition:

5We included only
∫

V G in [McCuan 2007].
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Definition 3. A floating configuration 6s, 6m,V as described above is said to be
in free-floating equilibrium for the functional (5) if

1. 2H = G/σ − λ, where H is the mean curvature of the free surface interface
3 and λ is some constant,

2. cos γ = β where γ is the angle at which the free surface interface meets
the surface of the solid structures measured within V and β is the (possibly
location dependent) adhesion coefficient, and

3.
∫
∂Wm

En+
∫

Wm

(G/σ − λ)N −
∫
∂6m

(G/σ)N = 0,

where n is the outward pointing unit conormal along ∂3, and N is the unit
normal to ∂V pointing out of V.

Under rather general hypotheses, as described in [McCuan 2007], a family of
variations leaving 6m fixed leads to the (standard) variational formulas (6)–(8)
below:

(6) ˙|3| = −

∫
3

2H Ẋ · N +
∫
∂3

Ẋ · En,

where H is the mean curvature defined on 3, Ẋ is the variation vector, N is the
unit normal pointing out of the liquid volume V, and En is the unit conormal to N
and ∂3 pointing out of 3;

(7) ˙|W| =

∫
∂3

Ẋ · Eν,

where Eν is the unit conormal to N W and ∂W pointing out of W; note that N W

denotes the unit normal to W pointing out of V and may also be denoted by N on
the interior of W where no ambiguity arises;

(8) Ġ=

∫
3

G Ẋ · N and ˙|V| =

∫
3

Ẋ · N .

These last two formulas apparently require an interesting and somewhat delicate
application of more general mathematical principles of fluid mechanics, and we
outline their derivation under more general assumptions below.

For now, we assemble Ė/σ − λ ˙|V| from the constituent parts above where λ is
a Lagrange multiplier associated with the volume constraint:

Ė/σ − λ ˙|V| =

∫
3

(−2H +G/σ − λ)Ẋ · N +
∫
∂3

(Ẋ · En−β Ẋ · Eν).

The vanishing of this quantity for all variation vectors Ẋ results in the well known
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geometric boundary value problem

(9)
{

2H = G/σ − λ on 3,
cos γ = β on ∂3,

since
En = (En · N W)N W

+ cos γ Eν.

In the special case under consideration in this paper, G represents the limiting value
ρl gz taken as a limit from inside the liquid, so that

2H = κz− λ

where κ = ρl g/σ is a capillary constant for the problem. Furthermore, we restrict
attention in this paper to cases in which the adhesion coefficient satisfies−1<β<1
or equivalently, the contact angle γ is strictly between 0 and π .

A more general variation allowing rigid motion of 6m takes the form

X = X ( p; t, h) : M × (−ε, ε)× (−δ, δ)→ R3,

where M =6 ∪V is considered as an abstract manifold; see Figure 5.
It is assumed here, as indicated in the figure, that h parametrizes a family of rigid

motions w=w(x; h) to which 6m is subject. Denoting derivatives with respect to
h by an acute accent, we find

´|3| = −

∫
3

2H X́ · N +
∫
∂3

X́ · En,(10)

´|W| = −

∫
Wm

2H W X́ · N +
∫
∂Wm

X́ · Eν,(11)

Ǵ=

∫
3

G X́ · N +
∫

Wm

G X́ · N W
+

∫
∂6m

Gm X́ · N m .(12)

This last term requires some explanation. The quantity Gm denotes the value of
the volumetric force field potential taken as a limit from inside the movable solid

X (V)

X (6m)
X

6m

V

3

6s = X (6s)

Figure 5. The variation map and its notation.
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structure6m . In the special case of a floating object of density ρ, we typically take
Gm = ρgz. Also in this last identity N m denotes the unit normal to the boundary
∂6m of the movable/floating solid structure and points out of 6m , so that N m

=

−N W on their common domain of definition Wm . Finally, we include a brief
derivation.

Up until this point, we have stated all variational formulae in their final form,
that is to say with the parameters of the variation set to zero so that Ẋ represents

d
dt

X ( p; t)∣∣
t=0
,

where X = X ( p; t) :M×(−ε, ε)→R3. For this calculation, we must temporarily
assume the parameters t and h are not evaluated at zero. Notationally, this is
conveniently indicated by a tilde so that 6̃m = X (6m)= X (6m; t; h), and we will
evaluate at t = h = 0 at the end.

Consideration of the second term should suffice. Setting

Gm =

∫
6̃m

Gm,

we have

Gm =

∫
6m

Gm ◦ Xdet DX,

where X represents the restriction of the variation to6m and the derivative is taken
in M ⊂ R3 with respect to p. Euler’s kinematical formula [Serrin 1959] tells us
how a material integral changes with the flow of a region of fluid. We can cast our
present situation into this framework starting with the preliminary identity

∂

∂h
det DX = (divR3 v) ◦ X det DX

where v(x; h) = X́(X−1(x; h); h) is the spatial velocity associated with the flow
X = X ( p; h) and we have simply suppressed the t dependence. It might be ex-
pected (or hoped) that in our situation the motion/flow associated with the variation
should be particularly simple, at least on the solid movable object 6m , and that we
might have, for example, X ( p; h)≡ w( p; h) there. However, taking into account
the motion of the liquid and that of the contact line of the liquid interface 3 in
particular, it is clear that this would violate the continuity assumption on the varia-
tion X : M× (−ε, ε)× (−δ, δ)→R3. Having made this concession and subjected
ourselves to the added complication that other authors seem to have avoided, it is
some consolation, as pointed out in [Finn 2005], that the internal motion of the
liquid under a variation of the free surface interface could be very complicated,
and we are taking account of such possibilities.
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In any case, we continue to obtain

Ǵm =

∫
6̃m

DGm · v+ divR3 v =

∫
6̃m

divR3(Gmv)=

∫
∂6̃m

Gmv · N m,

so that

Ǵm
∣∣
h=0 =

∫
∂6m

Gm X́ · N m .

A similar argument applies to the integral over V appearing in G and also yields

´|V| =

∫
3

X́ · N +
∫

Wm

X́ · N ,

where we have returned to the general assumption on evaluation, that t = h = 0.
Combining this with (10)–(12), we have

É/σ−λ ´|V| =

∫
3

(−2H+G/σ−λ)X́ ·N+
∫
∂3

(X́ · En−β X́ ·Eν)

+β

∫
Wm

2H W X́ ·N+
∫

Wm

(G/σ−λ)X́ ·N+
∫
∂6m

(Gm/σ)X́ ·N m

=

∫
∂Wm

X́ · En−cos γ
∫
∂Wm

X́ ·Eν

+ cos γ
∫

Wm

2H W X́ ·N+
∫

Wm

(G/σ−λ)X́ ·N+
∫
∂6m

(Gm/σ)X́ ·N m .

Next we refer to a calculation from [McCuan 2007] that uses the fact that

w−1(X; h) ∈6m

when X = X ( p; h) ∈ w(6m; h) to show that

X́ − ẃ ∈ TX6m .

It follows that X́ may be replaced with ẃ in the formula above. A second calcula-
tion involving an explicit auxiliary variation shows∫

Wm

2H Wẃ · N =
∫
∂Wm

ẃ · Eν.

Making the indicated substitutions, we arrive at our new necessary condition for
equilibrium of a floating object:

Theorem 4. If a floating configuration 6m,V subject to forces (having volumetric
potentials denoted by G and Gm as described above) locally minimizes energy
among liquid interface configurations compatible with a smooth family of rigid
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motions w = w(x; h) with w(x; 0) = idR3 and the wetted region on the floating
object is denoted by Wm , then the configuration must satisfy

(13)
∫
∂Wm

ẃ · En+
∫

Wm

(G/σ − λ)ẃ · N W
+

∫
∂6m

(Gm/σ)ẃ · N m
= 0,

where En is the outward pointing unit conormal along the boundary of the liquid
interface 3, N W is the unit normal to 6m pointing out of the liquid, N m

=−N W,
and ẃ represents the derivative with respect to h evaluated at h = 0.

The condition of the theorem must hold for all ẃ ∈ R3 for free floating, or more
generally for any collection of directions in which 6m is free to move. In the case
in which all directions ẃ are possible, the condition (13) simplifies to∫

∂Wm

En+
∫

Wm

(G/σ − λ)N W
+

∫
∂6m

(Gm/σ)N m
= 0.

One immediately notes the integral over the boundary of the movable wetted sur-
face of the conormal to the free surface interface (the first term) as marking this as
a kind of flux formula or force balance formula as is well known from the work of
A. Ros [1996] in minimal surfaces. It is tempting to interpret the other two integrals
appearing in the formula as force vectors, and without doubt they are such. We are
indebted to a referee for explaining how to do this for a constant vertical gravity
field. Similar calculations for that case are also contained in [Bhatnagar and Finn
2006] where a somewhat different problem is considered; see Sections 4 and 6
for further remarks. With this help, we were able to see the following general
interpretation.

In order to be dimensionally correct, multiply the equation by the surface tension
σ . The first term is then the negative of the force exerted on the object by the
interface itself — the surface tension force.

The integrand of the second term G − λσ will be recognized from (9) as the
quantity 2σH at the interface and, according to the insight of Thomas Young, the
difference in pressure across the interface. It is natural to assume that G−λσ gives
a pressure field extending throughout the volume of liquid, up to a sign. Since the
mean curvature is calculated with respect to the normal N pointing out of the liquid,
we see that the second integral represents the negation of the force this pressure
exerts on the floating object, i.e., the buoyancy force.

Let us consider the third term componentwise. If e j is the j-th standard unit
vector, then the j-th component of the third integral is∫

∂6m

Gm e j · N m
=

∫
6m

div(Gm e j )=

∫
6m

DGm · e j ,

where the first equality is by the divergence theorem, and we recognize the negation
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of the volumetric force density in the gradient of the potential appearing in the last
expression. Recombining the components, the third term∫

6m

DGm

evidently lends itself to being interpreted as (minus) the “weight” of the floating
object with respect to the potential field Gm .

In summary, our third equilibrium condition may be read (without the slightest
ambiguity in the case of a constant downward gravitational field Gm = ρgz) thus:

The weight, the pressure/buoyancy force, and the surface tension force
on the floating object must sum to zero.

We next proceed to examine the consequences of (13) for the simple cases of
floating suggested in the introduction.

3. Floating in three dimensions

Here we assume a vertical circular cylindrical vessel is observed with a sphere 6m

floating symmetrically along the axis of the vessel and having symmetric circular
contact line at azimuthal angle φ=φ. Assuming the surface of the liquid is also ro-
tationally symmetric with respect to the same axis, the meridian of the surface with
vertical component u and radial component r considered as functions of arclength
along the meridian must satisfy the boundary value problem

(14)



ṙ = cosψ,
u̇ = sinψ,
ψ̇ = κu− λ− sinψ/r,
ψ = γ −φ and u = d + a cosφ when r = r(0)= a sinφ,
ψ = π/2− γout when r = r(l)= R,

where we have chosen coordinates so that the center of the floating sphere is
(0, 0, d), and we have denoted by l the total length and by ψ the inclination angle
of the meridian.

It would be desirable to preface our discussion of the geometry of the floating
ball in Figure 1 with an existence result, but we are unable to obtain such a result
for essentially the same reason that our geometric result is somewhat suboptimal:
The system of ordinary differential equations appearing in the problem above has
been studied extensively, but the structure of the family of all solutions is not well
enough understood. Thus, we turn directly to the auxiliary condition (13).

The following formulae, valid in the plane y = x2 = 0, are useful in simplifying
the integrals in (13):
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(15)

N m
[φ] = sinφ e1+ cosφ e3,

N W
[φ] = −N m

=−sinφ e1− cosφ e3,

Eν[φ] = (N m)⊥

=−cosφ e1+ sinφ e3,

En = cos γ Eν+ sin γ N W

=−cos(φ− γ ) e1+ sin(φ− γ ) e3,

N3
= (−En)⊥

= sin(φ− γ ) e1+ cos(φ− γ ) e3.

In these formulae, the bracketed φ indicates validity in the form of the result for
an arbitrary azimuthal angle on ∂6m though the main interest is on ∂Wm ; e1 and
e3 are the standard orthonormal unit vectors in R3.

Taking a vertical translation for the rigid motion of 6m so that ẃ= e3, the three
terms of (13) are as follows:∫

∂Wm

e3 · En = 2πa sinφ sin(φ− γ ),∫
Wm

(κz− λ)e3 · N = πa2 ((κd − λ) sin2 φ− 2
3κa(1+ cos3 φ)

)
,∫

∂6m

κ
ρ

ρl
ze3 · N m

=
4
3πκa3 ρ

ρl
.

Combining these terms and rearranging:

(16)
6 sinφ sin(φ− γ )

κa2 +
3(κd − λ) sin2 φ

κa
− 2 cos3 φ = 2

(
1− 2ρ

ρl

)
.

Next, we make the substitution

2H = κ(d + a cosφ)− λ,

which follows directly from (9). This leads to

6 sinφ sin(φ− γ )
κa2 +

3(2H − κa cosφ) sin2 φ

κa
− 2 cos3 φ = 2

(
1− 2ρ

ρl

)
.

This last condition simplifies directly into condition (4) of Theorem 2. It remains
to verify the description of the function

F(φ)= cos3 φ− 3 cosφ+
6
κa

(
H +

cos γ
a

)
sin2 φ−

3 sin γ
κa2 sin(2φ),
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where H is taken to be a given constant. The values at the endpoints are immediate.
We find also that

F ′(φ)
3
=− cos2 φ sinφ+ sinφ+

4
κa

(
H +

cos γ
a

)
sinφ cosφ−

2 sin γ
κa2 cos(2φ)

= sin3 φ+
2
κa

(
H +

cos γ
a

)
sin(2φ)−

2 sin γ
κa2 cos(2φ).

Thus, F ′(0)= F ′(π)=−(6/κa2) sin γ < 0. From this it is clear that F must attain
an absolute min at some value less than −2 and an absolute max greater than 2. At
these points, F ′ must vanish, and it only remains to show these are the only zeros
of F ′ on [0, π]. In fact, we see that

1
3 F ′(φ)= sin3 φ+ A sin(2φ− B)

for some quantities A > 0 and B independent of φ. The fact that F ′(0) < 0 tells
us that we may assume 0< B < π . Clearly, since 0 ≤ φ ≤ π , we have sin3 φ ≥ 0
and there can be no zero of F ′ on the interval [B/2, π/2+ B/2]. For the rest, we
consider two cases.

Case I: 0 < B ≤ π/2, i.e., F ′′(0) ≥ 0. In this case, both terms in the expression
for F ′ are increasing on the interval 0<φ < B/2, so F ′ can have at most one zero
there. (And since F ′(B/2) > 0 it does have exactly one.)

F ′ must also have a zero on [π/2+ B/2, π]. We note that

1
3 F ′′(φ)= 3 cosφ sin2 φ+ 2A cos(2φ− B)

=
3
2 sin(2φ) sinφ+ 2A cos(2φ− B)

and consider two subcases, depending on the sign of A− sin3(3π/4+ B/2).

• First assume that A ≥ sin3(3π/4+ B/2).
Since F ′(π/2+ B/2)/3= sin3(π/2+ B/2)+ A> 0, and F ′(3π/4+ B/2)/3=

sin3(3π/4+ B/2)− A ≤ 0, there is some zero of F ′ on the interval

(π/2+ B/2, 3π/4+ B/2].

Since both sin3 φ and A sin(2φ−B) are decreasing on this interval, there is exactly
one zero of F ′ there.

Let us assume there is another zero φ0 of F ′ with 3π/4+ B/2<φ0 <π . Since
F ′′(3π/4+ B/2) < 0 and F ′(3π/4+ B/2) ≤ 0, we conclude that F ′′ must have
a zero φ1 on the interval (3π/4+ B/2, φ0) at a negative local minimum of F ′.
Furthermore, since F ′(π) < 0, it must be the case that F ′′ has another zero φ2 on
the interval (φ1, π) at a nonnegative local maximum of F ′.

We now show this situation leads to a contradiction by establishing that F ′′ has
exactly one zero on the interval (3π/4+ B/2, π]. In fact, we will show more:
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Lemma 5. If 0 < B < π/2, then F ′′ has exactly one zero in [π/2+ B/2, π], and
it occurs on the interval (3π/4+ B/2, π) at a local minimum of F ′.

This is because 3 sin2 φ cosφ is increasing on the interval
(
π − arccos 1

√
3
, π
)
.

Indeed,

d

dφ
(sin2 φ cosφ)= 2 sinφ cos2 φ− sin3 φ = sinφ(3 cos2 φ− 1).

Furthermore, it is easily checked that π − arccos(1/
√

3) < 3π/4. Thus, F ′′ is
increasing on the interval [3π/4+ B/2, π] and has exactly one zero there. Finally,
F ′′ is negative on the interval [π/2+ B/2, 3π/4+ B/2], so we have established
the lemma and finished this subcase.

• Still under the assumption 0 < B ≤ π/2 (Case I), we now suppose instead that
A < sin3(3π/4+ B/2).

In this case F ′ is positive throughout the interval [π/2 + B/2, 3π/4 + B/2].
Thus, the first zero φ0 of F ′ on [π/2+B/2, π]must occur inside (3π/4+B/2, π).
Since F ′(π) < 0, and F ′′(π) > 0, the unique zero φ1 of F ′′ given by Lemma 5
must satisfy

max{φ0, 3π/4+ B/2}< φ1.

If we assume the existence of a second zero of F ′ on the interval (φ0, π), we obtain
a zero of F ′′ at a local maximum of F ′ (and a contradiction) as before.

Case II: π/2≤ B < π , i.e., F ′′(0)≤ 0. The reflection φ→ π −φ transforms this
case into the first one with B→ π − B. �

The reader will have no trouble verifying that under Archimedes’ assumptions
H =0 (a planar interface) and φ=γ (the appropriate azimuthal angle for a horizon-
tal plane to meet the sphere at the correct contact angle) the formula in Theorem 2
reduces to the condition of Archimedes.

4. Floating in two dimensions

The result of [Finn 2011] referred to in the introduction and termed by the au-
thor a “criterion for floating” concerns a variational problem considered earlier in
[Bhatnagar and Finn 2006] for the energy

(17) E=−σ |3̂| − σβ|W| +G,

where 3̂ is the linear segment of intersection of a planar/linear interface with a
two-dimensional convex body and G is the specific gravitational energy we have
considered above. The measures appearing in the first two terms in this functional
are one-dimensional (length) and the integral is an area integral. There is no volume
constraint in Bhatnagar and Finn’s problem, nor outer container. With certain other
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Figure 6. Azimuthal angles determined by a horizontal contact
line (left) and differing azimuthal angles in the two-dimensional
case (right).

assumptions, they also find that the interface always lies along a fixed line. From
this point, Finn goes on to obtain the striking result that for some values of ρ>ρl , σ
and β there will be an equilibrium which is a local minimum for energy in which the
convex body contacts the interface, i.e., floats. We now formulate and extend our
results to a problem dimensionally similar to the problem of Bhatnagar and Finn.

Physically, we envision a trough consisting of two vertical walls and a horizontal
bottom. The trough is assumed to extend infinitely in the y= x2 direction and to be
filled with a sea of liquid. Into this sea is introduced a horizontal floating circular
cylinder (an infinitely long log) with axis parallel to e2. Let us assume that the free
surface interface 3 also is always of cylindrical form with generator parallel to
e2, so that if the log is centrally located between the walls and the interface shares
the same midplane symmetry, then the projection of the system onto the x, z-plane
resembles that of the system considered in the previous section (Figure 6, left),
though the equation satisfied by the generating curve (and hence its shape) will be
different from that of the meridian previously considered.

The energy of such a system can be taken to have the form of (5):

E= σ |3| − σβ|W| +G,

where the dimensions of the measures have been lowered by one and G=
∫

V∪6m
G

is an area integral. The first-order necessary conditions take the form

k = G/σ − λ on the curve 3,

cos γ = β at the endpoints of 3,

and

(18) ẃ · En
∣∣
∂3
+

∫
Wm

(G/σ − λ)ẃ · N W
+

∫
∂6m

(Gm/σ)ẃ · N m
= 0,

where k is the curvature of 3 and λ arises from an area constraint on the cross
section of liquid in the trough. In analogy to the three-dimensional case, we assume
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an area density ρ for the object, that the object floats in a liquid of area density ρl ,
a capillary constant κ = ρl g/σ , and that the radius of the log is a.

Before we begin an analysis of this variational problem in earnest, let us pause
to note what Archimedes’ principle would state in this lower-dimensional case
(because it will appear in a surprising way later):

Theorem 6. According to Archimedes’ principle in one lower dimension, a homo-
geneous disk/log of density ρ > ρl will sink to the bottom of a bath of density ρl ,
and a homogeneous disk/log of density ρ < ρl will float at a level determined by

(19) 2φ− sin(2φ)= 2π
(

1− ρ

ρl

)
.

We assume initially the contact line (i.e., the two points where 3 meets 6m) is
determined by two azimuthal angles, one φ as before and a second φ measured
counterclockwise from the vertical e3; see Figure 6, right. In addition to (15), the
following identities have been found useful.

(20)

N m
[φ] = − sinφe1+ cosφe3,

N W
[φ] = −N m

= sinφe1− cosφe3,

Eν[φ] = (N W)⊥

= cosφe1+ sinφe3,

En = cos γ Eν+ sin γ N W

= cos(φ− γ )e1+ sin(φ− γ )e3,

N3
= (En)⊥

=− sin(φ− γ )e1+ cos(φ− γ )e3.

Taking first a horizontal motion of the floating sphere, so that ẃ = e1, we find

e1 · En
∣∣
∂Wm
= cos(φ− γ )− cos(φ− γ )=−2 sin B sin(A− γ ),

where A = 1
2(φ+φ), B = 1

2(φ−φ),∫
Wm

(κz− λ)e1 · N W
= a(κd − λ)(cosφ− cosφ)+ 1

2κa2(cos2 φ− cos2 φ)

=−2a sin B sin A(κd − λ+ κa cos A cos B),

and ∫
∂6m

(
κ
ρ

ρl
z− λ

)
e1 · N m

= 0.

Since each of these terms has a factor sin B, we see from condition (18), that one
possibility is sin B = 0. If this holds, it can readily be determined that φ = φ.
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Once this occurs, then since the left and right interfaces must start from the same
height and with the same inclination angle, we have a proof that the axis of the
floating cylinder must lie on the midplane between the vertical walls. This is the
conclusion we would like to make. The other alternative is that

sin(A− γ )+ a sin A(κd − λ+ κa cos A cos B)= 0,

which we rewrite as

(21)
(
cos γ + a(κd − λ)

)
sin A+ 1

2κa2 sin(2A) cos B− sin γ cos A = 0.

Leaving this open as a possibility for the moment, we turn to an independent
vertical translation of 6m with ẃ = e3. In this case

e3 · En
∣∣
∂Wm
= sin(φ− γ )+ sin(φ− γ )= 2 cos B sin(A− γ );

moreover∫
Wm

(κz− λ)e3 · N W

= a(κd − λ)(sinφ+ sinφ)+ 1
4κa2(sin(2φ)+ sin(2φ))+ 1

2κa2(φ+φ)− κa2π

= 2a cos B sin A(κd − λ)+ 1
2κa2 sin(2A) cos(2B)+ 1

2κa2(φ+φ)− κa2π

and ∫
∂6m

κ
ρ

ρl
z e3 · N m

= κa2π
ρ

ρl
.

Combining these terms to form the expression in (18), we arrive at a second nec-
essary condition,

(22)
(
cos γ + a(κd − λ)

)
sin A cos B− sin γ cos A cos B

+
1
2κa2 sin A cos A(1− 2 sin2 B)+ 1

4κa2(φ+φ)=
κa2π

2

(
1− ρ

ρl

)
.

Multiplying the equation in (21) by cos B and subtracting the result from (22) and
simplifying, we obtain the surprising condition

(23) φ+φ− sin(φ+φ)= 2π
(

1− ρ

ρl

)
.

This is surprising because it says that if the log floats anywhere but in the middle
between the vertical walls of the trough, then the wetted region must match the
wetted region predicted by (19) of Theorem 6, which is based on Archimedes’
assumptions, including that of a flat interface. In particular, the portion that is
wetted is independent of all parameters except the density fraction! We view this
scenario as highly unlikely. The fact that we cannot rule out this possibility leads
to the following curious result.
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Theorem 7. In the two-dimensional floating log problem, either the axis of the
log lies in the vertical midplane determined by the sides of the vessel, or the
wetted/nonwetted region is determined by the generalized version of Archimedes’
condition given in (23).

At this point, we proceed as in the three-dimensional case by assuming sym-
metry of the interface with respect to the midplane. When φ = φ, condition (22)
associated with the vertical translation is still nonvacuous and becomes

F(φ)= 2φ+ sin(2φ)+
4
κa2 sin(φ− γ )+

4
κa
(κd − λ) sinφ = 2π

(
1− ρ

ρl

)
.

Again following the three-dimensional case, we let

k = κ(d + a cosφ)− λ

denote the curvature of the interface at the contact line on the object. Substitution
yields

Theorem 8. A log that floats in a centrally symmetric position under the effects
of surface tension and adhesion must float at a level determined by the azimuthal
angle φ satisfying

(24) 2φ− sin(2φ)+
4
κa2 sin(φ− γ )+

4k
κa

sinφ = 2π
(

1− ρ

ρl

)
,

where k is the curvature of the interface at the contact line, and γ is the contact
angle of the interface with the floating log.

We emphasize that k is assumed to be given and constant. The behavior of the
function

F(φ)= 2φ− sin(2φ)+
4
κa2 sin(φ− γ )+

4k
κa

sinφ

is somewhat different than that in the three-dimensional case; see Figure 7. One
sees first of all that

F(0)=−
4
κa2 sin γ < 0 and F(π)= 2π +

4
κa2 sin γ > 2π.

Thus, the endpoint values do not coincide with the extremes of the expression on
the right in (24) associated with ρ = 0 and ρ = ρl . Nevertheless, the interval
between 0 and 2π is clearly covered by the values of F(φ) and, in fact, each value
is taken exactly once. To see this we compute

F ′(φ)
2
= 1− cos(2φ)+

2
κa2 cos(φ− γ )+

2k
κa

cosφ
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Figure 7. The azimuthal angles determined by Theorems 6 (top
left) and 8 (top right); plotted together on the bottom.

and observe first that

F ′(0)
2
=

2
κa2 cos(γ )+

2k
κa
=−

F ′(π)
2

.

It follows that F ′ is nonpositive at one of the endpoints and has the opposite sign
at the other. Using this, reasoning similar to that found in Section 3 shows F ′ can
have at most one zero on [0, π].

Thus, some salient features of Theorem 2 hold also in this lower-dimensional
case. For fixed k and γ , if ρ ≤ ρl , there is a unique height at which the disk/log
can float; there is an interval ρl < ρ < ρmax on which there is at least one (and
sometimes two) possible heights at which floating can occur. One expects that if
two azimuthal angles are determined by (24), the larger is the physically relevant
one.

5. Global solutions numerically computed

We have obtained global configurations of floating numerically for the problems
considered above both in two and three dimensions. The stability and uniqueness
of most of these configurations is not presently known.

In Figures 1 and 2 we give representative global configurations which have been
obtained and a list of the relevant parameters.
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ρ/ρl γ γout d λ φ

(1) Lightest 0.0 π/2 π/2 1.8850 1.0860 1.9284
(2) Heavy 1.0 π/2 π/2 2.6504 3.4494 1.2132
(3) Flat 0.5 π/2 π/2 1.6427 1.6427 1.5708
(4) Denser 1.6 π/2 π/2 1.9934 3.9663 0.4973
(5) Unstable (?) 0.5 π/4 π/4 2.3777 2.7878 0.7328
(6) Stable (?) 0.5 π/4 3π/4 2.7382 3.4704 1.0150

Table 1. Two-dimensional case (floating logs). Parameters for
each configuration on the top, from left to right. In all cases a= 1,
κ = 1, R = 2, and the cross-sectional area of liquid is 10.

ρ/ρl γ γout d λ φ

(1) Lightest 0.0 π/2 π/2 2.1174 1.8486 1.7086
(2) Heavy 1.0 π/2 π/2 1.8689 2.1377 1.4330
(3) Flat 0.5 π/2 π/2 1.9902 1.9902 1.5708
(4) Denser 2.1 π/2 π/2 1.4293 2.5321 0.9293
(5) Unstable (?) 0.5 π/4 π/4 1.3646 1.4679 0.7790
(6) Stable (?) 0.5 π/4 3π/4 2.0192 2.6403 1.2570

Table 2. Three-dimensional case (floating balls). Parameters for
each configuration on the top, from left to right. In all cases a= 1,
κ = 1, R = 2, and the volume of liquid is 25.

6. Existence and uniqueness

A referee has requested that we provide an existence and uniqueness result for some
floating configurations at least superficially like those to which our main result
applies. As the referee suggests, we provide in this section an existence result for
a ball floating symmetrically in an infinite three-dimensional bath. We also prove
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that uniqueness does not hold in that case in general, and provide some remarks
suggesting that uniqueness does not hold in the problem we consider either.

This problem has been considered in [Keller 1998; Vella and Mahadevan 2005]
though not from a fundamentally variational point of view and with existence (and
presumably some statement of uniqueness) assumed. Various aspects of the prob-
lem make it fundamentally simpler than the physical problem of floating in a finite
container and, as we shall see, we can say much more in this case.

Analogues of the results below are shown numerically in the lower-dimensional
case of Bhatnagar and Finn’s problem [2006]. Also, a partial existence result is
given in [Finn 2011] in the two-dimensional case and in [Finn and Vogel 2009] in
the three-dimensional case. The methods below may be adapted to give versions
of our results in this section for the two-dimensional problem.

As is customary for this kind of problem, we assume a prescribed zero level
to which our symmetric interface, satisfying the first four requirements of the
boundary value problem (14), is asymptotic. The requirement that the interface
be asymptotic (to first order) to the zero level plane necessitates the additional
conditions

lim
r→∞

u = lim
r→∞

ψ = 0.

These conditions along with the third equation in (14) imply that the constant λ is
zero. In order to show existence, we must obtain a solution to this system which
satisfies the additional requirement of Theorem 2. We stress that our application
of Theorem 2 to this situation in which the energies we considered in the proof are
infinite is somewhat formal, though under a suitable modification of the energies,
it is fairly clear that condition (4) is the correct equilibrium condition for float-
ing in this situation as well. With the aforementioned modifications, our problem
becomes one of finding a height d for the center of the sphere of radius a, an
azimuthal angle φ, and a meridian (r, u) with inclination angle ψ such that

(25)



ṙ = cosψ,
u̇ = sinψ,
ψ̇ = κu− sinψ/r,
ψ = γ −φ and u = d + a cosφ when r = r(0)= a sinφ,
limr→∞ u = limr→∞ ψ = 0,

and

(26) cos3 φ−3 cosφ+
6
κa

(
H +

cos γ
a

)
sin2 φ−

3 sin γ
κa2 sin(2φ)= 2

(
1− 2ρ

ρl

)
,

where H = κ(d + a cosφ)/2.
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It has been shown by Elcrat, Neel, and Siegel [Elcrat et al. 2004b] that given
any r = a sinφ > 0 and any inclination angle ψ̄ = γ −φ, there is a unique solution
(r, u) of the system (25) except for the condition u=d+a cosφ on the contact line.
Since d has not been specified, we can obviously take the sphere of center height
d = u(0)− a cosφ to get this condition as well. In this way, everything becomes
a function of φ, and we have only to find φ satisfying the following simplified
version of (26):

(27) cos3 φ−3 cosφ+ 3
a

(
u(0)+ 2 cos γ

κa

)
sin2 φ−

3 sin γ
κa2 sin(2φ)= 2

(
1− 2ρ

ρl

)
.

Unfortunately, the dependence of u(0)= u(0;φ) on φ is not explicit and not well
understood. This fact prevents us from giving a full analysis of the solutions of
(27). Nevertheless, we can set

G(φ)= cos3 φ− 3 cosφ+ 3
a

(
u(0)+ 2 cos γ

κa

)
sin2 φ−

3 sin γ
κa2 sin(2φ),

which is a well defined smooth function of φ.
When φ tends to zero (a sinking ball), we have that r = a sinφ tends to zero and

necessarily u(0;φ) tends to zero as well. Thus,

lim
φ→0

G(φ)=−2.

