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SINGULARITY REMOVABILITY AT BRANCH POINTS
FOR WILLMORE SURFACES

YANN BERNARD AND TRISTAN RIVIÈRE

We consider a branched Willmore surface immersed in Rm�3 with square-
integrable second fundamental form. We develop around each branch point
local asymptotic expansions for the Willmore immersion, its first, and its
second derivatives. Our expansions are given in terms of new integer-valued
residues which are computed as circulation integrals around the branch
point. We deduce explicit “point removability” conditions guaranteeing
that the immersion is smooth through the branch point. These conditions
are new, even in codimension one.

1. Introduction

1A. Preliminaries. Let Ê be an immersion from a closed abstract two-dimensional
manifold † into Rm�3. We denote by g WD Ê �gRm the pullback by Ê of the flat
canonical metric gRm of Rm, also called the first fundamental form of Ê , and we
let dvolg be its associated volume form. The Gauss map of the immersion Ê is the
map taking values in the Grassmannian of oriented .m� 2/-planes in Rm given by

En WD ?
@x1
Ê ^ @x2

Ê

j@x1
Ê ^ @x2

Ê j

;

where ? is the usual Hodge star operator in the Euclidean metric, and fx1;x2g are
local coordinates on the surface †.

Denoting by �En the orthonormal projection of vectors in Rm onto the .m� 2/-
plane given by En, the second fundamental form may be expressed as

EIp.X;Y / WD �En d2 Ê .X;Y / for all X;Y 2 Tp†:

(In order to define d2 Ê .X;Y / one has to extend locally around Tp† the vector
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fields X and Y . It is not difficult to check that �En d2 Ê .X;Y / is independent of
this extension.)

The mean curvature vector of the immersion at the point p 2† is

EH WD 1
2

Trg.EIp/D
1
2

�
EIp.Ee1; Ee1/CEIp.Ee2; Ee2/

�
;

where fEe1; Ee2g is an orthonormal basis of Tp† for the metric g.

In the present paper, we study the functional

W . Ê / WD

Z
†

j EH j2 dvolg;

called Willmore energy. It has been extensively studied in the literature, due to its
relevance to various areas of science. We refer the reader to [Rivière 2010] and the
references therein for more extensive information on the properties and applications
of the Willmore energy.

The Gauss–Bonnet theorem and Gauss equation imply that

W . Ê /D
1

4

Z
†

jEIj2g dvolgC��.†/D
1

4

Z
†

jd Enj2g dvolgC��.†/;

where �.†/ is the Euler characteristic of †, which is a topological invariant for a
closed surface. From the variational point of view, the critical points of the Willmore
functional, called Willmore surfaces, are thus also critical points of the Dirichlet
energy of the Gauss map with respect to the induced metric g.

Minimal surfaces1 are examples of Willmore surfaces. Not only is the Willmore
energy invariant under reparametrization of the domain, but, more remarkably, it is
invariant under Möbius transformations of Rm[f1g; namely,

W .„ ı Ê /DW . Ê / for any conformal diffeomorphism „ of Rm
[f1g:

Hence, the image of a Willmore immersion by a conformal transformation is again
a Willmore immersion. It is thus no surprise that the class of Willmore immersions
is considerably larger than that of minimal immersions (whose minimality is not
preserved through conformal diffeomorphism).

An important task in the analysis of Willmore surfaces is to understand the
closure of the space of Willmore immersions. Because the conformal group of
transformations of Rm is not compact, one cannot expect the space of Willmore
immersions to be closed in the strong C l -topology. However, locally, in isothermic
coordinates,2 under some universal energy threshold, and as long as the conformal

1Minimal surfaces satisfy EH D E0 and are hence absolute minimizers of W .
2Analogously to other gauge-invariant problems, such as in Yang–Mills theory, isothermic coordi-

nates (i.e., conformal parametrizations) provide the optimal symmetry-breaking method. A detailed
discussion of this topic is available in [Rivière 2010].
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parameter � of the induced metric g is controlled in L1, the immersion is uniformly
bounded in any C l -norm. More precisely, the following "-regularity result holds.

Theorem 1.1 [Rivière 2008]. There exists "0 � "0.m/ > 0 such that, for any
Willmore conformal immersion Ê W B1! Rm satisfyingZ

B1

jrEnj2 dx < "0;

and for any l 2 N�, we have

ke��rl Ê k
2
L1.B1=2/

� Cl

�Z
B1

jrEnj2 dxC 1

�
;

where Cl only depends on l , while � denotes the conformal parameter of Ê . Namely,
�D klog j@x1

Ê jkL1.B1/ D klog j@x2
Ê jkL1.B1/.

This theorem leads to the concentration of compactness “dialectic” developed
by Sacks and Uhlenbeck. In a conformal parametrization, assuming that the con-
formal factor is L1-controlled in some subdomain of †, a sequence of Willmore
immersions might fail to converge strongly in C l only at finitely many isolated
points, namely, at those points where the W 1;2-norm of the Gauss map concentrates.
Assuming their induced metric generates a sequence of conformal classes which
remains within a compact subdomain of the moduli space of †, the control of the
conformal factor of a sequence of conformal immersions with uniformly bounded
Willmore energy is also guaranteed, except again at those isolated points. This fact
is established in [Rivière 2013], and it ultimately follows from the works [Toro
1995; Müller and Šverák 1995; Hélein 1996] on immersions with totally bounded
curvature.

In this context, it appears natural to consider a branched Willmore immersion
and study its local behavior near the point singularities.3 In particular, we shall
seek conditions that ensure the removability of the branch points.

In this paper, a branch point is a point where the immersion Ê degenerates in
the sense that d Ê vanishes at that point. We focus on (conformal) locally Lipschitz
and W 2;2 immersions Ê WD2 n f0g ! Rm with a branch point at the origin 0, and
regular away from the origin. A priori, at a branch point, the mean curvature is
singular. We will show that Ê , and thus the mean curvature, is actually smooth
through a branch point, provided a certain set of sharp conditions are satisfied. The
density �0 2 N� of the current Ê �ŒD2� is called the order of the branch point. We
shall use the words branch point and singularity interchangeably. This is of course
an abuse of language, as the immersion Ê is not singular at a branch point. In

3Such point singularities also naturally occur as blow-ups of the Willmore flow.
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fact, both Ê and d Ê are well-defined there. It is the immersive nature of Ê which
degenerates at a branch point.

More generally, let † be an open surface, and suppose that f W†!Bm
R
.0/nf0g,

for some R> 0, is a smooth proper Willmore immersion. We define the associated
two-varifold

� WD
�
x 7!H0.f �1.x//

�
H2 f .†/;

and suppose that

0 2 spt.�/; �2
� .�; 0/ <1;

Z
†

jIj2g dvolg <1:

It is shown in [Kuwert and Schätzle 2007] that �2.�; 0/ 2N exists, and that spt.�/
is a smooth, possibly multivalued graph, over some planes in Bm

� .0/ nBm
�=2
.0/

for some � > 0. As we seek to understand the local behavior of our surface
near the origin, we assume that there is exactly one graph of integer-multiplicity
�2.�; 0/� �0 � 1. We can then switch to the parametric formulation used above
and throughout this paper. A celebrated inequality of [Li and Yau 1982] for varifolds
with compact support gives

(1-1) �2.�; 0/ WD lim
r&0

�.Bm
r .0//

�r2
�

1

4�
W .†/:

Accordingly, studying surfaces with a high-order branch point amounts to doing
away with hypotheses demanding low upper bounds on the Willmore energy (such
as the assumption W .†/ < 8� in [Kuwert and Schätzle 2004]).

In the context of this paper, the word removability is to be understood with
care. To say that a branch point is removable does not mean that it is the result
of some “parametric illusion”. Rather, it means that the map Ê is smooth through
the branch point, although it continues to fail to be an immersion at that point.
In particular, the mean curvature, which is naturally singular at a branch point,
turns out to be regular at a removable branch point. For instance, in this sense, the
branched immersion Ê W x 7! .x2;x3/ has a removable branch point at the origin.
In particular, the corresponding Gauss map which identifies to the CP1-projection
of @x

Ê : En.x/ WD Œ2x; 3x2�� Œ2; 3x� is clearly smooth through the origin.
In [Bernard and Rivière 2011a], we delve deeper into the analysis of sequences of

Willmore surfaces with uniformly bounded energy and nondegenerating conformal
type. The results of the present paper play an important role there.

1B. Main results. Kuwert and Schätzle [2004] initiated the analytical study of
point singularities of Willmore immersions by first considering unit-density sin-
gularities in codimension 1. They were able to find some removability criterion
(extended in [Rivière 2008] to arbitrary codimension). Unfortunately, the energy
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restrictions necessary to ensure that the singularities occurring have unit-density
are quite stringent (namely, one must assume the immersion has Willmore energy
strictly below 8�). Still in codimension 1, Kuwert and Schätzle [2007] studied
singularities of higher order, thereby allowing less stringent bounds on the energy.
This time, however, no removability condition was found.

In the present work, we bridge the gaps left by previous studies. We work in
arbitrary codimension and impose no restriction on the Willmore energy bound
(i.e., we allow the order of the branch point to be arbitrarily large — although finite).
Even in this general setting, we are able to find point-removability conditions.

Working in arbitrary codimension goes beyond the mere technical prowess.
Willmore surfaces immersed into Rm for m > 3 are far from being devoid of
interest, and the case mD 4 is particularly useful in geometry, as seen in [Burstall
et al. 2002; Ejiri 1988; Montiel 2000].

While in codimension 1 techniques have been developed and used, analytical
results in higher codimension require a suitable reformulation of the problem.
Briefly speaking, the codimension-1 case involves a fourth-order nonlinear scalar
equation, whereas, in higher codimension, one faces a strongly coupled fourth-
order nonlinear system of equations. For this reason, we adopt a radically different
approach to the problem, by using the original framework devised in [Rivière 2008].
In particular, working in a conformal parametrization, the aforementioned system is
recast into a single equation in divergence form for the mean curvature vector. The
analytical efficiency and benefits of this method have come to fruition in [Rivière
2008; 2013; Bernard and Rivière 2011a; 2011b].

Our main goal is twofold. Firstly, we study the regularity of the Gauss map, and
we develop precise asymptotics for the immersion and the mean curvature near that
point. Secondly, we bring into light explicit conditions ensuring the removability
of the point singularity.

We assume that the point singularity lies at the origin, and we localize the problem
by considering a map Ê WD2! Rm�3, which is an immersion of D2 n f0g, and
satisfying

(i) Ê 2 C 0.D2/\C1.D2 n f0g/;

(ii) H2. Ê .D2// <1;

(iii)
R

D2 jEIj
2
g dvolg <1.

As explained in [Rivière 2010], under the above assumptions, using the moving
frame method of Chern and Hélein, one can construct a Lipschitz diffeomorphism f

of the disk such that Ê ı f is conformal (an analogous procedure based on the
work Müller and Sverak is presented in [Kuwert and Schätzle 2007]). We shall
abusively continue to denote this reparametrization by Ê . It has properties (i)–(iii),
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and, moreover,

Ê .0/D E0 and Ê .D2/� Bm
R .0/ for some 0<R<1:

Hence, Ê 2W
1;1

loc \W 2;2.D2 n f0g/. Away from the origin, we define the Gauss
map En via

EnD ?
@x1
Ê ^ @x2

Ê

j@x1
Ê ^ @x2

Ê j

;

where fx1;x2g are standard Cartesian coordinates on the unit disk D2, and ? is the
Euclidean Hodge-star operator. The immersion Ê is conformal; i.e.,

(1-2) j@x1
Ê j D e� D j@x2

Ê j and @x1
Ê � @x2

Ê D 0;

where � is the conformal parameter. An elementary computation shows that

(1-3) dvolg D e2� dx and jrEnj2 dx D jd Enj2g dvolg D jEIj2g dvolg:

Hence, by hypothesis, we see that En 2 W 1;2.D2 n f0g/. In dimension two, the
2-capacity of isolated points is null, so we actually have En 2W 1;2.D2/. Rescaling
if necessary, we shall henceforth always assume that

(1-4)
Z

D2

jrEnj2 dx < "0;

where the adjustable parameter "0 � "0.m/ is chosen to fit our various needs (in
particular, we will need it to be “small enough” in Proposition C.1).

For the sake of the following paragraph, we consider a conformal immersion Ê W
D2!Rm, which is smooth across the unit disk. We introduce the local coordinates
.x1;x2/ for the flat metric on the unit disk D2DfxD .x1;x2/2R2 W x2

1
Cx2

2
< 1g.

The operators r D .@x1
; @x2

/, r?D .�@x2
; @x1

/, divDr � , and �Dr �r will be
understood in these coordinates. The conformal parameter � is defined as in (1-2).
We set

(1-5) Eej WD e��@xj
Ê for j 2 f1; 2g:

As Ê is conformal, fEe1.x/; Ee2.x/g forms an orthonormal basis of the tangent
space T Ê .x/

Ê .D2/. Owing to the topology of D2, there exists for almost every
x 2D2 a positively oriented orthonormal basis fEn1; : : : ; Enm�2g of the normal space
N Ê .x/

Ê .D2/, such that fEe1; Ee2; En1; : : : ; Enm�2g forms a basis of T Ê .x/R
m. From

the Plücker embedding, realizing the Grassmannian Grm�2.R
m/ as a submanifold

of the projective space of the .m � 2/-th exterior power P
�Vm�2

Rm
�
, we can

represent the Gauss map as the .m � 2/-vector En D
Vm�2
˛D1En˛. Via the Hodge
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operator ? , we identify vectors and .m� 1/-vectors in Rm; namely,

?.En^ Ee1/D Ee2; ?.En^ Ee2/D�Ee1; ?.Ee1 ^ Ee2/D En:

In this notation, the second fundamental form EI, which is a symmetric 2-form on
T Ê .x/

Ê .D2/ into N Ê .x/
Ê .D2/, is expressed as

EID
X
˛;i;j

e�2�h˛ij En˛ dxi ˝ dxj �

X
˛;i;j

h˛ij En˛.Eei/
�
˝ .Eej /

�;

where
h˛ij D�e��Eei � @xj En˛:

The mean curvature vector is

EH D

m�2X
˛D1

H˛
En˛ D

1

2

m�2X
˛D1

.h˛11C h˛22/En˛:

The Willmore equation [Weiner 1978] is cast in the form

(1-6) �? EH C
X
˛;ˇ;i;j

h˛ij h
ˇ
ij Hˇ

En˛ � 2j EH j2 EH D 0;

with
�? EH WD e�2��En div.�En.r EH //;

and �En is the projection onto the normal space spanned by fEn˛gm�2
˛D1

.
The Willmore equation (1-6) is a fourth-order nonlinear equation (in the coef-

ficients of the induced metric, which depends on Ê ). With respect to the coeffi-
cients H˛ of the mean curvature vector, it is actually a strongly coupled nonlinear
system whose study is particularly challenging. In codimension 1, there is one
equation for the scalar curvature; in higher codimension, however, the situation
becomes significantly more complicated, and one must seek different techniques to
approach the problem. Fortunately, in a conformal parametrization, it is possible4

to recast the system (1-6) in an equivalent, yet analytically more suitable, form
[Rivière 2008]. Namely, we have5

(1-7) div
�
r EH � 3�En.r

EH /C?.r?En^ EH /
�
D 0:

This remarkable reformulation in divergence form of the Willmore equation is the
starting point of our analysis. In our singular situation, (1-7) holds only away from

4This procedure requires choosing the normal frame fEn˛g astutely. See [Rivière 2008] for details.
5The operators r WD .@x1

; @x2
/, r? WD .�@x2

; @x1
/, and div WD r � are understood with respect

to flat coordinates fx1;x2g on the unit disk.
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the origin, on D2 n f0g. In particular, we can define the constant E
0 2 Rm, called
first residue, by

(1-8) E
0 WD
1

4�

Z
@D2

E� �
�
r EH � 3�En.r

EH /C?.r?En^ EH /
�
;

where E� denotes the unit outward normal vector to @D2. We will see in Corollary 1.5
that the residue appears in the local asymptotic expansion of the mean curvature
vector around the singularity. The residue E
0 as expressed in (1-8) already appears
in [Rivière 2008], where the second author studies Willmore immersions with a
unit-density point singularity, thereby generalizing in arbitrary codimension the
results of [Kuwert and Schätzle 2004]. Although in the end identical to E
0, the
residue used in the latter is defined differently.

We next state a result describing the regularity of the Gauss map around the
point singularity.6

Proposition 1.2. Let Ê 2 C1.D2 n f0g/\ .W 2;2 \W 1;1/.D2/ be a conformal
Willmore immersion of the punctured disk into Rm whose Gauss map En lies in
W 1;2.D2/. Then r2En 2 L2;1.D2/, and thus in particular rEn is an element of
BMO. Furthermore, En satisfies the pointwise estimate

jrEn.x/j. jxj�� for all � > 0:

If the order of degeneracy of the immersion Ê at the origin is at least two,7 then rEn
belongs to L1.B1.0//.

A conformal immersion of D2 n f0g into Rm such that r Ê and the Gauss
map En both extend to maps in W 1;2.D2/ has a distinctive behavior near the point
singularity located at the origin. One shows (see [Müller and Šverák 1995] and
Lemma A.5 in [Rivière 2013]) that there exists a positive integer �0 with

(1-9) j Ê .x/j ' jxj�0 and jr Ê .x/j ' jxj�0�1 near the origin:

In addition, we have

�.x/ WD 1
2

log
�

1
2
jr Ê .x/j2

�
D .�0� 1/ log jxjCu.x/;

where u 2W 2;1.D2/, and one has

(1-10)
�
r� 2L2.D2/ when �0 D 1;

jr�.x/j. jxj�1 2L2;1.D2/ when �0 � 2:

The function e�u.x/ � jxj�0�1e��.x/ is continuous and strictly positive in a small
neighborhood of the origin.

6In codimension 1, the statement of Proposition 1.2 was the object of [Kuwert and Schätzle 2007].
7Roughly speaking, if r Ê .0/D E0. The notion of “order of degeneracy” is made precise below.
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The integer �0 is the density of the current Ê �ŒD2� at the image point 0 2 Rm.
When such a conformal immersion is Willmore on D2 n f0g, it is possible to

refine the asymptotics (1-9). The following result describes the behavior of the
immersion Ê locally around the singularity at the origin.

Proposition 1.3. Let Ê be as in Proposition 1.2 with conformal parameter �, and
let �0 be as in (1-9). There exists a constant vector EA D EA1 C i EA2 2 R2 ˝ Rm

satisfying the following conditions:

(i) EA1 � EA2 D 0; j EA1j D j EA2j D ��1
0

lim
x!0

e�.x/

jxj�0�1
; �En.0/

EAD E0:

(ii) When �0 D 1,

(1-11) Ê .x/D<. EAx/C E�.x/;

with E� 2
T

p<1
W 2;p.D2/ and

E�.x/D O.jxj2��/; rE�.x/D O.jxj1��/ for all � > 0:

(iii) When �0 � 2,

(1-12) Ê .x/D<
�
EAx�0 C EB1x�0C1

C EC�0�1jxj
2�0x1��0

�
Cjxj�0�1E�.x/;

where EB1 and EC�0�1 are constant vectors in Cm, and moreover for all � > 0,

E�.x/D O.jxj3��/; rE�.x/D O.jxj2��/; r2E�.x/D O.jxj1��/:

The plane spanf EA1; EA2g is tangent to the surface at the origin. If �0 D 1, this
plane is actually T0†. One can indeed show that the tangent unit vectors Eej .0/

spanning T0† (defined in (1-5)) satisfy Eej .0/D EA
j=j EAj j. In contrast, when �0� 2,

the tangent plane T0† does not exist in the classical sense, and the vectors Eej .x/

“spin” as x approaches the origin (see (2-21)). More precisely, T0† is the plane
spanf EA1; EA2g covered �0 times.

Remark 1.4. When �0D 1, the immersion Ê belongs to C 1;˛.D2/ for all ˛ 2 Œ0; 1/.
In general however, Ê need not be C 1;1.D2/. To see this, it suffices to invert
the standard catenoid8 about the origin, thereby yielding a Willmore surface9

which comprises near the origin two identical graphs (mirror-symmetric), each
degenerating with order �0 D 1 at the origin. One then directly verifies that

jrEn.x/j ' �log jxj 2 BMO nL1.D2/:

Hence, we cannot expect in general � D 0 in (1-11). Moreover, Ê … C 1;1.D2/.

8Conformally parametrized by .r; '/ 7!
�
.r C r�1/ cos.'/; .r C r�1/ sin.'/;�2 log.r/

�
.

9For it is the image of a minimal (thus Willmore) surface under a Möbius transformation.
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One also verifies that the inverted catenoid in R3 and centered around the .0; 0; 1/-
axis has first residue E
0 D�4.0; 0; 1/.

Having obtained the asymptotic behavior of the immersion Ê and its first two
derivatives near the origin, it is possible to obtain analogous information for the
mean curvature vector. This is the object of the next proposition.

Corollary 1.5. Let Ê be as in Proposition 1.2, � be its conformal parameter, and �0

be as in (1-9). Locally around the singularity, the mean curvature vector satisfies

(i) when �0 D 1,

EH .x/C E
0 log jxj 2
\

p<1

W 1;p.D2/;

where E
0 is the residue defined in (1-8);

(ii) when �0 � 2,

e�.x/ EH .x/D 2�0e�u.x/
<

�
EC�0�1

�
jxj

x

��0�1�
CO.jxj1��/ for all � > 0;

where EC�0�1 2 Cm is the same constant vector as in Proposition 1.3(iii), and

eu.x/
WD jxj1��0e�.x/ 2 C 0.D2; .0;1//:

In particular, since EH is a normal vector, we note that �En.0/ EC�0�1 D
EC�0�1.

When �0 � 2, the weighted mean curvature vector e� EH is thus bounded across
the singularity (unlike in the case �0D 1, where it behaves logarithmically). But its
limit may not exist: e�.x/ EH .x/ is a “spinning vector” as x approaches the origin.10

We may recast the expansion given in Corollary 1.5(ii) in the form

EH .x/D 2�0e�2u.0/
<. EC�0�1x1��0/CO.jxj2��0��/:

In this formulation, EH appears as the sum of an harmonic function with a pole at
the origin of order .�0� 1/ and of a rest of lower order. This feature persists even
when EC�0�1 D

E0 and it can be precisely quantified, namely:

Proposition 1.6. Let Ê be as in Proposition 1.2, � be its conformal parameter,
and �0 be as in (1-9). There exists a complex-valued function ET satisfying

@x
ET D O.j EH jjrEnj/ and ET D O.jxj2��0��/ for all � > 0;

and such that, locally around the singularity, the mean curvature vector satisfies

(1-13) EH .x/C E
0 log jxj D <. EE.x/� ET .x//;

10But the function e�u.x/ does have a finite, positive limit at x D 0, as shown in [Müller and
Šverák 1995].
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where E
0 is the residue defined in (1-8). The function EE is antiholomorphic with
possibly a pole at the origin of order at most .�0� 1/.

If the singularity of EE at the origin has order ˛ 2 f0; : : : ; �0 � 1g, then the
functions EE and ET can be adjusted to satisfy

EE � ET D EE˛x�˛ � EQ

for some nonzero constant vector EE˛ 2 Cm, and with

@x
EQD O.j EH jjrEnj/ and EQD O.jxj1�˛��/ for all � > 0:

Here Nx denotes the complex conjugate of x 2 R2 ' C.

We may view the function EE from the previous proposition as a string of m

complex-valued functions fEj gjD1;:::;m, each of which is antiholomorphic and
possibly has a pole at the origin of order at most .�0 � 1/. This prompts us to
introduce the following decisive quantity.

Definition 1.7. The second residue associated with the immersion Ê at the origin
is the Nm-valued vector

(1-14) E
 D .
1; : : : ; 
m/ with 
j WD
1

2i�

Z
@D2

d log Ej 2 N:

The importance of E
 cannot be overstated: it controls the leading-order singular
behavior of the mean curvature at the origin, as the following statement shows.

Theorem 1.8. Let Ê be as in Proposition 1.2 and let � be its conformal parameter,
�0 as in (1-9), and the residues E
0 and E
 as in (1-8) and (1-14), respectively. Define

˛ WD max
1�j�m


j 2 f0; : : : ; �0� 1g:

Then r�0C1�˛ En 2L2;1.D2/, and thus r�0�˛ En 2 BMO.D2/.
Locally around the origin, the immersion has the asymptotic expansion

Ê .x/D<

�
EAx�0C

�0�˛P
jD1

EBj x�0Cj
C EC˛jxj

2�0x�˛
�
� EC jxj2�0.log jxj2�0�4/CE�.x/;

where EBj and EC˛ 2 Cm are constant vectors, EA is as in Proposition 1.3, and11

EC WD e2u.0/=.2�3
0
/ E
0. Furthermore, the function E� satisfies the estimates

r
j E�.x/D O.jxj2�0�˛�jC1��/ for all � > 0 and j 2 f0; : : : ; �0�˛C 1g;

jxj1��0r�0�˛C2E� 2
T

p<1
Lp:

11The function u is as in Corollary 1.5.
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In particular, we have

EH .x/D<. EE˛x�˛/� E
0 log jxjC E�.x/;

where EE˛ WD 2�0.�0�˛/e�2u.0/ EC �˛ . The function E� satisfies

r
j
E�.x/D O.jxj1�j�˛��/ for all � > 0 and j 2 f0; : : : ; �0�˛� 1g;

jxj�0�1r�0�˛ E� 2
T

p<1
Lp:

From this result, it comes as no surprise to discover that the simultaneous
vanishing of both residues E
0 and E
 improves the regularity of the immersion Ê .
This is the content of the next statement.

Theorem 1.9. Under the hypotheses of Corollary 1.5, suppose that the first residue
vanishes: E
0 D

E0.

(i) When �0 D 1, the immersion Ê is smooth across the branch point.

(ii) When �0 > 1, if in addition the second residue vanishes E
 D E0, the immersion
Ê is smooth across the branch point.

Remark 1.10. Let Ê WD2! Rm�3 be a minimal immersion with a branch point
at the origin. Since minimal immersions have vanishing first and second residues
(see Remark 2.6), Theorem 1.9 applies and singularities are removable.

We close this section with an important observation. When the Willmore immer-
sion Ê is smooth, the Willmore equation written in divergence form (1-7) holds
on the whole unit disk D2. Hence, the first residue E
0 defined in (1-8) vanishes
about every point. In turn, the expansion (1-13) given in Proposition 1.6 shows that
the antiholomorphic function EE cannot be singular anywhere in D2, and thus in
particular that the second residue E
 also vanishes about every point.

Given a branched Willmore immersion, we have found some explicit conditions
ensuring the removability of the branch points. These conditions require that
certain residues vanish. Naturally, if the immersion is explicitly given, one may
directly verify smoothness at the bad points, without resorting to the residues.
This is of course not the situation which we have in mind. Suppose now that a
sequence of smooth Willmore immersions is given, with uniformly L2-bounded
second fundamental form (the uniform bound need not be smaller than 8�). If the
sequence does not degenerate in moduli space,12 it is known that one can extract a
subsequence which converges strongly away from finitely many points to a limit-
immersion which is Willmore and smooth away from finitely many isolated branch
points. As residues are computed as circulation integrals along circles enlacing the
singularities, one expects that they pass to the weak limit. This is indeed the case

12See [Bernard and Rivière 2011a] for further information on this condition.
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for the first residue E
0 (as one easily verifies), but it remains an open problem for
the second residue E
 . Because each immersion is smooth, its residues vanish about
every point. If one knew that the second residue passed through weak limits, one
could then conclude that the residues associated with the limit-immersion vanished
as well, thereby making the limit into a branched smooth Willmore immersion.

1C. Some examples. Covering three times over the inverted catenoid of Remark 1.4
gives rise to a conformal Willmore immersion which degenerates at the origin with
order �0 D 3. Yet, the geometry of the image is identical to that of the inverted
catenoid, i.e., with a degeneracy of order 1. This is an instance of a “false” third-
order branch point simply resulting from having chosen a “bad” parametrization:
the singularity truly has order one. Without surprise, in this case, we find that the
first residue is E
0D�12.0; 0; 1/ (i.e., three times that of the singly covered inverted
catenoid of Remark 1.4). The second residue E
 vanishes.

A conformal parametrization of the 3-Enneper (minimal) surface in R3 is given by

.r; '/ 7!

�
1

3r3
cos 3' �

1

r
cos';

1

3r3
sin 3'C

1

r
sin';

1

r2
cos 2' � 1

�
:

Inverting this surface about the point .0; 0; 0/ gives rise to a compact Willmore
surface whose conformal parametrization near r D 0 satisfies

Ê .r; '/D 3
�
r3 cos 3'; r3 sin 3'; 3r4 cos 2'

�
CO.r5; r5; r6/:

This surface has a branch point of order �0 D 3 at the origin, where the mean
curvature is

EH .r; '/D

�
0; 0;

2

3r2
cos 2'

�
CO.r�1/:

The first residue is computed to be E
0 D
E0, and the second residue is E
 D .0; 0; 2/.

In codimension two, we consider now the following conformal parametrization
of a minimal surface:

.r; '/ 7!