Similarly,
lim
φ→π

G(φ)= 2.

We draw attention to the fact that these values are shared by the function F
considered in Section 3. In fact, we can numerically graph the function G for
specific choices of κ and γ to see that G shares the qualitative properties of the
function F analyzed in Section 3, initially decreasing to a unique minimum, then
increasing to a unique maximum greater than 2, and decreasing on the remainder
of the interval; see Figure 8. We expect that these qualitative features are always
shared, but we are unable to prove that.

We are able to compute the following:

lim
φ→0,π

G ′(φ)=−
6 sin γ
κa2 .

This means that G is always decreasing at φ = 0 and φ = π . By continuity we
obviously have enough to obtain existence for any density ρ between zero and
the density of the liquid ρl . The last computation also gives existence for some
range of densities greater than ρl and some “negative densities” as described in the
discussion of the main result in Section 1. We have shown the following:
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Figure 8. Numerical plot of the function G for a = 1, κ = 1 and
γ = π/2.

Theorem 9. There are positive numbers ε and δ depending on the capillarity con-
stant κ , the radius of the sphere a, the contact angle γ , and the density of the
liquid ρl , such that the floating ball problem for an infinite bath has a well defined
equilibrium configuration (satisfying the flux condition obtained in this paper) for
each density ρ with −ε < ρ < ρl + δ.

It follows also that there is some φ = φmin where G takes a minimum value
m <−2. If we take a density ρ with

ρl < ρ < ρl(1−m/2),

then we see there are at least two values φ1 and φ2 with φ1 < φmin < φ2 which
correspond to distinct equilibrium configurations for different heights d of the ball.

Theorem 10. The problem of a floating ball in an infinite bath with capillarity
taken into account and γ ∈ (0, π) does not have a unique equilibrium solution
in general. More precisely, there is an interval (ρm, ρM) ⊃⊃ (0, ρl) and for any
density ρ in (ρm, ρM)\(0, ρl), there exist at least two equilibria.

If we calculate a modified energy for the specific choices of parameters con-
sidered above in Figure 8 and the two distinct equilibria shown in Figure 9, we
find that the one of smaller azimuthal angle and lower height d has greater energy.
This strongly suggests that when a heavy ball is floating, the energy increases to
a maximum (at another equilibrium) as the ball is pushed down. After the ball is
pushed below the second equilibrium height (maximum energy), it will sink. These
qualitative observations are consistent with experiments.
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Figure 9. Distinct equilibria showing nonuniqueness for ρ =
3/2> ρl = 1, a = 1, κ = 1 and γ = π/2.

Comparison to the graphs shown in Figure 7, suggests that the same situation
holds in finite containers. It should be noted, however, that Figure 7 does not show
this is the case, because H is considered constant there, and the value of H will
undoubtedly be different in the two distinct equilibrium configurations.
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GENERALIZED EIGENVALUE PROBLEMS
OF NONHOMOGENEOUS ELLIPTIC OPERATORS

AND THEIR APPLICATION

DUMITRU MOTREANU AND MIEKO TANAKA

We consider the equation −div(a(x, |∇u|)∇u) = λ|u| p−2u (whose special
case a(x, t)= t p−2 is the p-Laplace equation) on a bounded domain�⊂RN

with C2 boundary, with null boundary condition. We prove that there are
λ ∈ R for which the equation has a nontrivial solution. As an applica-
tion, by variational methods, we present the existence of a positive solution
to −div(a(x, |∇u|)∇u) = f (x, u) in �, where f is asymptotically ( p−1)-
linear near zero and ∞, considering the nonresonant, resonant, and dou-
bly resonant cases. We show that, generally, the spectrum of the operator
−div(a(x, |∇u|)∇u) on W 1, p

0 (�) is not discrete.

1. Introduction

Let 1< p <∞ and let �⊂ RN be a bounded domain with C2 boundary ∂�. We
are interested in values of λ∈R such that a nontrivial solution exists to the equation

(EV; λ)
{
−div A(x,∇u)= λ|u|p−2u in �,
u = 0 on ∂�;

such a λ is called an eigenvalue for A. Here A : �×RN
→ RN is a map that is

strictly monotone in the second variable and satisfies the regularity conditions in
Assumption A below.

The p-Laplace equation is the special case of (EV; λ) with A(x, y)= |y|p−2 y,
and in this case the eigenvalues for A are the usual eigenvalues of the p-Laplacian.
However, we do not suppose that A is (p−1)-homogeneous in the second variable.
Instead, these are the assumptions we make on the map A:

Assumption A. A(x, y) = a(x, |y|)y, where a(x, t) > 0 for all x ∈ � and all
t ∈ (0,+∞); furthermore:

(i) A ∈ C0(�×RN ,RN )∩C1(�× (RN
\ {0}),RN ).

MSC2010: 35P30, 35J62, 49R05.
Keywords: quasilinear elliptic equations, nonhomogeneous operators, nonlinear eigenvalue problems,

positive solutions, mountain pass theorem.
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(ii) There exists C1 > 0 such that

|Dy A(x, y)| ≤ C1|y|p−2 for every x ∈� and y ∈ RN
\ {0}.

(iii) There exists C0 > 0 such that

Dy A(x, y)ξ · ξ ≥ C0|y|p−2
|ξ |2 for every x ∈�, y ∈ RN

\ {0} and ξ ∈ RN
;

(iv) there exists C2 > 0 such that

|Dx A(x, y)| ≤ C2(1+ |y|p−1) for every x ∈� and y ∈ RN
\ {0}.

(v) There exist C3 > 0 and a positive t0 ≤ 1 such that

|Dx A(x, y)| ≤ C3|y|p−1(−log |y|)

for every x ∈�, y ∈ RN with 0< |y|< t0.

From now on, we assume that C0 ≤ p − 1 ≤ C1 which leads to no loss of
generality, as can be seen from Assumption A(ii)–(iii).

A similar hypothesis to Assumption A is considered in the study of quasi-
linear elliptic problems; see [Motreanu and Papageorgiou 2011, Example 2.2;
Damascelli 1998; Motreanu et al. 2011; Miyajima et al. 2012; Tanaka 2012a].
We also refer to [García-Huidobro et al. 1995; Kim 2009; Kim and Kim 2010;
Fukagai and Narukawa 2007; Prado and Ubilla 1998; Robinson 2004] for general-
ized p-Laplace operators. In particular, when A(x, y)= |y|p−2 y — that is, when
div A(x,∇u) is the usual p-Laplacian 1pu — we can take C0 = C1 = p − 1 in
Assumption A. Conversely, if C0 = C1 = p− 1 in Assumption A, the inequalities
in Remark 1(ii)–(iii) below show that a(x, t)= |t |p−2, whence A(x, y)= |y|p−2 y.
In the p-Laplace case, the first eigenvalue λ1 is obtained by the Rayleigh quotient:
λ1 = inf

{∫
�
|∇u|p dx/‖u‖p

p : u 6= 0
}
. But since our operator is nonhomogeneous,

inf{λ ∈ R : λ is an eigenvalue of A} is in general not obtained by such a Rayleigh
quotient corresponding to A. In Section 3, since the Rayleigh quotient plays
an important role, we study its behavior as ‖u‖p → 0 or ‖u‖p →∞ under an
additional condition describing an asymptotic (p−1)-homogeneity. For example,
we can consider

div A(x,∇u)= div
((

a0(x)|∇u|p−2
+ a∞(x)|∇u|q−2)(1+ |∇u|q)(p−q)/q

∇u
)

for 1 < p ≤ q <∞, a0, a∞ ∈ C1(�) with min� a0 > 0 and min� a∞ > 0. This
satisfies

A(x, y)− a0(x)|y|p−2 y = o(|y|p−1) as |y| → 0,

A(x, y)− a∞(x)|y|p−2 y = o(|y|p−1) as |y| →∞.

Under these these conditions (see (AH0) and (AH) in Section 3), we shall prove
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that

min
{∫

�

∫
|∇u(x)|

0

a(x, t)t
r p dtdx : ‖u‖p = r

}
approaches λ1(a0)/p as r→+0 and λ1(a∞)/p as r→+∞; here

λ1(a0)=min
{∫

�

a0(x)|∇u|p dx : ‖u‖p = 1
}
,

λ1(a∞)=min
{∫

�

a∞(x)|∇u|p dx : ‖u‖p = 1
}
.

Concerning the eigenvalue problem for a nonhomogeneous operator, we can
refer to [Robinson 2004; Tanaka 2012b] under the Neumann boundary condition.

In Section 4, as an application of Section 3, we present the existence of a positive
solution for the quasilinear elliptic equation

(P)
{
−div A(x,∇u)= f (x, u) in �,
u = 0 on ∂�,

where f satisfies the following assumption.

Assumption ( f ). f is a Carathéodory function on �× R with f (x, 0) = 0 for
a.e. x ∈ �, f is bounded on bounded sets and f is asymptotically (p−1)-linear
near +0 and +∞ in the following sense:

lim
u→+0

f (x, u)
u p−1 = α0 uniformly in a.e. x ∈�,(i)

lim
u→+∞

f (x, u)
u p−1 = α uniformly in a.e. x ∈�,(ii)

for some constants α0 and α.

Regarding the existence of a positive solution under the Dirichlet boundary
condition, we can refer to [Fukagai and Narukawa 2007; Prado and Ubilla 1998]
for nonhomogeneous operators. However, we can not apply these results to our
nonlinear term which is only asymptotically (p−1)-linear near +0 and +∞, and
furthermore with possibly different weights. In [García-Huidobro et al. 1995], it is
proved the existence of a positive radial solution for nonhomogeneous operators.

For the p-Laplace equation, it is well known that if (α−λ1)(α0−λ1) < 0 (where
λ1 denotes the first eigenvalue of −1p under a Dirichlet boundary condition),

−1pu = f (x, u) in �, u = 0 on ∂�,

has a positive solution (see [Dancer and Perera 2001]). One of our main purposes
is to extend this existence result from the p-Laplace equation to the corresponding
problem involving our nonhomogeneous operator A. This is done in Theorem 25.
We mention that in the special case of A(x, y) = A(y), the result in [Kyritsi
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et al. 2010] provides the existence of a positive solution if α < λ1C0/(p− 1) and
λ1C1/(p− 1) < α0 hold (note that we can apply this result only to the case where
α < α0). We emphasize that, for our general operator, the case λ1(a0) 6= λ1(a1)

can occur. Note that in such a situation, contrary to the p-Laplacian case, we can
still apply our theorem when α0 = α provided this number is between λ1(a0) and
λ1(a1). The known result for the p-Laplacian case is obtained from our theorem
simply by setting a0 ≡ 1 and a∞ ≡ 1.

In particular, our theorem implies that if λ1(a0) 6= λ1(a∞), then every λ between
λ1(a0) and λ1(a∞) is an eigenvalue of A (see Corollary 26) and has a positive eigen-
function. This shows that, generally, the spectrum of the operator −div A(x,∇· )
on W 1,p

0 (�) is not discrete.
In the final part of the paper, we treat the one side resonant and doubly resonant

cases under additional conditions on f . For the p-Laplace equation, we refer to
[Tanaka 2009] for the resonant and doubly resonant cases. Our Theorem 31 provides
the existence of a positive solution in all cases of resonance for problem (P) with a
nonhomogeneous operator in the principal part.

2. The properties of the map A

In what follows, the norm on W 1,p
0 (�) is given by

‖u‖p
:= ‖∇u‖p

p,

where ‖u‖q denotes the usual norm of Lq(�) for u ∈ Lq(�) (1≤ q ≤∞). Setting

(1) G(x, y) :=
∫
|y|

0
a(x, t)t dt,

we can easily see that

∇yG(x, y)= A(x, y) and G(x, 0)= 0

for every x ∈�; see [Motreanu et al. 2011] for details.

Remark 1. The following assertions hold under Assumption A:

(i) For all x ∈�, A(x, y) is maximal monotone and strictly monotone in y.

(ii) |A(x, y)| ≤
C1

p− 1
|y|p−1 for every (x, y) ∈�×RN .

(iii) A(x, y)y ≥
C0

p− 1
|y|p for every (x, y) ∈�×RN .

(iv) G(x, y) is strictly convex in y for all x and satisfies the inequalities

(2) A(x, y)y ≥ G(x, y)≥
C0

p(p− 1)
|y|p and G(x, y)≤

C1

p(p− 1)
|y|p

for every (x, y) ∈�×RN .
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The following result is important for the proof of the Palais–Smale condition for
the functionals related to our problem.

Proposition 2 [Motreanu et al. 2011, Proposition 1]. Let V : W 1,p
0 (�)→W 1,p

0 (�)∗

be the map defined by

〈V (u), v〉 =
∫
�

A(x,∇u)∇v dx

for u, v ∈ W 1,p
0 (�). Then any sequence {um} that converges weakly to u and

satisfies lim supm→∞〈V (um), um − u〉 ≤ 0 also converges strongly to u.

Remark 3. (i) If u ∈ W 1,p
0 (�) is a solution of (P), then u ∈ C1,α(�) for some

0< α < 1.

(ii) If u ∈W 1,p
0 (�) is a nontrivial solution of (P) such that u ≥ 0, then u > 0 in �

and ∂u/∂ν < 0 on ∂�, where ν denotes the outward unit normal vector on ∂�.

Sketch of proof. (i) Let u ∈W 1,p
0 (�) be a solution of (P). Then, because u ∈ L∞(�)

as shown by using the Moser iteration process (cf. [Miyajima et al. 2012, Appendix]),
we see that u ∈ C1,α(�) (0< α < 1) by the regularity result in [Lieberman 1988].

(ii) Let u ∈ W 1,p
0 (�) be a solution of (P) satisfying u ≥ 0 and u 6≡ 0. Then, by

Assumption ( f ), we obtain a constant λ > 0 satisfying

−div A(x,∇u)+ λu p−1
≥ 0 in �.

Noting that u ∈ C1,α(�) (0 < α < 1) by (i), we have u(x) > 0 for every x ∈ �
by [Miyajima et al. 2012, Appendix, Theorem B]. In addition, using the strong
maximum principle [ibid., Appendix, Theorem A], we easily see that ∂u(x)/∂ν < 0
for every x ∈ ∂�. �

Proposition 4. Let fn : �×R→ R be a Carathéodory function satisfying

| fn(x, t)| ≤ D(1+ |t |r−1) for every x ∈�, t ∈ R

with some positive constant D independent of n and r ∈ [p, p∗), where p∗ =∞
if N ≤ p and p∗ = pN/(N − p) if N > p. Assume that An : �×RN

→ RN is a
map satisfying parts (i)–(iv) of Assumption A with positive constants C ′1, C ′0, and
C ′2 independent of n. If un is a solution for

−div An(x,∇u)= fn(x, u) in �, u = 0 on ∂�

and {un} is bounded in W 1,p
0 (�), then there exist a subsequence {unl } of {un} and

u0 ∈ C1
0(�) such that unl → u0 in C1

0(�) as l→∞.

Proof. Since {un} is bounded in W 1,p
0 (�), we may assume that un converges weakly

to some u0 in W 1,p
0 (�) by choosing a subsequence. We can show that there exists

a C > 0 depending only on |�|, p, N , D, C ′0, C ′1, and the embedding constant of
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W 1,p
0 (�) into L p̄∗(�) such that ‖un‖∞≤C max{1, ‖un‖

( p̄∗−p)/( p̄∗−r)
} by the Moser

iteration process to [Miyajima et al. 2012, Theorem C], where p̄∗ = p∗ if N > p
and p̄∗ > r is any constant if N ≤ p. Since D, C ′1, and C ′0 are independent of n,
‖un‖∞ is bounded. Therefore, the regularity result in [Lieberman 1988] guarantees
that there exist γ ∈ (0, 1) and M > 0 independent of n such that un ∈ C1,γ

0 (�) and
‖un‖C1,γ

0
(�) ≤ M (where we use the fact that C ′2 is independent of n). Since the

inclusion of C1,γ
0 (�) to C1

0(�) is compact, un converges to u0 in C1
0(�) (note that

un ⇀ u0 in W 1,p
0 (�)). �

3. Eigenvalue problems

We introduce a function J :W 1,p
0 (�)→ R by

(3) J (u)=
∫
�

G(x,∇u) dx for all u ∈W 1,p
0 (�).

It is clear that J is of class C1. We also note that

(4) r S := {u ∈W 1,p
0 (�) : ‖u‖p = r} for r > 0

is a C1 Finsler manifold (cf. [Deimling 1985, Sections 27.4 and 27.5]) because r
is a regular value of the function u 7→ ‖u‖p on W 1,p

0 (�). Hence the norm of the
derivative at u ∈ (r S) of the restriction J̃ of J to r S is defined by

‖ J̃ ′(u)‖∗ := min{‖J ′(u)− t8′(u)‖W 1,p
0 (�)∗

: t ∈ R}

= sup{〈J ′(u), v〉 : v ∈ Tu(r S), ‖v‖ = 1},

where 8(u) := (1/p)‖u‖p
p and Tu(r S) denotes the tangent space of r S at u, that

is, Tu(r S) = {v ∈ W 1,p
0 (�) :

∫
�
|u|p−2uv dx = 0}. It follows that the restriction

J̃ = J |(r S) is a C1-function on r S in the sense of manifolds.

Proposition 5. For r > 0, the infimum

(5) µ1(A, r)= inf
u∈(r S)

∫
�

G(x,∇u) dx

is attained at points ±ûr ∈ (r S) with ûr ∈ C1,α(�) and ûr > 0 in �. Moreover,
±ûr are solutions of (EV; λ) with λ= λ1(A, ûr )/r p, where

(6) λ1(A, ûr )=

∫
�

A(x,∇ûr )∇ûr dx ≥
C0

p− 1
λ1r p.

Proof. Let {un} ⊂ (r S) be a minimizing sequence for (5). Using (2), it follows that
{un} is bounded in W 1,p

0 (�), so along a relabeled subsequence we have un ⇀ u
in W 1,p

0 (�) and un → u in L p(�) for some u ∈ W 1,p
0 (�), thus u ∈ (r S). Since
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G(x, · ) is convex and continuous for all x ∈�, J is weakly lower semicontinuous
on W 1,p

0 (�) [Mawhin and Willem 1989, Theorem 1.2]. Therefore, we derive that

µ1(A, r)≤
∫
�

G(x,∇u) dx ≤ lim inf
n→∞

∫
�

G(x,∇un) dx,

which yields

µ1(A, r)=
∫
�

G(x,∇u) dx .

The fact that the functional J is even implies that |u| is also a global minimizer
of J̃r . Consequently, we may assume that u ≥ 0. On the other hand, the Lagrange
multiplier rule leads to the existence of t ∈ R such that

(7)
∫
�

A(x,∇u)∇v dx = t
∫
�

u p−1v dx for all v ∈W 1,p
0 (�).

Inserting v = u in (7) entails

(8) trp
=

∫
�

A(x,∇u)∇u dx ≥
C0

p− 1
‖∇u‖p

p ≥
C0λ1

p− 1
‖u‖p

p =
C0λ1

p− 1
r p.

Therefore, we have
t =

λ1(A, u)
r p ≥

C0λ1

p− 1
.

From (7), it follows that u is a solution of (EV; λ) with λ = t = λ1(A, u)/r p.
According to Remark 3 with f (x, u) = t |u|p−2u, it follows that u ∈ C1,α(�)

(0 < α < 1) and u > 0 in �. Since J is even and λ1(A, u) = λ1(A,−u), we
have that J (−u)= J (u)= µ1(A, r) and −u is a negative solution of (EV; λ) with
λ= t = λ1(A, u)/r p. The result is thus established with ûr = u. �

We define
K1(A, r) := {u ∈ (r S) : J (u)= µ1(A, r)}.

Then it follows from Proposition 5 that K1(A, r) is not empty for each r > 0.
Because we do not know whether the minimizers of J̃r are only±ûr , we introduce

the following:

λ1(A, r) := inf
{∫

�

A(x,∇u)∇u dx : u ∈ K1(A, r)
}
,

λ̄1(A, r) := sup
{∫

�

A(x,∇u)∇u dx : u ∈ K1(A, r)
}
.

Lemma 6. For every r > 0, λ1(A, r) and λ̄1(A, r) are attained.

Proof. We only deal with λ1(A, r) because λ̄1(A, r) can be treated similarly. Fix
any r > 0. Let un ∈ K1(A, r) satisfy λ1(A, un)→ λ1(A, r) as n→∞. Then we
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see that ‖∇un‖p is bounded from the inequality

C0

p(p− 1)
‖∇un‖

p
p ≤

∫
�

G(x,∇un) dx = µ1(A, r)≤
∫
�

G(x,∇w) dx

for w ∈ r S, where we use the definition of µ1(A, r) and (2). Recall that each un is
a solution of (EV; λ) with λ= λ1(A, un)/r p. Moreover, we have

C0

p− 1
λ1r p
≤ λ1(A, un)≤

C1

p− 1
‖∇un‖

p
p

by Remark 1(ii) (see (6) for the first inequality), whence λ1(A, un)/r p is bounded.
As a result, due to Proposition 4, we may assume that there exists u0 ∈W 1,p

0 (�)

such that un → u0 in C1
0(�) by choosing a subsequence if necessary. Since J

and λ1(A, · ) are continuous in W 1,p
0 (�), we see that J (u0) = limn→∞ J (un) =

µ1(A, r), u0 ∈ K1(A, r), and λ1(A, u0) = limn→∞ λ1(A, un) = λ1(A, r). Thus,
our conclusion holds. �

Define

λ1(A) := inf
u 6=0

∫
�

A(x,∇u)∇u
‖u‖p

p
dx and µ1(A) := inf

u 6=0

∫
�

G(x,∇u)
‖u‖p

p
dx .

Lemma 7.

C0

p− 1
λ1 ≤ λ1(A)≤min

{
inf
r>0

λ1(A, r)
r p ,

C1

p− 1
λ1

}
and µ1(A)= inf

r>0

µ1(A, r)
r p .

Proof. First, we consider λ1(A). For every 0 6= u ∈W 1,p
0 (�), we have

(9)
C0

p− 1
‖∇u‖p

p

‖u‖p
p
≤

∫
�

A(x,∇u)∇u
‖u‖p

p
dx ≤

C1

p− 1
‖∇u‖p

p

‖u‖p
p

by Remark 1(ii)–(iii). Thus (C0/(p− 1))λ1 ≤ λ1(A)≤ (C1/(p− 1))λ1 by taking
the infimum with respect to u.

Here we fix any ε > 0. Then there exists an rε > 0 such that λ1(A, rε)/r p
ε ≤

infr>0(λ1(A, r)/r p) + ε. By Lemma 6, we can choose uε ∈ (rεS) such that
λ1(A, uε)= λ1(A, rε), that is,

∫
�

A(x,∇uε)∇uε dx = λ1(A, rε). By the definition
of λ1(A), we obtain

λ1(A)≤
∫
�

A(x,∇uε)∇uε
‖uε‖

p
p

dx =
λ1(A, rε)

r p
ε

≤ inf
r>0

λ1(A, r)
r p + ε.

Because ε > 0 is arbitrary, we have λ1(A)≤ infr>0(λ1(A, r)/r p).
Next we treat µ1(A). Fix any ε > 0. Then there exists an rε > 0 such that

µ1(A, rε)/r p
ε ≤ infr>0(µ1(A, r)/r p)+ ε. On the other hand, because µ1(A, rε) is
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attained at some uε ∈ (rεS), we have

inf
u 6=0

∫
�

G(x,∇u)
‖u‖p

p
dx ≤

∫
�

G(x,∇uε)
‖uε‖

p
p

dx =
µ1(A, rε)

r p
ε

≤ inf
r>0

µ1(A, r)
r p + ε.

Because ε > 0 is arbitrary, this yields that µ1(A)≤ infr>0(µ1(A, r)/r p).
For any ε > 0, we take vε 6= 0 such that

∫
�
(G(x,∇vε)/‖vε‖

p
p) dx ≤ µ1(A)+ ε.

Then rε := ‖vε‖p > 0 and so

µ1(A, rε)
r p
ε

≤

∫
�

G(x,∇vε)
‖vε‖

p
p

dx ≤ µ1(A)+ ε.

This leads to µ1(A)≥ infr>0(µ1(A, r)/r p). �

Proposition 8. If λ < λ1(A), (EV; λ) has no nontrivial solutions.

Proof. Let u be a nontrivial solution of (EV; λ) with λ < λ1(A). Then we have

λ1(A)≤
∫
�

A(x,∇u)∇u
‖u‖p

p
dx = λ

by the definition of λ1(A). This is a contradiction. �

Set

(10) Ap :=
C1

p− 1

(
C1

C0

)p−1

≥ 1,

which is equal to 1 exactly in the case of A(x, y) = |y|p−2 y (that is, the special
case of the p-Laplacian ) because we can choose C0 = C1 = p− 1.

Lemma 9 [Tanaka 2012a, Lemma 16]. Let ε > 0. For every

u, ϕ ∈W 1,p(�)∩C1(�)∩ L∞(�)

with u ≥ 0 and ϕ ≥ 0 in �, we have∫
�

A(x,∇u)∇
(

ϕ p

(u+ ε)p−1

)
dx ≤ Ap‖∇ϕ‖

p
p.

Proposition 10. Any nontrivial solution of (EV; λ) with λ > Apλ1 changes sign.

Proof. By way of contradiction, assume there is a solution u that does not change
sign. Then we may suppose that u≥0 because A is odd. Due to the strong maximum
principle and the regularity theorem (see Remark 3), it follows that u ∈ C1

0(�) and
u > 0 in �. Let ϕ1 be the positive eigenfunction of −1p corresponding to λ1 such
that ‖ϕ1‖p = 1. According to Lemma 9, we obtain

Apλ1 = Ap‖∇ϕ1‖
p
p ≥

∫
�

A(x,∇u)∇
(

ϕ
p
1

(u+ ε)p−1

)
dx = λ

∫
�

(
u

u+ ε

)p−1

ϕ
p
1 dx

for every ε > 0. By taking ε ↓ 0, we have λ≤ Apλ1. This is a contradiction. �
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Proposition 11. Assume Apλ1 < C0λ2/(p − 1), where λ2 > λ1 is the second
eigenvalue of −1p. If Apλ1 < λ < C0λ2/(p − 1), (EV; λ) has no nontrivial
solutions.

Proof. By way of contradiction, we assume that (EV; λ) has a nontrivial solution u.
Then it follows from Proposition 10 that u changes sign. Moreover, by taking u±
as a test function in (EV; λ), we have

C0

p− 1
‖∇u±‖p

p ≤

∫
�

A(x,∇u)(±∇u±) dx = λ‖u±‖p
p,

whence

(11) ‖∇u±‖p
p < λ2‖u±‖p

p.

This inequality guarantees the existence of a continuous path γ0 on S such that
γ0(0) = ϕ1, γ0(1) = −ϕ1 and maxt∈[0,1] ‖∇γ0(t)‖

p
p < λ2; refer to [Cuesta et al.

1999, Lemma 5.3]. This contradicts the equality

λ2 = inf
γ∈6

max
t∈[0,1]

8(γ (t)),

where 8(u) := ‖∇u‖p
p and 6 := {γ ∈ C([0, 1], S) : γ (0)= ϕ1, γ (1)=−ϕ1}; see

[Anane 1987; Cuesta et al. 1999]. This contradiction proves our result.
For the reader’s convenience, we give the sketch of the construction of a path γ0

as required above. Define paths as follows:

γ1(t) :=
tu+ (1− t)u+
‖tu+ (1− t)u+‖p

=
u+− tu−
‖u+− tu−‖p

, γ2(t) :=
tu++ (1− t)u−
‖tu++ (1− t)u−‖p

,

γ3(t) :=
(1− t)u− tu−
‖(1− t)u− tu−‖p

=
(1− t)u+− u−
‖(1− t)u+− u−‖p

for t ∈ [0, 1]. Then, setting 8̃ :=8|S , we obtain by (11)

max
t∈[0,1]

8̃(γi (t)) < λ2, for i = 1, 2, 3.

We recall that any component of O(r) := {u ∈ S : 8̃(u) < r} contains at least
one critical point of 8̃, where r > 0 [Cuesta et al. 1999, Lemma 3.6]. Note that
O(λ2) contains just two critical points ϕ1 and −ϕ1 because a critical value c of 8̃
corresponds to the eigenvalue c of the negative p-Laplacian. Since any component
of O(λ2) is path connected [ibid., Lemma 3.5], there exists a path γ4 joining from
u−/‖u−‖p to ϕ1 or −ϕ1 in O(λ2). Thus, by noting that 8 is even, we can construct
a path γ0 ∈6 such that maxt 8̃(γ0(t)) < λ2 by considering γ−1

4 ·γ2 ·γ1 ·γ3 · (−γ4)

or its inverse, where γ−1
i (t) := γi (1− t) and γi · γ j denotes the path defined by

γi (2t) if 0≤ t ≤ 1
2 and γ j (2t − 1) if 1

2 < t ≤ 1. �
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3.1. Asymptotically homogeneous case near zero. We now consider the case where
A is asymptotically (p−1)-homogeneous near zero in the following sense.

(AH0) There exist a positive function a0 ∈ C1(�,R) and a continuous function
ã0(x, t) on �×[0,+∞) such that

A(x, y)= a0(x)|y|p−2 y+ ã0(x, |y|)y for every x ∈�, y ∈ RN ,

where

lim
t→+0

ã0(x, t)
t p−2 = 0 uniformly in x ∈�.

For this weight function a0, we define

(12) λ1(a0) := inf
{∫

�

a0(x)|∇u|p dx : ‖u‖p = 1
}
.

Because 0<minx∈� a0(x)≤maxx∈� a0(x) <∞, by the same argument as the one
for the first eigenvalue of the negative p-Laplacian, we can prove that λ1(a0) is the
first eigenvalue of

(13) −div
(
a0(x)|∇u|p−2

∇u
)
= λ|u|p−2u in �, u = 0 on ∂�.

Moreover, λ1(a0) has a positive eigenfunction ϕa0 ∈ C1(�) and it is simple. It is
proved that (13) has no constant sign solutions other than 0 provided λ 6= λ1(a0).

Theorem 12. Assume (AH0). For every ε > 0 there exists r0 > 0 such that equation
(EV; λ) has no nontrivial solutions in Bp(r0) := {v∈W 1,p

0 (�) : ‖v‖p< r0} provided
λ < λ1(a0)− ε.

Proof. We argue by contradiction. Thus we assume that there exist ε0 > 0, {λn}

and {un} such that λn < λ1(a0)− ε0, un ∈ Bp(1/n) and un is a nontrivial solution
of (EV; λn). By taking un as a test function in (EV; λn), we have

(14)
C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un)∇un dx = λn‖un‖
p
p ≤ (λ1(a0)−ε0)/n p

→ 0

as n →∞. Therefore, un → 0 in W 1,p
0 (�). In addition, by noting that un is a

nontrivial solution of (EV; λn) and 0≤ λn < λ1(a0)− ε0, Proposition 4 yields that
un converges to 0 in C1(�).

Set vn := un/‖un‖p. Then it follows from (14) and the boundedness of {λn} that
{vn} is bounded in W 1,p

0 (�). Hence, by choosing a subsequence, we may assume
that vn converges to some v0 weakly in W 1,p

0 (�) and strongly in L p(�). Again by
taking un/‖un‖

p
p as a test function in (EV; λn), we obtain
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λ1(a0)− ε0 > λn =

∫
�

a0(x)|∇un|
p

‖un‖
p
p

dx +
∫
�

ã0(x, |∇un|)|∇un|
2

‖un‖
p
p

dx

=

∫
�

a0(x)|∇vn|
p dx +

∫
�

ã0(x, |∇un|)|∇un|
2

‖un‖
p
p

≥ λ1(a0)+

∫
�

ã0(x, |∇un|)|∇un|
2

‖un‖
p
p

=: λ1(a0)+ I

because of the characterization of λ1(a0). Hypothesis (AH0) guarantees that for
every δ > 0 there exists ρ0 > 0 such that |ã0(x, t)| ≤ δ|t |p−2 if |t | ≤ ρ0. Since
‖un‖C1(�)→ 0 and in view of (14), we can get

|I | ≤ δ
∫
�

|∇vn|
p dx ≤

δ(p− 1)
C0

λn ≤
δ(p− 1)

C0
(λ1(a0)− ε0)

for sufficiently large n. As a result, by taking a sufficiently small δ > 0, we have a
contradiction for sufficiently large n. �

Theorem 13. Assume (AH0). For every ε > 0 there exists r1 > 0 such that (EV; λ)
has no constant sign solutions in Bp(r1) \ {0} provided λ > λ1(a0)+ ε.