�
1

r3
cos 3';

1

r3
sin 3';

1

r
cos';

1

r
sin' � 1

�
:

Inverting this surface about the origin in R4 gives rise to a compact Willmore
surface whose conformal parametrization near r D 0 satisfies

Ê .r; '/D
�
r3 cos 3'; r3 sin 3'; r5 cos'; r5 sin'

�
CO.r7; r7; r9; r6/;

having too a branch point of order �0 D 3 at the origin. The mean curvature is

EH .r; '/D

�
0; 0;

4

r
cos';

4

r
sin'

�
CO.1/:
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The second residue is E
 D .0; 0; 1; 1/, while the first residue vanishes.

2. Proofs of the theorems

2A. Fundamental results and reformulation. We place ourselves in the situation
described in Section 1B. Namely, we have a Willmore immersion Ê on the punctured
disk which degenerates at the origin in such a way that

j Ê .x/j ' jxj�0 and jr Ê .x/j D
p

2e�.x/ ' jxj�0�1

for some �0 2 N n f0g.

Amongst the analytical tools available to the study of weak Willmore immersions
with square-integrable second fundamental form, an important one is certainly the
"-regularity. The version appearing in Theorem 2.10 and Remark 2.11 of [Kuwert
and Schätzle 2001] (see also Theorem I.5 in [Rivière 2008]) states that there exists
"0 > 0 such that, if

(2-1)
Z

B1.0/

jrEnj2 dx < "0;

then we have

(2-2) ke��rEnkL1.Bg
� /
�

C

�
krEnkL2.B

g

2�
/ for all B

g
2�
�� WDD2

n f0g;

where B
g
� is a geodesic disk of radius � for the induced metric gD Ê �gRm , and C

is a universal constant. As always, � denotes the conformal parameter.
The "-regularity enables us to obtain the following result, already observed in

[Kuwert and Schätzle 2007], and decisive to the remainder of the argument.

Lemma 2.1. The function ı.r/ WD r supjxjDr jrEn.x/j satisfies

lim
r&0

ı.r/D 0 and
Z 1

0

ı2.r/
dr

r
<1:

Proof. From (1-3) and (1-9), the metric g satisfies

gij .x/' jxj
2.�0�1/ıij on B2r .0/ nBr=2.0/ for all r 2 .0; 1=2/:

A simple computation then shows that

(2-3) B
g
2cr�0

.x/� B2r .0/ nBr=2.0/ for all x 2 @Br .0/;

where 0< 2�0c < 1� 2��0 .
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Since the metric g does not degenerate away from the origin, given 0< r < 1=2,
we can always cover the flat circle @Br .0/ with finitely many metric disks:

@Br .0/�

N[
jD1

Bg
cr�0 .xj / with xj 2 @Br .0/:

Hence, per the latter, (2-2), and (2-3), we obtain that for some x0 2 @Br .0/ we have

(2-4) r sup
jxjDr

jrEn.x/j ' r�0 sup
jxjDr

je��.x/rEn.x/j � r�0ke��rEnkL1.Bg
cr�0 .x0//

. krEnkL2.B
g

2cr�0
.x0//
� krEnkL2.B2r .0/nBr=2.0//

:

As rEn is square-integrable by hypothesis, letting r tend to zero in the latter yields
the first assertion.

The second assertion follows from (2-4), namely,Z 1=2

0

ı2.r/
dr

r
.
Z 1=2

0

krEnk2
L2.B2r .0/nBr=2.0//

dr

r
D log.4/krEnk2

L2.B1.0//
;

which is by hypothesis finite. �

Recalling (1-3) linking the Gauss map to the mean curvature vector and the fact
that e�.x/ ' jxj�0�1, we obtain from Lemma 2.1 that

(2-5) r�0 sup
jxjDr

j EH .x/j � r�0 sup
jxjDr

e��.x/jrEn.x/j. ı.r/:

The Willmore equation (1-7) may be alternatively written

div
�
r EH � 3�En.r

EH /�?.En^r? EH /
�
D 0 on � WD B1.0/ n f0g:

It is elliptic [Rivière 2008]. Using the information on the gradient of En given
by (2-2), and some standard analytical techniques for second-order elliptic equations
in divergence form (see [Grüter and Widman 1982]), one deduces from (2-5) that

(2-6) r�0C1 sup
jxjDr

jr EH .x/j. ı.r/:

These observations shall be helpful in the sequel.
Equation (1-7) implies that, for any ball B�.0/ of radius � centered on the origin

and contained in �, we have

(2-7)
Z
@B�.0/

E� �
�
r EH � 3�En.r

EH /C?.r?En^ EH /
�
D 4� E
0 for all � 2 .0; 1/;

where E
0 is the residue defined in (1-8). Here E� denotes the unit outward normal
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vector to @B�.0/. An elementary computation shows thatZ
@B�.0/

E� � r log jxj D 2� for all � > 0:

Thus, upon setting

(2-8) EX WD r EH � 3�En.r
EH /C?.r?En^ EH /� 2 E
0r log jxj;

we find

div EX D 0 on �

and Z
@B�.0/

E� � EX D 0 for all � 2 .0; 1/:

As EX is smooth away from the origin, the Poincaré lemma implies now the existence
of an element EL 2 C1.�/, defined up to an additive constant, such that

(2-9) EX Dr? EL on �:

We deduce from Lemma 2.1 and (2-5)–(2-9) that

(2-10)
Z

B1.0/

jxj2�0 jr ELj2 dx .
Z 1

0

ı2.s/
ds

s
<1:

A classical Hardy–Sobolev inequality gives the estimate

(2-11) �2
0

Z
B1.0/

jxj2.�0�1/
j ELj2 dx �

Z
B1.0/

jxj2�0 jr ELj2 dxC �0

Z
@B1.0/

j ELj2;

which is a finite quantity, owing to (2-10) and to the smoothness of EL away from
the origin. The immersion Ê has near the origin the asymptotic behavior

jr Ê .x/j ' jxj�0�1:

Hence (2-11) yields that

(2-12) EL � r Ê ; EL^r Ê 2L2.B1.0//:

We next set EF .x/ WD 2 E
0 log jxj, and define the functions g and EG via

(2-13)
�
�g Dr EF � r Ê ; � EG Dr EF ^r Ê in B1.0/;

g D 0; EG D E0 on @B1.0/:

Since jr Ê .x/j ' jxj�0�1 near the origin and EF is the fundamental solution of the
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Laplacian, by applying Calderón–Zygmund estimates to (2-13), we find13

(2-14) r
2g; r2 EG 2

�
L2;1.B1.0//; �0 D 1;

BMO.B1.0//; �0 � 2:

In [Bernard and Rivière 2011b] (see Lemma A.2), the authors derive the identi-
ties14

(2-15)
�
r Ê � .r? ELCr EF /D 0;

r Ê ^ .r? ELCr EF /D�2r Ê ^r EH :

Accounted into (2-13), the latter yield that we have, in �,

(2-16)

(
div. EL � r? Ê �rg/D 0;

div. EL^r? Ê � 2 EH ^r Ê �r EG/D E0;

where we have used the fact that

� Ê ^ EH D 2e2� EH ^ EH D E0:

The terms under the divergence symbols in (2-16) both belong to L2.B1.0//, owing
to (2-12) and (2-14). The distributional equations (2-16), which are a priori to be
understood on �, may thus be extended to all of B1.0/. Indeed, a classical result
of Laurent Schwartz states that the only distributions supported on f0g are linear
combinations of derivatives of the Dirac delta mass. Yet, none of these (including
delta itself) belongs to W �1;2. We shall thus understand (2-16) on B1.0/. It is
not difficult to verify (see Corollary IX.5 in [Dautray and Lions 1984]) that a
divergence-free vector field in L2.B1.0// is the curl of an element in W 1;2.B1.0//.
We apply this observation to (2-16) so as to infer the existence of two functions15

S and ER in the space W 1;2.B1.0//\C1.�/, with

(2-17)
�
r
?S D EL � r? Ê �rg;

r
? ERD EL^r? Ê � 2 EH ^r Ê �r EG:

According to the identities (B-14) in the appendix, the functions S and ER satisfy
on B1.0/ the following system of equations, called the conservative conformal

13The weak-L2 Marcinkiewicz space L2;1.B1.0// is defined as those functions f which satisfy
sup˛>0 ˛

2jfx 2 B1.0/ W jf .x/j � ˛gj <1. In dimension two, the prototype element of L2;1 is
jxj�1. The space L2;1 is also a Lorentz space, and in particular is a space of interpolation between
Lebesgue spaces, which justifies the first inclusion in (2-14). See [Hélein 1996] or [Almeida 1995]
for details.

14Observe that r? ELCr EF is exactly the divergence-free quantity appearing in (1-7).
15S is a scalar while ER is

V2
.Rm/-valued.
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Willmore system:16

(2-18)

(
��S Dr.?En/ � r? ERC div

�
.?En/ � r EG

�
;

�� ERDr.?En/ �r? ER�r.?En/ � r?S C div
�
.?En/ �r EGC?Enrg

�
:

Not only is this system independent of the codimension (which enters the equa-
tions in the guise of the operators ? and � ), but it further displays two fundamental
advantages. Analytically, (2-18) is uniformly elliptic. This is in sharp contrast with
the Willmore equation (1-6) whose leading order operator �? degenerates at the
origin, owing to the presence of the conformal factor e�.x/ ' jxj�0�1. Structurally,
the system (2-18) is in divergence form. We shall in the sequel capitalize on this
remarkable feature to develop arguments of “integration by compensation”. A
priori however, since En, S , and ER are elements of W 1;2, the leading terms on the
right-hand side of the conservative conformal Willmore system (2-18) are critical.
This difficulty is nevertheless bypassed using the fact that the W 1;2-norm of the
Gauss map En is chosen to be small enough (see (1-4)).

2B. The general case when �0 � 1. We have gathered enough information about
the functions involved to apply to the system (2-18) (a slightly extended version of)
Proposition C.1 and thereby obtain that

(2-19) rS; r ER 2Lp.B1.0// for some p > 2:

It is shown at the end of Section B in the appendix that

(2-20) 2� Ê D .rS �r?g/ � r? Ê � .r ER�r? EG/ �r? Ê :

Hence, as jr Ê .x/j ' e�.x/ ' jxj�0�1 around the origin, using (2-14) and (2-19),
we may call upon Proposition C.2 with the weight j�j D e� and a D �0 � 1 to
conclude that

.@x1
C i@x2

/ Ê .x/D EP .x/C e�.x/ ET .x/;

where EP is a Cm-valued polynomial of degree at most .�0 � 1/, and ET .x/ D
O.jxj1�2=p��/ for every � > 0. Because e��r Ê is a bounded function, we deduce
more precisely that EP .x/ D �0

EA�x�0�1, for some constant vector EA 2 Cm (we
denote its complex conjugate by EA�), so that

(2-21) r Ê .x/D

�
<

�=

�
.�0
EAx�0�1/C e�.x/ ET .x/:

Equivalently, upon writing EAD EA1C i EA2, where EA1 and EA2 are two vectors in Rm,

16Refer to Appendix A for the notation and the operators used.
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the latter may be recast as(
@x1
Ê .x/D �0jxj

�0�1
�
EA1 cos..�0� 1/'/� EA2 sin..�0� 1/'/

�
C e�<. ET .x//;

�@x2
Ê .x/D �0jxj

�0�1
�
EA2 cos..�0� 1/'/C EA1 sin..�0� 1/'/

�
� e�=. ET .x//;

where ' 2 Œ0; 2�/ denotes the argument of x 2 B1.0/. The conformality condition
on Ê shows easily that

(2-22) j EA1
j D j EA2

j and EA1
� EA2
D 0:

Yet more precisely, as jr Ê j2 D 2e2�, we see that

(2-23) j EA1
j D j EA2

j D
1

�0

lim
x!0

e�.x/

jxj�0�1
2 �0;1Œ :

Because Ê .0/D E0, we obtain from (2-21) the local expansion

Ê .x/D<. EAx�0/CO
�
jxj�0C1� 2

p
��
�
:

Since �Enr Ê � E0, we deduce from (2-21) that

(2-24) �En.x/
EAD���1

0 x1��0e��En ET
�.x/D O

�
jxj1�

2
p
��
�

for all � > 0:

Now let ı WD 1� 2=p 2 .0; 1/, and let 0< � < p be arbitrary. We choose some �
satisfying

0< � <
2�

p.p� �/
� ı� 1C

2

p� �
:

We have observed that �En EAD O.jxjı��/; hence �En EAD o.jxj1�2=.p��//, and, in
particular, we find

(2-25)
1

jxj
�En.x/

EA 2Lp��.B1.0// for all � > 0:

This fact shall be helpful in the sequel.

When �0 D 1, one directly deduces from the standard Calderón–Zygmund
theorem applied to (2-20) that r2 Ê 2Lp . In that case, e� is bounded from above
and below, and thus the identity

(2-26) jrEnj D e��j�Enr
2 Ê j

(derived as (B-4) in the appendix) yields that rEn2Lp . When now �0 � 2, we must
proceed slightly differently to obtain analogous results. From (1-10), we know that
jxjr�.x/ is bounded across the unit disk. We may thus apply Proposition C.2(ii)
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to (2-20) with the weight j�j D e� and aD �0. The required hypothesis (C-13) is
fulfilled, and so we obtain

(2-27) r
2 Ê .x/D �0.1� �0/

�
�< =

= <

�
. EAx�0�2/C e�.x/ EQ.x/;

where EA is as in (2-21), and EQ lies in R4˝Lp��.B1.0/;R
m/ for every � > 0. The

exponent p > 2 is the same as in (2-19).
Since e�.x/ ' jxj�0�1, we obtain from (2-27) that

e��j�Enr
2 Ê j. jxj�1

j�En
EAjC j�En

EQj:

According to (2-25), the first summand on the right-hand side of the latter belongs
to Lp�� for all � > 0. Moreover, we have seen that �En EQ lies in Lp�� for all
� > 0, whence it follows that e���Enr

2 Ê is itself an element of Lp�� for all � > 0.
Brought into (2-26), this information implies that

(2-28) rEn 2Lp��.B1.0// for all � > 0:

In light of this new fact, we may now return to (2-18). In particular, recalling (2-14),
we find

�S ��r.?En/ � .r? ERCr EG/� .?En/ �� EG 2Lq.B1.0//;

with
1

q
D

1

p
C

1

p� �
:

We attract the reader’s attention on an important phenomenon occurring when
�0D 1. In this case, if the aforementioned value of q exceeds 2 (i.e., if p > 4), then
�S …Lq , but rather only �S 2L2;1. This integrability “barrier” stems from that
of � EG, as given in (2-14). The same considerations apply of course with ER and g

in place of S and EG, respectively.
Our findings so far may be summarized as follows:

(2-29) rS; r ER 2

�
W 1;.2;1/ if �0 D 1 and p > 4;

W 1;q otherwise:

With the help of the Sobolev embedding theorem (and a result of [Tartar 2007]
stating that W 1;.2;1/ � BMO), we infer that

(2-30) rS; r ER 2

8<:
BMO if �0 D 1 and p > 4;

L1 if �0 � 2 and p > 4;

Ls if �0 � 1 and p � 4;

with
1

s
D

1

q
�

1

2
D

1

p
C

1

p��
�

1

2
<

1

p
:
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Comparing (2-30) to (2-19), we see that the integrability has been improved. The
process may thus be repeated until reaching that

rS; r ER 2Lb.B1.0// for all b <1

holds in all configurations. With the help of this newly found fact, we reapply
Proposition C.2 so as to improve (2-29) and (2-28) to

(2-31) rS; r ER 2

�
W 1;.2;1/.B1.0// if �0 D 1;

W 1;b.B1.0// if �0 � 2 for all b <1;

and

(2-32) rEn 2Lb.B1.0// for all b <1:

The "-regularity in the form (2-4) then yields a pointwise estimate for the Gauss
map. Namely, in a neighborhood of the origin,

(2-33) jrEn.x/j. jxj�� for all � > 0:

2C. The case �0 D 1. We shall now investigate further the case �0 D 1, when
jr Ê j ' e� is bounded from both above and below around the origin. Setting

(2-34) EF1 WD r
? ERCr EG and F2 WD r

?S Crg

in (2-20) gives

(2-35) �2� Ê D F2 � r
Ê � EF1 �r

Ê :

According to (2-14) and (2-29), the right-hand side of the latter has bounded mean
oscillations. Hence r2 Ê 2

T
p<1

Lp. Using that 2e2� EH D � Ê , we differentiate
(2-35) to obtain

�4r.e2� EH /DrF2 � r
Ê �r EF1 �r

Ê CF2 � r
2 Ê � EF1 �r

2 Ê ;

which, still owing to (2-14) and (2-29), and to the boundedness of r Ê , shows that
e2� EH 2W 1;.2;1/. As e˙� are bounded from below, we see that EH 2BMO. Using
that r� 2L2 (see (1-10)), it follows that

(2-36) r EH D e�2�
r.e2� EH /� 2.r�/ EH 2

T
p<2

Lp:

We shall now derive an asymptotic expansion for EH .x/ near the origin. To this end,
we use a “generic” procedure, whose assumptions are fulfilled owing to our work
from the previous section (in particular (2-32)) and to (2-36).
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Proposition 2.2. Let the immersion Ê satisfy an expansion of the type (2-21) for
all p <1. Suppose that En 2

T
p<1W 1;p.B1.0// and EH 2

T
p<2 W 1;p.B1.0//.

Then, locally around the origin,

EH .x/C E
0 log jxj 2
T

p<1
W 1;p.B1.0//;

where E
0 is the residue defined in (2-7).

Proof. In order to derive this result, one must return to (1-7):

L. EH / WD div
�
r EH � 3�Enr

EH C?.r?En^ EH /
�
D 0 on B1.0/ n f0g:

Owing to the hypotheses on En and EH , this equation has a distributional sense.
Since L. EH / is supported on the origin and belongs to W �1;p for p < 2, it can only
be proportional to the Dirac mass ı0. From (2-7), we deduce more precisely that

L. EH /D 4� E
0ı0:

Let EA 2 Cm be the constant vector appearing in the expansion (2-21). Since
�En.0/

EAD E0 (see (2-24)), an elementary computation gives

(2-37) 4� EA � E
0ı0 D 4��T
EA � E
0ı0 D �T

EA �L. EH /

D div
�
EH � r�T

EA��T
EA �?.r?En^ EH /

�
Cr�T

EA �
�
r EH � 3�Enr

EH C?.r?En^ EH /
�
;

where we have used the fact that �T
EH � E0.

Because EA is constant and rEn 2
T

p<1Lp, it follows from the fact that �En D
En En thatr�En EA and thusr�T

EA lie in
T

p<1Lp . Moreover,r EH 2
T

1�p<2 Lp

by hypothesis. Introducing this information into (2-37), we note that its right-hand
side belongs to W �1;p for all p <1. Yet, its left-hand side is proportional to
the Dirac mass, which does not belong to any W �1;p for p � 2. We accordingly
conclude that EA � E
0 D 0. Returning to the expansion (2-21) reveals now that

E
0 �

�
Ee1.x/

Ee2.x/

�
' E
0 �

ET .x/D O.jxj1��/ for all � > 0;

whence

(2-38) jxj�1�T . E
0/ 2
T

p<1
Lp.B1.0//:

A direct computation gives

L. E
0 log jxj/D�4� E
0ı0C div
�
3�T . E
0/r log jxjC?.r?En^ E
0/ log jxj

�
D�L. EH /C div

�
3�T . E
0/r log jxjC?.r?En^ E
0/ log jxj

�
:
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Using the fact that rEn 2
T

p<1
Lp and (2-38) shows that

L. EH C E
0 log jxj/ 2
T

p<1
W �1;p:

It is established in [Rivière 2008] that the operator L is second-order elliptic and in
particular that it satisfies L�1W �1;p �W 1;p. The desired claim ensues:

EH .x/C E
0 log jxj 2
T

p<1
W 1;p: �

We continue our study of the case �0 D 1 by a slight improvement on the
regularity of the Gauss map En. It is shown as (B-7) in the appendix that theVm�2

.Sm�1/-valued Gauss map En satisfies a perturbed harmonic map equation,
namely

(2-39) �EnD 2?.r? Ê ^r EH /C 2e2�KEn� 2?e2� Eh12 ^ .Eh11�
Eh22/;

where K denotes the Gauss curvature. Recall that

jrEnj D e��j�Enr
2 Ê j D e�

ˇ̌̌̌
ˇEh11

Eh12

Eh21
Eh22

ˇ̌̌̌
ˇ ;

so that e� Ehij inherits the regularity of rEn 2
T

p<1Lp . Bringing this information
and the expansion given in Proposition 2.2 into (2-39) shows that

j�Enj. jxj�1
C terms in

T
p<1

Lp
2L2;1:

Hence r2En 2L2;1, and thus rEn 2 BMO.

2D. The case �0 � 2. We now return to (2-20) in the case when �0 � 2. Setting

(2-40) EF1 WD r
? ERCr EG and F2 WD r

?S Crg;

it reads

(2-41) �2� Ê D F2 � r
Ê � EF1 �r

Ê :

Owing to (2-14) and (2-29), the functions EF1 and F2 are Hölder continuous of any
order ˛ 2 .0; 1/. It thus makes sense to define the constants

Ef1 WD
EF1.0/ and f2 WD F2.0/:

They are elements of R2˝
V2
.Rm/ and of R2, respectively. We will in the sequel

view Ef1 as an element of C˝
V2
.Rm/ and f2 as an element of C.

For future purposes, let us define E� via

(2-42) �E� D 4�0<. EC
�
�0�1x�0�1/ with �8 EC ��0�1 WD f2

EA� Ef1 �
EA;
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where EA 2 Cm is the constant vector appearing in (2-21). More precisely, writing
Ef1 D

Ef 1
1
C i Ef 2

1
and f2 D f

1
2
C if 2

2
, then(

�8<. EC ��0�1/D f
1

2
EA1
�f 2

2
EA2
� Ef 1

1
� EA1
C Ef 2

1
� EA2;

�8=. EC ��0�1/D f
1

2
EA2
Cf 2

2
EA1
� Ef 1

1
� EA2
� Ef 2

1
� EA1:

Equation (2-42) is solved explicitly (up to an unimportant harmonic function):

(2-43) E�.x/D<. EC�0�1jxj
2�0x1��0/;

where EC�0�1 is the complex conjugate of EC �
�0�1

.
Note next that (2-41) and (2-42) yield

(2-44) 2�. Ê � E�/D .F2�f2/ � r Ê � . EF1�
Ef1/ �r Ê C e�Œf2 �

ET � Ef1 �
ET �;

where we have used the representation (2-21).
Since j ET .x/j. jxj1�� for all � > 0, and j EF1.x/� Ef1jC jF2.x/�f2j. jxj˛ for

all ˛ 2 .0; 1/, while, as previously explained, the weight jr Ê .x/j ' e� satisfies the
condition (C-13), we may apply Corollary C.3 to (2-44), thereby obtaining

r. Ê � E�/.x/D EP .x/C e�.x/ EU .x/;(2-45)

r
2. Ê � E�/.x/Dr EP .x/C e�.x/ EV .x/;(2-46)

where EP is a polynomial of degree at most �0. Moreover, EU .x/D O.jxj2��/, and

(2-47) jxj�.1��/ EV 2
T

p<1
Lp with Tr EV .x/D O.jxj1��/ for all � > 0:

One sees in (2-43) that r E�.x/D O.jxj�0/. Hence, from (2-45) and the fact that
jr Ê j.x/'jxj�0�1, it follows that the polynomial EP contains exactly one monomial
of degree .�0� 1/ and one monomial of degree �0. More precisely, identifying the
representations (2-27) and (2-46) yields

(2-48) r2 Ê .x/D

�
�< =

= <

� �
�0.1� �0/ EAx�0�2

� �0.1C �0/ EB1x�0�1
�

Cr
2 E�.x/C e�.x/ EV .x/;

where EB1 2 Cm is constant. The constant vector EA is as in (2-21).

Remark 2.3. The estimates (2-47) may be slightly improved. To do so, one dif-
ferentiates (2-44) throughout with respect to xj , and applies Proposition C.2(i)
and Corollary C.3 to the resulting equation (however, Proposition C.2(ii) will not
be available, as some of the weights appearing — of the order jr2 Ê j— need not
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a priori fulfill the condition (C-13)). One eventually obtains that

(2-49) EV .x/D O.jxj1��/ for all � > 0:

Now recall that jr Ê .0/j D 0D j Ê .0/j. We deduce from (2-48) and (2-43) that

(2-50) Ê .x/D<
�
EAx�0 C EB1x�0C1

C EC�0�1jxj
2�0x1��0

�
Cjxj�0�1E�.x/;

where

E�.x/D O.jxj3��/; rE�.x/D O.jxj2��/; r2E�.x/D O.jxj1��/ for all � > 0:

Moreover, as 2e2� EH D� Ê , the representation (2-48) along with (2-42) gives the
local asymptotic expansion

(2-51) EH .x/D 2�0e2u.x/
<. EC�0�1x1��0/CO.jxj2��0��/ for all � > 0;

where EC�0�1 is as above, and eu.x/ WD jxj1��0e�.x/, which is known to have a
positive limit at the origin. This shows in particular that e�.x/ EH .x/ is a bounded
function (unlike the case �0 D 1, whereby e� EH ' EH behaves logarithmically).
However, it “spins” as x approaches the origin: its limit need not exist, and, if it
does exist, then it must be zero (i.e., EC�0�1 D

E0). Note in addition that, because EH
is a normal vector, we have always �En.0/ EC�0�1 D

EC�0�1.
We close this section by proving that r2En 2 L2;1 and that rEn 2 L1. We

have seen that e� EH is bounded. Applying standard elliptic techniques to (1-7) then
yields that jxje�r EH is bounded as well, and hence that e�r EH 2 L2;1. Going
back to the perturbed harmonic map equation (2-39) satisfied by the Gauss map En,
and using the fact that e� Ehij inherits the regularity of rEn 2

T
p<1Lp , we deduce

that �En lies in L2;1, and therefore indeed that r2En 2 L2;1. In particular, this
implies that rEn 2 BMO. However, it is possible to show that rEn 2 L1.B1.0//.
To see this, we first note that (2-50) yields

r Ê .x/D

�
<

�=

�
.�0
EAx�0�1/Cr

�
jxj�0�1E�.x/

�
CO.jxj�0/:

Since �Enr Ê � 0, the latter and the estimates on E� give

(2-52) j�En.x/
EAj D O.jxj/:

A quick inspection of the identity (2-48) then reveals that

j�En.x/r
2 Ê .x/j. j�En.x/ EAjjxj�0�2

CO.jxj�0�1/D O.jxj�0�1/:

Combining this with (2-26) gives that rEn is bounded across the singularity.



282 YANN BERNARD AND TRISTAN RIVIÈRE

2D1. An observation. In this section, we adopt the previously encountered complex
notation x WD x1 C ix2 and Nx WD x1 � ix2. We set @x WD

1
2
.@x1
� i@x2

/ and
@ Nx WD

1
2
.@x1
C i@x2

/. We may then deduce from (2-50) that

2@x
Ê D �0

EAx�0�1
CO.jxj�0/;

and thus

(2-53) EAD
2

�0

lim
x!0

x1��0@x
Ê :

On the other hand, when �0 � 2, recalling (2-40) and (2-17), we have

EF1 WD r
? ERCr EG D EL^r? Ê � 2 EH ^r Ê � 2i. ELC 2i EH /^ @ Nx Ê ;(2-54)

F2 WD r
?S Crg D EL � r? Ê � 2i EL � @ Nx Ê :(2-55)

From (2-42), we now find

�8 EC ��0�1 WDF2.0/ EA� EF1.0/� EA

D
4i

�0

lim
x!0

x1��0 Œ EL�@ Nx Ê �@x
Ê �

4i

�0

lim
x!0

x1��0
�
. ELC2i EH /^@ Nx Ê

�
�@x
Ê :

Rearranging the computations leading to the identities (B-11) yields without much
effort that

. EV ^ @ Nx Ê / � @x
Ê D . EV � @ Nx Ê /@x

Ê C
1
2

e2� EV

holds for all 1-vectors EV . As EH is a normal vector, we thus find

�8 EC ��0�1 D�
2i

�0

lim
x!0

x1��0e2�. ELC 2i EH /:

Introducing, as in (2-51), the function eu.x/ WD jxj1��0e�.x/, which is known to
be continuous, bounded from above and below across the origin, we reach the
expression

(2-56) � EC�0�1 D
e2u.0/

4�0

lim
x!0

x�0�1.2 EH C i EL/:

The importance of the function 2 EH C i EL further arises in Section 2E.

2E. Removability results.