Proof. By way of contradiction, we assume that there exist ε0 > 0, {λn} and {un}

such that λn > λ1(a0)+ ε0, 0 6= un ∈ Bp(1/n) and un is a constant sign solution of
(EV; λn). Because A is odd, we may suppose that un ≥ 0 by considering −un if
necessary. Thus, by Remark 3(i)–(ii), un ∈ C1(�) and un > 0 in �. We note that
λn ≤ Apλ1(−1p) by Proposition 10, where λ1(−1p) denotes the first eigenvalue
of −1p (see (10) for the definition of Ap), and so {λn} is bounded. Therefore, we
may assume that λn converges to some λ0 by choosing a subsequence. In addition,
by the same argument as in Theorem 12, we can show that un→ 0 in C1(�).

Set An(x, y) := A(x, ‖un‖p y)/‖un‖
p−1
p and fn(x, t) := λn|t |p−2t . Then An

satisfies Assumption A(i)–(iv) with the same constants C0, C1, and C2. Moreover,
| fn(x, t)| ≤ λn|t |p−1

≤ Apλ1(−1p)|t |p−1 for every t ∈ R, a.e. x ∈ �. Note also
that we have the boundedness of ‖vn‖ due to the inequality C0‖∇un‖

p
p/(p− 1)≤∫

�
A(x,∇un)∇un dx = λn‖un‖

p
p. Since vn := un/‖un‖p is a positive solution of

−div(An(x,∇u))= fn(x, u) in �, u = 0 on ∂�,

Proposition 4 guarantees that {vn} has a convergent subsequence in C1(�). By
choosing a subsequence, we may suppose that vn → v0 6= 0 in C1(�) (note that
‖v0‖p = 1). Using that we obtain, for every w ∈W 1,p

0 (�), that∫
�

ã0(x, |∇un|)∇un

‖un‖
p−1
p

∇w dx =
∫
�

ã0(x, |∇un|)∇un

|∇un|
p−1 ∇w|∇vn|

p−1 dx→ 0

as n →∞ in view of (AH0) and the convergence un → 0. As a result, letting
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n→∞ in the equality∫
�

a0(x)|∇vn|
p−2
∇vn∇wdx+

∫
�

ã0(x, |∇un|)∇un

‖un‖
p−1
p

∇wdx =λn

∫
�

|vn|
p−2vnwdx

for each w ∈W 1,p
0 (�), we see that v0 6= 0 is a positive solution of (13) with λ= λ0

(see Remark 3(ii) for v0 > 0). This yields that λ0 = λ1(a0), because (13) has no
positive solutions other that λ= λ1(a0). Therefore we have a contradiction, because
λ0 = limn→∞ λn ≥ λ1(a0)+ ε0. �

Proposition 14. Assume (AH0). Then, for every ε > 0, there exists r0 > 0 such that

λ1(A, r)
r p ≥ λ1(a0)− ε for every 0< r < r0.

Proof. Assume that there exist ε > 0 and rn > 0 such that rn → 0 as n →∞
and λ1(A, rn)/r p

n < λ1(a0)− ε for every n ∈ N. Because of Proposition 5 and
Lemma 6 (note that A is odd in the second variable), we can choose a positive
function un ∈ (rn S)∩C1(�) satisfying∫
�

A(x,∇un)∇un dx = λ1(A, rn), min
v∈rn S

∫
�

G(x,∇v) dx =
∫
�

G(x,∇un) dx .

Note that

(15)
C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un)∇un dx = λ1(A, rn) < (λ1(a0)− ε)r p
n → 0,

and so un → 0 in W 1,p
0 (�). Because un is a solution of (EV; λ) with λ =

λ1(A, rn)/r p
n (see Proposition 5), by combining the inequality

λ1(a0)− ε >
λ1(A, rn)

r p
n

=

∫
�

a0(x)|∇vn|
p dx +

∫
�

ã0(x, |∇un|)|∇un|
2

‖un‖
p
p

dx

and an argument as in Theorem 12 with λn=λ1(A, rn)/r p
n , we have a contradiction.

�

Proposition 15. Assume (AH0). Then, for every ε > 0, there exists r1 > 0 such that

λ̄1(A, r)
r p ≤ λ1(a0)+ ε for every 0< r < r1.

Proof. Assume that there exist ε0 > 0 and rn > 0 such that rn → 0 as n →∞
and λ̄1(A, rn)/r p

n > λ1(a0) + ε0 for every n ∈ N. According to Lemma 6 and
Proposition 5, we can take a positive function un ∈ (rn S)∩C1(�) satisfying∫
�

A(x,∇un)∇un dx = λ̄1(A, rn), min
v∈rn S

∫
�

G(x,∇v) dx =
∫
�

G(x,∇un) dx .

Noting that, with ϕa0 the positive eigenfunction corresponding to λ1(a0) satisfying
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‖ϕa0‖p = 1, we have

C0

p(p− 1)
‖∇un‖

p
p≤

∫
�

G(x,∇un) dx≤
∫
�

G(x, rn∇ϕa0) dx≤
C1r p

n

p(p− 1)
‖∇ϕa0‖

p
p,

we see that un→ 0 in C1(�) due to Proposition 4, because un is a positive solution
of (EV; λ) with λ= λ̄1(A, rn)/r p

n and (λ1(a0)+ε0<)λ̄1(A, rn)/r p
n ≤ Apλ1(−1p)

by Proposition 10, where λ1(−1p) denotes the first eigenvalue of −1p (see (10)
for the definition of Ap). Therefore, by the same argument as in Theorem 13 with
λn = λ̄1(A, rn)/r p

n , we have a contradiction. �

The following result follows from Propositions 14 and 15, (note λ1(A, r) ≤
λ̄1(A, r) for every r > 0).

Corollary 16. Under (AH0), we have

lim
r→+0

λ̄1(A, r)
r p = lim

r→+0

λ1(A, r)
r p = λ1(a0).

Proposition 17. Under (AH0), we have

lim
r→+0

µ1(A, r)
r p =

λ1(a0)

p
.

Proof. Due to Proposition 5, for every r > 0, there exists a positive solution
ur ∈ (r S)∩C1(�) of (EV; λ) with λ= λ1(A, ur )/r p and µ1(A, r)= J (ur ). Then
we can prove that ur→0 in C1(�) as r→+0 and ur/‖ur‖p is bounded in W 1,p

0 (�)

as r→+0 by a similar reason to the one in Proposition 15 (note that λ1(A, ur )/r p

is bounded as r→+0 by the inequality below and Corollary 16).
Set G̃0(x, y) :=

∫
|y|

0 ã0(x, t)t dt for y ∈ RN . We point out that

λ1(A, r)≤ λ1(A, ur )≤ λ̄1(A, r)

and

µ1(A, r)=
∫
�

G(x,∇ur ) dx =
1
p

∫
�

a0(x)|∇ur |
p dx +

∫
�

G̃0(x,∇ur ) dx

=
λ1(A, ur )

p
−

1
p

∫
�

ã0(x, |∇u|)|∇ur |
2 dx +

∫
�

G̃0(x,∇ur ) dx .

Thus, by Corollary 16 and r = ‖ur‖p, it suffices to prove

lim
r→+0

∫
�

ã0(x, |∇u|)|∇ur |
2

‖ur‖
p
p

dx = 0 and lim
r→+0

∫
�

G̃0(x,∇ur )

‖ur‖
p
p

dx = 0.

Now we fix any ε > 0. Then, by (AH0), there exists δ > 0 such that

|ã0(x, t)| ≤ εt p−2 and |G̃0(x, y)| ≤ ε|y|p/p for every 0< t ≤ δ, |y| ≤ δ.
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Because ur → 0 in C1(�) as r → +0, we may assume that ‖ur‖C1(�) ≤ δ for
sufficiently small r > 0. Therefore, we obtain∣∣∣∣∫

�

ã0(x, |∇u|)|∇ur |
2

‖ur‖
p
p

dx
∣∣∣∣≤ ε‖∇ur‖

p
p

‖ur‖
p
p
,

∣∣∣∣∫
�

G̃0(x,∇ur )

‖ur‖
p
p

dx
∣∣∣∣≤ ε‖∇ur‖

p
p

p‖ur‖
p
p
.

Since ‖∇ur‖p/‖ur‖p is bounded as r→+0 and ε > 0 is arbitrary, our conclusion
holds. �

3.2. Asymptotically homogeneous case near∞. In this subsection, we consider
the case where A is asymptotically (p−1)-homogeneous near∞ in the following
sense.

(AH) There exist a positive function a∞ ∈ C1(�,R) and a continuous function
ã(x, t) on �×R such that

A(x, y)= a∞(x)|y|p−2 y+ ã(x, |y|)y for every x ∈�, y ∈ RN ,

where
lim

t→+∞

ã(x, t)
t p−2 = 0 uniformly in x ∈�.

For the weight function a∞, we define

(16) λ1(a∞) := inf
{∫

�

a∞(x)|∇u|p dx : ‖u‖p = 1
}
.

Because 0< minx∈� a∞(x) ≤ maxx∈� a∞(x) <∞, by the same argument as for
the first eigenvalue of −1p, we can prove the following elementary results:

(i) λ1(a∞) is the first eigenvalue of

(17) −div(a∞(x)|∇u|p−2
∇u)= λ|u|p−2u in �, u = 0 on ∂�.

(ii) λ1(a∞) has a positive eigenfunction ϕa∞ ∈ C1(�) with ‖ϕa∞‖p = 1 and it is
simple.

(iii) If λ 6= λ1(a∞), then (17) has no constant sign solutions other than 0.

Theorem 18. Assume (AH). For every ε > 0 there exists R0 > 0 such that equation
(EV; λ) has no solutions in W 1,p

0 (�) \ Bp(R0) provided λ < λ1(a∞)− ε.

To prove the theorem, we need the following result.

Lemma 19. Assume (AH) and let {un} ⊂ W 1,p
0 (�) be a sequence satisfying

‖un‖p→∞ as n→∞. If vn := un/‖un‖p is bounded in W 1,p
0 (�), the following

assertions hold:

(i) lim
n→∞

∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx = 0.
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(ii) For every w ∈W 1,p
0 (�),

lim
n→∞

∫
�

ã(x, |∇un|)∇un∇w

‖un‖
p−1
p

dx = 0.

(iii) lim
n→∞

∫
�

G̃(x,∇un)

‖un‖
p
p

dx = 0, where G̃(x, y) :=
∫
|y|

0 ã(x, t)t dt for y ∈RN .

Proof. (i) Fix any ε > 0. By the property of the function ã, there exist R > 0 and
C > 0 such that

(18) |ã(x, t)| ≤ ε|t |p−2 if t ≥ R and |ã(x, t)| ≤ C if 0≤ t ≤ R.

Therefore, we obtain∣∣∣∣∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx
∣∣∣∣≤ ∫

|∇un |>R
ε|∇vn|

p dx +
∫
|∇un |≤R

C |∇un|
2

‖un‖
p
p

dx

≤ ε‖∇vn‖
p
p +

C R2
|�|

‖un‖
p
p
≤ εD p

+
C R2
|�|

‖un‖
p
p

by (18), where D := supn ‖∇vn‖p. Letting n→∞, we have

lim sup
n→∞

∣∣∣∣∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx
∣∣∣∣≤ εD p,

because ‖un‖p →∞ as n→∞. Thus, since ε > 0 is arbitrary, our conclusion
holds.

(ii) For any ε > 0 and w ∈W 1,p
0 (�), we have∣∣∣∣∫

�

ã(x, |∇un|)∇un∇w

‖un‖
p−1
p

dx
∣∣∣∣

≤

∫
|∇un |>R

ε|∇vn|
p−1
|∇w| dx +

∫
|∇un |≤R

C |∇un||∇w|

‖un‖
p−1
p

dx

≤ ε‖∇vn‖
p−1
p ‖∇w‖p +

C R‖∇w‖p|�|
(p−1)/p

‖un‖
p−1
p

by Hölder’s inequality and (18). By combining this inequality and a similar argument
to that used in (i), our conclusion is shown.

(iii) It is easily shown that, for every ε > 0, there exists C > 0 such that

|G̃(x, y)| ≤ ε|y|p +C for every y ∈ RN .

Therefore,
∣∣∣∫
�

G̃(x,∇un) dx
∣∣∣≤ ε‖∇un‖

p
p+C |�|. This implies our conclusion. �
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Proof of Theorem 18. By way of contradiction, we assume that there exist ε0 > 0,
{λn}, and {un} such that λn <λ1(a∞)−ε0, limn→∞ ‖un‖p=∞, and un is a solution
of (EV; λn). By taking un as a test function in (EV; λn), we have

C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un)∇un dx = λn‖un‖
p
p ≤ (λ1(a∞)− ε0)‖un‖

p
p;

refer to Remark 1(iii). Therefore, vn := un/‖un‖p is bounded in W 1,p
0 (�).

Again by taking un/‖un‖
p
p as a test function in (EV; λn), we obtain

λ1(a∞)− ε0 > λn =

∫
�

a∞(x)|∇un|
p

‖un‖
p
p

dx +
∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx

=

∫
�

a∞(x)|∇vn|
p dx +

∫
�

ã(x, |∇un|)|∇un|
2

‖un‖
p
p

dx

≥ λ1(a∞)+ o(1),

using the definition of λ1(a∞) and Lemma 19(i). This is a contradiction. �

Theorem 20. Assume (AH). For every ε > 0 there exists R1 > 0 such that (EV; λ)
has no constant sign solutions in W 1,p

0 (�) \ Bp(R1) provided λ > λ1(a∞)+ ε.

Proof. By way of contradiction, we assume that there exist ε0 > 0, {λn}, and {un}

such that λn >λ1(a∞)+ε0, limn→∞ ‖un‖p =∞, and un is a constant sign solution
of (EV; λn). Because A is odd, we may suppose that un ≥ 0 by considering −un if
necessary. Thus, by Remark 3, un ∈ C1(�) and un > 0 in �. Here we note that
λn ≤ Apλ1(−1p) by Proposition 10, where λ1(−1p) denotes the first eigenvalue
of −1p (see (10) for the definition of Ap), and so {λn} is bounded. Hence we may
assume, by taking a subsequence, that λn converges to some

λ0 ∈
[
λ1(a∞)+ ε0, Apλ1(−1p)

]
.

In addition, we know that vn := un/‖un‖p is bounded in W 1,p
0 (�)

C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un) dx = λn‖un‖
p
p,

where we take un as a test function in (EV; λn). Thus, by choosing a subsequence,
we may suppose that vn converges to some v weakly in W 1,p

0 (�) and strongly in
L p(�).

We claim that v is a positive solution of

(19) −div(a∞(x)|∇v|p−2
∇v)= λ0|v|

p−2v in �, v = 0 on ∂�,

that is, v is a positive eigenfunction corresponding to λ0. If our claim holds, then
λ0=λ1(a∞) occurs because (17) has no positive solutions in the case of λ 6=λ1(a∞).
Hence this contradicts λ1(a∞)+ ε0 ≤ limn→∞ λn = λ0.



168 DUMITRU MOTREANU AND MIEKO TANAKA

We now prove our claim. First, we show that vn converges to v strongly in
W 1,p

0 (�). Indeed, by taking (vn − v)/‖un‖
p−1
p as a test function in (EV; λn), we

have

λn

∫
�

v p−1
n (vn − v) dx

=

∫
�

a∞(x)|∇vn|
p−2
∇vn∇(vn − v) dx +

∫
�

ã(x, |∇un|)∇un

‖un‖
p−1
p

∇(vn − v) dx

=

∫
�

a∞(x)|∇vn|
p−2
∇vn∇(vn − v) dx + o(1)

as n →∞ due to Lemma 19(i)–(ii). Since vn → v in L p(�), this implies that∫
�

a∞(x)|∇vn|
p−2
∇vn∇(vn − v) dx converges to 0 as n→∞. Noting that

o(1)=
∫
�

a∞(x)(|∇vn|
p−2
∇vn − |∇v|

p−2
∇v)∇(vn − v) dx

≥min
�

a∞

∫
�

(|∇vn|
p−2
∇vn − |∇v|

p−2
∇v)∇(vn − v) dx

≥min
�

a∞(‖∇vn‖
p−1
p −‖∇v‖p−1

p )(‖∇vn‖p −‖∇v‖p)≥ 0,

we have vn→ v in W 1,p
0 (�) (note 0<min� a∞ ≤max� a∞ <∞). As a result, v

is a solution of (19) by letting n→∞ in the equality∫
�

a∞(x)|∇vn|
p−2
∇vn∇w dx +

∫
�

ã(x, |∇un|)∇un∇w

‖un‖
p−1
p

dx = λn

∫
�

v p−1
n w dx

for every w ∈ W 1,p
0 (�); note that, by Lemma 19(ii), the second term converges

to zero. Since vn = un/‖un‖p > 0 in �, v is nonnegative, and so v is positive by
Remark 3(i) and ‖v‖p = 1. Thus our claim is shown. �

Proposition 21. Assume (AH). Then, for every ε > 0, there exists R0 > 0 such that
λ1(A, r)

r p ≥ λ1(a∞)− ε for every r > R0.

Proof. Assume that there exist ε0 > 0 and rn > 0 such that rn →∞ as n→∞
and λ1(A, rn)/r p

n < λ1(a∞)− ε0 for every n ∈ N. Because of Proposition 5 and
Lemma 6, we can choose a positive function un ∈ (rn S)∩C1(�) satisfying∫
�

A(x,∇un)∇un dx = λ1(A, rn), min
v∈rn S

∫
�

G(x,∇v) dx =
∫
�

G(x,∇un) dx .

Note that

C0

p− 1
‖∇un‖

p
p ≤

∫
�

A(x,∇un)∇un dx = λ1(A, rn) < (λ1(a∞)− ε0)r p
n ,
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and so un/rn = un/‖un‖p is bounded in W 1,p
0 (�). Because un is a solution of

(EV; λ) with λ = λ1(A, rn)/r p
n (see Proposition 5), by the same argument as in

Theorem 18 with λn = λ1(A, rn)/r p
n , we have a contradiction. �

Proposition 22. Assume (AH). Then, for every ε > 0, there exists R1 > 0 such that
λ̄1(A, r)

r p ≤ λ1(a∞)+ ε for every r > R1.

Proof. Assume that there exist ε0 > 0 and rn > 0 such that rn →∞ as n→∞
and λ̄1(A, rn)/r p

n > λ1(a∞)+ ε0 for every n ∈ N. According to Lemma 6 and
Proposition 5, we can take a positive function un ∈ (rn S)∩C1(�) satisfying∫
�

A(x,∇un)∇un dx = λ̄1(A, rn), min
v∈rn S

∫
�

G(x,∇v) dx =
∫
�

G(x,∇un) dx .

Note that, with ϕa∞ as in item (ii) of page 165, we have

C0

p(p− 1)
‖∇un‖

p
p≤

∫
�

G(x,∇un)dx≤
∫
�

G(x,rn∇ϕa∞)dx≤
C1r p

n

p(p− 1)
‖∇ϕa∞‖

p
p.

Hence un/rn = un/‖un‖p is bounded in W 1,p
0 (�). Since un is a positive solution

of (EV; λ) with λ= λ̄1(A, rn)/r p
n , by the same argument as in Theorem 20 with

λn = λ̄1(A, rn)/r p
n , we have a contradiction. �

By Propositions 21 and 22, we have the following result.

Corollary 23. Under (AH), we have

lim
r→+∞

λ̄1(A, r)
r p = lim

r→+∞

λ1(A, r)
r p = λ1(a∞).

Proposition 24. Under (AH), we have

lim
r→+∞

µ1(A, r)
r p =

λ1(a∞)
p

.

Proof. Due to Proposition 5, for every r > 0, there exists a positive solution
ur ∈ (r S)∩C1(�) of (EV; λ) with λ= λ1(A, ur )/r p and µ1(A, r)= J (ur ). Then
ur/‖ur‖p = ur/r is bounded in W 1,p

0 (�), as seen from

C0

p(p− 1)
‖∇ur‖

p
p ≤

∫
�

G(x,∇ur ) dx ≤
∫
�

G(x, r∇w) dx ≤
r pC1

p(p− 1)
‖∇w‖p

p

for any w ∈W 1,p
0 (�) with ‖w‖p = 1.

Set

G̃(x, y) :=
∫
|y|

0
ã(x, t)t dx for y ∈ RN .

Note that
λ1(A, r)≤ λ1(A, ur )≤ λ̄1(A, r)
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and

µ1(A, r)=
∫
�

G(x,∇ur ) dx =
1
p

∫
�

a∞(x)|∇ur |
p dx +

∫
�

G̃(x,∇ur ) dx

=
λ1(A, ur )

p
−

1
p

∫
�

ã(x, |∇u|)|∇ur |
2 dx +

∫
�

G̃(x,∇ur ) dx .

According to Corollary 23 and Lemma 19(i) and (iii) (note ‖ur‖p = r→+∞), our
conclusion is achieved. �

4. Existence of a positive solution

In this section, we provide the existence of a positive solution to the equation

(P)
{
−div A(x,∇u)= f (x, u) in �,
u = 0 on ∂�,

where the nonlinear term f satisfies Assumption ( f ).

Theorem 25. Assume (AH0), (AH), and ( f ). Let λ1(a0) and λ1(a∞) be the first
eigenvalues of , respectively, (13) and (17) (see the discussion there). If one of the
following conditions holds, (P) has at least one positive solution.

(i) α0 > λ1(a0) and α < λ1(a∞).

(ii) α0 < λ1(a0) and α > λ1(a∞).

This addresses the existence of an eigenvalue for our operator because we can
apply Theorem 25 to f (x, u)= λ|u|p−2u.

Corollary 26. Assume (AH0), (AH), and λ1(a0) 6= λ1(a∞). Then, for every λ
between λ1(a0) and λ1(a∞), (EV; λ) has a nontrivial (positive) solution. Therefore
λ is an eigenvalue of A

To show the existence of a positive solution, we define a C1 functional I on
W 1,p

0 (�) by

I (u) :=
∫
�

G(x,∇u) dx −
∫
�

F+(x, u) dx for u ∈W 1,p
0 (�),

where F+(x, u) :=
∫ u

0
f+(x, u) dx , with f+(x, t) given by f (x, t) if t ≥ 0 and 0 if

t ≤ 0.

Remark 27. If u ∈W 1,p
0 (�) is a nontrivial critical point of I , then u is a positive

solution of (P).
Indeed, by taking −u− as a test function, we obtain

0= 〈I ′(u),−u−〉 =
∫
�

A(x,∇u)(−∇u−) dx −
∫
�

f+(x, u)(−u−) dx

=

∫
�

A(x,∇u)(−∇u−) dx ≥
C0

p− 1
‖∇u−‖p

p.
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Thus u ≥ 0. By Remark 3(ii) (note that u 6≡ 0), we see that u is a positive solution
of (P) (note that f+(x, u)= f (x, u)).

Convention. From now on, let Assumption ( f ) be satisfied.

Lemma 28. If α 6= λ1(a∞), then I satisfies the Palais–Smale condition.

Proof. Let {un} be a Palais–Smale sequence of I , which means that

I (un)→ c and ‖I ′(un)‖W 1,p
0 (�)∗

→ 0 as n→∞

for some c ∈ R. In view of Proposition 2 and the compactness of the embedding
W 1,p

0 (�) ↪→ L p(�), it is sufficient to prove the boundedness of {un} in W 1,p
0 (�).

Then, in view of the inequality

(20)
C0

p(p− 1)
‖∇un‖

p
p ≤

∫
�

G(x,∇un) dx = I (un)+

∫
�

F+(x, un) dx

≤ I (un)+C‖un‖
p
p,

it is sufficient to prove the boundedness of {un} in L p(�). By way of contradiction
we may assume that ‖un‖p→∞ as n→∞ by choosing a subsequence if necessary.
Set vn := un/‖un‖p. The inequality (20) ensures that {vn} is bounded in W 1,p

0 (�).
Hence, by choosing a subsequence, we may suppose that vn ⇀v0 in W 1,p

0 (�) and
vn→ v0 in L p(�) for some v0.

First, we see that v0 ≥ 0 for a.e. x ∈ �. Indeed, by taking −(un)− as a test
function, we have

o(1)‖∇(un)−‖p = 〈I ′(un),−(un)−〉

=

∫
�

A(x,∇un)(−∇(un)−) dx ≥
C0

p− 1
‖∇(un)−‖

p
p.

Because p> 1, we have ‖∇(un)−‖p→ 0 as n→∞. Thus (vn)−→ 0 in W 1,p
0 (�),

and hence (v0)− = 0 for a.e. x ∈�.
Now we prove that

(21) lim
n→∞

‖ f+( · , un)−α(un)
p−1
− ‖p′

‖un‖
p−1
p

= 0,

where p′ = p/(p− 1). Fix an arbitrary ε > 0. It follows from condition (ii) of
Assumption ( f ) that there exists a Cε > 0 such that

| f (x, u)−αu p−1
| ≤ ε|u|p−1

+Cε for every u ≥ 0, a.e. x ∈�.

Then we obtain∫
�

| f+(x, un)−α(un)
p−1
+ |

p′ dx ≤ 2p′−1(ε p′−1
‖(un)+‖

p
p +C p′−1

ε |�|).
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Since we are assuming that ‖un‖p→∞ as n→∞, this shows that

lim
n→∞

∥∥ f+( · , un)−α(un)
p−1
+

∥∥
p′/‖un‖

p−1
p = 0,

because ε > 0 is arbitrary.
Here we recall the following result proved in Lemma 19:

(22) lim
n→∞

∫
�

ã(x,|∇un|)∇un

‖un‖
p−1
p

∇(vn−v0)dx= lim
n→∞

∫
�

ã(x,|∇un|)∇un

‖un‖
p−1
p

∇ϕdx=0

for every ϕ ∈W 1,p
0 (�). Thus, by considering

o(1)=
〈I ′(un), vn − v0〉

‖un‖
p−1
p

=

∫
�

a∞(x)|∇vn|
p−2
∇vn∇(vn − v0) dx + o(1),

and using Proposition 2, we see that vn converges strongly to v0 in W 1,p
0 (�). Hence,

by passing to the limit in o(1)= 〈I ′(un), ϕ〉/‖un‖
p−1
p for any ϕ ∈W 1,p

0 (�) and by
noting (21) and (22), we infer that v0 is a nontrivial solution of

−div(a∞|∇u|p−2
∇u)= α|u|p−2u in �, u = 0 on ∂�

(note that ‖v0‖p = 1 and v0 ≥ 0 for a.e. x ∈�). Since v0 ≥ 0 for a.e. x ∈�, v is a
positive solution of (17) with λ= α (see Remark 3). This implies that α = λ1(a∞),
because (17) has no positive solutions if λ 6= λ1(a∞). It contradicts the hypothesis
α 6= λ1(a∞). Hence ‖un‖p is bounded, which completes the proof. �

Lemma 29. Assume (AH) and α < λ1(a∞). Then I is coercive, bounded from
below and weakly lower semicontinuous (wlsc) on W 1,p

0 (�).

Proof. Because α < λ1(a∞), we can take sufficiently small constants ε > 0 and
0< δ < 1 satisfying

(23) (1− δ)(λ1(a∞)− ε) > α+ ε.

By condition (ii) of Assumption ( f ), there exists a C > 0 such that

|F+(x, u)| ≤ (α+ ε)
u p

p
+C

for every u≥ 0 and a.e. x ∈�. Due to Proposition 24 and the definition of µ1(A, r),
there exists an R > 0 such that, for every u ∈W 1,p

0 (�) with ‖u‖p ≥ R,

(24)
∫
�

G(x,∇u) dx ≥ µ1(A, ‖u‖p)≥
λ1(a∞)− ε

p
‖u‖p

p.

Hence, for every u ∈W 1,p
0 (�) with ‖u‖p ≥ R, we obtain



EIGENVALUE PROBLEMS OF NONHOMOGENEOUS ELLIPTIC OPERATORS 173

I (u)≥
(1− δ)(λ1(a∞)− ε)

p
‖u‖p

p +
δC0

p(p− 1)
‖∇u‖p

p −
α+ ε

p
‖u+‖p

p −C |�|

≥
δC0

p(p− 1)
‖∇u‖p

p −C |�|

by (2), (23), and (24), where u+ := max{0, u}. This yields that I is coercive.
Moreover, because I is bounded from below on Bp(R), we see that I is bounded
from below on W 1,p

0 (�). Since J is wlsc (see the proof of Proposition 5) and
W 1,p

0 (�) ↪→ L p(�) is compact, I is wlsc on W 1,p
0 (�). �

Lemma 30. Assume (AH0) and α0 < λ1(a0). Let p < q ≤ p∗, where p∗ =
N p/(N − p) if N > p and p∗ =+∞ if N ≤ p. Then there exists ρ0 > 0 such that

inf{I (u) : ‖u‖q = ρ}> 0 for every 0< ρ < ρ0.

Proof. Because α0<λ1(a0), we can take some sufficiently small ε > 0 and 0<δ< 1
satisfying

(25) (1− δ)(λ1(a0)− ε) > α0+ ε.

According to Proposition 17, there exists an r0 > 0 such that

(26)
µ1(A, r)

r p ≥
λ1(a0)− ε

p
for every 0< r < r0.

In addition, Assumption ( f ) guarantees the existence of Dq > 0 satisfying

(27) F+(x, u)≤
α0+ ε

p
u p
+ Dquq for every u ≥ 0, a.e. x ∈�.

Because W 1,p
0 (�) ↪→ Lq(�) is continuous, we can take a positive constant Cq

such that ‖u‖q ≤ Cq‖∇u‖p for every W 1,p
0 (�). We choose a positive constant ρ

satisfying

(28) ρ <min
{

r0|�|
1/q−1/p,

(
δC0

2p(p− 1)DqC p
q

)1/(q−p)}
=: ρ0.

Note that ‖u‖p < r0 if ‖u‖q = ρ, by Hölder’s inequality and (28). Therefore, for
every ‖u‖q = ρ, we have

I (u)= (1− δ)
∫
�

G(x,∇u)dx+ δ
∫
�

G(x,∇u)dx−
∫
�

F+(x,u)dx

≥ (1− δ)
µ1(A,‖u‖p)

‖u‖p
p
‖u‖p

p+
δC0

p(p−1)
‖∇u‖p

p−
α0+ε

p
‖u+‖p

p−Dq‖u+‖qq

≥
1
p
{(1− δ)(λ1(a0)−ε)−α0−ε}‖u‖p

p+

(
δC0

p(p−1)C p
q
−Dq‖u‖q−p

q

)
‖u‖p

q
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≥
δC0

2p(p−1)C p
q
ρ p,

by the definition of µ1(A, r), (2), (27), (26), (25), and (28). This ensures our
conclusion. �

Proof of Theorem 25. (i) Lemma 29 guarantees the existence of a global minimizer
of I . Thus it suffices to prove that minW 1,p

0 (�)
I < 0 to show the existence of a

nontrivial critical point of I . Choose a positive constant ε > 0 such that α0 >

λ1(a0)+ 2ε. Let ϕa0 ∈ C1(�) be a positive eigenfunction corresponding to λ1(a0)

with ‖ϕa0‖p = 1 (refer to the text below (13) and note that (13) is a homogeneous
equation). It is easily seen that

∫
�

G̃0(x, r∇ϕa0) dx/r p
→ 0 as r →+0 (refer to

the proof of Proposition 17 with ‖rϕa0‖p = r ). Hence there exists r0 > 0 such that

(29)
∫
�

G(x, r∇ϕa0) dx =
r p

p

∫
�

a0(x)|∇ϕa0 |
p dx + r p

∫
�

G̃0(x, r∇ϕa0)

r p dx

≤
λ1(a0)+ ε

p
r p
=
λ1(a0)+ ε

p
‖rϕa0‖

p
p

for every 0< r < r0. On the other hand, it follows from part (i) of Assumption ( f )
that there exists a δ > 0 such that

(30) F+(x, u)≥
α0− ε

p
u p for every u ∈ [0, δ], a.e. x ∈�.