2E1. Preparation. We now return to the defining equation for EL, namely

r
? EL WD r EH � 3�Enr

EH C?.r?En^ EH /� 2 E
0r log jxj:
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We will first recast this equation in the form17

(2-57) r
? ELD�2r EH C 3�Tr

EH �?.En^�Tr
? EH /� 2 E
0r log jxj;

where we have used the fact that EH is a normal vector, so En^ EH D E0. In turn, the
latter is equivalently expressed as18

(2-58) @x. ELC 2i EH C 2i E
0 log jxj/D 3i�T @x
EH �?.En^�T @x

EH /:

Using the fact that EH is normal and (B-2), a simple computation reveals that

(2-59) �T @x
EH D�

X
jD1;2

. EH ��En@x Eej /Eej D�. EH � EH /@x
Ê �

�
EH � EH0

�
@ Nx Ê ;

where EH0 denotes the Weingarten operator:

EH0 WD
1
2
.Eh11�

Eh22� 2i Eh12/:

From this and the elementary identities

?.En^ @x
Ê /D i@x

Ê and ? .En^ @ Nx Ê /D�i@ Nx Ê ;

we obtain

(2-60) ?.En^�T @x
EH /D�i. EH � EH /@x

Ê C i. EH � EH0/@ Nx Ê :

Altogether (2-59)–(2-60) brought into (2-58) give

@x

�
i EL� 2 EH � 2 E
0 log jxj

�
D 2. EH � EH /@x

Ê C 4. EH � EH0/@ Nx Ê :

This equation, like the original one introducing EL, is valid only on the punctured
disk D2 n f0g. For notational convenience, we will henceforth write it

(2-61) @x

�
i EL� 2 EH � 2 E
0 log jxj

�
D 2Eq:

Owing to the fact that j EH jjr Ê j and j EH0jjr
Ê j are controlled by jrEnj, we note that

(2-62) jEqj. jrEnjj EH j:

Lemma 2.4. If , locally around the origin, for some integer k 2 f1; : : : ; �0g, we
have

(2-63) EH D O.jxjk��0��/ for all � > 0;

17Recall that �T WD id��En denotes projection onto the tangent space.
18With the same notation as in Section 2D1.
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then we have

(2-64) EH C E
0 log jxj �
i

2
ELD EE � ET :

The function EE is antimeromorphic with a pole at the origin of order at most .�0�k/.
Moreover,

@x
ET D Eq on D2

n f0g; ET D O.jxj1Ck��0��/ for all � > 0:

The function ET is unique up to addition of antimeromorphic summands.

Proof. Suppose that for some integer k 2 f1; : : : ; �0g we have

EH D O.jxjk��0��/ for all � > 0:

Owing to (2-63), we have as well

(2-65) jxj�0�k
Eq 2

T
p<1

Lp:

We consider any Ew satisfying

(2-66) @x Ew D 2x�0�k
Eq on D2:

Per (2-65), Ew is C 0;1��-Hölder continuous for any � > 0. From (2-61), we have

(2-67) @x

�
x�0�k.i EL� 2 EH � 2 E
0 log jxj/� Ew

�
D 0 on D2

n f0g:

We will extend this equation to all of the unit disk D2. To do so, it suffices to
show that the function to which the operator @x is applied on the left-hand side
of (2-67) lies in L2. Since Ew is Hölder continuous, while EH satisfies (2-63), it only
remains to verify that jxj�0�k EL lies in the space L2. Exactly as we derived (2-12)
from (2-5), we infer here that jxj�0C1�kr EH 2

T
p<1

Lp, and then per (2-57) that

(2-68) jxj�0C1�k
r EL 2

T
p<1

Lp;

from which we obtain that jxj�0�k EL 2L2. Accordingly, (2-67) holds on the unit
disk, whence

EH C E
0 log jxj �
i

2
ELD EP �xk��0 Ew;

where EP is antimeromorphic with a pole at the origin of order at most .�0 � k/.
Putting in the latter

EE WD EP Cxk��0 Ew.0/ and ET WD . Ew� Ew.0//xk��0
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gives the desired representation (2-64). Moreover, we have

@x
ET D Eq on D2

n f0g; ET D O.jxj1Ck��0��/ for all � > 0:

The function Ew is clearly unique up to addition of antimeromorphic terms. The same
is also true for ET . Should the “first” found ET happen to contain an antimeromorphic
summand, it will necessarily be of order at most O.jxj1Ck��0/ and could thus
safely be fed into EE without affecting the desired statement. �

We now come to a central result in our study.

Proposition 2.5. There exists a unique function ET containing no monomial of Nx,
satisfying

(2-69) @x
ET D Eq on D2

n f0g and ET D O.jxj2��0��/ for all � > 0;

and such that locally around the singularity, we have

(2-70) EH .x/C E
0 log jxj �
i

2
EL.x/D EE.x/� ET .x/;

where E
0 is the residue defined in (1-8), while the function EE is antiholomorphic
with possibly a pole at the origin of order at most .�0� 1/.

If the singularity of EE at the origin has order ˛ 2 f0; : : : ; �0� 1g, then EE and ET
may be adjusted to satisfy

EE � ET D EE˛x�˛ � EQ

for some nonzero constant EE˛ 2 Cm, and with

@x
EQD Eq on D2

n f0g and EQD O.jxj1�˛��/ for all � > 0:

Proof. We have seen in Proposition 2.2 and in (2-51) that EH D O.jxj1��0��/ for
all � > 0. The desired representation (2-70) was obtained in Lemma 2.4.

For simplicity, we will only prove the second part of the lemma for the first three
cases ˛ 2 f�0� 3; : : : ; �0� 1g. All other cases are obtained mutatis mutandis.

Case ˛ D �0� 1. We can write locally

EE D EE�0�1x1��0 C EE0;

where EE�0�1 2 Cm is constant, and EE0 is an antimeromorphic function with a
pole at the origin of order at most .�0 � 2/; i.e., j EE0j . jxj2��0 . We may then
let EQ WD ET � EE0 with @x

EQ D @x
ET on D2 n f0g, and EQ and ET have the same

asymptotic behavior at the origin.
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Case ˛ D �0� 2. In this case, without loss of generality, �0 � 2, so that rEn 2L1.
As EE is antimeromorphic with a pole of order .�0 � 2/ at the origin, we have
j EEj ' jxj2��0 near the origin. The second condition in (2-69) put into (2-70) shows
that EH is controlled by jxj2��0�� for all � > 0. Calling upon the representation
(2-64) with k D 2 gives that

�
i

2
ELC EH C E
0 log jxj D EE1

� ET 1;

where EE1 is an antimeromorphic function with a pole at the origin of order at most
.�0� 2/, and a function ET 1 satisfies

(2-71) @x
ET 1
D Eq and ET 1

D O.jxj3��0��/ for all � > 0:

As we did in the case ˛ D �0� 1, we can write

EE1. Nx/D EE�0�2x2��0 C EE0. Nx/;

where EE�0�2 2Cm is constant, and EE0 is an antimeromorphic function with a pole
at the origin of order at most .�0�3/. Clearly, the function EQ WD ET 1� EE0 satisfies
the two conditions (2-71). Furthermore, we have

�
i

2
ELC EH C E
0 log jxj D EE1

� ET 1
D EE�0�2x2��0 � EQ;

as desired.

Case ˛ D �0� 3. We start with the representation (2-64) with k D 1, which as we
have seen is equivalent to (2-70):

EH C E
0 log jxj �
i

2
ELD EE � ET ;

and assume that the antimeromorphic function EE has a pole of order .�0 � 3/ at
the origin, while ET D O.jxj2��0��/ for all � > 0. Exactly as we did in the case
˛ D �0� 2, we obtain

EH D O.jxj2��0��/ for all � > 0:

Calling upon Lemma 2.4 with k D 2 gives us the alternative representation

(2-72) �
i

2
ELC EH C E
0 log jxj D EE1

� ET 1;

where EE1 is an antimeromorphic function with a pole at the origin of order at most
.�0� 2/, while ET 1 D O.jxj3��0��/. Hence,

ET � EE � EE1
C ET 1

D� EE1
CO.jxj3��0��/:
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If EE1 had a pole of order .�0 � 2/, then ET would contain a monomial term of Nx,
which we have ruled out by hypothesis. Thus, the pole of EE1 has order at most
.�0� 3/. The representation (2-72) then yields

EH D O.jxj3��0��/ for all � > 0:

Finally, calling once more upon Lemma 2.4 with this time kD 3 gives us the desired
representation. �

The regularity of the function EQ is closely tied to that of EH (and ultimately to that
of the Gauss map). A quick inspection of the proof of Proposition 2.5 reveals that,
if the local behavior of the mean curvature improves to EH D O.jxj�˛/ for some
˛2f0; : : : ; �0�2g, then we get the corresponding improvement EQDO.jxj�˛C1��/

for all � > 0. In this case, the order of the pole of the antimeromorphic function EE
is at most ˛. On the other hand, if EE happens to be regular at the origin, the
identity (2-70) shows that the regularity of EH improves with that of EQ, a condition
which, per our previous observation, makes it possible to implement a bootstrapping
procedure. The obstruction induced by the singular behavior of the function EE
at the origin is studied in detail in the next section. We view EE as a string of m

complex-valued functions fEj gjD1;:::;m, all of which are antimeromorphic and may
have a pole at the origin of order at most .�0 � 1/. In particular, we define the
Nm-valued second residue

(2-73) E
 D .
1; : : : ; 
m/ with 
j WD
1

2i�

Z
@D2

d log Ej :

Remark 2.6. Branched minimal surfaces have vanishing first and second residues.
Indeed, if EH � E0, from the very definition (1-8) of the first residue, we see that
E
0 D

E0. Furthermore, the function Eq introduced in (2-61) is identically vanishing,
thereby yielding that EQ � E0. According to (2-70), we have EE D �1

2
i EL. But, as

seen in (2-9), the function EL must be constant when EH � E0. The function EE is thus
regular, and hence the second residue E
 vanishes.

2E2. How the second residue E
 controls the regularity. We start by defining

˛ WD max
1�j�m


j 2 f0; : : : ; �0� 1g:

Per Proposition 2.5, we may choose EED EE˛x�˛ for some constant vector EE˛ 2Cm.
According to Proposition 2.5, we have

(2-74) EQD O.jxj1�˛��/ for all � > 0:

Because EL is real-valued, (2-70) yields

(2-75) EH C E
0 log jxj D <. EE � EQ/:
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We define next the two-component vector field EU WD .<;=/.e� EQ/. As @x
EQD Eq,

we have19

(2-76) div EU Dr� � EU C 2e�<.Eq/; curl EU Dr?� � EU C 2e�=.Eq/:

As jr�j. jxj�1, we use (2-75) along with the estimates (2-62) and (2-74) to find

(2-77) jdiv EU jCjcurl EU j. jxj�1
j EU jCe�jxj��j EH j. jxj�0�1�˛�� for all � >0:

With the help of a simple Hodge decomposition, (2-77) along with the fact that
j EU j ' e�j EQj D O.jxj�0��/ yields

jr.e� EQ/j ' jr EU j. jxj�0�1�� for all � > 0:

Again since jr�j. jxj�1, the latter shows that

(2-78) jr EQj. jxj�� for all � > 0:

Putting (2-78) into (2-75), and recalling that EE is a power function, then yields

(2-79) jr EH j. jxj�1�˛:

As ˛ � �0� 1, we thus find e�r EH 2L2;1. It is proved as (B-8) in the appendix
that the ƒm�2.Sm�1/-valued Gauss map En satisfies the perturbed harmonic map
equation

(2-80) �En� 2e2�KEnD 2?.r? Ê ^r EH /� 2?e2� Eh12 ^ .Eh11�
Eh22/;

where K is the Gauss curvature, whence

(2-81) j�Enj. e�jr EH jC jrEnj2 . jxj�0�2
2L2;1:

Accordingly, r2En 2L2;1, and in particular rEn 2 BMO.
We have seen in the Introduction that the conformal parameter satisfies

(2-82) �D .�0� 1/ log jxjCu;

where the function u belongs to W 2;1. More precisely, from the Liouville equation,
we know that

��uD e2�K;

with K denoting the Gauss curvature. As explained, e2�K inherits the regularity of
jrEnj2 (as it is made of products of terms of the type e� Ehij , each of which inherits the
regularity of jrEnj). Owing to (2-81), we thus have r2u 2

T
p<1

Lp , and in particular

19Although the equation for EQ holds only on D2 n f0g, the system for EU may easily be extended
to the whole unit disk D2 owing to the fact that EU D O.jxj1��/ 2L1.
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that ru is Hölder continuous. Hence, (2-82) shows that

(2-83) jr�j. jxj�1:

Furthermore, we may write

(2-84) 2e2�
D .T1CR1/jxj

2.�0�1/;

where T1 is the first-order Taylor polynomial expansion of 2e2u 2 C 1;1�� (for all
� > 0) near the origin, and R1 is the corresponding remainder. Hence

(2-85) r
j R1 D O.jxj2�j��/; j 2 f0; 1g; for all � > 0:

With the help of (2-75), we write

� Ê � 2e2� EH D� Ê 0C� Ê 1;

where (
� Ê 0 D T1jxj

2.�0�1/
<. EE � E
0 log jxj/;

� Ê 1 D�2e2�
<. EQ/Cjxj2.�0�1/R1<. EE � E
0 log jxj/:

Since T1 and EE are power functions, we easily obtain via solving explicitly and
handling the remainder with Corollary C.3 that

Ê
0 D<. EP0/CC˛jxj

2�0<. EE/� EC jxj2�0.log jxj2�0 � 4/C E�0;

where EP0 is a Cm-valued holomorphic polynomial of degree at most .2�0�˛/, and

(2-86) C˛ WD
e2u.0/

2�0.�0�˛/
and EC WD

e2u.0/

2�3
0

E
0:

The remainder E�0 satisfies

r
j E�0 D O.jxj2�0�˛C1�j��/ for all j 2 f0; : : : ; 2g; for all � > 0;

jxj2C˛�2�0r3E�0 2
T

p<1
Lp:

To obtain information on Ê 1, we differentiate once its partial differential equation
in each coordinate x1 and x2, and apply Corollary C.3 to the respective results
using (2-85), the fact that e� EQ 2

S
p<1W 1;p, that r�D O.jxj�1/, and the fact

that EF is a power function. Without much effort, it ensues that we can write

Ê
1 D<. EP1/C E�1;

where EP1 is a Cm-valued holomorphic polynomial of degree at most .2�0�˛/, and
the Rm-valued function E�1 satisfies
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r
j E�1 D O.jxj2�0�˛C1�j��/ for all j 2 f0; : : : ; 2g; for all � > 0;

jxj2C˛�2�0r3E�1 2
T

p<1
Lp:

Comparing Ê 0C
Ê

1 to the previously found expression (2-21), we deduce

(2-87) Ê D<
�
EAx�0C EB1x�0C1

CC˛jxj
2�0 EE

�
� EC jxj2�0.logjxj2�0�4/C.E�0CE�1/;

where EB1 2 Cm is constant, while EA is as in Proposition 1.3.
Note that

(2-88) jr
j Ê j D O.jxj�0�j / for all j 2 f0; : : : ; 2g:

Suppose next that ˛ � �0� 2. Then (2-79) gives

(2-89) e�r EH 2L1:

In turn brought into (2-81), the latter shows that

(2-90) r
2
En 2

T
p<1

Lp:

Accordingly, the function u appearing in (2-82) lies in C 2;1��.D2/ for all � > 0,
whence

r
2�D O.jxj�2/:

When ˛ � �0 � 2, we have that jxj�1e�j EEj ' jxj�0�2�˛ 2 L1. Hence (2-74)
and (2-75) yield

(2-91) jxj�1e� EH 2L1:

We now need to improve the regularity of Eq. Recall that

Eq WD j EH j2@x
Ê C 2. EH � EH0/@ Nx Ê :

As e� EH and e� EH0 inherit the regularity of rEn, we find

(2-92)
ˇ̌
r
�
e�. EH � EH0/@ Nx Ê

�ˇ̌
. je� EH jjr2

EnjC jrEnj
�
e�jr EH jC jr2 Ê j j EH j

�
. jxjjr2

EnjC jrEnjC jxj�1e�j EH j 2
T

p<1
Lp;

where we have used (2-91), (2-89), (2-88), and (2-90). Exactly in the same fashion,
one verifies that

e�j EH j2@x
Ê 2

T
p<1

W 1;p:

Together, the latter and (2-92) brought into the definition of Eq show that

(2-93) e�Eq 2
T

p<1
W 1;p:
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We next return to the system (2-76). Proceeding as in (2-77) with the information
that ˛ � �0� 2, we infer that

jdiv.jxj�1 EU /jC jcurl.jxj�1 EU /j. jxj�0�2�˛�� . jxj�� for all � > 0;

so that jxj�1e� EQ� jxj�1 EU is an element of W 1;p for all finite p. By a similar
token, using (2-93), it is not difficult to see that

jr
2 EU j. jr.jxj�1 EU /jC jr.e�Eq/j 2

T
p<1

Lp:

Hence, e� EQ� EU 2
T

p<1
W 2;p. Using that r�D O.jxj�1/ now gives

jxj�1e�jr EQj. jr.jxj�1e� EQ/jC jxj�2e�j EQj 2
T

p<1
Lp;

where have used that ˛ � �0� 2 and EQD O.jxj1�˛��/ for all � < 0. In particular,
owing to (2-75), we have

jxj�1e�
ˇ̌
r
�
EH C E
0 log jxj �<. EE/

�ˇ̌
. jxj�1e�jr EQj 2

T
p<1

Lp:

Analogously, using now additionally that r2�D O.jxj�2/ yields

e�jr2 EQj. jxj�2
j EU jC jr.jxj�1 EU /jC jr2 EU j:

As we have shown above, each of these terms lies in Lp for all finite p. Accordingly,
differentiating twice (2-75) yields

(2-94) e�
ˇ̌
r

2
�
EH C E
0 log jxj �<. EE/

�ˇ̌
. e�jr2 EQj 2

T
p<1

Lp:

We have pointed out that the function u in (2-82) lies in C 2;1�� for all � > 0, owing
to the fact that En 2W 2;p for all p <1. We may now replace (2-84) by

2e2�
D .T2CR2/jxj

2.�0�1/;

where T2 is the second-order Taylor polynomial expansion of 2e2u, and R2 is the
corresponding remainder. Hence

(2-95) r
j R2 D O.jxj3�j��/; j 2 f0; : : : ; 2g; for all � > 0:

As before, we write the decomposition

� Ê � 2e2� EH D� Ê 0C� Ê 1;

with now (
� Ê 0 D T2jxj

2.�0�1/
<. EE � E
0 log jxj/;

� Ê 1 D�2e2�
<. EQ/Cjxj2.�0�1/R2<. EE � E
0 log jxj/:
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Since T2 and EE are power functions, we easily obtain via solving explicitly and
handling the remainder with Corollary C.3 that

Ê
0 D<. EP0/CC˛jxj

2�0<. EE/� EC jxj2�0.log jxj2�0 � 4/C E�0;

where EP0 is a Cm-valued holomorphic polynomial of degree at most .2�0�˛/, and
the constants C˛ and EC are as in (2-86). The remainder E�0 satisfies

r
j E�0 D O.jxj2�0�˛C1�j��/ for all j 2 f0; : : : ; 3g; for all � > 0;

jxj3C˛�2�0r4E�0 2
T

p<1
Lp:

To obtain information on Ê 1, we differentiate twice its partial differential equation
in each coordinate x1 and x2, and apply Corollary C.3 to the results using (2-95),
the fact that e� EQ 2

T
p<1W 2;p, that r2�D O.jxj�2/, and the fact that EE is a

power function. Without much effort, it ensues that we can write

Ê
1 D<. EP1/C E�1;

where EP1 is a Cm-valued holomorphic polynomial of degree at most .2�0�˛/, and
the Rm-valued function E�1 satisfies

r
j E�1 D O.jxj2�0�˛C1�j��/ for all j 2 f0; : : : ; 3g; for all � > 0;

jxj3C˛�2�0r
4E�1 2

T
p<1

Lp:

Comparing Ê 0C
Ê

1 to the previously found expression (2-87), we deduce

(2-96) Ê D <
�
EAz�0 C EB1z�0C1

C EB2z�0C2
CC˛jxj

2�0 EE
�

� EC jxj2�0.log jxj2�0 � 4/C .E�0C E�1/;

where EA and EB1 are as in (2-87), while EB2 2 Cm is a constant.
Note that

(2-97) jr
j Ê j D O.jxj�0�j / for all j 2 f0; : : : ; 3g:

Finally, we return to (2-80). Using the previously noted fact that e� Ehij inherit
the regularity of rEn, along with (2-90), (2-94), (2-97), we now obtain

j�rEnj. jr2
EnjC jrEnj2jrEnjC jr Ê jjr2 EH jC jr2 Ê j jr EH j

. jr2
EnjC jrEnj2jrEnjC e�jr2 EH jC jxj�1e�jr EH j

' jxj�0�3�˛
C terms in

T
p<1

Lp:

This shows that r3En 2 L2;1 if ˛ D �0 � 2. On the other hand, if ˛ � �0 � 3,
we obtain that En 2

T
p<1

W 3;p. We may then start over again the above procedure
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gaining one order of decay at every step. A clear pattern emerges. Repeating finitely
many times the steps performed above, one eventually reaches that

(2-98) r
�0�˛C1

En 2L2;1 and thus r
�0�˛ En 2 BMO :

Furthermore, for all j 2 f0; : : : ; �0�˛g, we have

(2-99) jxj˛Cj�1
r

j
�
EH C E
0 log jxj �<. EE/

�
2
T

p<1
Lp:

We also obtain a local expansion for the immersion, namely

(2-100) Ê D<
�
EAx�0C

�0�˛P
jD1

EBj x�0Cj
CC˛jxj

2�0 EE

�
� EC jxj2�0.log jxj2�0�4/CE�;

where EBj 2 Cm are constant vectors, while EA is as in (2-70). The constants C˛
and EC are

C˛ WD
e2u.0/

2�0.�0�˛/
and EC WD

e2u.0/

2�3
0

E
0:

The remainder E� satisfies

r
j E� D O.jxj2�0�˛C1�j��/ for all j 2 f0; : : : ; �0�˛C 1g; for all � > 0;

jxj1��0r
�0�˛C2E� 2

T
p<1

Lp:

Of course, when ˛ > 0, the “remainder” term E� in (2-100) dominates the logarith-
mic term, written here to indicate the presence and the influence of the (modified)
first residue E
0 of which it is a multiple.

2E3. When both residues vanish: smoothness of the immersion. This last section is
devoted to proving Theorem 1.9. We shall assume that the first and second residues
defined respectively in (1-8) and in (2-73) vanish.

When �0D 1, we have seen at the end of Section 2C that rEn2BMO. In the same
section, Proposition 2.2 states that EH 2W 1;p for all p <1. Hence, r EH 2Lp for
all finite p. On the other hand, when � � 2, we proved in (2-100) that r�0 En2BMO
and in (2-99) that jxjj�1rj EH 2

T
p<1

Lp for all j 2 f1; : : : ; �0g. Altogether, in all
cases, we thus have

r
�0 En 2 BMO and jxjj�1

r
j EH 2

T
p<1

Lp for all j 2 f1; : : : ; �0g:

Observe that (2-100) implies

jr
j Ê .x/j. jxj�0�j for all j 2 f0; : : : ; �0g:
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Owing to

ˇ̌
r
�0�1.r? Ê ^r EH /

ˇ̌
.

�0X
jD1

jr
j EH jjr�0�jC1 Ê j.

�0X
jD1

jxjj�1
jr

j EH j;

whence we find

(2-101) r
? Ê ^r EH 2

T
p<1

W �0�1;p:

Recall next (B-8) satisfied by the Gauss map, namely

(2-102) �EnD 2?.r? Ê ^r EH /C 2e2�KEn� 2?e2� Eh12 ^ .Eh11�
Eh22/:

As previously noticed, e� Ehij inherits the regularity of jrEnj, so that

(2-103) e2�KEn� 2?e2� Eh12 ^ .Eh11�
Eh22/ 2

T
p<1

W �0�1;p:

Introducing (2-101) and (2-103) into (2-102) now shows that En 2 W �0C1;p for
all p <1, thereby improving the regularity of En. It suffices now to repeat the
procedure outlined in Section 2E2 and in the above paragraph until reaching that En
is smooth, from which it immediately follows that the immersion Ê is smooth as
well. This concludes the proof of Theorem 1.9.

Appendix A. Notational conventions

We place an arrow on all letters referring to elements of Rm. To simplify the
notation, by Ê 2X.D2/ is meant Ê 2X.D2;Rm/ whenever X is a function space.
Similarly, we write r Ê 2X.D2/ for r Ê 2 R2˝X.D2;Rm/.

Although this custom may seem at first odd, we allow the differential operators
classically acting on scalars to act on elements of Rm. Thus, for example, r Ê is
the element of R2˝Rm that can be written .@x1

Ê ; @x2
Ê /. If S is a scalar and ER

an element of Rm, we let

ER � r Ê WD . ER � @x1
Ê ; ER � @x2

Ê /;

r
?S � r Ê WD @x1

S@x2
Ê � @x2

S@x1
Ê ;

r
? ER � r Ê WD @x1

ER � @x2
Ê � @x2

ER � @x1
Ê ;

r
? ER^r Ê WD @x1

ER^ @x2
Ê � @x2

ER^ @x1
Ê :

Analogous quantities are defined according to the same logic.
Two operations between multivectors are useful. The interior multiplication

maps a pair comprising a q-vector 
 and a p-vector ˇ to a .q � p/-vector. It is
defined via

h
 ˇ; ˛i D h
; ˇ^˛i for each .q�p/-vector ˛:
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Let ˛ be a k-vector. The first-order contraction operation � is defined inductively
through

˛ �ˇ D ˛ ˇ when ˇ is a 1-vector;

and
˛ � .ˇ^ 
 /D .˛ �ˇ/^ 
 C .�1/pq.˛ � 
 /^ˇ

when ˇ and 
 are respectively a p-vector and a q-vector.

Appendix B. Miscellaneous facts

On the Gauss map. Let Ê be a conformal immersion of the unit disk into Rm. For
j 2 f1; 2g, we let

Eej WD e��@xj
Ê with 2e2�

D jr Ê j
2:

One easily verifies (see details in [Bernard and Rivière 2011b, Section III.2.2]) that

(B-1) �TrEej D .r
?�/Eej 0 where .Ee10 ; Ee20/ WD .Ee2;�Ee1/;

where �T denotes projection onto the tangent space spanned by fEe1; Ee2g. Moreover,

(B-2) �EnrEej � e���Enr@j Ê DW e
�

 
Eh1j

Eh2j

!
:

where �En denotes projection onto the normal space: �En D id��T . With this
notation, the mean curvature vector takes the form

(B-3) EH D 1
2
.Eh11C

Eh22/:

The .m� 2/-vector En satisfies En WD ?.Ee1^ Ee2/. Accordingly, using (B-1), we have

(B-4) rEnD ?
�
.�EnrEe1/^ Ee2C Ee1 ^ .�EnrEe2/

�
;

so that

�EnD ?
�
div.�EnrEe1/^ Ee2C Ee1 ^ div.�EnrEe2/

�
C 2?Œ�EnrEe1 ^�EnrEe2�

C?Œ�EnrEe1 ^�TrEe2C�TrEe1 ^�EnrEe2�:

The identities (B-1) yield

�TrEek ^�EnrEel D .r
?�/ � .Eek0 ^�EnrEel/;

and thus

(B-5) �EnD ?
�
div.�EnrEe1/^ Ee2C Ee1 ^ div.�EnrEe2/

�
C 2?Œ�EnrEe1 ^�EnrEe2�

C?.r?�/ � ŒEe1 ^�EnrEe1C Ee2 ^�EnrEe2�:
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Next, using the definition of Eek and again (B-1), we obtain20

div�EnrEek � �En div�EnrEek C�T div�EnrEek

D �En div�Enr.e
��@xk

Ê /C .Eel � div�EnrEek/Eel

D e���En div�Enr@xk
Ê � e���En.r� � r@xk

Ê /� .�EnrEel ��EnrEek/Eel

D e���En div�Enr@xk
Ê � .�EnrEel ��EnrEek/Eel �r� ��EnrEek :

Introducing the latter into (B-5) gives, after a few elementary manipulations,

�EnD ?e��
�
�En div.�Enr@x1

Ê /^ Ee2C Ee1 ^�En div.�Enr@x2
Ê /
�

�
�
j�EnrEe1j

2
Cj�EnrEe2j

2
�
? .Ee1 ^ Ee2/C 2?Œ�EnrEe1 ^�EnrEe2�

C?.r?�/ �
�
Ee1 ^�En.rEe1�r

?
Ee2/��En.r

?
Ee1CrEe2/^ Ee2

�
:

Owing to (B-2) and (B-4), we find

�EnCjrEnj2EnD ?e��
�
�En div.�Enr@x1

Ê /^Ee2CEe1^�En div.�Enr@x2
Ê /
�

C2?e�2�Œ�Enr@x1
Ê ^�Enr@x2

Ê �C2?e� EH^Œ@x2
�Ee1�@x1

�Ee2�:

Equivalently,

(B-6) �EnCjrEnj2EnD ?Ee1 ^ e��
�
�En div.�Enr@x2

Ê /� 2e2� EH@x2
�
�

�?Ee2 ^ e��
�
�En div.�Enr@x1

Ê /� 2e2� EH@x1
�
�

C 2?Œ�EnrEe1 ^�EnrEe2�:

Moreover, (B-1) gives �Tr@xj
Ê D r.e�/Eej Cr

?.e�/Eej 0 . Hence, calling upon
(B-2) implies

�En div�Tr@xj
Ê D r.e�/ ��EnrEej Cr

?.e�/ ��EnrEej 0 D
EH@xj e2�;

and thus, as � Ê D 2e2� EH ,

�En div�Enr@xj
Ê � �En@xj�

Ê ��En div�Tr@xj
Ê D 2�En@xj .e

2� EH /� EH@xj e2�:

The interested reader will note that this equation is equivalent to the Codazzi–
Mainardi identities. Substituted into (B-6), the latter gives

(B-7) �EnCjrEnj2EnD2?
�
@x1
Ê ^�En@x2

EH�@x2
Ê ^�En@x1

EH
�
C2?