Therefore, for every 0< r <min{r0, δ/‖ϕa0‖∞}, we have

I (ru0)≤
r p

p
(λ1(a0)+ 2ε−α0)‖ϕa0‖

p
p < 0,

by (29) and (30) (note λ1(a0)+ 2ε−α0 < 0), whence minW 1,p
0 (�)

I < 0.

(ii) Let p < q ≤ p∗. Then, by Lemma 30, we obtain ρ > 0 satisfying

δ0 := inf{I (u) : ‖u‖q = ρ}> 0.

Now we claim the existence of w ∈W 1,p
0 (�) such that

(31) ‖w‖q > ρ and I (w) < δ0.

Admitting this claim, we define

c := inf
γ∈0

max
t∈[0,1]

I (γ (t)), 0 := {γ ∈ C([0, 1],W 1,p
0 (�)) : γ (0)= 0, γ (1)= w}.

It is obvious that 0 6=∅ and γ ([0, 1])∩ {u ∈W 1,p
0 (�) : ‖u‖q = ρ} 6=∅ for every

γ ∈ 0, since W 1,p
0 (�) ↪→ Lq(�) is continuous. Thus the mountain pass theorem

guarantees that c(≥ δ0) is a nontrivial critical value of I because I satisfies the
Palais–Smale condition by Lemma 28.
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Finally, we prove the existence of w satisfying (31). Because α > λ1(a∞), we
can choose a positive constant ε0 > 0 such that

(32) α > λ1(a∞)+ 2ε0.

Using item (ii) on page 165, we can take ϕa∞ ∈ C1(�) be a positive eigenfunction
corresponding to λ1(a∞) with ‖ϕa∞‖p = 1. It follows from Lemma 19(iii) that∫

�

G̃(x, r∇ϕa∞) dx/r p
→ 0

as r→+∞ (note that ‖rϕa∞‖p = r ). Hence there exists R0 > 0 such that

(33)
∫
�

G(x,r∇ϕa∞)dx =
r p

p

∫
�

a∞(x)|∇ϕa∞ |
p dx+ r p

∫
�

G̃0(x,r∇ϕa∞)

r p dx

≤
λ1(a∞)+ ε0

p
r p
=
λ1(a∞)+ ε0

p
‖rϕa∞‖

p
p

for every r ≥ R0. In addition, it follows from condition (ii) of Assumption ( f ) that
there exists D > 0 such that

(34) F+(x, u)≥
α− ε0

p
u p
− D for every u ≥ 0, a.e. x ∈�.

Consequently, by (32), (33), and (34), we obtain

I (rϕa0)≤
r p

p
(λ1(a∞)+ 2ε0−α)‖ϕa0‖

p
p + D|�| → −∞

as t→+∞. This implies the existence of w satisfying (31). �

4.1. Resonant cases. To consider the resonant cases, we introduce the following
hypotheses for

G̃(x, y) :=
∫
|y|

0
ã(x, t)t dt and G̃0(x, y) :=

∫
|y|

0
ã0(x, t)t dt,

where ã and ã0 are as in (AH) and (AH0).

(H+) There exist 1≤ q < p and H0 > 0 such that

lim
|y|→∞

pG̃(x, y)− ã(x, |y|)|y|2

|y|q
=+∞ for a.e. x ∈�,

pG̃(x, y)− ã(x, |y|)|y|2 ≥−H0(1+ |y|q) for a.e. x ∈�, every y ∈ RN ,

f (x, t)t − pF(x, t)≥−H0(1+ tq) for a.e. x ∈�, every t ≥ 0.
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(H−) There exist 1≤ q < p and H0 > 0 such that

lim
|y|→∞

pG̃(x, y)− ã(x, |y|)|y|2

|y|q
=−∞ for a.e. x ∈�,

pG̃(x, y)− ã(x, |y|)|y|2 ≤ H0(1+ |y|q) for a.e. x ∈�, every y ∈ RN ,

f (x, t)t − pF(x, t)≤ H0(tq
+ 1) for a.e. x ∈�, every t ≥ 0.

(HF+) There exist 1≤ q < p and H0 > 0 such that

pG̃(x, y)− ã(x, |y|)|y|2 ≥−H0(1+ |y|q) for a.e. x ∈�, every y ∈ RN ,

f (x, t)t − pF(x, t)≥−H0(1+ tq) for every t ≥ 0, a.e. x ∈�,

lim
t→+∞

f (x, t)t − pF(x, t)
tq =+∞ for a.e. x ∈�.

(HF−) There exist 1≤ q < p and H0 > 0 such that

pG̃(x, y)− ã(x, |y|)|y|2 ≤ H0(1+ |y|q) for a.e. x ∈�, every y ∈ RN ,

f (x, t)t − pF(x, t)≤ H0(1+ tq) for every t ≥ 0, a.e. x ∈�,

lim
t→+∞

f (x, t)t − pF(x, t)
tq =−∞ for a.e. x ∈�.

(H0+) There exist p ≤ r < p∗ and H0 > 0 such that

lim
|y|→0

pG̃0(x, y)− ã0(x, |y|)|y|2

|y|r
=+∞ for a.e. x ∈�,

pG̃(x, y)− ã(x, |y|)|y|2 ≥−H0|y|r for a.e. x ∈�, every |y| ≤ 1,

f (x, t)t − pF(x, t)≥−H0tr for a.e. x ∈�, every t ∈ [0, 1].

(H0−) There exist p ≤ r < p∗ and H0 > 0 such that

lim
|y|→0

pG̃0(x, y)− ã0(x, |y|)|y|2

|y|r
=−∞ for a.e. x ∈�,

pG̃(x, y)− ã(x, |y|)|y|2 ≤ H0|y|r for a.e. x ∈�, every |y| ≤ 1,

f (x, t)t − pF(x, t)≤ H0tr for a.e. x ∈�, every t ∈ [0, 1].

(HF0+) There exist p ≤ r < p∗ and H0 > 0 such that

pG̃0(x, y)− ã0(x, |y|)|y|2 ≥−H0|y|r for a.e. x ∈�, every |y| ≤ 1,

f (x, t)t − pF(x, t)≥−H0tr for every t ∈ [0, 1], a.e. x ∈�,

lim
t→+0

f (x, t)t − pF(x, t)
tr =+∞ for a.e. x ∈�.



EIGENVALUE PROBLEMS OF NONHOMOGENEOUS ELLIPTIC OPERATORS 177

(HF0−) There exist p ≤ r < p∗ and H0 > 0 such that

pG̃0(x, y)− ã0(x, |y|)|y|2 ≤ H0|y|r for a.e. x ∈�, every |y| ≤ 1,

f (x, t)t − pF(x, t)≤ H0tr for every t ∈ [0, 1], a.e. x ∈�,

lim
t→+0

f (x, t)t − pF(x, t)
tr =−∞ for a.e. x ∈�.

Theorem 31. Let Assumption ( f ), (AH0), and (AH) hold. If any of the following
conditions is satisfied, (P) has at least one positive solution.

(i) α0 > λ1(a0), α = λ1(a∞), and (HF+) or (H+).

(ii) α0 < λ1(a0), α = λ1(a∞), and (HF−) or (H−).

(iii) α0 = λ1(a0), α < λ1(a∞), and (HF0+) or (H0+).

(iv) α0 = λ1(a0), α > λ1(a∞), and (HF0−) or (H0−).

(v) α0 = λ1(a0), α = λ1(a∞), (HF0+) or (H0+), and (HF+) or (H+).

(vi) α0 = λ1(a0), α = λ1(a∞), (HF0−) or (H0−), and (HF−) or (H−).

The rest of this section is devoted to the proof of this theorem, which involves
some preparatory steps.

The singly resonant case. Set f±n(x, t) := f (x, t)± p
n
|t |p−2t and define approxi-

mate functionals on W 1,p
0 (�) by

I±n(u) :=
∫
�

G(x,∇u) dx −
∫
�

(F±n)+(x, u) dx = I (u)∓
1
n
‖u+‖p

p.

From now on, assume f satisfies Assumption ( f ). Take first the case α=λ1(a∞).

Lemma 32. If either (H+) or (HF+) (resp. either (H−) or (HF−)) hold and {un}

satisfies
sup
n∈N

I±n(un) <+∞ and lim
n→∞
‖I ′
±n(un)‖W 1,p

0 (�)∗
= 0(

resp. inf
n∈N

I±n(un) >−∞ and lim
n→∞
‖I ′
±n(un)‖W 1,p

0 (�)∗
= 0

)
,

then {un} is bounded in W 1,p
0 (�).

Proof. The boundedness of ‖un‖p guarantees that ‖un‖ is bounded, since

o(1)‖un‖ = 〈I ′±n(un), un〉 ≥
C0

p− 1
‖un‖

p
−C(1+‖un‖

p
p)∓

1
n
‖(un)+‖

p
p

for some C > 0 independent of n. So, by way of contradiction, we assume that
‖un‖p→∞ as n→∞. Then, by the same argument as in Lemma 28, we see that
vn := un/‖un‖p has a subsequence strongly converging to a positive solution v0 of

(35) −div(a∞|∇u|p−2
∇u)= α|u|p−2u in �, u = 0 on ∂�.
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If α 6= λ1(a∞), we have a contradiction, because (35) does not have a positive
solution except when λ=λ1(a∞). So we may assume that α=λ1(a∞) and v0=ϕa∞
(note ‖v0‖p = 1). For simplicity, we still denote the subsequence under discussion
by {vn}. Thus un(x)→∞ as n→∞ for a.e. x ∈� (note v0 = ϕa∞ > 0 in �).

Assume (HF+) or (HF−). We show that

(36) I :=
∫
�

f+(x, un)un − pF+(x, un)

‖un‖
q
p

dx→±∞,

where the sign on∞ matches (HF±) and q is a constant as in (HF±). Indeed, it
follows from (HF+) that ( f+(x, t)t − pF+(x, t))/tq is bounded from below on
�×[1,+∞). Therefore, since un(x)→∞ for a.e. x ∈�, we have (36) if (HF+)
holds, by applying Fatou’s lemma to the inequality

I ≥
∫

un(x)≥1

f+(x, un)un − pF+(x, un)

uq
n

vq
n dx −

2H0

‖un‖
p
p
|�|,

where H0 > 0 is a constant as in (HF+). The case of (HF−) is handled by the
same argument, with − f instead of f . This shows (36).

Furthermore, by Hölder’s inequality, we have

(37) II :=
∫
�

pG̃(x,∇un)− ã(x, |∇un|)|∇un|
2

‖un‖
q
p

dx

≤ H0

∫
�

(|∇vn|
q
+

1
‖un‖

q
p
) dx ≤ H0‖∇vn‖

q
p|�|

(p−q)/p
+ o(1)

≤ H0‖∇v0‖
q
p|�|

(p−q)/p
+ o(1)

in the case of (HF−), because vn→ v0 in W 1,p
0 (�), where q ∈ [1, p) and H0 > 0

are constants as in (HF−). Similarly, we obtain

(38) II ≥−H0‖∇v0‖
q
p|�|

(p−q)/p
+ o(1)

in the case of (HF+).
Hence we have a contradiction because of (36), (37) or (38) by taking the limit

inferior or superior in the equality

pI±n(un)−〈I ′±n(un), un〉

‖un‖
q
p

= II + I.

Assume (H+) or (H−). Because v0 is a positive solution of (35), we have
|∇un(x)| → ∞ as n→∞ for a.e. x ∈ �0 := {x ′ ∈ � : |∇v0(x ′)| 6= 0}. Because
|�0|> 0, we can show, by an argument similar to the one used for f , that∫

�

pG̃(x,∇un)− ã(x, |∇un|)|∇un|
2

‖un‖
q
p

dx→±∞,
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where again the sign matches that of (H±). In addition, we easily obtain that

±

∫
�

f+(x, un)un − pF+(x, un)

‖un‖
q
p

dx ≥−H0‖vn‖
q
q + o(1)=−H0‖v0‖

q
q + o(1)

(again, the sign matches). Hence we have a contradiction by considering the limit
of (pI±n(un)−〈I ′±n(un), un〉)/‖un‖

q
p. �

Proof of Theorem 31(i). Because α0 > λ1(a0), there exists an n0 ∈ N such that
α0− p/n0 > λ1(a0). Note that f−n(x, t)/t p−1

→ α0− p/n > λ1(a0) as t →+0
for n ≥ n0 and f−n(x, t)/t p−1

→ α− p/n= λ1(a∞)− p/n<λ1(a∞) as t→+∞.
Hence, by using the proof of Theorem 25(i) to f−n , we can find a global minimizer
un of I−n with I−n(un)< 0 for each n≥ n0. Here we remark that supn≥n0

I−n(un)<

0. In fact, for every n ≥ n0, we have

I−n(un)≤ I−n(un0)= I (un0)+
1
n
‖un0‖

p
p ≤ I (un0)+

1
n0
‖un0‖

p
p = I−n0(un0) < 0,

where, in the first inequality, we use the fact that un is a global minimizer of I−n .
Now, due to Lemma 32, we see that {un} is bounded in W 1,p

0 (�). Therefore,

‖I ′(un)‖W 1,p
0 (�)∗

= ‖I ′(un)− I ′
−n(un)‖W 1,p

0 (�)∗
≤

p
nλ1(−1p)p ‖un‖

p−1
→ 0

as n→∞, where λ1(−1p) is the first eigenvalue of −1p. Since I is bounded
on a bounded set, we may assume that {un} is a bounded Palais–Smale sequence
of I . Because I satisfies the bounded Palais–Smale condition (see Proposition 2),
un has a subsequence converging to some v0 in W 1,p

0 (�). It is clear that I (v0)≤

supn≥n0
I−n(un)= I−n0(un0) < 0, and so v0 is a nontrivial critical point of I . �

Proof of Theorem 31(ii). Using Lemma 30 and α0 < λ1(a0), we can choose
q0 ∈ (p, p∗] and ρ > 0 such that inf{I (u) : ‖u‖q0 = ρ} > 0. Since I+n(u) ≥
I (u)− ‖u‖p

q0 |�|
1−p/q0/n for every u ∈ W 1,p

0 (�), we can take n0 ∈ N such that
α0+ p/n0<λ1(a0) and δ0 := inf{I+n0(u) : ‖u‖q0 =ρ}> 0. Hence, for every n≥ n0,
we have inf{I+n(u) : ‖u‖q0=ρ}≥ δ0, because I+n(u)≥ I+n0(u) for every n≥n0 and
u ∈W 1,p

0 (�). By noting that f+n(x, t)/t p−1
→α+ p/n>α=λ1(a∞) as t→+∞,

and applying Lemma 28 to f+n instead of f , I+n satisfies the Palais–Smale condition.
Therefore, the proof of Theorem 25(ii) implies that, for every n ≥ n0, there exists a
critical point un ∈W 1,p

0 (�) of I+n such that I+n(un)≥ δ0. According to Lemma 32,
{un} is bounded in W 1,p

0 (�). Thus, because we have a bounded Palais–Smale
sequence of I due to a similar reason as in the case of (i), we can obtain a nontrivial
critical point of I (note that infn≥n0 I (un)≥ infn≥n0 I+n(un)≥ δ0 > 0). �

We next turn to the case where α0 = λ1(a0).
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Lemma 33. Assume (H0−) or (HF0−) (resp. (H0+) or (HF0+)). Let un 6= 0 be
an element of W 1,p

0 (�) satisfying I ′
±n(un)= 0 for every n ∈N and infn I±n(un)≥ 0

(resp. supn I±n(un)≤ 0). Then lim infn→∞ ‖un‖p > 0.

Proof. By way of contradiction, we assume that limn→∞ ‖un‖p = 0 by choosing a
subsequence. Note that the boundedness of ‖un‖p yields that ‖un‖ and ‖un‖/‖un‖p

are bounded in view of

(39) o(1)‖un‖ = 〈I ′±n(un), un〉 ≥
C0

p− 1
‖un‖

p
−C(1+‖(un)+‖

p
p)∓

p
n
‖(un)+‖

p
p

for some C > 0 independent of n. Then, since un is a positive solution of

−div(A(x,∇u))= f±n(x, un) in �

(refer to Remarks 3 and 27), it follows from Proposition 4 that un→0 in C1(�) (note
that |( f±n)+(x, t)|≤Ct p−1

+ (see Assumption ( f )) and un→0 in L p(�)). Therefore,
we may assume that ‖un‖C1(�) ≤ 1 by considering a sufficiently large n. Since
| f±n(x, ‖un‖pt)/‖un‖

p−1
p | ≤Ct p for every t ≥ 0, a.e. x ∈� (C > 0 independent of

n; see Assumption ( f ) and (39)), by a similar argument to Theorem 13, we see that
vn := un/‖un‖p has a subsequence converging to a positive solution v0 in C1(�) of

(40) −div(a0(x)|∇u|p−2
∇u)= α0|u|p−2u in �, u = 0 on ∂�.

If α0 6= λ1(a0), we have a contradiction because (13) does not have a positive
solution unless λ= λ1(a0). So we may assume that α0 = λ1(a0) and v0 = ϕa0 (note
‖v0‖p = 1). For simplicity, we still denote the subsequence under discussion by
{vn}.

Assume (H0+) or (H0−). Then we can prove that

(41) I :=
∫
�

pG̃0(x,∇un)− ã0(x, |∇un|)|∇un|
2

‖un‖
r
p

dx→±∞

(signs match), where r ∈ [p, p∗) is a constant as in (H0+) or (H0−). Indeed,
because ‖∇v0‖p > 0, we can choose a constant ε0 > 0 such that |{x ∈� : |∇v0|>

2ε0}|> 0. With this ε0, we have under assumption (H0+)

I ≥
∫
|∇vn |>ε0

pG̃0(x,∇un)− ã0(x, |∇un|)|∇un|
2

|∇un|
r |∇vn|

r dx −
∫
|∇vn |≤ε0

H0|∇vn|
r dx

≥

∫
|∇vn |>ε0

pG̃0(x,∇un)− ã0(x, |∇un|)|∇un|
2

|∇un|
r |∇vn|

r dx − εr
0 H0|�|,

where H0 is a positive constant as in (H0+). Hence, applying Fatou’s lemma, our
claim is shown, because the Lebesgue measure of {x ∈� : |∇v0|> 2ε0} is positive.
Similarly, by considering ã0(x, |∇un|)|∇un|

2
− pG̃0(x,∇un), we can prove (41)

under (H0−).
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On the other hand, by using (H0+) or (H0−), we obtain

(42) ±II := ±
∫
�

f+(x, un)un − pF+(x, un)

‖un‖
r
p

dx ≥−H0

∫
�

(vn)
r
+

dx

≥ − H0‖vn‖
r
r =−H0‖v0‖

r
r + o(1)

(note that ‖un‖C1(�) ≤ 1 and vn→ v0 in C1(�)). Now set 9n = I±n . Since

(43) ±(I + II )=±
p9n(un)−〈9

′
n(un), un〉

‖un‖
r
p

=±
p9n(un)

‖un‖
r
p
≤ 0

if supn(±I±(un))≤ 0 (where the signs match throughout), we obtain a contradiction
with (41) and (42) by taking the limit superior or inferior in (43).

Assume (HF0+) or (HF0−). As in the argument for I in the case of (H0±), we
can show that∫
�

f+(x, un)un − pF+(x, un)

‖un‖
r
p

dx =
∫
vn>0

f+(x, un)un − pF+(x, un)

(un)
r
+

(vn)
r
+

dx
→±∞,

the sign matching that of (HF0±). Moreover, it is easily seen that

±

∫
�

pG̃0(x,∇un)− ã0(x, |∇un|)|∇un|
2

‖un‖
r
p

dx≥∓H0‖∇vn‖
r
r =∓H0‖∇v0‖

r
r+o(1).

(Note that ‖un‖C1(�) ≤ 1 and vn→ v0 in C1(�).) Our conclusion follows from a
similar argument as before. �

Proof of Theorem 31(iii). Let n0 ∈ N such that α + p/n0 < λ1(a∞). The proof
of Theorem 25(i) guarantees that, for every n ≥ n0, I+n has a global minimizer
un such that I+n(un) < 0, because f+n(x, t)/t p−1

→ α0+ p/n > α0 = λ1(a0) as
t→+0 and f+n(x, t)/t p−1

→ α+ p/n < λ1(a∞) as t→+∞ if n ≥ n0. Noting
that I+n(u) ≥ I+n0(u) for every u ∈ W 1,p

0 (�) and n ≥ n0, {un} is bounded in
W 1,p

0 (�) since I+n0 is coercive on W 1,p
0 (�) by Lemma 29. Thus {un} is a bounded

Palais–Smale sequence of I by the same argument as in (i). Therefore, {un} has a
convergent subsequence to some u0 in W 1,p

0 (�) because I satisfies the bounded
Palais–Smale condition. On the other hand, Lemma 33 guarantees that u0 6= 0 (note
supn≥n0

I+n(un)≤ 0). Therefore u0 is a nontrivial critical point of I . �

Proof of Theorem 31(iv). Let n0 ∈ N be such that α− p/n0 > λ1(a∞). Applying
Lemma 30 to f−n for n ≥ n0 (and since α0 − p/n < λ1(a0)), we can choose
q0 ∈ (p, p∗] and ρn > 0 such that δn := inf{I−n(u) : ‖u‖q0 = ρn}> 0. By noting that
f−n(x, t)/t p−1

→ α− p/n > λ1(a∞) as t→+∞ for every n ≥ n0, and applying
Lemma 28 to f−n instead of f , we see that I−n satisfies the Palais–Smale condition.
Therefore, the proof of Theorem 25(ii) implies that, for every n ≥ n0, there exists
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a critical point un ∈ W 1,p
0 (�) of I−n such that I−n(un) ≥ δn > 0. By Lemma 32,

{un} is bounded in W 1,p
0 (�). Thus, by arguing as in case (i), we find a subsequence

{un} converging to some u0 in W 1,p
0 (�). Also, Lemma 33 yields u0 6= 0 (note that

infn≥n0 I−n(un)≥ 0). This shows that u0 is a nontrivial critical point of I . �

The doubly resonant case. Choose smooth nonnegative functions ϕ and ψ on
[0,+∞) satisfying ϕ(t)= 1 if 0≤ t ≤ 2, ϕ(t)= 0 if t ≥ 4, ψ(t)= 0 if t ≤ 5, and
ψ(t)= 1 if t ≥ 10. Define approximate functionals on W 1,p

0 (�) by

Ĩ±n(u) := I (u)∓
1
n
ψ(‖u‖p

p)‖u+‖
p
p ±

1
n
ϕ(‖u‖p

p)‖u+‖
p
p.

Because Ĩ±n(u)= I∓n(u) provided ‖u‖p ≤ 2, the following result can be proved
by the same argument as in Lemma 33. We omit the proof.

Lemma 34. Assume (H0−) or (HF0−) (resp. (H0+) or (HF0+)). Let un 6= 0 be an
element of W 1,p

0 (�) satisfying ( Ĩ±n)
′(un)= 0 for every n ∈N and infn Ĩ±n(un)≥ 0

(resp. supn Ĩ±n(un)≤ 0). Then lim infn→∞ ‖un‖p > 0.

Lemma 35. If α± p/n 6= λ1(a∞), then Ĩ±n (with the matching sign) satisfies the
Palais–Smale condition.

Proof. Let {um} be a Palais–Smale sequence of Ĩ+n or Ĩ−n . If ‖um‖p→∞ occurs,
then Ĩ±n(um) = I±n(um) for sufficiently large m. So, by applying Lemma 28
to f±n (note that α ± p/n 6= λ1(a∞)), we have a contradiction if ‖um‖p →∞.
Consequently, we see that ‖um‖p is bounded. Then, by the same reason as in
Lemma 28, {um} has a convergent subsequence in W 1,p

0 (�). �

Because Ĩ±n(u)= I±n(u) provided ‖u‖p≥ 10, the following result can be proved
by the same argument as in Lemma 32. We omit the proof.

Lemma 36. If either (H+) or (HF+) (resp. either (H−) or (HF−)) and {un}

satisfies
sup
n∈N

Ĩ±n(un) <+∞ and lim
n→∞
‖( Ĩ±n)

′(un)‖W 1,p
0 (�)∗

= 0(
resp. inf

n∈N
Ĩ±n(un) >−∞ and lim

n→∞
‖( Ĩ±n)

′(un)‖W 1,p
0 (�)∗

= 0
)
,

{un} is bounded in W 1,p
0 (�).

Proof of Theorem 31(v). Note that Ĩ−n(u) = I−n(u) provided ‖u‖p ≥ 10 and
Ĩ−n(u) = I+n(u) if ‖u‖p ≤ 2. So, by a similar argument to that in (i), Ĩ−n has a
global minimizer un . Moreover, by a similar argument to that in (iii) (note that
f+n(x, t)/t p−1

→α0+ p/n>λ1(a0) as t→+0 and f−n(x, t)/t p−1
→α− p/n<

λ1(a∞) as t→+∞), we have Ĩ−n(un) < 0, whence un 6= 0. Because Lemma 36
implies the boundedness of ‖un‖, by the same argument as in (i), we see that {un}



EIGENVALUE PROBLEMS OF NONHOMOGENEOUS ELLIPTIC OPERATORS 183

is a bounded Palais–Smale sequence of I . Therefore, we may assume that un

converges to some u0 in W 1,p
0 (�) by choosing a subsequence. On the other hand,

Lemma 33 yields lim infn→∞ ‖un‖p > 0. Hence u0 6= 0. This means that u0 is a
nontrivial critical point of I . �

Proof if Theorem 31(vi). Note that Ĩ+n(u) = I+n(u) provided ‖u‖p ≥ 10 and
Ĩ+n(u) = I−n(u) if ‖u‖p ≤ 2. So, because f−n(x, t)/t p−1

→ α0− p/n < λ1(a0)

as t →+0 and f+n(x, t)/t p−1
→ α + p/n > λ1(a∞) as t →+∞, by a similar

argument to those in (ii) and (iv), for each n, we have a nontrivial critical point
un of Ĩ+n with Ĩ+n(un) > 0. As a result, by a similar reasoning as in (v), we can
obtain a nontrivial critical point of I . �
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WEIGHTED RICCI CURVATURE ESTIMATES
FOR HILBERT AND FUNK GEOMETRIES

SHIN-ICHI OHTA

We consider Hilbert and Funk geometries on a strongly convex domain in
Euclidean space. We show that, with respect to the Lebesgue measure on the
domain, the Hilbert and Funk metrics have bounded and constant negative
weighted Ricci curvature, respectively. As a corollary, these metric measure
spaces satisfy the curvature-dimension condition in the sense of Lott, Sturm
and Villani.

1. Introduction

Hilbert [1895] introduced the distance function dH on a bounded convex domain
D ⊂ Rn , related to his fourth problem. Given distinct points x, y ∈ D, denoting by
x ′ = x + s(y− x) and y′ = x + t (y− x) the intersections of the boundary ∂D and
the line passing through x and y with s < 0< t (see figure), Hilbert’s distance dH

is given by

dH(x, y)= 1
2 log
|x ′− y| · |x − y′|
|x ′− x | · |y− y′|

,

where | · | stands for the Euclidean norm. This is indeed a distance function on
D, and satisfies the interesting property that line segments between any points are
minimizing. In the particular case where D is the unit ball, (D, dH) coincides with
the Klein model of hyperbolic space. The structure of (D, dH) has been investigated
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from geometric and dynamical aspects; see, for example, [Egloff 1997; Benoist
2003; Colbois and Verovic 2004]. For instance, (D, dH) is known to be Gromov
hyperbolic under mild smoothness and convexity assumptions on D.

Funk [1929] introduced a nonsymmetrization of dH, namely

dF(x, y)= log
|x − y′|
|y− y′|

.

Note that dF(x, y) 6= dF(y, x), while the triangle inequality

dF(x, z)≤ dF(x, y)+ dF(y, z)

still holds. Clearly we have 2dH(x, y) = dF(x, y)+ dF(y, x), and line segments
are minimizing also with respect to Funk’s distance.

If ∂D is smooth and D is strongly convex (in other words, ∂D is positively
curved; see Definition 2.1), then dH and dF are realized by the smooth Finsler
structures

(1-1)
FH(x, v)=

|v|

2

(
1
|x−a|

+
1
|x−b|

)
,

FF(x, v)=
|v|

|x − b|
for v ∈ Tx D = Rn,

respectively (cf. [Shen 2001a, §2.3]), where a = x + sv and b = x + tv denote
the intersections of ∂D and the line passing through x in the direction v with
s < 0< t (see figure on page 185). Note that 2FH(x, v)= FF(x, v)+ FF(x,−v).
A remarkable feature of these metrics is that they have the constant negative flag
curvatures −1 and −1

4 , respectively; see [Okada 1983, Theorem 1; Shen 2001a,
Theorem 12.2.11], provided that n ≥ 2 as a matter of course. The flag curvature is
a generalization of the sectional curvature in Riemannian geometry, so it is natural
that (D, dH) and (D, dF) enjoy properties of negatively curved spaces.

Recently, the theory of the weighted Ricci curvature (see Definition 2.2) for
Finsler manifolds equipped with arbitrary measures has been developed in connec-
tion with optimal transport theory. It turned out that the weighted Ricci curvature is
a natural quantity and quite useful in the study of geometry and analysis on Finsler
manifolds; see [Ohta 2009a; 2012; Ohta and Sturm 2009; 2011]. The aim of this
article is to show that the weighted Ricci curvature for Hilbert and Funk geometries
admits uniform bounds with respect to the Lebesgue measure m L restricted on D.

Theorem 1.1 (Funk case). Let D ⊂ Rn with n ≥ 2 be a strongly convex domain
such that ∂D is smooth. Then (D, FF,m L) has constant negative weighted Ricci
curvature: specifically, for any unit vector v ∈ T D,

Ric∞(v)=−
n− 1

4
, RicN (v)=−

n− 1
4
−
(n+ 1)2

4(N − n)
for N ∈ (n,∞).
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Theorem 1.2 (Hilbert case). Let D ⊂ Rn with n ≥ 2 be a strongly convex domain
such that ∂D is smooth. Then the weighted Ricci curvature of (D, FH,m L) is
bounded; specifically, for any unit vector v ∈ T D,

Ric∞(v)∈
(
−(n−1), 2

]
, RicN (v)∈

(
−(n−1)−

(n+1)2

N−n
, 2
]

for N ∈ (n,∞).

We stress that our estimates are independent of the choice of the domain D.
There are several applications (Corollaries 5.1, 5.2) via the theory of the weighted
Ricci curvature.

The article is organized as follows. After preliminaries for Finsler geometry and
the weighted Ricci curvature, we prove Theorem 1.1 in Section 3 and Theorem 1.2
in Section 4. We finally discuss applications and remarks in Section 5.

2. Preliminaries

We very briefly review the necessary notions in Finsler geometry; we refer to
[Bao et al. 2000; Shen 2001a; 2001b] for further reading. Let M be a connected,
n-dimensional C∞-manifold without boundary such that n ≥ 2. Given a local
coordinate (x i )ni=1 on an open set�⊂M , we always use the coordinate (x i , v j )ni, j=1
of T� such that

v =

n∑
j=1

v j ∂

∂x j

∣∣∣
x
∈ Tx M for x ∈�.

Definition 2.1 (Finsler structures). A nonnegative function F : T M→ [0,∞) is
called a C∞-Finsler structure of M if the following three conditions hold.

(1) (Regularity) F is C∞ on T M \ 0, where 0 stands for the zero section.

(2) (Positive 1-homogeneity) It holds F(cv)= cF(v) for all v ∈ T M and c > 0.

(3) (Strong convexity) The n× n matrix

(2-1)
(
gi j (v)

)n
i, j=1 :=

(
1
2
∂2(F2)

∂vi∂v j (v)

)n

i, j=1

is positive definite for all v ∈ T M \ 0.

For x, y ∈ M , we can define the distance from x to y in a natural way by

d(x, y) := inf
η

∫ 1

0
F
(
η̇(t)

)
dt,

where the infimum is taken over all C1-curves η : [0, 1] → M with η(0)= x and
η(1)= y. This distance can be nonsymmetric (namely d(y, x) 6= d(x, y)), since F
is only positively homogeneous. A C∞-curve η on M is called a geodesic if it is
locally minimizing and has a constant speed (i.e., F(η̇) is constant).
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Given v ∈ Tx M , if there is a geodesic η : [0, 1] → M with η̇(0) = v, then we
define the exponential map by expx(v) := η(1). We say that (M, F) is forward
complete if the exponential map is defined on whole T M . If the reverse Finsler
manifold (M,

←−
F ) with

←−
F (v) := F(−v) is forward complete, then (M, F) is said

to be backward complete. We remark that (D, FH) is both forward and backward
complete (they are indeed equivalent since

←−
FH = FH), while (D, FF) is only

forward complete.
For each v ∈ Tx M \ 0, the positive definite matrix (gi j (v))

n
i, j=1 in (2-1) induces

the Riemannian structure gv of Tx M as

(2-2) gv

( n∑
i=1

ai
∂

∂x i

∣∣∣
x
,

n∑
j=1

b j
∂

∂x j

∣∣∣
x

)
:=

n∑
i, j=1

ai b j gi j (v).

Note that gcv = gv for c> 0. This inner product is regarded as the best Riemannian
approximation of F |Tx M in the direction v, in the sense that the unit sphere of gv
is tangent to that of F |Tx M at v/F(v) up to the second order. In particular, we
have gv(v, v)= F(v)2.

The Ricci curvature (as the trace of the flag curvature) for a Finsler manifold
is defined by using the Chern connection. Instead of giving the precise definition
in coordinates, we explain a useful interpretation due to Shen [2001b, §6.2; 1997,
Lemma 2.4]. Given a unit vector v ∈ Tx M∩F−1(1), we extend it to a nonvanishing
C∞-vector field V on a neighborhood of x in such a way that every integral curve of
V is geodesic, and consider the Riemannian structure gV induced from (2-2). Then
the Ricci curvature Ric(v) of v with respect to F coincides with the Ricci curvature
of v with respect to gV (in particular, it is independent of the choice of V ).

Let us fix a positive C∞-measure m on M . Inspired by the above interpretation
of the Finsler Ricci curvature and the theory of weighted Riemannian manifolds, the
weighted Ricci curvature for the triple (M, F,m) was introduced in [Ohta 2009a]
as follows.

Definition 2.2 (weighted Ricci curvature). Given a unit vector v ∈ Tx M ∩ F−1(1),
let η : (−ε, ε) → M be the geodesic such that η̇(0) = v. We decompose m
along η using the Riemannian volume measure volη̇ of gη̇ as m = e−9 volη̇, where
9 : (−ε, ε)→R. Then we define the weighted Ricci curvature involving a parameter
N ∈ [n,∞] by

(1) Ricn(v) :=

{
Ric(v)+9 ′′(0) if 9 ′(0)= 0,
−∞ if 9 ′(0) 6= 0,

(2) RicN (v) := Ric(v)+9 ′′(0)−
9 ′(0)2

N − n
for N ∈ (n,∞),

(3) Ric∞(v) := Ric(v)+9 ′′(0).
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We also set RicN (cv) := c2 RicN (v) for c ≥ 0.

We will say that RicN ≥ K holds for some K ∈ R if RicN (v) ≥ K F(v)2 for
all v ∈ T M . Observe that RicN (v) ≤ RicN ′(v) for N < N ′, and that for the
scaled space M ′ = (M, F, am) with a > 0 we have RicM ′

N (v) = RicM
N (v). It was

shown in [Ohta 2009a, Theorem 1.2] that RicN ≥ K is equivalent to Lott, Sturm
and Villani’s curvature-dimension condition CD(K , N ). (Roughly speaking, the
curvature-dimension condition is a convexity condition of an entropy functional
on the space of probability measures; we refer to [Sturm 2006a; 2006b; Lott and
Villani 2007; 2009; Villani 2009, Part III] for details and further theories.) This
equivalence extends the corresponding result on (weighted) Riemannian manifolds,
and has many analytic and geometric applications; see [Ohta 2009a].

3. The Funk case

We turn to the proof of Theorem 1.1. For brevity, we denote the Funk metric simply
by F , and we consider the standard coordinate of D ⊂ Rn . The following lemma
enables us to translate all the vertical derivatives (∂/∂vi ) into horizontal derivatives
(∂/∂x i ).

Lemma 3.1 [Okada 1983, Proposition 1; Shen 2001a, Lemma 2.3.1]. For any
v ∈ T D \ 0 and i = 1, 2, . . . , n, we have

∂F
∂x i (v)= F(v)

∂F
∂vi (v).

Proof of Theorem 1.1. On T D \ 0,

(3-1) 1
2
∂2(F2)

∂vi∂v j =
∂

∂vi

(
∂F
∂x j

)
=

∂

∂x j

(
1
F
∂F
∂x i

)
=

1
F

∂2 F
∂x i∂x j −

1
F2

∂F
∂x i

∂F
∂x j .

Now, we fix a unit vector v ∈ Tx D∩ F−1(1) and choose a coordinate such that x is
the origin, v = ∂/∂xn and gin(v)= 0 for all i = 1, 2, . . . , n− 1. Such a coordinate
exchange multiplies the Lebesgue measure merely by a positive constant, so the
weighted Ricci curvature does not change. Put V := ∂/∂xn on D and recall that the
all integral curves of V are minimizing (and hence reparametrizations of geodesics).
Therefore it suffices to calculate the weighted Ricci curvature of (D, gV ,m L).

We can represent ∂D∩{x ∈Rn
| xn > 0} as the graph of a C∞-function h :U→

(0,∞) for a sufficiently small neighborhood U ⊂ Rn−1 of 0, namely

(3-2) ∂D ∩ {(z, t) ∈ Rn−1
×R | z ∈U, t > 0} = {(z, h(z)) | z ∈U }.

Then (1-1) yields

F(V (z, t))= 1
h(z)−t

for (z, t) ∈ D ⊂ Rn−1
×R.
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Putting ∂i := ∂/∂x i for simplicity, we deduce from (3-1) that

gi j (V )= (h− t)∂i∂ j

( 1
h−t

)
− (h− t)2∂i

( 1
h−t

)
∂ j

( 1
h−t

)
= (h− t)

(
−
∂i∂ j (h− t)
(h− t)2

+
2∂i (h− t)∂ j (h− t)

(h− t)3

)
−
∂i (h− t)∂ j (h− t)

(h− t)2

=−
∂i∂ j (h− t)

h− t
+
∂i (h− t)∂ j (h− t)

(h− t)2
,

where the evaluations at (z, t) ∈ D were omitted. We remark that, for i, j 6= n,

gi j (V )=−
∂i∂ j h
h− t

+
∂i h∂ j h
(h− t)2

, gin(V )=−
∂i h

(h− t)2
, gnn(V )=

1
(h− t)2

.

Hence, when differentiating gi j (V (z, t)) by t , we need to take only the denominators
into account. Thus we find

∂[gi j (V )]
∂t

=−
∂i∂ j (h− t)
(h− t)2

+
2∂i (h− t)∂ j (h− t)

(h− t)3

=
1

h−t

(
gi j (V )+

∂i (h− t)∂ j (h− t)
(h− t)2

)
.

Decomposing m L as

m L = e−9
√

det(gi j (V )) dx1dx2
· · · dxn

along the curve η(t)= (0, t) ∈ D, we observe

9(t)= 1
2 log det(gi j (t)), 9 ′(t)= 1

2 trace
[
(gi j (t)) · (g′i j (t))

]
,

where we abbreviated as gi j (t) := gi j (V (0, t)) and (gi j (t)) stands for the inverse
matrix of (gi j (t)). Dividing9 ′(t) by the speed F(η̇(t))= F(V (0, t))= (h(0)−t)−1,
we obtain(
h(0)− t

)
9 ′(t)= 1

2 trace
[
(gi j (t)) ·

(
gi j (t)+

∂i (h(0)− t)∂ j (h(0)− t)
(h(0)− t)2

)]
≡

n+1
2
,

where the second equality follows from the fact that gin(t)=−∂i h(0)/(h(0)−t)2=0
for i 6= n, guaranteed by gin(v)= 0. As (D, F) has constant flag curvature −1

4 , we
therefore conclude that

Ric∞(v)=−
n− 1

4
, RicN (v)=−

n− 1
4
−
(n+ 1)2

4(N − n)
. �

4. The Hilbert case

We next consider the Hilbert case, where the calculation is similar but more involved.
Now F will denote the Hilbert metric of D.
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Proof of Theorem 1.2. Given a unit vector v ∈ Tx D ∩ F−1(1), similarly to the
previous section, we choose a coordinate such that x is the origin, v = ∂/∂xn and
that gin(v) = 0 for all i = 1, 2, . . . , n− 1. Put V := ∂/∂xn again. In addition to
h :U → (0,∞) as in (3-2), we introduce the function b :U → (−∞, 0) such that

∂D ∩ {(z, t) ∈ Rn−1
×R | z ∈U, t < 0} = {(z, b(z)) | z ∈U }.

Using the Funk metric F+ of D and its reverse F−(v) := F+(−v), and recalling
(1-1), we can write F(V ) as

F(V (z, t))=
F+(V (z, t))+ F−(V (z, t))

2
=

1
2

(
1

h(z)−t
+

1
t−b(z)

)
.

It follows from Lemma 3.1 and F−(v)= F+(−v) that

∂F−
∂x i =−F−

∂F−
∂vi .

This yields

2
∂2(F2)

∂vi∂v j =
1
2

∂2

∂vi∂v j (F
2
+
+ 2F+F−+ F2

−
)

=
1
2
∂2(F2

+
)

∂vi∂v j +
1
2
∂2(F2

−
)

∂vi∂v j −
∂i F+
F+

∂ j F−
F−
−
∂ j F+

F+

∂i F−
F−

+

(
∂i∂ j F+

F2
+

−
2∂i F+∂ j F+

F3
+

)
F−+

(
∂i∂ j F−

F2
−

−
2∂i F−∂ j F−

F3
−

)
F+.

By (3-1) we have, omitting the evaluations at (z, t) ∈ D,

4gi j (V )=−
∂i∂ j (h− t)

h− t
+
∂i (h− t)∂ j (h− t)

(h− t)2
−
∂i∂ j (t − b)

t − b
+
∂i (t − b)∂ j (t − b)

(t − b)2

−

(
∂i (h− t)

h− t
∂ j (t − b)

t − b
+
∂ j (h− t)

h− t
∂i (t − b)

t − b

)
−
∂i∂ j (h− t)

t − b
−
∂i∂ j (t − b)

h− t

=−(∂i∂ j (h− t)+ ∂i∂ j (t − b))
(

1
h−t
+

1
t−b

)
+

(
∂i (h− t)

h− t
−
∂i (t − b)

t − b

)(
∂ j (h− t)

h− t
−
∂ j (t − b)

t − b

)
.

Note that the assumption gin(v)= 0 implies

(4-1)
∂i h(0)
h(0)

−
∂i b(0)
b(0)

= 0 for i = 1, 2, . . . , n− 1.
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We also observe for later convenience that, for i, j 6= n,

4gi j (v)=−(∂i∂ j h(0)− ∂i∂ j b(0))
(

1
h(0)
−

1
b(0)

)
, 4gnn(v)=

(
1

h(0)
−

1
b(0)

)2

.

By the same reasoning as the Funk case, the numerators can be neglected when
one differentiates gi j (V ) with respect to t . Thus we find

4
∂gi j (V )
∂t

=−(∂i∂ j (h− t)+ ∂i∂ j (t − b))
(

1
(h−t)2

−
1

(t−b)2

)
+

(
∂i (h− t)
(h− t)2

+
∂i (t − b)
(t − b)2

)(
∂ j (h− t)

h− t
−
∂ j (t − b)

t − b

)
+

(
∂i (h− t)

h− t
−
∂i (t − b)

t − b

)(
∂ j (h− t)
(h− t)2

+
∂ j (t − b)
(t − b)2

)
.

We further calculate

4
∂2
[gi j (V )]
∂t2 =−(∂i∂ j (h− t)+ ∂i∂ j (t − b))

(
2

(h−t)3
+

2
(t−b)3

)
+

(
2∂i (h− t)
(h− t)3

−
2∂i (t − b)
(t − b)3

)(
∂ j (h− t)

h− t
−
∂ j (t − b)

t − b

)
+

(
∂i (h− t)

h− t
−
∂i (t − b)

t − b

)(
2∂ j (h− t)
(h− t)3

−
2∂ j (t − b)
(t − b)3

)
+ 2

(
∂i (h− t)
(h− t)2

+
∂i (t − b)
(t − b)2

)(
∂ j (h− t)
(h− t)2

+
∂ j (t − b)
(t − b)2

)
.

We abbreviate as gi j (t) := gi j (V (0, t)) and deduce from (4-1) that, for i, j 6= n,

4g′i j (0)= 4gi j (0)
(

1
h(0)
+

1
b(0)

)
,

4g′in(0)=−
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
1

h(0)
−

1
b(0)

)
,

4g′nn(0)= 8gnn(0)
(

1
h(0)
+

1
b(0)

)
.

We also obtain, for i, j 6= n,

4g′′i j (0)= 8gi j (0)
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
+ 2

(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)
,

4g′′nn(0)= 8gnn(0)
(

2
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
+

(
1

h(0)
+

1
b(0)

)2)
.
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Put 9(t)= 2−1 log(det(gi j (t))) and observe

9 ′(t)= 1
2 trace

[
(gi j (t)) · (g′i j (t))

]
,

9 ′′(t)= 1
2 trace

[
(gi j (t)) · (g′′i j (t))−

(
(gi j (t)) · (g′i j (t))

)2]
.

Comparing gi j (0) and g′i j (0), we have

9 ′(0)= 1
2

(
(n−1)

(
1

h(0)
+

1
b(0)

)
+2

(
1

h(0)
+

1
b(0)

))
=

n+ 1
2

(
1

h(0)
+

1
b(0)

)
.

Similarly,

1
2 trace

[
(gi j (0)) · (g′′i j (0))

]
= (n− 1)

(
1

h(0)2
+

1
h(0)b(0)

+
1

b(0)2

)
+

1
4

n−1∑
i, j=1

gi j (0)
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)

+2
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
+

(
1

h(0)
+

1
b(0)

)2

= (n+ 1)
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
+

(
1

h(0)
+

1
b(0)

)2

+
1
4

n−1∑
i, j=1

gi j (0)
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)
.

Combining this with

trace
[
((gi j (0)) · (g′i j (0)))

2]
= (n− 1)

(
1

h(0)
+

1
b(0)

)2

+ 4
(

1
h(0)
+

1
b(0)

)2

+
gnn(0)

8

n−1∑
i, j=1

gi j (0)
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)(
1

h(0)
−

1
b(0)

)2

= (n+3)
(

1
h(0)
+

1
b(0)

)2

+
1
2

n−1∑
i, j=1

gi j (0)
(
∂i h(0)
h(0)2

−
∂i b(0)
b(0)2

)(
∂ j h(0)
h(0)2

−
∂ j b(0)
b(0)2

)
,

we obtain
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9 ′′(0)= (n+ 1)
(

1
h(0)2

+
1

h(0)b(0)
+

1
b(0)2

)
−

n+ 1
2

(
1

h(0)
+

1
b(0)

)2

=
n+ 1

2

(
1

h(0)2
+

1
b(0)2

)
.

Therefore we have, as F(v)= (h(0)−1
− b(0)−1)/2= 1,

d
dt

[
9 ′(t)

F(V (0, t))

]
t=0
=9 ′′(0)−

9 ′(0)
2

(
1

h(0)2
−

1
b(0)2

)
=−

n+ 1
h(0)b(0)

.

Since

0<−
1

h(0)b(0)
≤

1
4

(
1

h(0)
−

1
b(0)

)2

= 1,

this yields Ric∞(v) ∈ (−(n− 1), 2]. Moreover,

9 ′(0)2 =
(n+ 1)2

4

(
1

h(0)
+

1
b(0)

)2

= (n+ 1)2
(

1+
1

h(0)b(0)

)
∈ [0, (n+ 1)2)

shows that

RicN (v) ∈

(
−(n− 1)−

(n+ 1)2

N − n
, 2
]
. �

5. Applications and remarks

As mentioned in Section 2, RicN ≥ K is equivalent to the curvature-dimension
condition CD(K , N ). Spaces satisfying CD(K , N ) enjoy a number of properties
similar to Riemannian manifolds of Ric ≥ K and dim ≤ N . Since CD(K , N )
(between compactly supported measures) is preserved under the pointed measured
Gromov–Hausdorff convergence of locally compact, complete metric measure
spaces [Villani 2009, Theorem 29.25], we can deal with merely bounded, convex
domains D.

Corollary 5.1. Let D ⊂ Rn be a bounded convex domain with n ≥ 2. Then
the metric measure spaces (D, dF,m L) and (D, dH,m L) satisfy CD(K , N ) for
N ∈ (n,∞] with

K =−n−1
4
−
(n+1)2

4(N−n)
, K =−(n− 1)− (n+1)2

N−n
,

respectively, where we read K =−(n− 1)/4 and K =−(n− 1) when N =∞. In
particular, they satisfy

• the Brunn–Minkowski inequality by CD(K , N ) with N ∈ (n,∞],

• the Bishop–Gromov volume comparison by CD(K , N ) with N ∈ (n,∞).
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See [Sturm 2006b, Proposition 2.1, Theorem 2.3] (and, for N =∞, also [Villani
2009, Theorem 30.7; Ohta 2010, Theorem 6.1]) for the precise statements of
the Brunn–Minkowski inequality and the Bishop–Gromov volume comparison.
Beyond the general theory of the curvature-dimension condition, the weighted Ricci
curvature bound implies the following.

Corollary 5.2. Let D ⊂ Rn with n ≥ 2 be a strongly convex domain such that ∂D
is smooth. For K as in Corollary 5.1, (D, FF,m L) and (D, FH,m L) satisfy

• the Laplacian comparison for N ∈ (n,∞),

• the Bochner–Weitzenböck inequality for N ∈ (n,∞].

See [Ohta and Sturm 2009, Theorem 5.2] for the Laplacian comparison, and
[Ohta and Sturm 2011, Theorems 3.3, 3.6] for the Bochner–Weitzenböck formula
(by the Bochner–Weitzenböck inequality we meant the inequality given by plugging
the weighted Ricci curvature bound into the Bochner–Weitzenböck formula).

We conclude the article with remarks on possible improvements of the estimates
in Theorems 1.1, 1.2. Our estimates on RicN with respect to m L are independent
of the shape of D. In particular, Theorem 1.2 provides the same (far from optimal)
estimates even for the Klein model of the hyperbolic spaces. Thus there would be
a better choice of a measure depending on the shape of D. Then, as an arbitrary
measure is represented by e−ψm L , its weighted Ricci curvature is calculated by
combining Theorems 1.1, 1.2 and the convexity of ψ . One may think of the squared
distance function from some point as a candidate of ψ , however, in order to estimate
its convexity along geodesics, we need to bound not only the flag curvature but also
the uniform convexity as well as the tangent curvature (also called the S-curvature;
see [Ohta 2009b, Theorem 5.1]). The uniform convexity is measured by the constant

C= sup
x∈M

sup
v,w∈Tx M\0

F(w)
gv(w,w)1/2

,

and it is infinite for Funk metrics. As for Hilbert geometry, one could bound C by
the convexity of ∂D (but this seems unclear; see [Egloff 1997, Remark 2.1]). The
author has no idea about the tangent curvature, which measures how the tangent
spaces are distorted as one moves in M .

There are several natural constructive measures m on D, and it is interesting
to consider the corresponding weighted Ricci curvature Ricm

N (V ). Then, however,
it seems not easy (at least more difficult than m L) to calculate Ricm

N (V ) because
m should depend on the shape of whole ∂D, while gV is induced only from the
behavior of FF or FH near the direction V .

We also remark that, in Hilbert geometry (which is both forward and backward
complete), RicN with N <∞ cannot be nonnegative for any measure. Otherwise,
gV splits isometrically, which is a contradiction [Ohta 2012, Proposition 4.3]. Due
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to the same reasoning, Ric∞ can be nonnegative only when sup9 =∞.
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ON GENERALIZED WEIGHTED HILBERT MATRICES

EMMANUEL PREISSMANN AND OLIVIER LÉVÊQUE

We study spectral properties of generalized weighted Hilbert matrices. In
particular, we establish results on the spectral norm, the determinant, and
various relations between the eigenvalues and eigenvectors of such matrices.
We also study the asymptotic behavior of the spectral norm of the classical
Hilbert matrix.

1. Introduction

The classical infinite Hilbert matrices

(1) T∞ =



. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 −1 − 1
2 −

1
3
. . .

. . . 1 0 −1 − 1
2
. . .

. . . 1
2 1 0 −1

. . .

. . . 1
3

1
2 1 0

. . .

. . .
. . .

. . .
. . .

. . .
. . .


and H∞ =



1 1
2

1
3

1
4 · · ·

1
2

1
3

1
4

1
5
. . .

1
3

1
4

1
5

1
6
. . .

1
4

1
5

1
6

1
7
. . .

...
. . .

. . .
. . .

. . .


have been widely studied in the mathematical literature, for a variety of good reasons
(see [Choi 1983] for a nice survey of their astonishing properties). In this paper, we
present results and conjectures on spectral properties of these matrices and related
types of matrices. We first review known results in Section 2, and then introduce
new results in Section 3 on generalized weighted Hilbert matrices of the form

(2) bm,n(x, c)=

 0 if m = n,
cm cn

xm−xn
if m 6= n.

Our results can be summarized as follows. Theorem 1 states a surprising property of
these matrices: Their spectral norm depends monotonically on the absolute values
of their entries, a property known a priori only for matrices with positive entries.
Theorem 2 says that the determinants of such matrices are polynomials in the square
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of their entries. In Lemma 5, we prove a key relation between the eigenvalues
and eigenvectors of these matrices, which leads to a chain of nice consequences,
including Corollaries 1 and 2. Our work finds its roots in [Montgomery and Vaughan
1973], a seminal paper that initiated the study of generalized Hilbert matrices.

Notation. Let p > 1. In what follows, ‖ y‖p denotes the `p-norm of the vector
y ∈ CS:

‖ y‖p :=

( S∑
k=1

|yk |
p
)1/p

.

For an S×S matrix M , ‖M‖p denotes the matrix norm induced by this vector norm:

‖M‖p := sup
‖ y‖p=1

‖M y‖p.

In the particular case p = 2, the following simplified notation will be adopted:

‖ y‖2 = ‖ y‖ (Euclidean norm) and ‖M‖2 = ‖M‖.

When M is normal (i.e., when M M∗ = M∗M , where M∗ stands for the complex-
conjugate transpose of the matrix M), the above norm is equal to the spectral norm
of M :

‖M‖ = sup{|λ| : λ ∈ Spec(M)}.

2. A survey of classical results and conjectures

2.1. Hilbert’s inequalities. The infinite-dimensional matrices presented in (1) are
two different versions of the classical Hilbert matrix. Notice first that T∞ is a
Toeplitz matrix (i.e., a matrix whose entry n,m depends only on the difference
m−n), while H∞ is a Hankel matrix (i.e., a matrix whose entry n,m depends only
on the sum n+m). The Hilbert inequalities state (see [Hardy et al. 1952, p. 212])
that ∣∣∣∣ ∑

m,n∈Z

um (T∞)m,n vn

∣∣∣∣≤ π for u, v ∈ `2(Z;C) with ‖u‖ = ‖v‖ = 1

and ∣∣∣∣ ∑
m,n∈N

um (H∞)m,n vn

∣∣∣∣≤ π for u, v ∈ `2(N;C) with ‖u‖ = ‖v‖ = 1;

here π cannot be replaced by a smaller constant.1 This is saying that T∞ and H∞
are bounded operators in `2(Z;C) and `2(N;C), respectively, with norm π .

Titchmarsh [1926] proved that ‖T∞‖p <∞. Hardy, Littlewood and Pólya [1952,

1Hilbert originally proved these inequalities with 2π instead of π ; the optimal constant was found
later by Schur.
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p. 227] obtained the explicit expression

‖H∞‖p =
π

sin(π/p)
for all p > 1.

It is clear that ‖T∞‖p ≥ ‖H∞‖p, as H∞ may be seen as the lower left corner of
T∞ (up to a column permutation), but no exact value is known for it (except in the
case where p = 2n or p = 2n/(2n

− 1) for some integer n ≥ 1; see [Laeng 2007;
2009] for a review of the subject).

Consider the corresponding R× R matrices TR and HR , defined by

(TR)m,n =

 0 if m = n,
1

m−n
if m 6= n,

(HR)m,n =
1

m+ n− 1
for 1< m, n < R.

The Hilbert inequalities imply that for every integer R ≥ 1,

(3) ‖TR‖< π and ‖HR‖< π.

Clearly also ‖TR‖ and ‖HR‖ increase as R increases, and

lim
R→∞
‖TR‖ = lim

R→∞
‖HR‖ = π.

A question of interest is the convergence speed of ‖HR‖ and ‖TR‖ toward their
common limiting value π . Up to a column permutation, HR can be seen as the
lower left corner of T2R+1, so ‖HR‖ ≤ ‖T2R+1‖ for every integer R ≥ 1. This hints
at a slower convergence speed for the matrices HR than for the matrices TR . Indeed,
Wilf and de Bruijn (see [Wilf 1970]) have shown that

π −‖HR‖ ∼
π5

2 (log R)2
as R→∞,

whereas there exist a, b > 0 such that

(4)
a
R
< π −‖TR‖<

b log R
R

for R ≥ 2.

We will prove these inequalities at the end of this paper. The lower bound has
been proved by Montgomery (see [Matthews 2002]), and it has been conjectured in
[Preissmann 1985], and independently by Montgomery, that the upper bound in the
previous inequality is tight, i.e., that

π −‖TR‖ ∼
c log R

R
as R→∞.

We also provide some numerical evidence for this conjecture at the end of the paper.



202 EMMANUEL PREISSMANN AND OLIVIER LÉVÊQUE

2.2. Toeplitz matrices and Grenander–Szegő’s theorem. We review the theory
developed by Grenander and Szegő [1958] to analyze the asymptotic spectrum of
Toeplitz matrices. In particular, we cite their result on the convergence speed of the
spectral norm of such matrices.

Let (cr )r∈Z be a sequence of complex numbers such that

(5)
∑
r∈Z

|cr |<∞,

and let us define the corresponding function, or symbol:

f (x)=
∑
r∈Z

cr exp(ir x) for x ∈ [0, 2π ].

Because of the assumption made on the Fourier coefficients cr , the function f
is continuous, and of course f (0) = f (2π). Equivalently, f can be viewed as a
continuous 2π -periodic function on R.

Now let CR be the R× R matrix defined by

(CR)m,n = cm−n for 1≤ m and n ≤ R.

One checks by direct computation that, for any vector u ∈ CR with ‖u‖2 :=∑
1≤n≤R

|un|
2
= 1, we have

(6) u∗CRu =
∫ 2π

0
f (x) |φ(x)|2 dx,

where

φ(x)=
1
√

2π

∑
1≤n≤R

un exp(i(n− 1)x).

Let us now assume that CR is a normal matrix (CRC∗R =C∗RCR); this is the case,
for example, when f is a real-valued function (in which case CR is Hermitian:
C∗R = CR). As ‖u‖ = 1, we also have

∫ 2π
0 |φ(x)|

2 dx = 1, which implies that

‖CR‖ ≤ sup
x∈[0,2π ]

| f (x)| =: M

for any integer R ≥ 1. Grenander and Szegő [1958, p. 72] proved the following
refined statement on the convergence speed of the spectral norm. If f is twice
continuously differentiable, admits a unique maximum in x0 and is such that
f ′′(x0) 6= 0, then

M −‖CR‖ ∼ f (x0)− f
(

x0+
π

R

)
∼
π2
| f ′′(x0)|

2R2 as R→∞.

This result does not apply to Hilbert matrices of the form TR: Since the harmonic
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series diverges, condition (5) is not satisfied. Correspondingly, the symbol associated
with these matrices is the function

f (x)=
∑
r≥1

− exp(ir x)+ exp(−ir x)
r

=−2i
∑
r≥1

sin(r x)
r
= i(x −π)

for x ∈ ]0, 2π [, while by Dirichlet’s theorem f (0)= f (2π)= 0. The function f
is therefore discontinuous, but relation (6) still holds in this case and allows us to
deduce Hilbert’s inequality:

‖TR‖ ≤ sup
x∈[0,2π ]

| f (x)| = π.

However, relation (6) alone does not allow us to draw conclusions on the convergence
speed toward π .

Evaluating the convergence speed of the spectral norm is a difficult problem
when f attains its maximum at a point of discontinuity. An interesting matrix of
this type was studied in detail in [Slepian 1978];2 known as the prolate matrix, it is
defined as

(PR)m,n = pm−n for 1≤ m and n ≤ R, where pr =


sin(2πwr)

r
if r 6= 0,

2πw if r = 0,

for 0 < w < 1
2 a fixed parameter. Here, again, we see that condition (5) is not

satisfied. The symbol associated with this matrix is the function

fw(x)=
∑
r∈Z

pr exp(ir x)= 2πw+ 2
∑
r≥1

sin(2πwr)
r

cos(r x)

= π 1[0,2πw]∪[2π(1−w),2π ](x)

for all x ∈ [0, 2π ]\{2πw, 2π(1−w)}. In this case, we again have for any integer
R ≥ 1

‖PR‖< sup
x∈[0,2π ]

| fw(x)| = π and lim
R→∞
‖PR‖ = π.

It is moreover shown in [Slepian 1978] that for all 0<ω< 1
2 , there exist cw, dw > 0

(given explicitly in [Varah 1993]) such that

π −‖PR‖ ∼ cw
√

R exp(−dwR).

We see here that although the function fw is discontinuous, the convergence speed
is exponential, not polynomial (as is the case with a smooth symbol). Of course, the

2See also [Varah 1993] for a recent exposition of the problem; we are thankful to Ben Adcock for
pointing out this interesting reference to us.
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situation here is quite particular, as the function fw has a plateau at its maximum
value, which is not the case for the Hilbert matrix TR .

2.3. Generalized weighted Hilbert matrices. Let x = (x1, . . . , xR) be a vector of
distinct real numbers and c= (c1, . . . , cR) any vector of real numbers. We define
the R× R matrix B(x, c) by formula (2). We also set

(7) A(x)= B(x, 1), where 1= (1, . . . , 1).

If there is no risk of confusion, we write A and B instead of A(x) and B(x, c).
Thus A(x) is the classical Hilbert matrix. To motivate the study of the gen-

eralization B(x, c), we mention that Montgomery and Vaughan [1973] proved
that

‖A(x)‖ ≤
π

δ
, with δ = inf

1≤m,n≤R
m 6=n

|xn − xm |,

and that

‖B(x, c)‖ ≤
3π
2
, with cn =

√
min

1≤m≤R
m 6=n

|xm − xn|.(8)

They also conjectured that the tightest upper bound is ‖B(x, c)‖ ≤ π . Montgomery
and Vaughan’s result was improved in [Preissmann 1984] to ‖B(x, c)‖ ≤ 4π/3, but
the conjecture remains open so far.

We conclude this section with some applications.

Large sieve inequalities. Suppose the real numbers x1, . . . , xR are distinct modulo 1.
Let ‖t‖ denote the distance from a real number t to the closest integer, and let

δ := min
r,s, r 6=s

‖xr − xs‖ and δr := min
s, s 6=r
‖xr − xs‖.

For an arbitrary sequence of complex numbers (an)M+1≤n≤M+N , we write

S(x) :=
∑

M+1≤n≤M+N

an exp(2π inx).

A large sieve inequality has the generic form∑
1≤r≤R

|S(xr )|
2
≤1(N , δ)

∑
M+1≤n≤M+N

|an|
2.

Using Hilbert’s inequality (3), one can show that the previous inequality holds with
1(N , δ)= N + δ−1

− 1. Equivalently, this says that if

B := {exp(2π inxr )}M+1≤n≤M+N , 1≤r≤R

then
‖B‖2 ≤1(N , δ).
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Generalized Hilbert inequalities of type (8) are particularly useful when studying
irregularly spaced xr (such as Farey sequences), as they allow us to prove the
following refined large sieve inequality:∑

1≤r≤R

(
N + 3

2δ
−1
r
)−1
|S(xr )|

2
≤

∑
M+1≤n≤M+N

|an|
2.