�
�EnrEe1^�EnrEe2

�
D2?

�
r
? Ê ^�Enr

EH
�
�2?e2� Eh12^.Eh11�

Eh22/:

One also notes from (B-2) and the fact that EH is normal that

�T @xj
EH � hEek ; @xj

EH iEek D�e�. EH � Ehjk/Eek ;

20Implicit summations over repeated indices are understood.



SINGULARITY REMOVABILITY AT BRANCH POINTS FOR WILLMORE SURFACES 297

whence

r
? Ê ^�Tr

EH � @x1
Ê ^�T @x2

EH � @x2
Ê ^�T @x1

EH D�2e2�
j EH j2.?En/:

Equation (B-7) may thus be recast as

�EnCjrEnj2EnD 2?.r? Ê ^r EH /C 4e2�
j EH j2En� 2?e2� Eh12 ^ .Eh11�

Eh22/:

Finally, since
jrEnj2� 4e2�

j EH j2 D�2e2�K;

where K is the Gauss curvature, we obtain

(B-8) �En� 2e2�KEnD 2?.r? Ê ^r EH /� 2?e2� Eh12 ^ .Eh11�
Eh22/:

Conservative conformal Willmore system. We establish in this section a few gen-
eral identities. As before, we let Ê be a (smooth) conformal immersion of the
unit disk into Rm, and set Eej WD e��@xj

Ê , where � is the conformal parameter.
Since Ê is conformal, fEe1; Ee2g forms an orthonormal basis of the tangent space. As
EnD ?.Ee1 ^ Ee2/, if EV is a 1-vector, we find

.?En/ � . EV ^ @xj
Ê /D e��.Ee1 ^ Ee2/ � . EV ^ Eej /D�e��Eej 0 �

EV D�@xj 0
Ê � EV ;

where
.Ee10 ; Ee20/ WD .Ee2;�Ee1/:

Hence,

(B-9) .?En/ � . EV ^r Ê /D EV � r? Ê ; .?En/ � . EV ^r? Ê /D� EV � r Ê :

We choose next an orthonormal basis fEn˛gm�2
˛D1

of the normal space such that
fEe1; Ee2; En1; : : : ; Enm�2g is a positive oriented orthonormal basis of Rm.

Recalling the definition of the interior multiplication operator given in Appen-
dix A, it is not hard to obtain

.?En/ Eej D .Ee1 ^ Ee2/ Eej D ıj2Ee1� ıj1Ee2 and .?En/ En˛ D 0:

Hence,

.?En/ � .Eej ^ En˛/� ..?En/ Eej /^ En˛C ..?En/ En˛/^ Eej D ıj2Ee1^ En˛� ıj1Ee2^ En˛:

Moreover, we have trivially

.?En/ � .Eej ^ Eek/D˙.?En/ � .?En/D 0:

From this one easily deduces that, for every 1-vector EV ,

(B-10) .?En/ � . EV ^r Ê /D �En
EV ^r? Ê ; .?En/ � . EV ^r? Ê /D��En

EV ^r Ê :
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We have furthermore

. EV ^ Eej / � Eei D .Eei �
EV /Eej � ıij EV :

From this, and Eei WD e��@xi
Ê , it follows that whenever EV D V i Eei CV ˛ En˛ then

(B-11)

(
. EV ^r? Ê / �r? Ê D e2�.�T

EV � 2 EV /;

. EV ^r Ê / �r? Ê D e2�.V 2
Ee1�V 1

Ee2/� . EV � r Ê / � r
? Ê :

We are now sufficiently geared to prove:

Lemma B.1. Let Ê be a smooth conformal immersion of the unit disk into Rm

with corresponding mean curvature vector EH , and let EL be a 1-vector. We define
A 2 R2˝

V0
.Rm/ and EB 2 R2˝

V2
.Rm/ via

AD EL � r Ê ; EB D EL^r Ê C 2 EH ^r? Ê :

Then the following identities hold:

(B-12) AD�.?En/ � EB?; EB D�.?En/ � EB?C .?En/A?;

where ?En WD .@x1
Ê ^ @x2

Ê /=j@x1
Ê ^ @x2

Ê j.
Moreover, we have

(B-13) 2� Ê DA � r? Ê � EB �r? Ê :

Proof. The identities (B-9) give immediately (recall that EH is a normal vector, so
that EH � r? Ê D 0) the required

.?En/ � EB? D� EL � r Ê C 2 EH � r? Ê D � EL � r Ê D �A:

Analogously, the identities (B-10) give (again, EH is normal, so �En EH D EH )

.?En/� EB? D��En
EL^r Ê �2 EH^r? Ê D � EBC�T

EL^r Ê

D � EBCe�
�
. EL� Ee1/Ee1C. EL� Ee2/Ee2

�
^

�
Ee1

Ee2

�
D� EBCe�

 
� EL� Ee2

CEL� Ee1

!
Ee1^Ee2

D� EBC. EL�r? Ê /.?En/D� EBC.?En/A?;

which is the second equality in (B-12).
In order to prove (B-13), we will use (B-11). Namely, since EH D H˛ En˛, we

find
EB �r? Ê D . EL � r Ê / � r? Ê � 4e2� EH DA � r? Ê � 4e2� EH :

Hence,
EB �r? Ê �A � r? Ê D �4e2� EH :

Finally, there remains to recall that � Ê D 2e2� EH to reach the desired identity. �
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We choose now

ADrS �r?g and EB Dr ER�r? EG;

where S and g are scalars, while ER and EG are 2-vectors. Then Lemma B.1 yields�
rS D�.?En/ � .r? ERCr EG/Cr?g;

r ERD�.?En/ � .r? ERCr EG/C .?En/.r?S Crg/Cr? EG;

thereby giving

(B-14)
�
��S Dr.?En/ � r? ERC div

�
.?En/ � r EG

�
;

�� ERDr.?En/ �r? ER�r.?En/ � r?S C div
�
.?En/ �r EG �?Enrg

�
:

Furthermore, we have

(B-15) 2� Ê D .rS �r?g/ � r? Ê � .r ER�r? EG/ �r? Ê :

Appendix C. Nonlinear and weighted elliptic results

Proposition C.1. Let u 2W 1;2.B1.0//\C 2.B1.0/ n f0g/ satisfy the equation

(C-1) ��uDrb � r?uC div.brf / on B1.0/;

where f 2W
2;.2;1/

0
.B1.0//, and moreover

(C-2) b 2W 1;2
\L1.B1.0// with krbkL2.B1.0//

< "0

for some "0 chosen to be “small enough”. Then

ru 2Lp.B1=4.0// for some p > 2:

Proof. Before delving into the proof of the statement, one important remark is
in order. Let D be any disk included (properly or not) in B1.0/. From the very
definition of the space L2;1 (see [Tartar 2007]), we have

(C-3) k�f kL1.D/ � jDj
1
2 k�f kL2;1.D/ . jDj

1
2 kr

2f kL2;1.D/:

Moreover, an embedding result of [Tartar 2007] states that rf has bounded mean
oscillations, whence in particular

(C-4) krf kL2.D/ . jDj
1
2
�� for all � > 0:

These inequalities shall be helpful in the sequel.
We now return to the proof of the proposition. Let us fix some point x0 2B1=2.0/

and some radius � 2
�
0; 1

2

�
, and we let k 2 .0; 1/. Note that Bk� .x0/ is properly
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contained in B1.0/. To reach the desired result, we decompose the solution to (C-1)
as the sum uD u0Cu1, where�

��u0 D div.brf /;
u0 D u;

��u1 Drb � r?u in B� .x0/;

u1 D 0 on @B� .x0/:

Accounting for the hypotheses (C-2) and (C-4) in standard elliptic estimates (see
[Almeida 1995, Proposition 4]) yields

(C-5) kru0kL2.Bk� .x0//
. kbrf kL2.Bk� .x0//

C kkrukL2.B� .x0//

. .k�/1��C kkrukL2.B� .x0//
;

up to some unimportant multiplicative constants. On the other hand, applying
Wente’s inequality (see [Hélein 1996, Theorem 3.4.1]) gives

(C-6) kru1kL2.Bk� .x0//
�kru1kL2.B� .x0//

.krbkL2.B� .x0//
krukL2.B� .x0//

�"0krukL2.B� .x0//
;

again up to some multiplicative constant without bearing on the sequel. Hence,
combining (C-5) and (C-6), we obtain the estimate

krukL2.Bk� .x0//
� kru0kL2.Bk� .x0//

Ckru1kL2.Bk� .x0//

. .kC "0/krukL2.B� .x0//
C .k�/1��:

Because "0 and � are small adjustable parameters, we may always choose k so as
to arrange for .kC "0/ to be less than 1. A standard “controlled-growth” argument
(see, e.g., [Hélein 1996, Lemma 3.5.11]) enables us to conclude that there exists
some ˇ 2 .0; 1/ for which

(C-7) krukL2.B� .x//
� C0�

ˇ for all � 2
�
0; 1

2

�
; x 2 B1=2.0/;

and for some constant C0.
With the help of the Poincaré inequality, this estimate may be used to show that u

is locally Hölder continuous. We are however interested in another implication
of (C-7). Consider the maximal function

(C-8) M2�ˇg.x/ WD sup
�>0

��ˇ
Z

B� .x/

jg.y/j dy:

We recast (C-1) in the form

��uD b�f Crb � .r?uCrf /:
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Calling upon (C-2)–(C-4) and upon the estimate (C-7), we derive that, for x 2

B1=2.0/, we have

(C-9) M2�ˇ.�B1=2.0/�u/.x/

� kbkL1.B1.0// sup
0<�<1=2

��ˇk�f kL1.B� .x//

CkrbkL2.B1.0//
sup

0<�<1=2

��ˇ
�
krukL2.B� .x//

Ckrf kL2.B� .x//

�
. sup

0<�<1=2

��ˇC1
C"0 sup

0<�<1=2

.��ˇCˇC��ˇC1��/ <1

for all 0 < � � 1�ˇ. Moreover, it is clear that �u is integrable on B1=2.0/. We
may thus use Proposition 3.2 from [Adams 1975]21 to deduce that

1

jxj
��B1=2.0/�u 2Lr;1.B1=2.0// with r WD

2�ˇ

1�ˇ
> 2:

A classical estimate about Riesz kernels states we have in general

jruj.y/. 1

jxj
��B1=2.0/�uCC for all y 2 B1=4.0//;

where C is a constant depending on the C 1-norm of u on @B1=2.0/, hence finite
by hypothesis. It follows in particular that, as announced,

ru 2Lp.B1=4.0// for all p < r: �

Proposition C.2. Let u 2 C 2.B1.0/ n f0g/ solve

(C-10) �u.x/D �.x/f .x/ in B1.0/;

where f 2Lp.B1.0// for some p > 2. The weight � satisfies

(C-11) j�.x/j ' jxja for some a 2 N:

Then:

(i) We have22

(C-12) ru.x/D P .x/Cj�.x/jT .x/;

where P .x/ is a complex-valued polynomial of degree at most a, and near the
origin T .x/D O.jxj1�2=p��/ for every � > 0.

21Namely, kjxj�1�gkr
Lr;1 . kM2�ˇgk

1�1=r
L1

kgk
1=r

L1 for r D .2�ˇ/=.1�ˇ/ and ˇ 2 .0; 1/.
22x is the complex conjugate of x. We parametrize B1.0/ by xDx1Cix2, and then x WDx1�ix2.

In this notation, ru in (C-12) is understood as @x1
uC i@x2

u.
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(ii) Furthermore, if � 2 C 1.B1.0/ n f0g/, if a¤ 0, and if

(C-13) jxj1�a
r�.x/ 2L1.B1.0//;

we have

(C-14) r
2u.x/DrP .x/Cj�.x/jQ.x/;

where P is as in (i), and

Q 2Lp��.B1.0/;C
2/ for all � > 0:

As a .2� 2/ real-valued matrix, Q satisfies in addition

Tr Q 2Lp.B1.0//:

Naturally, if aD 0, the standard Calderón–Zygmund theorem yields that
u 2W 2;p.B1.0//. The hypothesis (C-13) becomes unnecessary, and (C-14)
holds with P being constant and � D 0.

Proof. Using Green’s formula for the Laplacian, an exact expression for the solution
u may be found and used to obtain, for all x 2 B1.0/ and with E� the outer normal
unit vector to the boundary of B1.0/,

(C-15) ru.x/D
1

2�

Z
@B1.0/

�
x�y

jx�yj2
@E�u.y/�u.y/@E�

x�y

jx�yj2

�
d�.y/

�
1

2�

Z
B1.0/

x�y

jx�yj2
�.y/f .y/ dy

DW J0.x/CJ1.x/:

Without loss of generality, and to avoid notational clutter, because u is twice
differentiable away from the origin, we shall henceforth assume that jxj< 1=2.

We will estimate separately J0 and J1, and open the discussion by noting that,
when jyj> jxj, we have the expansion

x�y

jx�yj2
D�

X
m�0

Pm.x;y/ with Pm.x;y/ WD xmy �.mC1/:

Hence, we deduce the identity

(C-16) J0.x/D�
1

2�

X
m�0

Z
@B1.0/

�
Pm.x;y/@E�u.y/�u.y/@E�P

m.x;y/
�

dS.y/

D�
1

2�

X
m�0

xm

Z 2�

0

�
.mC1/u.ei'/�.@E�u/.e

i'/
�
ei.mC1/' d'

D

X
m�0

Cmxm;
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where the Cm are (complex-valued) constants depending only on the C 1-norm of
u along @B1.0/. As u is continuously differentiable on the boundary of the unit
disk by hypothesis, and jxj< 1, it is clear that jJ0.x/j is bounded above by some
constant C for all x 2 B1.0/. Since jCmj grows sublinearly in m, we can surely
find two constants 
 and ı such that

jCmj< 
ı
m for all m� 0:

Hence, when jxj �R< ı�1, we haveˇ̌̌̌ X
m�aC1

Cmxm

ˇ̌̌̌
� 
 ıaC1

jxjaC1
X
m�0

.ıR/m . jxjaC1:

And because J0 is bounded, when R< jxj< 1, we find some large enough constant
K DK.C; a; 
; ı/ such thatˇ̌̌̌ X

m�aC1

Cmxm

ˇ̌̌̌
� jJ0.x/jC

X
0�m�a

Cmjxj
m
� C C .aC 1/
 ıa

�KıaC1
�K.R�1ı/aC1

jxjaC1 . jxjaC1:

As by hypothesis j�.x/j ' jxja, we may now return to (C-16) and write

(C-17) J0.x/D P0.x/Cj�.x/jT0.x/;

where P0 is a polynomial of degree at most a, and the remainder T0 is con-
trolled by some constant depending on the C 1-norm of u on @B1.0/. Moreover,
T0.x/D O.jxj/ near the origin.