This last result is useful for arithmetic applications. It allows us to show, for
example, that π(M + N )−π(M)≤ 2π(N ), where π(N ) is the number of primes
smaller than or equal to N (see [Montgomery and Vaughan 1973]). By contrast,
the inequality π(M + N )−π(M)≤ π(N ) stands as a conjecture so far.

The Bombieri–Vinogradov theorem, which is related to various conjectures on
the distribution of primes, is another important application of large sieve inequalities
(see [Bombieri et al. 1986], for instance).

Other Hilbert inequalities. Montgomery and Vaughan [1974] studied variants of
Hilbert’s inequality (with, for instance, 1/(xr−xs) replaced by csc(xr−xs)), which
allow them to show that if

∑
n≥1 n|an|

2 <∞, then∫ T

0

∣∣∣∣∑
n≥1

ann−i t
∣∣∣∣2 dt =

∑
n≥1

|an|
2 (T + O(n)).

The key idea behind the proof of the main result in their paper is the identity

csc(xk − xl) csc(xl − xm)= csc(xk − xm) (cot(xk − xl)+ cot(xl − xm)),

which is of the same type as our relation (10) below. A further generalization of
Hilbert’s inequalities has been built on this in [Preissmann 1987], where we solved
the functional equations

1
θ(x)θ(y)

=9(x)−9(y)+
φ(x − y)
θ(x − y)

and
1

θ(x)θ(y)
=
σ(x)− σ(y)
θ(x − y)

+ τ(x)τ (y) with τ(0)= 0.

3. New results

3.1. Spectral norm of B(x, c). In this subsection we state and prove our first main
result, on the monotonicity of the spectral norm of matrices B(x, c).

Theorem 1. If x, x′, c and c′ are vectors of real numbers such that

|bm,n(x, c)| ≤ |bm,n(x′, c′)| for 1≤ m and n ≤ R,

then

(9) ‖B(x, c)‖ ≤ ‖B(x′, c′)‖.
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Remark. For matrices Y and Z with positive entries, if 0≤ ym,n≤ zm,n for all m and
n, then ‖Y‖ ≤ ‖Z‖. Indeed, consider the normalized eigenvector u corresponding
to the largest eigenvalue of Y ∗Y : Since Y ∗Y has positive entries, u is also positive,
so ‖Y‖ = ‖Y u‖ ≤ ‖Z u‖ ≤ ‖Z‖. The above result states that a similar result holds
for matrices of the form B(x, c), even though these do not have positive entries.

We decompose the proof of Theorem 1 into a sequence of lemmas. We will use
several times the relation

(10) ak,l al,m = ak,m (ak,l + al,m) for k, l,m distinct,

where am,n = 1/(xm − xn).

Lemma 1. If k is a positive integer and 1 ≤ n ≤ R, then, denoting by B−n the
matrix B with the n-th row and column removed, we have

(11) S :=
∑

1≤l,m≤R
l 6=n,m 6=n, l 6=m

bn,l bm,n (Bk
−n)l,m = 0.

Proof. Using (10), we obtain

S =
∑

1≤l,m≤R
l 6=n,m 6=n,l 6=m

cl cm c2
n am,n an,l (Bk

−n)l,m

=

∑
1≤l,m≤R

l 6=n,m 6=n, l 6=m

cl cm c2
n am,l (am,n + an,l) (Bk

−n)l,m =: S1+ S2,

where

S1 =
∑

1≤l,m≤R
l 6=n,m 6=n, l 6=m

cl cm c2
n am,l am,n (Bk

−n)l,m

=

∑
1≤l,m≤R

l 6=n,m 6=n, l 6=m

c2
nbm,l am,n (Bk

−n)l,m =
∑

1≤m≤R
m 6=n

c2
n am,n (Bk+1

−n )m,m

and

S2 =
∑

1≤l,m≤R
l 6=n,m 6=n, l 6=m

cl cm c2
n am,l an,l (Bk

−n)l,m

=

∑
1≤l≤R

l 6=n

c2
n an,l (Bk+1

−n )l,l =−
∑

1≤l≤R
l 6=n

c2
n al,n (Bk+1

−n )l,l =−S1,

since A is antisymmetric. �
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Lemma 2. Let 1≤ n ≤ R and k ≥ 2 be an integer. Then

(Bk)n,n =
∑

0≤r≤k−2

∑
1≤l,m≤R
l 6=n,m 6=n

bn,l (Br
−n)l,m bm,n (Bk−r−2)n,n

=−

∑
0≤r≤k−2

∑
1≤l≤R

b2
n,l (B

r
−n)l,l (B

k−r−2)n,n.

Proof. Notice first that

(Bk)n,n =
∑

1≤n1,...,nk−1≤R

bn,n1 bn1,n2 . . . bnk−2,nk−1 bnk−1,n.

As bn,n = 0, we may consider n1, nk−1 6= n in this sum. For each (n1, . . . , nk−1),
define

s = inf{t ∈ {2, . . . , k} | n1 6= n, . . . , nt−1 6= n, nt = n},

where, by convention, nk = n. Ordering the terms in the above sum according to
the value of s, we obtain

(Bk)n,n =
∑

2≤s≤k

∑
n1, ns−1 6=n

bn,n1 (B
s−2
−n )n1,ns−1 bns−1,n (B

k−s)n,n

=

∑
0≤r≤k−2

∑
n1, nr+1 6=n

bn,n1 (B
r
−n)n1,nr+1 bnr+1,n (B

k−r−2)n,n,

which is the first equality in the lemma. The second follows from (11) and the fact
that B is antisymmetric. �

Lemma 3. Let 1≤ n ≤ R and let k ≥ 2 be an integer.

• If k is odd, then (Bk)n,n = 0.

• If k is even, then (−1)k/2 (Bk)n,n is a polynomial in the b2
l,m , 1 ≤ l < m ≤ R,

with positive coefficients.

Proof. Since B is antisymmetric, the first statement is obvious. The second follows
by induction from Lemma 2. �

Proof of Theorem 1. Observe that since the matrix i B is Hermitian, it has R real
eigenvalues µ1, . . . , µR corresponding to an orthonormal basis of eigenvectors, so

‖B‖ = max
1≤r≤R

|µr |.

And for a positive integer k, we have

Tr(B2k)=
∑

1≤r≤R

(−1)kµ2k
r .
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Therefore, we obtain

‖B‖ = lim
k→∞

(
(−1)k Tr(B2k)

)1/2k
,

and the theorem follows from Lemma 3. �

3.2. Determinant of B(x, c). Our next result shows that the determinant of B(x, c)
is a polynomial in the b2

l,m .

Theorem 2. If R is odd, then det(B(x, c))= 0. If R = 2T is even, then

(12) det(B(x, c))=
R∏

k=1

c2
k

∑
(mi ,ni )

T
1 ∈E

T∏
i=1

a2
mi ,ni
=

∑
(mi ,ni )

T
1 ∈E

T∏
i=1

b2
mi ,ni

,

where

E :=
{
(mi , ni )

T
1

∣∣∣ T⋃
i=1
{mi , ni }={1, . . . , R}, mi <ni for all i, and m1< · · ·<mT

}
.

Lemma 4. Let l be an integer, with 3≤ l ≤ R. Denoting by Sl the set of permuta-
tions of {1, . . . , l}, we have

(13) S :=
∑
σ∈Sl

aσ(1),σ (2) aσ(2),σ (3) . . . aσ(l−1),σ (l) aσ(l),σ (1) = 0.

Proof. We define

S1 :=
∑
σ∈Sl

aσ(1),σ (2) aσ(2),σ (3) . . . aσ(l−1),σ (1) aσ(l−1),σ (l),

S2 :=
∑
σ∈Sl

aσ(1),σ (2) aσ(2),σ (3) . . . aσ(l−1),σ (1) aσ(l),σ (1).

By (10), we have S = S1 + S2. Now let τ ∈ Sl be the permutation defined by
τ(1)= l − 1, τ (2)= 1, τ (3)= 2, . . . , τ (l − 1)= l − 2, τ (l)= l. We obtain

S2 =
∑
σ∈Sl

aστ(1),στ(2) aστ(2),στ(3) . . . aστ(l−1),στ(1) aστ(l),στ(1)

=

∑
σ∈Sl

aσ(l−1),σ (1) aσ(1),σ (2) . . . aσ(l−2),σ (l−1) aσ(l),σ (l−1) =−S1,

which completes the proof. �

Proof of Theorem 2. By definition,

det(B)=
∑
σ∈SR

ε(σ )
∏

1≤n≤R

an,σ (n) c2
n.

Every permutation σ is a product of k cycles, with 1 ≤ k ≤ n. We denote by
F1, . . . , Fk the supports of these cycles and by n1, n2, . . . , nk their cardinalities,
and we set
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S(Fi ) :=
1
ni

∑
s1,s2,...,sni |{s1,s2,...,sni }=Fi

as1,s2 as2,s3 . . . asni−1,sni
asni ,s1 .

In the above expression for det(B), the contribution of the permutations having
F1, . . . , Fk as supports for their cycles is of the

(−1)n1+n2+···+nk−k
k∏

i=1

S(Fi )

R∏
r=1

c2
r .

Hence, by (13) and the fact that the main diagonal is zero, a nonzero contribution
can only occur when all cycles are of cardinality 2, which proves the theorem. �

Remark. The above statement allows us to recover part of the conclusion of
Lemma 3. First notice that by Theorem 2 and for all J ⊂ {1, . . . , R}, det(BJ ),
where BJ = (bl,m)l,m∈J , is also a polynomial in the b2

l,m . Define

σk =
∑

J⊂{1,...,R}
|J |=k

∏
i∈J

λi ,

where λ1, . . . , λR are the eigenvalues of B. Notice that

(14) σk =
∑

J⊂{1,...,R}
|J |=k

det(BJ ).

Indeed, let P be the polynomial defined as P(x)=
∏

1≤i≤R(x − λi ). We observe
that, on one hand, the matrix-valued version of this polynomial is given by

P(x)=
∏

1≤i≤R

(x−λi I )= x R
+

R∑
k=1

x R−k(−1)k
∑

J⊂{1,...,R}
|J |=k

∏
i∈J

λi= x R
+

∑
1≤k≤R

x R−k(−1)kσk,

while, on the other hand,

P(x)=
R∏

i=1

(x − λi )= det(x I − B)= x R
+

R∑
k=1

x R−k (−1)k
∑

J⊂{1,...,R}
|J |=k

det(BJ ),

so by identifying the coefficients we obtain equality (14). This implies that σk is
also a polynomial in the b2

l,m . Finally, for sl =
∑

1≤i≤R λ
l
i , we have the following

recursion, also known as Newton–Girard’s formula:

sl =
∑

1≤i≤l−1

(−1)i−1σi sl−i + (−1)l−1 l σl .

For example, s0 = n, s1 = σ1, s2 = s1 σ1 − 2σ2, s3 = s2 σ1 − s1σ2 + 3σ3, etc.
We therefore find by induction that for all k, (−1)k Tr(B2k) = (−1)k s2k is also
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a polynomial in the b2
l,m , but this alone does not guarantee the positivity of the

coefficients obtained in Lemma 3 above.

3.3. Formulas regarding the eigenvalues and eigenvectors of A(x) and B(x, c).
We first state the following lemma, which has important consequences for the
eigenvalues of the matrices A(x) and B(x, c), as we will see. The approach taken
below generalizes the method initiated by Montgomery and Vaughan [1973].

Lemma 5. (a) Let u= (u1, . . . , u R)
T be an eigenvector of A(x) for the eigenvalue

iµ. Then for 1≤ n ≤ R, we have

(15) µ2
|un|

2
=

∑
1≤m≤R

a2
m,n (|um |

2
+ 2<(un um)).

(b) Let u = (u1, . . . , u R)
T be an eigenvector of B(x, c) for the eigenvalue iµ.

Then for 1≤ n ≤ R, we have

(16) µ2
|un|

2
=

∑
1≤m≤R

a2
m,n (c

2
n c2

m |um |
2
+ 2 c3

n cm <(un um)).

Proof. We prove (16), from which (15) follows by specializing to the case c= 1.
Our starting assumption is Bu = iµu, i.e.,

∑
1≤m≤R bn,m um = iµ un . Taking

the modulus square on both sides, we obtain

µ2
|un|

2
=

∑
1≤l,m≤R
l 6=n,m 6=n

bn,m bn,l um ul .

(Notice that the sum can be taken over l 6= n and m 6= n, as bn,n = 0.) Therefore,

(17) µ2
|un|

2
= c2

n

∑
1≤l,m≤R
l 6=n,m 6=n

cl cm an,m an,l um ul = c2
n (S1+ S2),

where S1 corresponds to the terms in the sum with l =m and S2 is its complement:

(18) S1 =
∑

1≤m≤R
m 6=n

c2
m a2

m,n |um |
2, S2 =

∑
1≤l,m≤R

l 6=m, l 6=n,m 6=n

cl cm an,m an,l um ul .

As l, m, and n are all distinct in this last sum, we can use (10) and the antisymmetry
of A to obtain

an,m an,l = al,m an,l + am,l an,m,

so

(19) S2 =
∑

1≤l,m≤R
l 6=m, l 6=n,m 6=n

cl cm (al,m an,l + am,l an,m) um ul = S3+ S4
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with

S3 =
∑

1≤l,m≤R
l 6=m, l 6=n,m 6=n

cl cm al,m an,l um ul

=

∑
1≤l,m≤R

l 6=m, l 6=n,m 6=n

bl,m an,l um ul =
∑

1≤l≤R
l 6=n

an,l ul

∑
1≤m≤R

m 6=l, m 6=n

bl,m um .

As u is an eigenvector of B, it follows that

S3 =
∑

1≤l≤R
l 6=n

an,l ul (iµ ul − bl,nun).

Likewise, noticing that u is also an eigenvector of B (with the corresponding
eigenvalue −iµ), we obtain

S4 =
∑

1≤m≤R
m 6=n

an,m um

∑
1≤l≤R

l 6=n

bm,l ul =
∑

1≤m≤R
m 6=n

an,m um (−iµum − bm,n un).

From (19), we deduce that

S2 = S3+ S4 =−
∑

1≤m≤R
m 6=n

an,m bm,n (um un+um un)= 2
∑

1≤m≤R
m 6=n

am,n bm,n <(um un).

Now, using this together with (17) and (18), we finally obtain

µ2
|un|

2
=

∑
1≤m≤R

m 6=n

c2
n
(
c2

m a2
m,n |um |

2
+ 2 cm cn a2

m,n <(um un)
)
,

which completes the proof. �

One of the many consequences of Lemma 5 is the following.

Corollary 1. If c1, . . . , cR are all nonzero, then the eigenvalues of B(x, c) are all
distinct.

Proof. If in the basis of eigenvectors of B there were two corresponding to the
same eigenvalue, it would be possible to find a linear combination of them (also an
eigenvector) such that one component (say, un) would be equal to zero. Then by
(16) we would have ∑

1≤m≤R

a2
m,n c2

n c2
m |um |

2
= 0,

which is impossible, given the assumption made. �

A more precise version of Lemma 5(b) reads as follows.



212 EMMANUEL PREISSMANN AND OLIVIER LÉVÊQUE

Lemma 6. Let u= v+ iw (v,w ∈ RR) be an eigenvector of −iµ corresponding to
the eigenvalue B(x, c). Then

(20) µ2 v2
n =

∑
1≤m≤R

b2
n,m w

2
m + 2 c2

n

∑
1≤m≤R

m 6=n

an,m wm (µ vm − bm,n wn).

Moreover, if µ 6= 0, then ‖v‖ = ‖w‖, while if µ= 0, then det(B)= 0, so one of the
eigenvectors corresponding to this eigenvalue is real.

Proof. Applying the proof method of Lemma 5 gives

µ2 v2
n =

( ∑
1≤m≤R

bn,m wm

)2

=

∑
1≤m≤R

b2
n,m w

2
m+

∑
1≤l,m≤R

l 6=m

bn,m bn,l wm wl =: S1+S2.

We can write

S2 = c2
n

∑
1≤l,m≤R

l 6=m

cl cm an,m an,l wm wl = c2
n (S3+ S4),

with

S3 =
∑

1≤l,m≤R
l 6=m, l 6=n,m 6=n

cl cm al,m an,l wm wl =
∑

1≤l≤R
l 6=n

an,lwl

∑
1≤m≤R

m 6=n,m 6=l

bl,m wm

=

∑
1≤l≤R

l 6=n

an,l wl (µ vl − bl,n wn),

and, likewise,

S4 =
∑

1≤m≤R
m 6=n

an,m wm

∑
1≤l≤R

l 6=m,l 6=n

bm,l wl =
∑

1≤m≤R
m 6=n

an,m wm (µ vm − bm,nwn).

Observing that S3 = S4, we obtain the formula (20).
Finally, we have by assumption that B(v+ iw)= iµ (v+ iw), so

B w = µ v and B v =−µw.

Consequently, we have

µ ‖w‖2 = µwT w = (−B v)T w = (BT v)T w = vT B w = µ ‖v‖2,

so for µ 6= 0, we have ‖v‖ = ‖w‖. �

Finally, let us mention the following nice formula.

Lemma 7. Let u be an eigenvector of B corresponding to the eigenvalue µ. Then∣∣∣∣ ∑
1≤r≤R

cr ur

∣∣∣∣2 = ∑
1≤r≤R

|cr ur |
2.
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Proof. Let C = diag(c1, . . . , cR) and X = diag(x1, . . . , xR). Then

uT (XC AC −C AC X) u = uT M u,

where mr,s = cr cs for r 6= s and 0 otherwise. Therefore,

uT M u =
∣∣∣∣ ∑
1≤r≤R

cr ur

∣∣∣∣2− ∑
1≤r≤R

|cr ur |
2.

On the other hand,

uT (XC AC −C AC X) u = uT (X B− B X) u = uT X iµ u− iµ uT X u = 0,

as uT (−B)= uT BT
= (B u)T = (−iµu)T =−iµ uT . The result follows. �

3.4. Back to the spectral norm. Lemma 5 also allows us to deduce the following
bounds on the spectral norm of A(x).

Corollary 2. max
1≤m≤R

∑
1≤n≤R

a2
m,n ≤ ‖A(x)‖2 ≤ 3 max

1≤m≤R

∑
1≤n≤R

a2
m,n.

Proof. The first inequality is clear, as the m-th column of A is the image by A of
the m-th canonical vector. For the second inequality, we use (16), choosing n such
that |un|

2
≥ |um |

2 for all 1≤ m ≤ R, and µ= ‖A‖. We therefore obtain

‖A‖2 |un|
2
=

∑
1≤m≤R

a2
m,n(|um |

2
+2<(un um))≤

∑
1≤m≤R

a2
m,n(|um |

2
+|um |

2
+|un|

2),

so
‖A‖2 |un|

2
≤ 3

∑
1≤m≤R

a2
m,n |un|

2. �

3.5. The classical Hilbert matrix TR. The upper bound in Corollary 2 allows us
to recover to the original upper bound on ‖TR‖, where TR is the Hilbert matrix
defined in the introduction:

‖TR‖
2
≤ max

1≤m≤R
3
∑

1≤n≤R
n 6=m

1
(m− n)2

< 3 · 2
∑
n≥1

1
n2 = π

2.

We now come back to the convergence speed of ‖TR‖ toward π , already mentioned
in Section 2. We prove inequality (4), namely that there exist positive constants a
and b such that

a
R
< π −‖TR‖<

b log(R)
R

, where R ≥ 2.

The lower bound can be deduced from Lemma 5. From (16), we indeed see that if
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R = 2S+ 1, then

‖TR‖
2 < 6

S∑
k=1

1
k2 = π

2
− 6

∑
k>S

1
k2 < π

2
− 6

∑
k>S

1
k(k+ 1)

= π2
−

6
S+ 1

,

so

π −‖TR‖>
6

(S+ 1) (π +‖TR‖)
>

3
π (S+ 1)

,

which is of the type a/R < π −‖TR‖. Another way to prove this lower bound is to
follow the Grenander–Szegő approach of Section 2.2. Let us first recall (6):

u∗TRu =
∫ 2π

0
f (x) |φ(x)|2 dx,

where f (x)= i (x−π) for x ∈ (0, 2π) and φ(x)= 1
√

2π

∑
1≤n≤R un exp(i(n−1)x),

and where
∫ 2π

0 |φ(x)|
2 dx = ‖u‖2 = 1. Hence,

(21) π − u∗iTRu =
∫ 2π

0
x |φ(x)|2 dx,

or, with E(R)=
{
φ(x)= 1

√
2π

∑
1≤n≤R

un exp(i(n−1)x)
∣∣ u∈CR,

∑
1≤n≤R

|un|
2
=1

}
,

(22) π −‖TR‖ = inf
φ∈E(R)

∫ 2π

0
x |φ(x)|2 dx .

It remains to show that the term on the right-hand side of (22) is bounded below by
a term of order 1/R. To this end, let us consider φ ∈ E(R) and c > 0. Using the
Cauchy–Schwarz inequality, we have∫ c

0
|φ(x)|2 dx =

1
2π

∑
1≤m,n≤R

um un

∫ c

0
exp(i(m− n)x) dx

≤
c

2π

∑
1≤m,n≤R

|um | |un| =
c

2π

( ∑
1≤n≤R

1 |un|

)2

≤
cR
2π

∑
1≤n≤R

|un|
2
=

cR
2π
.

Setting c = π/R, we obtain
∫ π/R

0 |φ(x)|2 dx ≤ 1
2 . This in turn implies that∫ 2π

0
x |φ(x)|2 dx ≥

∫ 2π

π/R
x |φ(x)|2 dx ≥

π

R

∫ 2π

π/R
|φ(x)|2 dx ≥

π

2R

for all φ ∈ E(R), which settles the lower bound in (4).
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To establish the upper bound, we need to find a function φ ∈ E(R) such that

(23)
∫ 2π

0
x |φ(x)|2 dx ≤

b log R
R

for some constant b > 0. This will indeed ensure the existence of a vector u —
namely, the one associated to the function φ ∈ E(R)— such that |u∗TRu| ≥
π − (b log R)/R, thus implying the result.

In view of (23), our goal is to find φ ∈ E(R) such that, for c and ε small,

(24)
∫ 2π

c
|φ(x)|2 dx ≤ ε,

which does imply that

(25)
∫ 2π

0
x |φ(x)|2 dx ≤ c

∫ c

0
|φ(x)|2 dx + 2π

∫ 2π

c
|φ(x)|2 dx ≤ c+ 2πε.

Let M and N be positive integers such that N (M − 1)+ 1≤ R, and let

g(x)=
( ∑

0≤m≤M−1

exp(imx)
)N

.

The function defined by

(26) φ(x)=
g(x − c/2)√∫ 2π
0 |g(x)|

2 dx

belongs to E(R). We claim that, for M and N appropriately chosen, φ satisfies
(24) with both c and ε small. We first estimate

∫ 2π
0 |g(x)|

2 dx .

Lemma 8.
M2N

N (M − 1)+ 1
≤

1
2π

∫ 2π

0
|g(x)|2 dx ≤ M2N−1.

Proof. Let K be a positive integer and define the polynomial

PK (t)=
( ∑

0≤m≤M−1

tm
)K

=

∑
0≤l≤K (M−1)

bl,K t l .

Clearly, bl,K = bm,K if l +m = K (M − 1). Moreover,

|g(x)|2 =
∣∣PN (exp(i x))

∣∣2 = ∑
0≤l,m≤N (M−1)

bl,N bm,N exp(i(l −m)x),

so ∫ 2π

0
|g(x)|2 dx = 2π

∑
0≤l≤N (M−1)

b2
l,N = 2π

∑
0≤l≤N (M−1)

bl,N bN (M−1)−l,N

= 2π bN (M−1),2N .
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Therefore, what remains to be proven is

M2N

N (M − 1)+ 1
≤ bN (M−1),2N ≤ M2N−1.

Using the Cauchy–Schwarz inequality, we obtain

bN (M−1),2N =
∑

0≤l≤N (M−1)

b2
l,N ≥

( ∑
0≤l≤N (M−1)

bl,N

)2

N (M−1)+1
=

PN (1)2

N (M−1)+1

=
M2N

N (M−1)+1
.

On the other hand, P2N (t)= P1(t) P2N−1(t), so

bN (M−1),2N =
∑

(N−1)(M−1)≤l≤N (M−1)

bl,2N−1 ≤ P2N−1(1)≤ M2N−1,

which completes the proof. �

We now set out to prove (24). We retain the same φ from (26). As a result of
the previous lemma, we have∫ 2π

c
|φ(x)|2 dx ≤

N (M − 1)+ 1
M2N

1
2π

∫ 2π

c
|g(x − c/2)|2 dx

=
N (M − 1)+ 1

M2N

1
2π

∫ 2π−c/2

c/2
|g(x)|2 dx .

Notice that

|g(x)|2 =
∣∣∣∣ ∑

0≤m≤M−1

exp(imx)
∣∣∣∣2N

=

(
sin(Mx/2)
sin(x/2)

)2N

,

so ∫ 2π−c/2

c/2
|g(x)|2 dx = 2

∫ π

c/2
|g(x)|2 dx ≤ 2

∫ π

c/2

(
π sin(Mx/2)

x

)2N

dx

because sin x
2
≥

x
π

for 0≤ x ≤ π . This implies∫ 2π−c/2

c/2
|g(x)|2 dx≤2

∫
∞

c/2

(π
x

)2N
dx=2π

∫
∞

c/2π

1
y2N dy=

2π
2N − 1

(
2π
c

)2N−1

,

and, correspondingly,

ε =

∫ 2π

c
|φ(x)|2 dx ≤

N (M − 1)+ 1
M2N

1
2N − 1

(
2π
c

)2N−1

.

Assuming R ≥ 3 and defining
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M :=
⌊

2R
log R

⌋
, N :=

⌊
log R

2

⌋
, c :=

πe log R
R

(where bxc denotes the integer part of x), we verify that M(N − 1)+ 1 ≤ R (so
φ ∈ E(R)) and prove below that (24) is satisfied with ε = O(1/R). Indeed, as
M ≥ R/log R and N (M − 1)+ 1≤ M(2N − 1), we obtain

N (M−1)+1
M2N (2N−1)(c/2π)2N−1 =

(cM
2π

)1−2N 1+N (M−1)
M(2N−1)

≤

(cM
2π

)1−2N
≤e1−2N

≤
e3

R
,

as 1− 2N < 3− log R. According to (25), this finally leads to∫ 2π

0
x |φ(x)|2 dx ≤

πe log R
R

+
2πe3

R
,

which completes the proof of the upper bound in (4). As already mentioned, it has
been conjectured in [Preissmann 1985] that of the two bounds in (4), the upper
bound is tight. We provide below some numerical simulation data that supports this
fact. In Figure 1, the expression

f (R) := (π −‖TR‖)
R

log R

is represented as a function of R, for values of R ranging from 1 to 10,000. Detailed
facts can also be established about the eigenvectors of TR . In order to ease the
notation, suppose that R = 2S+ 1 and that TR is indexed from −S to S.

Lemma 9. Let u be an eigenvector of TR corresponding to the eigenvalue iµ, and
assume without loss of generality that u0 = 1. For 0≤ n ≤ S, we have

u−n =−un.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 1. Rescaled gap f (R) between the spectral norm of the infinite-
dimensional operator T∞ and that of the matrix TR , for 1≤ R≤ 10,000.
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Figure 2. Amplitude {|un| : −R ≤ n ≤ R} of the eigenvector corre-
sponding to the largest eigenvalue of TR , with R = 1000.

Proof. Define v by vn =−u−n . Then

(TRv)−m =
∑

−S≤n≤S

vn

−m− n
=

∑
−S≤n≤S

v−n

−m+ n
=−

∑
−S≤n≤S

v−n

m− n
,

so

(TRv)−m =
∑

−S≤n≤S

un

m− n
= (TRu)m = (−iµ u)m = iµv−m,

i.e., v is an eigenvector corresponding to the eigenvalue iµ, with v0 = 1. Thus,
v = u (as the eigenspace corresponding to iµ is of dimension 1). �

We finally make the following conjecture. Let u be the eigenvector corresponding
to the largest eigenvalue µ in absolute value. Then

|um |< |un| for all 0≤ m < n ≤ S.

This conjecture is confirmed numerically; in Figure 2, we represent |un| as a function
of n ∈ {−S, . . . , S}, for S = 1000.

From the theoretical point of view, the conjecture also seems reasonable, as
(−1)k (T 2k

R )n,n (see Lemma 2) should decrease as n increases (in absolute value).
If true, this fact would therefore hold in the limit k→∞, which would imply the
conjecture on the eigenvector.
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UNIQUE PRIME DECOMPOSITION RESULTS FOR FACTORS
COMING FROM WREATH PRODUCT GROUPS

J. OWEN SIZEMORE AND ADAM WINCHESTER

We use malleable deformations combined with spectral gap rigidity theory,
in the framework of Popa’s deformation/rigidity theory, to prove unique
tensor product decomposition results for II1 factors arising as tensor prod-
ucts of wreath product factors. We also obtain a similar result regarding
measure equivalence decomposition of direct products of such groups.

Introduction

A major goal of the study of II1 factors is the classification of these algebras based
on the “input data” that goes into their construction. For example, given a countable
discrete group 0, one can construct the associated group von Neumann algebra L(0).
It is then natural to determine the properties/isomorphism class of the algebra based
on those of the group. A significant landmark was the result, due to Connes [1976],
that all group von Neumann algebras, L(0), with 0 amenable i.c.c., are isomorphic.
However, in the nonamenable realm there is a much greater variety, and a striking
classification theory has developed.

One goal of this research is to determine if some algebra, which is constructed in
one manner, can be obtained in some other manner. For example, if we have a II1 fac-
tor that we know to be a free product of two II1 factors, is it also possible for it to be
the tensor product of two (possibly different) II1 factors? Over the last decade many
examples of such so-called “W∗-rigidity” phenomena have been discovered and,
in particular, wreath products, or their ergodic theory counterparts, Bernoulli shifts,
have played a prominent role. In particular, they have led to the first examples [Ioana
et al. 2013; Berbec and Vaes 2012] of W∗-superrigid groups (i.e., groups 0 for which,
for any3, isomorphism of L(0) and L(3) implies isomorphism of 0 and3). For a
more detailed overview of the theory we refer the reader to [Popa 2007; Vaes 2011].

Here we study whether certain factors can be written as tensor products in distinct
ways. Recall that a II1 factor is prime if it is not the tensor product of two other II1

factors. The first example of a prime II1 factor was obtained by Popa [1983], who
showed that the group von Neumann algebra of an uncountable free group is prime.
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Later, Ge [1998] used techniques from Voiculescu’s free probability theory, in
particular the tools of free entropy which were defined and developed in [Voiculescu
1993; 1994; 1996], to prove that all group factors coming from finitely generated
free groups are prime. Note that Ge’s result, unlike Popa’s result mentioned above,
gave the first example of a prime II1 factor that is separable. Using C∗-algebraic
techniques, this was greatly generalized in [Ozawa 2004] to show that all i.c.c.
Gromov hyperbolic groups give rise to prime II1 factors. Also, using his defor-
mation/rigidity theory, Popa [2008] showed that all II1 factors arising from the
Bernoulli actions of nonamenable groups are prime. Further, Peterson [2009] used
his derivation approach to deformation/rigidity to prove that any II1 factor coming
from a countable group with positive first l2-Betti number is also prime. Finally
we should also note that, using Popa’s deformation/rigidity theory, Chifan and
Houdayer [2010] gave many more examples of prime II1 factors coming from
amalgamated free products.

A natural question about prime factors is whether a tensor product of a finite
number of such factors P1, P2, . . . , Pn has a “unique prime factor decomposition”;
i.e., if P1 ⊗ · · · ⊗ Pn = Q1 ⊗ · · · ⊗ Qm , for some m ≥ n and some other prime
factors Q j , forces n=m and Pi unitary conjugate to Qi , modulo some permutation
of indices and modulo some “rescaling” by appropriate amplifications of the prime
factors involved. The first such result was obtained in [Ozawa and Popa 2004], where
a combination of C∗-algebraic techniques from [Ozawa 2004] and intertwining
techniques from [Popa 2006c] is used to show that any II1 factor arising from a
tensor product of II1 factors of the form L(0) with 0 hyperbolic, or more generally
in Ozawa’s class S, has such a unique tensor product decomposition.

In this paper we prove an analogous unique prime factor decomposition result for
tensor products of group von Neumann algebras coming from wreath product groups.
More precisely, let us denote by WRNA the class of “amenable by nonamenable”
wreath product groups, by which we means groups of the form A o H where A is
a nontrivial countable amenable group and H is a countable nonamenable group.
Then we prove the following result:

Theorem 0.1. Let 01 . . . , 0n ∈WRNA and Q1, . . . , Qm be diffuse von Neumann
algebras such that

M = L(01)⊗ · · ·⊗ L(0n)= Q1⊗ · · ·⊗ Qk .

If m ≥ n, then n = m, and after permutation of indices we have that L(01)' Qti
i

for some positive numbers t1, t2, . . . tn whose product is 1.

We can view this as a “W∗-rigidity” theorem in that it gives us large families of
nonisomorphic II1 factors. In particular, picking a specific amenable group, Z, and
a specific nonamenable group, Fn , the free group on n generators, we get the new
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result that

L(Z o Fn)⊗ L(Z o Fn)⊗ L(Z o Fn) 6' L(Z o Fn)⊗ L(Z o Fn).

Of course, the above theorem provides us with many such examples of rigidity
phenomena.

Also we have a natural generalization of this theorem to unique measure-
equivalence decomposition results of finite products of groups in the class WRNA.
Such results were achieved for products of groups of the class Creg in [Monod and
Shalom 2006, Theorem 1.16] and for products of biexact groups in [Sako 2009,
Theorem 4] and, independently, in [Chifan and Sinclair 2010, Corollary C]. We
refer the reader to the last section for the definition of measure equivalence for
groups.

Before stating our second main result we would like to point out that Sako [2009,
Theorem 7] has obtained measure equivalence rigidity results for certain classes
of wreath products; however, his results were not of this type and used techniques
different from the ones that we will employ.

Theorem 0.2. Let 01, . . . , 0n,31, . . . , 3m ∈WRNA be such that 01×· · ·×0n is
measure equivalent to 31× · · ·×3m . We denote this by

01× · · ·×0n 'ME 31× · · ·×3m .

If m ≥ n, then n = m, and after permutation of indices we have that 0i 'ME 3i , 0i

is measure equivalent to 3i .

We prove these results by using deformation/rigidity theory. More precisely, we
use the malleable deformation for wreath product group factors in [Chifan et al.
2012], combined with Popa’s spectral gap rigidity and intertwining by bimodules
techniques.

1. Preliminaries

Intertwining by bimodules. Let us recall Popa’s intertwining by bimodules tech-
nique. This is a crucial tool for locating subalgebras of II1 factors, and is summed
up in the following theorem:

Theorem 1.1 [Popa 2006c]. Let (M, τ ) be a finite von Neumann algebra with
trace τ , and let P , Q ⊂ M be von Neumann subalgebras. Then the following are
equivalent:

(1) There exist nonzero projections p ∈ P , q ∈ Q, a nonzero partial isometry
v ∈ M , and a *-homomorphism ϕ : pPp→ q Qq such that vx = ϕ(x)v for all
x ∈ pPp.
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(2) There is a sub-P-Q-bimodule H⊂ L2(M) that is finitely generated as a right
Q-module.

(3) There is no sequence un ∈U(P) such that

lim
n→∞
‖EQ(xun y)‖2→ 0 for all x, y ∈ M.

If any of the above conditions hold, we say that a corner of P embeds in Q
inside M , denoted by P ≺M Q.

Following [Ozawa and Popa 2010] we have the following definition:

Definition 1.2. Let (M, τ ) be a finite von Neumann algebra with trace τ , and
let P , Q ⊂ M be von Neumann subalgebras. We say that P is amenable over Q
inside M , which we denote by PlM Q, if there is a P-central state, ϕ, on 〈M, eQ〉

such that ϕ|M = τ , where τ is the trace on M .

Let us note that, by [Ozawa and Popa 2010, Theorem 2.1], PlM Q is equivalent
to L2(P) being weakly contained in

⊕
L2(〈M, eQ〉) as P-bimodules. Further, if

P ≺M Q then L2(M) contains a sub-P-Q-module, H, that is finitely generated as
a right Q-module. Therefore, the projection onto this module will commute with
the right action of Q and will have finite trace. Therefore, it will be a vector in
L2(〈M, eQ〉). Further, it will also commute with P , so, if we look at L2(〈M, eQ〉)

as a P-bimodule, it will contain a central vector. Since strong containment implies
weak containment we get the following observation.

Proposition 1.3. Let (M, τ ) be a finite von Neumann algebra with trace τ , and
let P , Q ⊂ M be von Neumann subalgebras. If P ≺M Q then P lM Q.

Deformation of wreath products. Let A and H be countable discrete groups. Now
let us consider the infinite direct sum,

⊕
H A, indexed by H . Now notice that H

acts on
⊕

H A by acting on the index set on the left. The resulting semidirect
product group

⊕
H AoH = A oH is known as the wreath product. Throughout this

paper we will consider trace preserving actions of A o H on a finite von Neumann
algebra N with trace τ , and we consider the resulting crossed product algebra
M = N o A o H .

Now let us describe the construction of a deformation for von Neumann algebras
coming from wreath products as above. This is the same deformation that the
first author used in [Chifan et al. 2012], and is inspired by similar free malleable
deformations in [Popa 2006b; Ioana et al. 2008; Ioana 2007]. We refer to this
previous work for additional discussion.

Let Ã = A ∗Z. If we let u ∈ L( Ã) denote the Haar unitary that generates L(Z)
then we can find a selfadjoint element h ∈ L(Z) such that u = exp(ih). Thus, for
every t ∈R, we define ut .

= exp(i th)∈ LZ. This allows us to define θt ∈Aut(L( Ã))
by θt(x)= ut x(u∗)t . By applying this automorphism in each coordinate we can get
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an automorphism of L( ÃH ). Since the action of H is by permuting the coordinates,
it commutes with θt and so we can extend it to L( Ã oH). If we now declare that the
Haar unitaries in each coordinate do not act on the algebra N , then we can extend
to an automorphism, which we still denote by θt , of M̃ = N o Ã o H .

It is easy to see that limt→0 ‖ut
− 1‖2 = 0, and hence limt→0 ‖θt(x)− x‖2 = 0

for all x ∈ M̃ . Therefore, the path (θt)t∈R is a deformation by automorphisms of M̃ .
Next we show that θt admits a “symmetry”; i.e., there exists an automorphism β

of M̃ satisfying the following relations:

β2
= id, β|M = id|M , βθtβ = θ−t for all t ∈ R.

To see this, we first define β|L AH = id|L AH and then for every h ∈ H we let (u)h
be the element in L ÃH whose h-th entry is u and whose other entries are 1. On
elements of this form we define β((u)h) = (u∗)h , and, since β commutes with
the actions of H on AH , it extends to an automorphism of L( Ã o H) by acting
identically on L(H). Finally, the automorphism β extends to an automorphism
of M̃ , still denoted by β, which acts trivially on A.

Let us note that, with this choice of β, θt is an s-malleable deformation of M̃ in
the sense of [Popa 2006c].

2. Intertwining techniques for wreath products

In this section we prove the necessary intertwining results for II1 factors arising from
wreath product groups that we will need in order to prove our desired uniqueness
of tensor product decomposition.

The following proposition is a relative version of [Chifan et al. 2012, Lemma 4.2],
and will follow a similar proof.

Proposition 2.1. Let N be a finite von Neumann algebra. Let A, H be groups
with A nontrivial amenable and H nonamenable. Let Q ⊂ N o A o H = M be an
inclusion of von Neumann algebras. Assume Q is not amenable over N inside M ;
then Q′ ∩ M̃ω

⊆ Mω.

Proof. As mentioned above this proof follows closely the proof of [Chifan et al.
2012, Lemma 4.2] as well as [Popa 2008, Lemma 5.1] and other similar results in
the literature.

We will prove the contrapositive so let us assume that Q′ ∩ M̃ω * Mω. Then,
proceeding as in [Popa 2008, Lemma 5.1], we see that

L2(Q)≺ L2(M̃)	 L2(M)

as Q-bimodules. Now we decompose L2(M̃)	 L2(M) as an M-bimodule.
One can see that the above M-bimodule can be written as a direct sum of M-

bimodules M η̃s M‖·‖2 , where the cyclic vectors η̃s correspond to an enumeration of
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all elements of ÃH whose nontrivial coordinates start and end with nonzero powers
of u.

Next, for every s, we denote by ηs the element of AH that remains from η̃s after
deleting all nontrivial powers of u. Also for every s let 1s ⊂ H be the support
of η̃s and observe that if StabH (η̃s) denotes the stabilizing group of η̃s inside H
then we have StabH (η̃s)(H \1s)⊂ H \1s .

Hence we can consider the von Neumann algebra

Ks = N o (A oH\1s StabH (η̃s))

and, using similar computations to those in [Popa 2008, Lemma 5.1], one can easily
check that the map x η̃s y → xηseKs y implements an M-bimodule isomorphism
between M η̃s M‖·‖2 and L2(〈M, eKs 〉).

Therefore, as M-bimodules, we have the isomorphism

L2(M̃)	 L2(M)=
⊕

L2(〈M, eKs 〉).

Thus we can get the weak containment of Q-bimodules

L2(Q)≺
⊕

L2(〈M, eKs 〉).

Notice that, since1s is finite, and the action of H on itself is free, then StabH (η̃s)

is finite for all s. Also, since A is an amenable group we have that Ks lN N for
all s. Thus for all s we have the weak containment of Ks-bimodules

L2(Ks)≺
⊕

L2(〈Ks, eN 〉)'
⊕

L2(Ks)⊗N L2(Ks).

Now if we induce to M-bimodules and restrict to Q-bimodules and use continuity
of weak containment under induction and restriction we get the inclusions of Q-
bimodules

L2(Q)≺
⊕

L2(〈M, eKs 〉)'
⊕

L2(M)⊗Ks L2(Ks)⊗Ks L2(M)

≺
⊕

L2(M)⊗Ks L2(Ks)⊗N L2(Ks)⊗Ks L2(M)

'
⊕

L2(M)⊗N L2(M)'
⊕

L2(〈M, eN 〉).

Thus QlM N . �

To state the next result let us recall the following standard definition.

Definition 2.2. Given an inclusion of von Neumann algebras P⊂M the normalizer
of P inside M is the set

NM(P)= {u ∈U(M) : u Pu∗ = P}.

We say that, for such an inclusion, P is a regular subalgebra if NM(P)′′ = M .

We finish this section with a theorem that allows us to locate regular subfactors
with large commutant.
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Theorem 2.3. Let N be a finite von Neumann algebra. Let A and H be groups
with A nontrivial amenable and H nonamenable. Let Q ⊂ N o A o H = M be a
von Neumann subalgebra that is not amenable over N. Let P = Q′ ∩M. If P is a
regular subfactor of M then P ≺M N.

Proof. Applying Proposition 2.1 and following the proof of [Chifan et al. 2012,
Theorem 4.1] we see that the deformation θt converges uniformly on the unit ball
of P , and thus by [Chifan et al. 2012, Theorem 3.1] we have that P ≺M N o AH

or P ≺M N o H .
Following the same argument as [Chifan et al. 2012, Theorem 4.1], if we assume

that P ≺M N o AH and P ⊀M N , then we get Q ≺M N o A o H0 for some finite
subgroup H0 ⊂ H . Since A is amenable and H0 is finite then N o A o H0lM N .
So, since Q ≺M N o A o H0, then, by Proposition 1.3, we have QlM N o A o H0.
Then by [Ozawa and Popa 2010, part 3 of Proposition 2.4] we have that QlM N ,
contradicting our assumption.

Thus P ≺M N o H . Therefore, by Theorem 1.1, there exist nonzero projections
p ∈ P , q ∈ N o H , a nonzero partial isometry v ∈ M , and a *-homomorphism
ϕ : pPp→ q(NoH)q such that vx =ϕ(x)v for all x ∈ pPp. Furthermore we have
that v∗v = p and vv∗ = q̂ ∈ ϕ(pPp)′ ∩ q Mq . Also, by [Popa 2006c, Lemma 3.5]
we know that pPp is a regular subalgebra of pMp.

Then for all u ∈ NpMp(pPp) let us calculate

ϕ(x)vuv∗ = vxuv∗ = vu(u∗xu)v∗ = vuv∗v(u∗xu)v∗

= vuv∗ϕ(u∗xu)vv∗ = vuv∗ϕ(u∗xu).

Now assume that P ⊀M N ; then by [Chifan et al. 2012, part (3) of Lemma 2.4]
we have that vuv∗ ∈ N o H . Since pPp is regular in pMp we would then get
that M ≺M N o H . However, this is impossible since the fact that A is nontrivial
implies that [M : N o H ] =∞. �

3. Proof of main theorems

In this section we prove our main theorems. Our main technical tool is the following,
which is [Popa and Vaes 2011, Proposition 2.7]. Before we state the result let us
recall that two von Neumann subalgebras M1, M2 ⊂ M of a finite von Neumann
algebra M are said to form a commuting square if EM1 EM2 = EM2 EM1 , where EMi

denotes the unique trace-preserving conditional expectation from M onto Mi .

Theorem 3.1 [Popa and Vaes 2011]. Let (M, τ ) be a tracial von Neumann algebra
with von Neumann subalgebras M1, M2 ⊂ M. Assume that M1 and M2 form a
commuting square and that M1 is regular in M. If a von Neumann subalgebra
Q ⊂ pMp is amenable relative to both M1 and M2, then Q is amenable relative to
M1 ∩M2.
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Notice that this theorem allows us to eliminate the case where Q is amenable
over M1. More specifically we have the following observation.

Proposition 3.2. Let G1 and G2 be groups. Let A be a finite amenable von Neu-
mann algebra with an action of G1×G2, and let Q⊂ AoG1×G2 be a nonamenable
subalgebra. Then there exists an i such that Q is not amenable over AoGi .

Proof. If we let A o Gi = Mi then it is easy to see that M1, M2 ⊂ M form a
commuting square. So if Q is amenable over both Mi we would have that it would
be amenable over the intersection, which is A. Since A is amenable this would
imply that Q is amenable. �

Finally combining the above results we can prove Theorem 0.1.

Proof. First let us mention that, for the case n= 1, this is equivalent to the primeness
of II1 factors arising from Bernoulli shifts, which was proven in [Popa 2008].

Now, since we have that 0i ∈WRNA, there is a nontrivial amenable group Ai

and a nonamenable group Hi such that 0i = Ai o Hi . Let us note, since the Ai are
nontrivial and Hi are infinite, that L(Ai oHi ) and L(A1 oH1)⊗· · ·⊗ L(Ai−1 oHi−1)

are II1 factors. Thus we must also have that Q1 ⊗ · · · ⊗ Qm is as well and thus
each Qi is a II1 factor.

Now notice that we can write M as M = Nioσ Ai oHi , where Ni = L(A1 oH1)⊗

· · ·⊗ L(Ai−1 oHi−1)⊗ L(Ai+1 oHi+1)⊗· · ·⊗ L(An oHn) and σ is the trivial action.
Therefore, since we can view M as a crossed product by a wreath product group,
we can use the above intertwining statements to determine the location of algebras
which are not amenable over Ni for some i .

In order to proceed in this manner, let us define

Q̂i = (Qi )
′
∩M = Q1⊗ · · ·⊗ Qi−1⊗ Qi+1⊗ · · ·⊗ Qk .

Since each Hi is nonamenable this implies, in particular, that there is a j such
that Q j is nonamenable. Moreover, by Proposition 3.2, where we let A = C, we
know that there is an i such that Q j is not amenable over Ni . With this information
we can then apply our results above to finish the proof.

Specifically, since Q̂ j is a regular subalgebra of M , then by Theorem 2.3 we get
that Q̂ j ≺M N .

We complete the argument by following Proposition 12 and the induction argu-
ment of the proof of Theorem 1 in [Ozawa and Popa 2004]. �

Before we prove our final theorem let us recall the following definition:

Definition 3.3. We say that two group 0 and3 are measure equivalent, 0'ME3, if
there is a diffuse abelian von Neumann algebra, A, and free ergodic trace preserving
actions, σ , ρ, of 0 and 3, respectively, such that Aoσ 0 ' (Aoρ 3)t , and the
isomorphism takes A onto At .
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With this definition we can now prove our final result (Theorem 0.2).

Proof. Our argument here follows closely a similar argument in the proof of
[Chifan and Sinclair 2010, Corollary C]. For this reason we sketch the proof here
but refer the reader to the cited work for any remaining details. Let 01, . . . , 0n ,
31, . . . , 3m ∈WRNA. Then there are nontrivial amenable groups Ai and B j as
well as nonamenable groups Hi and G j such that 0i = Ai o Hi and 3 j = B j oG j .
Note, for all i and j , 0i and 3 j are nonamenable.

Now we know that there are actions on 0 = A1 o H1× · · ·× An o Hn y L∞(X)
and 3 = K1× · · · × Km y L∞(Y ) such that M1 = L∞(X)o0 is isomorphic to
M2 = (L∞(Y )o3)t via an isomorphism φ : M1→ M2 such that φ(L∞(X)) =
(L∞(Y ))t . Note that the intertwining statements which we will use remain true
under amplifications; thus we may assume that t = 1.

Following [ibid.] we fix the following notation. Given a subset F ⊂ {1, . . . , n},
we denote by 0̂F the subgroup of 0 = A1 o H1×· · ·× An o Hn which consists of all
elements with trivial i-th coordinate, for all i ∈ F , and similarly for 3. Also for
any subset F ⊂ {1, . . . , n} and K ⊂ {1, . . . ,m} we define M̂1,F = L∞(X)o 0̂F

and M̂2,K = L∞(Y )o 3̂K .
As in [ibid.] we will show that for any subset F ⊂ {1, . . . , n} there is a subset

K ⊂ {1, . . . ,m} with |F | = |K | such that

(1) φ(L(0̂F ))≺ M̂2,k .

We will prove this via induction on |F |. For |F | = 1 we are considering L(0̂i ).
As in the proof of the previous theorem, since the φ(L(0i )) are nonamenable,
there is a j such that φ(L(0i )) is nonamenable over M̂2,{ j}. Now by the proof of
Theorem 2.3 this implies that φ(L(0i ))

′
∩M2 ≺ M̂2,{ j}oG j , and, since we have

that φ(L(0̂i ))⊂ φ(L(0i ))
′
∩M2, we get that φ(L(0̂i ))≺ M̂2,{ j}oG j .

Thus by [Chifan et al. 2012, Lemma 2.2] we have that φ(L∞(X) o 0̂i ) ≺

M̂2,{ j} o G j . Now since φ(L∞(X) o 0̂i ) is a regular subalgebra we have by
Theorem 2.3 that φ(L∞(X)o 0̂i ) ≺ M̂2,{ j}. This proves the base case and the
inductive case follows exactly as in [Chifan and Sinclair 2010].

Again following [ibid.] we can apply the same logic to φ−1 to get that for each
i ∈ F there is a ρ(i) ∈ K such that φ(L∞(X)o 0̂i )≺ M̂2,{ j} and for each ρ(i) ∈ K
there is a π(ρ(i)) ∈ F with

φ(L∞(X)o0i )≺ L∞(Y )o3ρ(i)
and

φ−1(L∞(y)o3ρ(i))≺ L∞(X)o0π(ρ(i)).

Thus we have
φ(L∞(X)o0i )≺ L∞(X)o0π(ρ(i)),
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and so we have that π and ρ are permutations. Thus using [Ioana et al. 2008,
Proposition 8.4] we get unitaries ui such that

(2) uiφ(L∞(X)o0i )u∗i = L∞(Y )o3ρ(i).

This further gives that φui = Ad(ui ) ◦ φ is an isomorphism from L∞(X)o0i

onto L∞(Y )o3ρ(i) which satisfies

φui (a)ui = uiφ(a)

for all a ∈ L∞(X).
Now we would like to finish the proof by showing that we can map the Car-

tan subalgebras onto each other. Toward this goal let us consider L∞(Y ) o
(3ρ(i) × 3̂ρ(i)) = (L∞(Y )o3ρ(i))o 3̂ρ(i). Then we can consider the Fourier
decomposition u =

∑
λ∈3̂ρ(i)

xλvλ with xλ ∈ L∞(Y )o3ρ(i) and, using the above
equation, there exists a nonzero element xλ ∈ L∞(Y ) o 3ρ(i) such that for all
a ∈ L∞(X) we have

φui (a)xλ = xλσλ(φ(a)),

where σλ represents the actions of vλ on L∞(Y )o3ρ(i).
Now we can take the polar decomposition of xλ to get a partial isometry wλ such

that

(3) φui (a)wλ = wλσλ(φ(a)).

Notice that the left side of the above equation is φui (L
∞(X)) while the right side

is φ(L∞(X))= L∞(Y ). Thus (3) implies that we know φui (A)≺L∞(Y )o3ρ(i) L∞(Y ).
Since they are both Cartan subalgebras then by [Popa 2006a, Theorem A2] we can
extend this to unitary conjugacy and thus get our result. �
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ON VOLUME GROWTH OF GRADIENT
STEADY RICCI SOLITONS

GUOFANG WEI AND PENG WU

In this paper we study volume growth of gradient steady Ricci solitons. We
show that if the potential function satisfies a uniform condition, then the
soliton has at most euclidean volume growth.

1. Introduction

(Mn, g) is a gradient Ricci soliton if there is a smooth function f : M → R and
constant λ ∈ R such that

(1-1) Ric+Hess f = λg.

We refer to f as the potential function. The soliton is called shrinking, steady, and
expanding when λ > 0, λ= 0, and λ < 0 respectively.

Ricci solitons are self-similar solutions of the Ricci flow, and play an important
role in the study of singularity formation. They are also natural extensions of
Einstein manifolds, and special cases of smooth metric measure spaces.

Volume growth of gradient Ricci solitons is of particular interest to mathemati-
cians. Estimates of the potential functions plays an important role in the study of
volume growth. Hamilton [1995] proved the following identity for gradient Ricci
solitons:

R+ |∇ f |2− 2λ f =3,

where 3 is a constant, and R is the scalar curvature.
For gradient shrinking Ricci solitons, the answer is complete. Perelman [2003]

and Cao and Zhou [2010] proved that f always grows quadratically. Cao and Zhou
[2010] further proved that any gradient Ricci shrinking soliton has at most euclidean
volume growth. Recently, Munteanu and Wang [2012] proved that any noncompact
gradient Ricci shrinking soliton has at least linear volume growth.

For gradient steady Ricci solitons, B. L. Chen [2009] proved that R ≥ 0. Hence,
3≥ 0, and equal to zero if and only if f is constant and (M, g) is Ricci flat. When

MSC2010: 53CXX.
Keywords: Ricci solitons, volume growth.
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3> 0 we can assume 3= 1 after scaling; that is,

(1-2) R+ |∇ f |2 = 1.

Combined with the trace of the steady Ricci soliton equation R+1 f = 0, we have

(1-3) 1 f − |∇ f |2 =−1.

Therefore, f has no local minimum. Equation (1-2) and R ≥ 0 give |∇ f | ≤ 1.
Namely, f decays at most linearly.

Cao and Chen [2012] proved that f decays linearly when Ricci curvature is
positive, and R attains its maximum at some point. However, the simple example
of R2 with the canonical metric g0 and f (x)= x1 shows that this is not the case;
f is constant along the x2 direction. Note that the Riemannian product of any
two steady gradient Ricci solitons is still a steady gradient Ricci soliton. Hence,
a steady gradient Ricci soliton multiplied with a trivial one ( f is a constant) will
have constant direction. Though one can take the product of two shrinking ones,
all trivial shrinking ones are compact, so they will not give a constant direction
by taking a product. Munteanu and Sesum [2013] and Wu [2013] independently
showed that the infimum of f does decay linearly. In fact,

(1-4) −r ≤ inf
y∈∂B(x,r)

f (y)− f (x)≤−r +
√

2n(
√

r + 1), r � 1.

In particular, lim infy→∞ R(y) = 0. See also [Fernández-López and García-Río
2011; Chow et al. 2011].

We note that among all known examples of steady gradient Ricci solitons, the
infimum of f is like −r + O(ln r). See the survey article [Cao 2010] for a list of
examples. One naturally asks if one can improve the second order term in (1-4)
from
√

r to ln r . We show this is indeed the case for a large class of steady gradient
Ricci solitons. To study the second order term, write the potential function in polar
coordinates:

f (r, θ)=−r +φ(r, θ),

where r(·) = d(x, ·) for some x ∈ Mn , θ ∈ Sn−1. Without loss of generality, we
assume φ(0, θ)= 0 by adding a constant to f . Since |∇ f |≤ 1, we have |∂ f/∂r |≤ 1,
so f (r)≥−r , φ(r)≥ 0 and φ(r, θ) are nondecreasing in r for any fixed θ . We show
that the estimate (1-4) can be improved to ln r if φ in one direction is comparable
to the minimum of φ among all spherical directions for all large r .

Theorem 1.1. Let (Mn, g, f ) be a complete gradient steady Ricci soliton satisfying
(1-2). Assume that there exist θ0 ∈ Sn−1, and constants C1 ≥ 0,C2 ≥ 0 such that

(1-5)
∫ r

0

(
φ(r, θ0)−φ(t, θ0)

)
dt ≤ C1 min

θ∈Sn−1

∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt +C2r
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for sufficiently large r . Then for any x ∈ Mn , there exist constants C ≥ 0 and r0 > 0
such that for r ≥ r0,

(1-6) −r ≤ inf
y∈∂B(x,r)

f (y)− f (x)≤−r +
(n

2
C1+C2

)
ln r +C.

Remark 1.2. All known examples of gradient steady Ricci solitons satisfy the
condition (1-5). We suspect that the estimate (1-6) holds for all gradient steady
Ricci solitons.

In [Munteanu and Sesum 2013], it was proven that any gradient steady Ricci
soliton has at least linear volume growth, and at most a growth rate of e

√
r . We

show that if the potential function satisfies a uniform condition in the spherical
directions, then the gradient steady Ricci soliton has at most euclidean volume
growth.

Theorem 1.3. Let (Mn, g, f ) be a complete gradient steady Ricci soliton satisfying
(1-2). Assume that there exist constants C1,C2 ≥ 0 such that

(1-7) max
θ∈Sn−1

∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt ≤C1 min

θ∈Sn−1

∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt+C2r

for sufficiently large r . Then for any x ∈ Mn , there exist constants C ≥ 0 and r0 > 0
such that for any r ≥ r0,

(1-8) −r ≤ f (y)− f (x)≤−r +C ln r

for any y ∈ ∂B(x, r). Moreover, the soliton has at most euclidean volume growth;
that is, for any x ∈ Mn there exists r0 > 0, and for any r ≥ r0,

Vol B(x, r)≤ Crn.

If , in addition, φ(r)≥ δ ln r for large r , then

Vol B(x, r)≤ Crn−δ.

Remark 1.4. (1) If φ increases uniformly along all spherical directions; that is,
maxθ ∂φ/∂r ≤ C minθ ∂φ/∂r , where θ ∈ Sn−1, then φ satisfies (1-7) with C1 = C
and C2 = 0.

(2) Theorem 1.3 can be considered an analogue of the volume growth theorem of
[Cao and Zhou 2010], valid for gradient shrinking Ricci solitons. As the potential
function for such solitons automatically satisfies a uniform condition, here too we
need to impose a uniform condition for gradient steady Ricci solitons.

(3) If the soliton is rectifiable (see [Petersen and Wylie 2009]) — i.e., f is the
distance function from a set — then φ satisfies (1-7) with C1 = 1 if the set is
bounded (this is the case with all nonproduct examples).
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To prove the results, the following estimate for φ, which holds for all gradient
steady Ricci solitons, is the key:

Proposition 1.5. Let (Mn, g, f ) be a complete gradient steady Ricci soliton satis-
fying (1-2). Then

(1-9) min
y∈∂B(x,r)

∫ r

0

(
φ(y)−φ(t)

)
dt ≤

n
2

(
r +
√

r
)
+ o

(
1
r

)
.

This estimate improves the one in [Wu 2013]. In the next section we derive a
volume comparison for the solitons by adapting the volume comparison for smooth
metric measure spaces in [Wei and Wylie 2009]. Then we prove Proposition 1.5
by combining this with (1-3). In Section 3 we prove the main theorems using this
estimate and an ODE.

2. The preliminary estimate

In this section we prove Proposition 1.5 by applying a weighted volume comparison
argument for smooth metric measure spaces as in [Wei and Wylie 2009; Wu 2013].

Recall that a smooth metric measure space is a triple (Mn, g, e− f dvolg), where
(Mn, g) is a smooth Riemannian manifold, and f : Mn

→ R is a smooth function.
Write the volume element in polar coordinates dvol = J (r, θ) dr dθ . Define the
weighted volume element as J f (r, θ) = e− f J (r, θ) and the weighted volume as
Vol f B(x, r)=

∫
B(x,r) e− f dvol.

Wei and Wylie [2009] obtained the following f -volume comparison theorem for
smooth metric measure spaces:

Theorem 2.1 ( f -volume comparison). Suppose (Mn, g, e− f dvol) is a smooth
metric measure space with Ric f ≥ (n − 1)H. Fix x ∈ M. If | f | ≤ 3, then for
R ≥ r > 0 (and R ≤ π/4

√
H if H > 0),

Vol f B(x, R)
Vol f B(x, r)

≤
V n+43

H (BR)

V n+43
H (Br )

where V n
H (Br ) is the volume of the ball of radius r in Mn

H (the simply connected
model space of dimension n with constant sectional curvature H ).

One observes that the dimension of the model space in the volume comparison
depends on the potential function f . Further investigation of the dimension will
lead to Proposition 1.5.

Denote the f -mean curvature by m f = (ln J f )
′. For 0< r1≤ r2, let A(x, r1, r2)=

{y|r1 ≤ d(x, y)≤ r2} be the annulus, and

a = min
y∈A(x,r1,r2)

2
r(y)2

∫ r(y)

0

(
φ(y)−φ(t)

)
dt.
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Clearly a ≥ 0. By (1-4), we have a ≤ C/
√

r1 for r1� 1. For the rest we assume
r1� 1 and therefore we can assume a < 1.

Proposition 2.2. For a gradient steady Ricci soliton, we have

m f (r, θ)≤
n− 1

r
+ 1−

2
r2

∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt ≤

n− 1
r
+ 1,(2-1)

Vol f ∂B(x, r2)

Vol f A(x, r1, r2)
≤

n/r2+ 1− a
1− (r1/r2)n+(1−a)r2

.(2-2)

Proof. For a smooth metric space (Mn, g, f ) with Ric f ≥ 0, recall the following
estimate for m f from [Wei and Wylie 2009, (3.19)]:

m f (r, θ)≤
n− 1

r
+

2
r2

∫ r

0

(
f (t)− f (r)

)
dt.

Plugging in f =−r +φ gives (2-1).
Now let

m(r)=


n−1

r
+ 1 if r ≤ r1,

n−1+(1−a)r2
r

if r1 < r ≤ r2.

Then

(2-3) m f (r)≤ m(r) for 0< r ≤ r2.

Let A(r) = e
∫ r

0 m(t) dt and V (r0, r) =
∫ r

r0
A(t) dt . From the mean curvature

relation (2-3), we have (A f /A)′ ≤ 0; therefore

Vol f ∂B(x, r2)

Vol f A(x, r1, r2)
≤

A(r2)

V (r1, r2)
.

We compute

A(r2)

V (r1, r2)
=

e
∫ r2

0 m(t) dt∫ r2
r1

e
∫ s

0 m(t) dt ds
=

e
∫ r2

r1
m(t) dt∫ r2

r1
e
∫ s

r1
m(t) dt ds

=
(r2/r1)

n−1+(1−a)r2∫ r2
r1
(s/r1)n−1+(1−a)r2 ds

=
n/r2+ 1− a

1− (r1/r2)n+(1−a)r2
.