We next estimate the integral J1. To do so, we proceed as above and write

(C-18) J1.x/D I1.x/C

1X
mDaC1

Im
2 .x/�

aX
mD0

Im
1 .x/C

aX
mD0

Im
1 .x/C Im

2 .x/;

where we have put

I1.x/ WD
1

2�

Z
B1.0/\B2jxj.0/

x�y

jx�yj2
�.y/f .y/ dy;

Im
1 .x/ WD

1

2�

Z
B1.0/\B2jxj.0/

Pm.x;y/�.y/f .y/ dy;

Im
2 .x/ WD

1

2�

Z
B1.0/nB2jxj.0/

Pm.x;y/�.y/f .y/ dy:

We first observe that the last sum in (C-18) may be written

P1.x/WD
X

0�m�a

Im
1 .x/CIm

2 .x/D
X

0�m�a

Z
B1.0/

Pm.x;y/�.y/f .y/dyD
X

0�m�a

Amxm;
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where
Am WD �

Z
B1.0/

y �.mC1/�.y/f .y/ dy:

From the fact that f 2Lp.B1.0// for p > 2, and the hypothesis j�.y/j ' jyja, it
follows easily that jAmj<1 for m� a, and thus that P1 is a polynomial of degree
at most a.

We have next to handle the other summands appearing in (C-18), beginning
with I1. We find

(C-19) jI1.x/j. j�.x/j
Z

B2jxj.0/

jf .y/j

jx�yj
dy . j�.x/j

Z
B3jxj.x/

jf .y/j

jx�yj
dy

. j�.x/jjxjM0f .x/. jxj1�
2
p j�.x/j;

where we have used the fact that B2jxj.0/ � B3jxj.x/, and a classical estimate
bounding convolution with the Riesz kernel by the maximal function23 (see [Ziemer
1989, Proposition 2.8.2]). We have also used the simple estimate M0f .x/ .
jxj�2=pkf kLp .

Next, let q 2 Œ1; 2/ be the conjugate exponent of p. We immediately deduce for
0�m� a that

(C-20) jIm
1 .x/j. jxj

m

Z
B2jxj.0/

jyj�1�mCa
jf .y/j dy

. jxja


jyj�1




Lq.B2jxj.0//

kf kLp.B1.0// . jxj
1� 2

p j�.x/j:

We next estimate Im
2

. As m� aC 1, we note that, for any � > 0, we have

aC 1�m� ��
2

p
< 0:

With again q being the conjugate exponent of p, we find thus

(C-21) jIm
2 .x/j. jxj

m

Z
B1.0/nB2jxj.0/

jyja�1�m
jf .y/j dy

D jxjm
Z

B1.0/nB2jxj.0/

jyjaC1�m��� 2
p jyj��

2
q jf .y/j dy

� 2aC1�m��� 2
p jxjaC1� 2

p
��


jyj�� 2

q




Lq.B1.0//

kf kLp.B1.0//

. 2aC1�m��� 2
p jxj1�

2
p
��
j�.x/j:

Combining altogether in (C-18) our findings (C-19)–(C-21), we obtain that

(C-22) J1.x/D P1.x/Cj�.x/jT1.x/;

23See (C-8) for the definition of M0f .
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where P1 is a polynomial of degree at most a, and the remainder T1 satisfies the
estimate

(C-23) jT1.x/j. jxj1�
2
p
�� for all � > 0:

Altogether, (C-17) and (C-22) put into (C-15) show that we have

(C-24) ru.x/D P .x/Cj�.x/jT .x/;

where P WD P0 C P1 is a polynomial of degree at most a, and the remainder
T WDT0CT1 satisfies the same estimate (C-23) as T1. The announced statement (i)
ensues immediately.

We prove next statement (ii). Comparing (C-14) to (C-24), we see that

(C-25) j�.x/jQ.x/Dr
�
j�.x/jT .x/

�
Dr

�
j�.x/jT0.x/

�
CrI1.x/C

X
m�aC1

rIm
2 .x/�

X
0�m�a

rIm
1 .x/:

By definition,

j�.x/jT0.x/D
X

m�aC1

Cmxm;

with the constants Cm depending only on the C 1-norm of u along @B1.0/ and
growing sublinearly in m. Using similar arguments to those leading to (C-17), it is
clear from (C-11) that

(C-26) j�.x/j�1
r
�
j�.x/jT0.x/

�
2L1.B1.0//:

Controlling the gradients of Im
1

and Im
2

is done mutatis mutandis the estimates
(C-20) and (C-21). For the sake of brevity, we only present in detail the case of Im

1
.

Namely,

(C-27) rIm
1 .x/D

1

2�

Z
B1.0/\B2jxj.0/

rxPm.x;y/�.y/f .y/ dy

C
1

2�

x

jxj
˝

Z
@B2jxj.0/

Pm.x;y/�.y/f .y/ dy:

After some elementary computations, and using the hypothesis j�.y/j ' jyja, we
reach

jrIm
1 .x/j.mjxja�2

Z
B1.0/\B2jxj.0/

jf .y/j dyCjxja�1

Z
@B2jxj.0/

jf .y/j dy

.mjxja�
2
p kf kLp.B1.0//Cjxj

a�1

Z
@B2jxj.0/

jf .y/j dy;
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so that immediately

jxj�a
rIm

1 .x/




Lp��.B1.0//
<1 for all � > 0:

Proceeding analogously for rIm
2

, we reach that for any � > 0 we have

(C-28)
X

m�aC1



jxj�a
rIm

2 .x/




Lp��.B1.0//
C

X
0�m�a



jxj�a
rIm

1 .x/




Lp��.B1.0//
<1:

Hence, there remains only to estimate rI1. This is slightly more delicate. For
notational convenience, we write

(C-29) rI1.x/D
1

2�
r

Z
B1.0/\B2jxj.0/

x�y

jx�yj2
�.y/f .y/dyDW

1

2�
.L.x/CK.x//;

with

K.x/D �B1=2.0/.x/
x

jxj
˝

Z
@B2jxj.0/

x�y

jx�yj2
�.y/f .y/ dy;

and the convolution

L.x/D
�
��f .y/�.y/�B1.0/\B2jxj.0/.y/

�
.x/;

where � is the .2� 2/-matrix made of the Calderón–Zygmund kernels:

�.z/ WD
jzj2I2� 2z˝ z

jzj4
:

The boundary integral K is easily estimated:

jxj�a
jK.x/j. 1

jxj

Z
@B2jxj.0/

jf .y/j dy;

thereby yielding

(C-30)


jxj�aK.x/




Lp.B1.0//

. kf kLp.B1.0//:

To estimate L, we proceed as follows:

(C-31) L.x/��.x/
�
��f �B1.0/\B2jxj.0/

�
.x/

D

Z
B1.0/\B2jxj.0/

�.x�y/f .y/.�.y/��.x// dy:

Let Sx be the cone with apex the point x=2 and such that the disk Bjxj=4.0/ is
inscribed in it. Note that, for y 2 Sx , we have 2jx�yj> jxj. Hence, we find

(C-32)
Z

Sx\B1.0/\B2jxj.0/

�.x�y/f .y/.�.y/��.x// dy

. j�.x/jjxj�2

Z
B2jxj.0/

jf .y/j dy:
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By hypothesis, the function � is continuously differentiable away from the origin.
Thus, to each point y in the complement of the cone Sx , there corresponds some
˛ � ˛.x;y/ 2 Œ0; 1� with

�.y/��.x/D .x�y/ � r�.˛xC .1�˛/y/:

Using (C-13), we deduce easily

j�.y/��.x/j. jxja�1
jx�yj for all y 2 Sc

x \B1.0/\B2jxj.0/:

Accordingly, we have

(C-33)
Z

Sc
x\B1.0/\B2jxj.0/

�.x�y/f .y/.�.y/��.x// dy

. jxja�1

Z
B2jxj.0/

jf .y/j

jx�yj
dy . j�.x/jM0f .x/;

where we have used the same estimate as in (C-19). Bringing (C-32) and (C-33)
into (C-31) and using the fact that j�.x/j ' jxja yields

j�.x/j�1
jL.x/j.

�
��f .y/�B1.0/\B2jxj.0/.y/

�
.x/

C
1

jxj2

Z
B2jxj.0/

jf .y/j dyCM0f .x/:

Because f is Lp , standard estimates on Calderón–Zygmund operators and on the
maximal function, together with a classical Hardy inequality then give us

j�j�1L




Lp.B1.0//

. kf kLp.B1.0// <1:

Owing to the latter and to (C-30), we obtain from (C-29) that j�j�1rI12Lp.B1.0//.
With (C-26) and (C-28), the identity (C-25) thus implies that Q belongs to Lp��

for all � > 0. This completes the first part of statement (ii).
We shall now prove the second part of (ii), and show that the trace of Q is in Lp .

To this end, let us note that

(C-34) Trrx D Tr
�

1 0

0 �1

�
D 0:

We have seen in (C-25) that

(C-35) j�jQDr.j�jT0/CrI1C

X
m�aC1

rIm
2 �

X
0�m�a

rIm
1 :

By definition, j�.x/jT0.x/D
P

m�aC1 Cmxm, so that (C-34) gives

(C-36) Trr
�
j�.x/jT0.x/

�
D 0:
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Owing to the fact that Pm.x;y/D xmy �.mC1/, it then easily follows from (C-34)
and (C-27) that

TrrIm
1 .x/D

1

2�
Tr

x

jxj
˝

Z
@B2jxj.0/

Pm.x;y/�.y/f .y/ dyI

whence the estimate

j�.x/j�1
ˇ̌
TrrIm

1 .x/
ˇ̌
. 2a�m�1 1

jxj

Z
@B2jxj.0/

jf .y/j dy;

and thus

(C-37)


j�j�1 TrrIm

1




Lp . 2a�m�1

kf kLp :

In exactly the same fashion, one finds

(C-38)


j�j�1 TrrIm

2




Lp . 2a�m�1

kf kLp :

Finally, there remains to handle the term j�j�1 TrrI1. But this term belongs to
Lp, as we have shown that j�j�1rI1 does. Using this in (C-35), together with
(C-36)–(C-38), yields the announced result. �

Corollary C.3. Let u 2 C 2.B1.0/ n f0g/ solve

�u.x/D �.x/f .x/ in B1.0/;

where
jf .x/j. jxjnCr and j�.x/j ' jxja

for two nonnegative integers n and a, and r 2 .0; 1/.
Then

(C-39) ru.x/D P .x/Cj�.x/jT .x/;

where P is a complex-valued polynomial of degree at most .aC nC 1/, and near
the origin T .x/D O.jxjnC1Cr��/ for every � > 0.

If in addition � satisfies (C-13), then jxj�.nCr/j�j�1r.j�jT / belongs to Lp for
all finite p. Furthermore, we have the estimate

(C-40)
ˇ̌
Trr

�
j�.x/jT .x/

�ˇ̌
. jxjnCr

j�.x/j:

Proof. The argument goes along the same lines as that of Proposition C.2. We set

!.x/ WD jxjnCr�.x/ and h.x/ WD jxj�.nCr/f .x/:

From the given hypotheses, we see that h 2 L1, and ! satisfies (C-11) with
.aCnCr/ in place of a. If � satisfies (C-13), then so does !, again with .aCnCr/

in place of a.
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Using the representation (C-15) gives

ru.x/D
1

2�

Z
@B1.0/

�
x�y

jx�yj2
@E�u.y/�u.y/@E�

x�y

jx�yj2

�
d�.y/

�
1

2�

Z
B1.0/

x�y

jx�yj2
!.y/h.y/ dy

DW J0.x/CJ1.x/ for all x 2 B1.0/;

where E� is the outer normal unit vector to the boundary of B1.0/.
The integral J0 is estimated as in (C-17) so as to yield

J0.x/D P0.x/Cj�.x/jT0.x/;

where P0 is a polynomial of degree at most .aC nC 1/, and T0.x/D O.jxjnC2/

with j�j�1r.j�jT0/D O.jxjnC1/.
We next estimate the integral J1. We proceed again as we did in the proof of

Proposition C.2. Namely,

J1.x/D I1.x/C

1X
mDaCnC2

Im
2 .x/�

aCnC1X
mD0

Im
1 .x/C

aCnC1X
mD0

Im
1 .x/C Im

2 .x/;

where we have put

I1.x/ WD
1

2�

Z
B1.0/\B2jxj.0/

x�y

jx�yj2
!.y/h.y/ dy;

Im
1 .x/ WD

1

2�

Z
B1.0/\B2jxj.0/

Pm.x;y/!.y/h.y/ dy;

Im
2 .x/ WD

1

2�

Z
B1.0/nB2jxj.0/

Pm.x;y/!.y/h.y/ dy:

As before, Pm.x;y/ WD xmy �.mC1/. We first observe that the last sum in the
expression for J1 may be written

P1.x/ WD
X

0�m�aCnC1

Im
1 .x/C Im

2 .x/

D

X
0�m�aCnC1

Z
B1.0/

Pm.x;y/!.y/h.y/ dy D
X

0�m�aCnC1

Amxm;

where
Am WD

Z
B1.0/

y �.mC1/!.y/h.y/ dy:

From the boundedness of h and the hypothesis j!.y/j ' jyjaCnCr , it follows easily
that jAmj<1 for m< aCnC1Cr , and thus, since r > 0, that P1 is a polynomial
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of degree at most .aC nC 1/. Once this has been observed, the remainder of the
proof follows mutatis mutandis that of Proposition C.2. Namely, we write

J1.x/D P1.x/Cj!.x/jT1.x/;

with T1.x/ D O.jxj1��/ for all � > 0. Moreover, j!j�1r.j!jT1/ 2 Lp for all
p <1, and j!j�1 Trr.j!jT1/ 2L1.

Finally, setting P D P0CP1 and T D T0Cjxj
nCr T1 D O.jxjnCrC1��/ gives

the desired representation (C-39). Clearly, from (C-13) and the above, we haveˇ̌
j�j�1

r.j�jT /
ˇ̌
.
ˇ̌
j�j�1

r.j�jT0/
ˇ̌
CjxjnCr

ˇ̌
j!j�1

r.j!jT1/
ˇ̌
;

so that indeed jxj�.nCr/j�j�1r.j�jT / belongs to Lp for all finite p. Furthermore,
we have, as announced,ˇ̌

Trr.j�jT /
ˇ̌
�
ˇ̌
Trr.j�jT0/

ˇ̌
C
ˇ̌
Trr.j!jT1/

ˇ̌
. jxjnC1

j�jC j!j. jxjnCr
j�j: �
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