This gives (2-2). �

Proof of Proposition 1.5. Integrating (1-3) and using |∇ f | ≤ 1 we have, for any
x ∈ M , ∫

B(x,r)
1 · e− f dvol=−

∫
B(x,r)

(1 f − |∇ f |2) · e− f dvol

=−

∫
∂B(x,r)

∂ f
∂n

e− f dvol≤
∫
∂B(x,r)

e− f dvol.
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Therefore,

(2-4)
Vol f ∂B(x, r)
Vol f B(x, r)

≥ 1.

Combining (2-2) and (2-4) we have

a ≤
n
r2
+

(
r1

r2

)n+(1−a)r2

.

Let r1 = r and r2 = r +
√

r . Then r1/r2 = (1+ 1/
√

r)−1. When r is large,(
1+

1
√

r

)−(n+(1−a)(r+
√

r))

= O
(
e−(1−a)

√
r).

Therefore, for all r large enough,

a = min
y∈A(x,r,r+

√
r)

2
r(y)2

∫ r(y)

0

(
φ(y)−φ(t)

)
dt ≤

n
r +
√

r
+ O

(
e−(1−a)

√
r).

Suppose the minimum above is attained at y0= (r0, θ1) with r ≤ r0 ≤ r+
√

r . Then

min
y∈∂B(x,r)

∫ r

0

(
φ(y)−φ(t)

)
dt ≤

∫ r0

0

(
φ(y0)−φ(t)

)
dt

≤
r2

0

2

(
n

r +
√

r
+ O

(
e−(1−a)

√
r))

≤
n
2

(
r +
√

r
)
+ o

(
1
r

)
. �

3. Proof of main results

Proof of Theorem 1.1. From (1-9) and (1-5), we have

(3-1)
∫ r

0

(
φ(r, θ0)−φ(t, θ0)

)
dt ≤

nC1

2

(
r +
√

r
)
+C2r + o

(
1
r

)
.

For simplicity, when there is no confusion we omit θ0 in the function. Let 8(r)=∫ r
0 φ(t) dt ; then (3-1) can be written as

(3-2) 8′(r)−
1
r
8(r)≤

nC1

2
+C2+ O

(
1
√

r

)
.

Multiplying by the integrating factor 1/r and integrating from some fixed t0� 1 to
r , we get

8(r)
r
≤

(
nC1

2
+C2

)
ln r +C3.
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So, we have

φ(r, θ0)=8
′(r, θ0)≤

8(r, θ0)

r
+

nC1

2
+C2+ O

(
1
√

r

)
≤

(
nC1

2
+C2

)
ln r +C4

f (r, θ0)=−r +φ(r, θ0)≤−r +
(

nC1

2
+C2

)
ln r +C4.

This gives (1-6). �

Proof of Theorem 1.3. From (1-9) and (1-7), we have∫ r

0

(
φ(r, θ)−φ(t, θ)

)
dt ≤

nC1

2

(
r +
√

r
)
+C2r + o

(
1
r

)
for all θ ∈ Sn−1. Therefore, (1-6) holds for all y. Namely, for all y ∈ ∂B(x, r),

−r ≤ f (y)− f (x)≤−r +
(

nC1

2
+C2

)
ln r +C4.

By (2-1), for all r > 0,

∂

∂r
ln J = m f (r)+〈∇ f,∇r〉

≤
n− 1

r
+ 1−

2
r
φ(r)+

2
r2

∫ r

0
φ(t) dt +〈∇ f,∇r〉.

Integrating from 1 to r and performing integration by parts for the double integral,
we get

(3-3) ln J (r)− ln J (1)

≤ (n− 1) ln r + (r − 1)−
∫ r

1

2
s
φ(s) ds+

(
−

2
s

∫ s

0
φ(t) dt

) ∣∣∣r
1

+

∫ r

1

2
s
φ(s) ds+ f (r)− f (1)

= (n− 1) ln r +φ(r)−
2
r

∫ r

0
φ(t) dt + 2

∫ 1

0
φ(t) dt − f (1)− 1

= (n−1) ln r−φ(r)+ 2
(
φ(r)−

1
r

∫ r

0
φ(t) dt

)
+ 2

∫ 1

0
φ(t) dt− f (1)−1.

Using (3-2) we have, for large r ,

ln J (r)≤ (n− 1) ln r −φ(r)+C ≤ (n− 1) ln r +C.

Hence,
J (r)≤ eC e(n−1) ln r

= eCrn−1,
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and the volume of a geodesic ball centered at x satisfies

VolB(x, r)≤ C ′rn.

If further φ(s)≥ δ ln s, then we have

J (r)≤ Crn−1 exp
(
−φ(r)

)
≤ Crn−δ−1,

therefore the volume growth is strictly less than euclidean volume growth:

VolB(x, r)≤ Crn−δ. �

For general gradient steady Ricci solitons, the estimate of a potential function
can be reduced to the following:

Question 3.1. Suppose φ is nondecreasing along any minimal geodesic starting
from x . Assume that for sufficiently large r , infy∈∂B(x,r) φ(y)≤ C

√
r , and

inf
y∈∂B(x,r)

∫ r

1

(
φ(y)−φ(γy(t)

)
dt ≤

nr
2
.

Does the following hold?

inf
y∈∂B(x,r)

φ(y)≤ C ln r

Remark 3.2. From (3-3), we see that if

−r ≤ f (y)− f (x)≤−r +C ln r

for y ∈ ∂B(x, r), then for any x ∈ Mn , there exists r0 > 0 such that for any r ≥ r0,

VolB(x, r)≤ C ′rn+C .
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CLASSIFICATION OF MODULI SPACES
OF ARRANGEMENTS OF NINE PROJECTIVE LINES

FEI YE

In the study of line arrangements, searching for minimal examples of line
arrangements whose fundamental groups are not combinatorially invariant
is a very interesting and hard problem. It is known that such a minimal
arrangement must have at least 9 lines. In this paper, we extend the num-
ber to 10 by a new method. We classify arrangements of 9 projective lines
according to the irreducibility of their moduli spaces and show that fun-
damental groups of complements of arrangements of 9 projective lines are
combinatorially invariant. The idea and results have been used to classify
arrangements of 10 projective lines.

1. Introduction

A hyperplane arrangement A= {L1, L2, . . . , Ln} in CPr is a finite collection of
hyperplanes. We call M(A) = CPr

\ (
⋃

L∈A L) the complement of A. The set
L(A) =

{⋂
i∈S L i | S ⊆ {1, 2, . . . , n}

}
partially ordered by reverse inclusion is

called the intersection lattice of A. Let A1 and A2 be two arrangements of n
hyperplanes. We say that intersection lattices L(A1) and L(A2) are isomorphic,
denoted by L(A1)∼ L(A2), if there is a permutation φ of the set {1, 2, . . . , n} such
that

dim
⋂
i∈S

Gi∈A1

Gi = dim
⋂

j∈φ(S)
H j∈A2

H j

for any nonempty subset S⊆{1, 2, . . . , n}. Two arrangements are lattice isomorphic
if their lattices are isomorphic. In this paper, we only consider line arrangements in
CP2.

An essential topic in hyperplane arrangements theory is to study the interaction be-
tween topology of complements and combinatorics of intersection lattices. Naturally
enough, one may ask how close topology and combinatorics of a given arrangement

This work was partially supported by the Oswald Veblen Fund and by the Minerva Foundation of
Germany.
MSC2010: 14N20, 32S22, 52C35.
Keywords: line arrangements, moduli spaces.

243

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2013.265-1
http://dx.doi.org/10.2140/pjm.2013.265.243


244 FEI YE

are related. Two arrangements, A1 and A2, are homeomorphic equivalent if there is
a homeomorphism between their complements. A more concrete question is: how
close are lattice isomorphism and homeomorphic equivalence to being in one-to-one
correspondence?

The deepest theorem in the theory of line arrangement in projective 2-dimensional
space is that of Jiang and Yau [1998], which asserts that the intersection lattice of
the line arrangement is a topological invariant. It is natural to ask to what extent the
converse of the Jiang–Yau theorem is true. Jiang and Yau [1994], and subsequently
Wang and Yau [2005], have shown that the converse statement is also true for a
large class of line arrangements. Therefore, the Jiang–Yau theorem initiates a new
research direction: Can one find a Zariski pair of line arrangements; that is, a pair
of arrangements which are lattice isomorphic but not homeomorphic equivalent.

A pair of arrangements which are lattice isomorphisms but not homeomorphic
equivalent is called a Zariski pair. Our definition is stronger than the definition
introduced by Artal [1994], which we shall call weak Zariski pairs (see [Artal et
al. 2008] for a survey on Zariski pairs). The first Zariski pair of arrangements was
constructed by Rybnikov [2011]. Each arrangement in Rybnikov’s example consists
of 13 lines and 15 triple points. Artal et al. [2005] provided another (weak) Zariski
pair of two arrangements H+ :=C+∪{N+} and H− :=C−∪{N−}, where C+, C−

are arrangements (Figure 7) extending Falk–Sturmfels arrangements (Figure 2),
and N+, N− are lines passing through a triple point and a double point of C±. The
proof is based on the observation that there is no order-preserving homeomorphism
between (P2,C+) and (P2,C−). In the contrary direction, Garber, Teicher, and
Vishne [Garber et al. 2003] proved that there is no Zariski pair of arrangements of
up to 8 real lines which covered the result of Fan [1997] on arrangements of 6 lines.
This result was recently generalized to arrangements of 8 complex lines by Nazir
and Yoshinaga [2012].

A natural question is: what is the minimal number of lines of a Zariski pair of
line arrangements?

On the other hand, it was Jiang and Yau [1994] who first observed that the
statement “two lattice isotopy line arrangements (that is, they are connected by
a one-parameter family with constant intersection lattice) have diffeomorphic
complements” follows trivially from Teissier’s numerical characterization of the
Whitney condition. In [Jiang and Yau 1994] and [Wang and Yau 2005], the authors
found large classes of line arrangements, called nice arrangements and simple
arrangements, whose intersection lattices determine the topology of the comple-
ments. Nazir and Yoshinaga [2012] found new classes of line arrangements whose
intersection lattices determine the topology of the complements. Unlike nice and
simple arrangements whose intersection lattices have special properties, Nazir and
Yoshinaga’s new classes require that all intersection points with multiplicity at
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least 3 be in special positions. This makes their results more useful for studying
arrangements of a few lines. Indeed, in their paper they classify arrangements of 8
lines and give a list of classes of arrangements of 9 lines.

In this paper, we introduce new ideas to classify arrangements of lines. We prove
that Nazir and Yoshinaga’s list on the classification of arrangements of 9 lines is
complete. As a corollary, we conclude that there is no Zariski pair of arrangements
of 9 lines. The idea and results of this paper have been used to classify moduli
spaces of arrangements of 10 projective lines (see [Amram et al. 2012]).

The paper is organized as follows: In Section 2, we recall results in Nazir and
Yoshinaga. In Section 3, we prove that their list of classes of arrangements of 9
lines is complete. In Section 4, we consider the example of arrangements of 10
lines C± and give an explicit diffeomorphism between the complements M(C±).

2. Simple C≤3 line arrangements

Consider the dual space (CP2)∗ of the projective space CP2. A line arrangement
A={L1, L2, . . . , Ln} can be viewed as an n-tuple of points (L∗1, L∗2, . . . , L∗n) in the
product of the dual spaces ((CP2)∗)n . We define the moduli space of arrangements
with the fixed lattice L(A) as

MA =
{B ∈ ((CP2)∗)n | L(B)∼ L(A)}

PGL3(C)
⊆
((CP2)∗)n

PGL3(C)
.

We say that a singular point P of L1 ∪ L2 ∪ · · · ∪ Ln is a multiple point of A if the
multiplicity of P is at least 3.

The following definition is a combination of Nazir and Yoshinaga’s original
definitions of C1, C2, and simple C3 arrangements.

Definition 2.1. A line arrangement is called C≤3 if all the multiple points are on at
most three lines; say, L1, L2, and L3. A line arrangement is called simple C≤3 if it
is C≤3, and one of the following condition holds:

(i) L1 ∩ L2 ∩ L3 6=∅, or

(ii) one of L1, L2 and L3 contains at most one more multiple point apart from the
possible multiple points L1 ∩ L2, L2 ∩ L3, and L1 ∩ L3.

Here are some examples of arrangements which are not simple C≤3:

Example 2.2. A Mac Lane arrangement (see Figure 1) consists of eight lines and
eight triple points such that each line passes through exactly three triple points. It
is not hard to check that the moduli space of Mac Lane arrangements consists of
two points. Representatives of the two points can be defined by the equation

xy(x − z)(y− z)(x − y)(x − ε±z)(y− ε±z)(−ε∓x − y+ z)= 0,
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L1

L2

L3

L4 L5 L6
L7

L8

Figure 1. A Mac Lane arrangement.

where ε± = 1
2(1±

√
−3) are the roots of x2

− x + 1= 0.
Since each line passes through three triple points, there are at most seven triple

points on three lines. Thus, Mac Lane arrangements cannot be simple C≤3.

Example 2.3. Falk–Sturmfels arrangements are the arrangements of nine lines with
one quadruple point, eight triple points, and one line passing through four triple
points (Figure 2). We denote them by

FS± = {L±i , K±i , H±9 , i = 1, 2, 3, 4},

where the lines are defined by

L±1 : x = 0, L±2 : x = γ±(y− z), L±3 : y = z, L±4 : x + y = z,

K±1 : x = z, K±2 : x = γ±y, K±3 : y = 0, K±4 : x + y = (γ±+ 1)z,

H±9 : z = 0,

with γ± = 1
2(1±

√
5) the roots of x2

− x − 1 = 0. It is known (see [Nazir and

K+3

L+3

L+2

L+1 K+1

K+2
L+4

K+4

FS+

K−3

L−3

L−2 L−1 K−1

K−2

L−4

K−4

FS−

Figure 2. Falk–Sturmfels arrangements.



CLASSIFICATION OF NINE PROJECTIVE LINES 247

L3

L2

L1

L4 L5 L6
L9

L7

L8

Figure 3. The arrangements A±
√
−1.

Yoshinaga 2012, Example 5.2], for instance) that the moduli space ML(FS±) consists
of 2 points, {FS+,FS−}.

Example 2.4 [Nazir and Yoshinaga 2012, Example 5.3]. The arrangements A±
√
−1

consist of nine lines and ten triple points such that there are three lines which do not
intersect at a point and have four triple points on each. Moreover, each of the other
six lines contains exactly three triple points. Those arrangements (see Figure 3) can
be defined by the equation

xy(x− z)(y− z)(x∓ iz)(y∓ iz)(x− y)
(
(±i−1)x± iy+ z

)(
(1∓ i)x+ y− z

)
= 0.

Lemma 2.5 [Nazir and Yoshinaga 2012, Lemma 4.4]. If a line arrangement is
not simple C≤3, then it has 6 lines L1, L2, . . . , L6 such that L1 ∩ L2 ∩ L3 6= ∅,
L4∩ L5∩ L6 6=∅, and (L1∪ L2∪ L3)∩ (L4∪ L5∪ L6) consists of 9 distinct double
points.

Let As = {L1, L2, . . . , L6} be the arrangement which has two triple points
L1 ∩ L2 ∩ L3 and L4 ∩ L5 ∩ L6, and nine double points Qi j = L i ∩ L j+3, where
i, j ∈ {1, 2, 3}.

Using Lemma 2.5, one can easily prove that an arrangement of 7 lines is simple
C≤3. It is also not hard to prove the following result:

Proposition 2.6 [Nazir and Yoshinaga 2012, Proposition 4.6]. An arrangement of
eight lines is either a simple C≤3 line arrangement or a Mac Lane arrangement.

More generally:

Theorem 2.7 [Nazir and Yoshinaga 2012, Theorem 3.5]. The moduli space MA of
simple C≤3 line arrangements with the fixed intersection lattice L(A) is irreducible.

Let A= {L1, L2, . . . , Ln} be a line arrangement, and A′ = {L1, L2, . . . , Ln−1}

be a subarrangement. The following lemma shows when the irreducibility of the
moduli space MA′ will be inherited:



248 FEI YE

Lemma 2.8 [Nazir and Yoshinaga 2012, Lemma 2.4]. Assume that the line Ln

passes through at most two multiple points of the arrangement A. Then the moduli
space MA is a fiber bundle over the moduli space of MA′ . In particular, the moduli
space MA is irreducible if MA′ is irreducible.

Applying this lemma to arrangements of 9 lines, we have the following corollary:

Corollary 2.9. Let A be an arrangement of 9 lines. If there is a line in A which
passes through at most two multiple points of A, then either A contains a Mac Lane
arrangement as a subarrangement, or the moduli space MA is irreducible.

Proof. The conclusion follows directly from Proposition 2.6 and Lemma 2.8. �

3. Classification of arrangements of 9 lines

For a line arrangement A, we denote by mA the highest multiplicity of a multiple
point of A. We will divide the classification of arrangements of 9 lines into three
cases according to the value of mA.

Let nr be the number of multiple points of multiplicity r . We first recall two
well-known results on the number of multiple points.

Theorem 3.1 [Hirzebruch 1986]. Let A be an arrangement of t lines in CP2.
Assume that nt = nt−1 = nt−2 = 0. Then,

n2+
3
4 n3 ≥ t +

∑
r≥5

(2r − 9)nr .

Lemma 3.2 (see, for instance, [Hirzebruch 1986]). Let A be a line arrangement of
n lines in CP2. We have the intersection formula

n(n− 1)
2

=

∑
r≥2

(
nr ·

r(r − 1)
2

)
.

3A. The case mA ≥ 5.

Proposition 3.3. Let A be an arrangement of 9 lines. If A has multiple points of
multiplicity (at least 5), then the moduli space MA is irreducible.

Proof. Assume that L1 ∩ L2 ∩ · · · ∩ L5 6=∅. There are at most 6 double points in
L6 ∪ L7 ∪ L8 ∪ L9. Then, there are at most 7 multiple points in L1 ∪ L2 ∪ · · · ∪ L5.
So, at least one of the five lines L1, L2, . . . , L5 contains only two multiple points.
By Corollary 2.9, the moduli space MA is irreducible. �

3B. The case mA = 4. Let A be an arrangement of 9 lines. In this subsection, we
assume that multiple points of A are at most quadruple points.
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Proposition 3.4. Assume that each line of A passes through at least three multiple
points, and n4 ≥ 1. Then either MA is irreducible, or A is lattice isomorphic to a
Falk–Sturmfels arrangement.

Proof. We will first show that n4 = 1.
Let L1∩ L2∩ L3∩ L4 be a quadruple point of A. Since each line passes through

at least three multiple points, L1, L2, L3 and L4 should pass through two more
multiple points besides the quadruple point L1 ∩ L2 ∩ L3 ∩ L4. Then, there will be
at least 9 multiple points on those four lines. Since multiple points of A are at most
quadruple points, there are n4 quadruple points. Therefore, there should be at least
9− n4 triple points on those four lines such that each line passes through at least 3
multiple points. By Theorem 3.1 and Lemma 3.2, we have

36= 6n4+ 3n3+ n2 ≥ 6n4+
9
4 n3+ 9≥ 6n4+

9
4(9− n4)+ 9.

Solving the inequality, we obtain that n4 ≤
9
5 < 2. Therefore, by the assumption,

we have n4 = 1.
Now we claim that all triple points should be on the lines passing through the

quadruple point.
Let L1 ∩ L2 ∩ L3 ∩ L4 be the quadruple. Suppose, contrary to our claim, that

L5 ∩ L6 ∩ L7 is a triple point which is not on L1 ∪ L2 ∪ L3 ∪ L4. Note that there
are at most 7 double points on L5 ∪ L6 ∪ L7 ∪ L8 ∪ L9. Then the intersection set
(L1∪ L2∪ L3∪ L4)∩ (L5∪ L6∪ L7∪ L8∪ L9) will contain at most 7 triple points
which are on L1∪ L2∪ L3∪ L4. However, there should be at least 8 triple points so
that each of the four lines L1, L2, L3 and L4 passes through at least three multiple
points. Therefore, by the assumption, all triple points must be on the lines passing
through the quadruple point.

If A is simple C≤3, then the moduli space MA is irreducible. We only need
to consider the case that A is not simple C≤3. By Lemma 2.5, we know that the
arrangement A has a subarrangement As . It is not hard to see that the quadruple
point should be Qi j , where i, j ∈ {1, 2, 3}.

Up to a lattice isomorphism, we may assume that the only quadruple point is
L1 ∩ L4 ∩ L7 ∩ L8 = Q11.

Since all triple points should be on L1 ∪ L4 ∪ L7 ∪ L8, then all possible triple
points on L7 and L8 should be in the following set of points:

{Q22, Q23, Q32, Q33, L7 ∩ L9, L8 ∩ L9}.

The following figure is an example, but an excluding one, for L6 passes through
only one triple point.

Hence, each of the lines L7 and L8 will have at least one Qi j , where i, j ∈ {2, 3}.
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L4 L5 L6

L3

L2

L1

L7

L8

L9

Figure 4. An excluding arrangement.

(1) Assume that each of the lines L7 and L8 passes through exactly one of the
points {Q22, Q23, Q32, Q33}.

If those two Qi j are on the same line, then one of the four lines L2, L3, L5 and
L6 will have at most two multiple points. For example, in Figure 4, the line L6

passes through only one multiple point, L4 ∩ L5 ∩ L6.
Assume that they are not on the same line. Up to switching labels between L2 and

L3, correspondingly L5 and L6, we may assume that Q32 ∈ L7 and Q23 ∈ L8. Then,
either {Q31, Q13}⊂ L9 or {Q21, Q12}⊂ L9. Correspondingly, {L2∩L7, L5∩L8}⊂

L9 or {L3 ∩ L7, L6 ∩ L8} ⊂ L9. By switching the labels between L2 and L3, L5

and L6, and L7 and L8, we see that those two arrangements are lattice isomorphic.
Moreover, one can check that both arrangements (see Figure 5, left) are lattice
isomorphic to Falk–Sturmfels arrangements.

(2) Assume that either the line L7 or L8 passes through two points out of the four
points Q22, Q23, Q32 and Q33, but the other one passes through only one point out
of the four points Q22, Q23, Q32 and Q33.

Up to a lattice isomorphism, we may assume that {Q11, Q22, Q33} ⊂ L7, and
{Q11, Q32}⊂ L8. Then either L2∩L8∈ L9, or L6∩L8∈ L9. Otherwise, L8 will have
only two multiple points. Correspondingly, {Q31, Q13} ⊂ L9, or {Q21, Q12} ⊂ L9.

L4 L5L6

L3

L2

L1

L7
L8

L9

L4 L5L6

L3

L2

L1

L9
L8L7

Figure 5. Falk–Sturmfels arrangements 1 and 2.
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By first switching the labels between L1 and L4, L2 and L5, and L3 and L6, then
switching the labels between L2 and L3, and L5 and L6, we see that those two
arrangements are lattice isomorphic. Moreover, we check that A (see Figure 5,
right) is also lattice isomorphic to Falk–Sturmfels arrangements.

(3) Assume that L7 and L8 each contain two of {Q22, Q23, Q32, Q33}, then L9 will
contain at most two multiple points.

Therefore, we conclude that either MA is irreducible or A is lattice isomorphic
to a Falk–Sturmfels arrangement. �

3C. The case mA = 3. Now we consider the last case in which all multiple points
are triple points. We will first investigate possible values of n3 such that each line
has at least three triple points. Notice that n3 should be no less than 9. On the other
hand, we observe the following result:

Lemma 3.5. Let A be an arrangement of 9 lines, all of whose multiple points
are triple points. Assume that A does not contain a Mac Lane arrangement as a
subarrangement and is not simple C≤3. Then A has at most 10 triple points.

Proof. By Lemma 3.2, to show that n3 ≤ 10, it is enough to show that n2 ≥ 4.
Since A does not contain a Mac Lane arrangement, at most one of the lines L7,

L8, and L9 passes through three Qi j , where i, j ∈ {1, 2, 3} (defined as above). We
may assume that each of the lines L7 and L8 passes through at most two Qi j . By
our assumption and Lemma 2.5, the arrangement A has a subarrangement As .

Let x be the number of Qi j which are not in L7∪L8∪L9. It is clear that x≥2. Let
y and z be the number of double points of A which are in L7∩(L1∪L2∪· · ·∪L6) and
L8∩(L1∪L2∪· · ·∪L6) respectively. If y+z≥ 2, then we have n2≥ x+(y+z)≥ 4.

Assume that y+ z ≤ 1. Then each of the lines L7 and L8 should pass through
exactly two Qi j . Moreover, L7∩L8 must be a triple point in L1∪L2∪· · ·∪L6. We
see now the subarrangement A′ = {L1, L2, . . . , L8} has 7 double points. Without a
loss of generality, we assume that L7 ∩ L8 is on L2. It is not hard to see that the 7
double points of A′ are all on L4 ∪ L5 ∪ L6. The line L9 can only pass through at
most three double points of A′. Therefore, the arrangement A still has at least 4
double points. �

Remark 3.6. By Theorem 2.15 in [Csima and Sawyer 1993], if our arrangements
are real arrangements, that is, if the coefficients of the defining equations of the
lines are real numbers, then there are at least 60

13 > 4 double points. Hence, there
should be at most 10 triple points. However, there seems to be no similar result for
complex line arrangements.

Proposition 3.7. Let A be an arrangement of 9 lines with 9 triple points. Assume
that all multiple points of A are triple points, and each line passes through exactly
three triple points. Then, the moduli space MA is irreducible.
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Figure 6. 93 arrangements.

Proof. By Theorem 2.2.1 in [Grünbaum 2009] that A is lattice isomorphic to one
of the three arrangements appearing in Figure 6.

One can check that the moduli space MA is irreducible in each case. �

Proposition 3.8. Let A be an arrangement of 9 lines with 10 triple points. Assume
that all multiple points of A are triple points and each line passes through at least
three triple points. If A is not simple C≤3, then it is isomorphic to A±

√
−1 (Figure 3).

Proof. Let a be the number of lines that pass through 4 triple points and b the
number of lines that pass through 3 triple points. Then a+b= 9 and 4a+3b= 30.
We have a = 3 and b = 6.

If the three lines with 4 triple points on each of them intersect at a triple point,
then all 10 triples should be on them. Consequently, the arrangement is simple C≤3.

Assume that L1, L2 and L4 are the three lines with 4 triple points on each of
them and L1 ∩ L2 ∩ L4 = ∅. Then, at least two of {L1 ∩ L2, L1 ∩ L4, L2 ∩ L4}

are triple points. Otherwise there should be at least 11 triple points so that L1,
L2, and L4 will have 4 triple points. So, we may assume that L1 ∩ L2 ∩ L3 and
L1 ∩ L4 ∩ L7 are triple points. Let L4 ∩ L5 ∩ L6 be a triple point which is not on
L1 ∪ L2 ∪ L3. Then, L7 must pass through L2 ∩ L5 or L2 ∩ L6. Otherwise, L2

will have at most 3 triples. By switching labels of L5 and L6, we may assume that
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L2 ∩ L6 ∩ L7 6=∅. Then the two points Q21 and Q22 must be on L8 ∪ L9 so that
L2 will pass through 4 triple points. We may assume that Q21 ∈ L8 and Q22 ∈ L9.
Since the line L4 also passes through 4 triple points, then Q31 should be on L9.
Similarly, since the line L1 passes through 4 triple points, then Q13 should be on L9

and Q12 should be on L8. Now we have 9 triple points. The last triple point must
be L3 ∩ L7 ∩ L8 so that L7 will pass through three triple points. The arrangements
with such intersection lattices are just A±

√
−1 (see Figure 3). �

3D. Classification and applications. We summarize Section 3 so far as follows:

Theorem 3.9. Any arrangement of nine lines in CP2 belongs to one of the following
classes:

(i) arrangements whose moduli spaces are irreducible;

(ii) arrangements containing Mac Lane arrangements (Example 2.2);

(iii) Falk–Sturmfels arrangements (Example 2.3);

(iv) A±
√
−1 arrangements (Example 2.4).

Proof. The classification simply follows from Corollary 2.9 and Propositions 3.3,
3.4, 3.7, and 3.8. �

As an application, we obtain the following result which generalizes a result of
Theorem 8.3 in [Garber et al. 2003].

Theorem 3.10. The fundamental group of the complement of an arrangement of 9
lines is determined by the intersection lattice.

Proof. If the moduli space is irreducible, then the fundamental group is determined
by the lattice according to the lattice-isotopy theorem.

It follows from Example 5.2 in [Nazir and Yoshinaga 2012] (see also Section
7.5 in [Cohen and Suciu 1997]) that the fundamental groups π1(M(FS+)) and
π1(M(FS−)) are isomorphic. Let A1 and A2 be two arrangements containing
Mac Lane arrangements. Then, either they are in the same connected component
of the moduli spaces, or A1 and the conjugate of A2 are in the same connected
component. By Theorem 3.9 in [Cohen and Suciu 1997], the fundamental groups
of A1 and A2 are isomorphisms. According to the same theorem, the fundamental
groups of A+

√
−1 and A−

√
−1 are isomorphic too. �

4. Arrangements of 10 lines: an example

We have seen that there is no Zariski pair of arrangements of 9 lines, but we do
not know if there is a Zariski pair of arrangements of 10 lines. To get a Zariski
pair, a naive idea is to add lines to those arrangements whose moduli spaces are
disconnected. In general, it is very hard to determine if the resulting pair of
arrangements is a Zariski pair. The following example is a trial:
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Figure 7. Extended Falk–Sturmfels arrangement.

Example 4.1. Starting from the Falk–Sturmfels arrangements (see Example 2.3),
we will construct new arrangements of 10 lines such that the moduli space is
disconnected.

We define two line arrangements of 10 lines, called extended Falk–Sturmfels
arrangements (see Figure 7):

F̃S± = {L±i , K±i , H±9 , H±10, i = 1, 2, 3, 4}

by adding lines:

H±10 : y =
(

1
γ±
− 1

)
x + z

to FS± respectively.
Notice that F̃S± are both fiber-type line arrangements according to Theorem

3.12 in [Jiang et al. 2001] .
It is not hard to see that MF̃S±

∼=MFS± . In fact, the line H+10 (respectively, H−10) is
always passing through three points of L(FS±): L+1 ∩ L+2 , K+1 ∩K+2 and K+3 ∩K+4
(respectively, K−2 ∩ K−4 , K−3 ∩ K−4 and K−1 ∩ K−2 ).

This pair of arrangements has been studied by Artal, Carmona, Cogolludo, and
Marco. They show (Theorem 4.19 in [Artal et al. 2005]) that there is no order-
preserving homeomorphism between the pairs (P2, F̃S+) and (P2, F̃S−). Here,
we present an explicit diffeomorphism between the complements M(F̃S+) and
M(F̃S−). In fact, by Example 5.2 in [Nazir and Yoshinaga 2012], we know that
there is an automorphism A ∈ PGL(C3) of CP2,

A :=

−γ− −1 0
−γ− 0 0
γ− 1 1

 ,
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acting from the right (via matrix multiplication) on points [x, y, z] in the projective
space P2, which sends

L+1 7→ L−3 , L+2 7→ L−4 , L+3 7→ L−2 , L+4 7→ L−1 ,

K+1 7→ K−3 , K+2 7→ K−4 , K+3 7→ K−2 , K+4 7→ K−1 ,

H+9 7→ H−9 .

To see that A induces a diffeomorphism between M(F̃S+) and M(F̃S−), it
suffices to show that the automorphism A sends H+10 to H−10.

Recall that γ± = 1
2(1±

√
5). One can check that for any point

P := [x, (1/γ+− 1)x + z, z]

on H+10, the image P · A is a point on H−10. In fact,

(
x
(
1/γ+− 1

)
x + z z

)
· A ·

1/γ−− 1
−1

1

≡ 0.

Therefore, the pair (F̃S+, F̃S−) is not a Zariski pair.

From this example, we see that moduli spaces of fiber-type projective line
arrangements do not have to be connected. In fact, we can produce infinitely many
fiber-type projective line arrangements whose moduli spaces are disconnected. On
the other hand, we do not know if fundamental groups of complements of fiber-type
projective line arrangements are determined by intersection lattices.
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