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ON PLANE SEXTICS WITH DOUBLE SINGULAR POINTS

ALEX DEGTYAREV

We compute the fundamental groups of five maximizing sextics with dou-
ble singular points only; in four cases, the groups are as expected. The
approach used would apply to other sextics as well, given their equations.

1. Introduction

The fundamental group π1 := π1(P
2 r D) of a plane curve D ⊂ P2, introduced by

O. Zariski [1929], is an important topological invariant of the curve. Apart from
distinguishing the connected components of the equisingular moduli spaces, this
group can be used as a seemingly inexpensive way of studying algebraic surfaces,
the curve serving as the branch locus of a projection of the surface onto P2.

At present, the fundamental groups of all curves of degree up to five are known,
and the computation of the groups of irreducible curves of degree six (sextics) is
close to its completion; see [Degtyarev 2012] for the principal statements and further
references. In higher degrees, little is known: there are a few general theorems,
usually bounding the complexity of the group of a curve with sufficiently “moderate”
singularities, and a number of sporadic examples scattered in the literature. For
further details on this fascinating subject, we refer the reader to the recent surveys
[Artal-Bartolo et al. 2008; Libgober 2007a; 2007b].

1A. Principal results. If a sextic D ⊂ P2 has a singular point P of multiplicity
three or higher, then, projecting from this point, we obtain a trigonal (or, even better,
bi- or monogonal) curve in a Hirzebruch surface; see Section 3A. By means of
the so-called dessins d’enfants, such curves and their topology can be studied in
purely combinatorial terms, as certain graphs in the plane. The classification of
such curves and the computation of their fundamental groups were completed in
[Degtyarev 2012]. If all singular points are double, the best that one can obtain
is a tetragonal curve, which is a much more complicated object. (A reduction of
tetragonal curves to trigonal curves in the presence of a section is discussed in
Section 3B; see Remark 3.6. It is the extra section that makes the problem difficult.)
At present, I do not know how the group of a tetragonal curve can be computed
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unless the curve is real and its defining equation is known (and, even then, the
approach suggested in the paper may still fail; cf. Remark 2.1).

There is a special class of irreducible sextics, the so-called D2n-sextics and, in
particular, sextics of torus type (see Section 2A for the precise definitions), for
which the fundamental group is nonabelian for some simple homological reasons;
see [Degtyarev 2008]. (The fact that a sextic is of torus type is usually indicated
by the presence of a pair of parentheses in the notation; their precise meaning is
explained in Section 2A.) On the other hand, thanks to the special structures and
symmetries of these curves, their explicit equations are known; see [Degtyarev
2009b; Degtyarev and Oka 2009; Oka and Pho 2002]. In this paper, we almost
complete the computation of the fundamental groups of D2n-sextics (with one pair
of complex conjugate sextics of torus type left). Our principal results can be stated
as follows.

Theorem 1.1. The fundamental group of the D14-special sextic with the set of
singularities 3A6⊕ A1, line 37 in Table 1, is Z3×D14.

Theorem 1.2. The fundamental groups of the irreducible sextics of torus type with
the sets of singularities (A14⊕ A2)⊕ A3, line 8, (A14⊕ A2)⊕ A2⊕ A1, line 9, and
(A11⊕2A2)⊕ A4, line 17 in Table 1, are isomorphic to 0 := Z2 ∗Z3. The group of
the curve with the set of singularities (A8⊕ 3A2)⊕ A4⊕ A1, line 33, is

(1.3) π1 =
〈
α2, α3, α4

∣∣ [α3, α4] = {α2, α3}3 = {α2, α4}9 = 1,

α4α2α
−1
3 α4α2α4(α4α2)

−2α3 = (α2α4)
2α−1

3 α2α4α3α2
〉
,

where {α, β}2k+1 := (αβ)
kα(αβ)−kβ−1.

Theorem 1.1 is proved in Section 4C, and Theorem 1.2 is proved in Sections 4E–
4H, one curve at a time. I do not know whether the last group (1.3) is isomorphic
to 0: all “computable” invariants seem to coincide (see Remark 4.7), but the
presentations obtained resist all simplification attempt. The quotient of (1.3) by the
extra relation {α2, α4}3 = 1 is 0.

The next proposition is proved in Section 4I. (The perturbation 3A6⊕ A1→ 3A6

excluded in the statement results in a D14-special sextic and the fundamental group
equals Z3×D14; see [Degtyarev and Oka 2009].)

Proposition 1.4. Let D′ be a nontrivial perturbation of a sextic as in Theorem 1.1
or 1.2. Unless the set of singularities of D′ is 3A6, the group π1(P

2 r D′) is 0
or Z6, depending on whether D′ is, or, respectively, is not, of torus type.

With Theorem 1.1 in mind, the fundamental groups of all D2n-special sextics,
n ≥ 5, are known; see [Degtyarev 2012]. Modulo the feasible conjecture that
any sextic of torus type degenerates to a maximizing one, the only such sextic
whose group remains unknown is (A8⊕ A5⊕ A2)⊕ A4, line 32 in Table 1. (This
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conjecture has been proved, and all groups except the one just mentioned are indeed
known; details will appear elsewhere.) Most of these groups are isomorphic to 0;
see [Degtyarev 2012] for details and further references.

I would like to mention an alternative approach (see [Artal Bartolo et al. 2002])
reducing a plane sextic with large Milnor number to a trigonal curve equipped with
a number of sections, all but one splitting in the covering elliptic surface. It was
used in [Artal Bartolo et al. 2002] to handle the curves in lines 1–6 in Table 1. This
approach is also used in a forthcoming paper to produce the defining equations
of most sextics listed in Table 1; then, the fundamental groups of most real ones
can be computed using Theorem 3.16. All groups that could be found are abelian.
Together with the classification of sextics, which is also almost completed, this
fact implies that, with very few exceptions, the fundamental group of a nonspecial
irreducible simple sextic is abelian.

1B. Idea of the proof (see Section 4A for more details). We use the classical
Zariski–van Kampen method (see Theorem 3.16), expressing the fundamental
group of a curve in terms of its braid monodromy with respect to an appropriate
pencil of lines. The curves and pencils considered are real, and the braid monodromy
in a neighborhood of the real part of the pencil is computed in terms of the real
part of the curve. (This approach originates in topology of real algebraic curves;
historically, it goes back to Viro, Fiedler, Kharlamov, Rokhlin, and Klein.) Our
main contribution is the description of the monodromy along a real segment where
all four branches of the curve are nonreal; see Proposition 3.12. Besides, the curves
are not required to be strongly real; i.e., nonreal singular fibers are allowed. Hence,
we follow [Orevkov 1999] and attempt to extract information about such nonreal
fibers from the real part of the curve. The outcome is Theorem 3.16, which gives us
an “upper bound” on the fundamental group in question. The applicability issues
and a few other common tricks are discussed in Section 4A.

1C. Contents of the paper. In Section 2, we introduce the terminology related to
plane sextics, list the sextics that are still to be investigated, and discuss briefly the
few known results. In Section 3, we outline an approach to the (partial) computation
of the braid monodromy of a real tetragonal curve and state an appropriate version
of the Zariski–van Kampen theorem. Finally, in Section 4 the results of Section 3
and known equations are used to prove Theorems 1.1 and 1.2 and Proposition 1.4.

1D. Conventions. All group actions are right. Given a right action X ×G→ X
and a pair of elements x ∈ X , g ∈ G, the image of (x, g) is denoted by x ↑ g ∈ X .
The same postfix notation and multiplication convention is often used for maps: it
is under this convention that the monodromy π1(base)→ Aut(fiber) of a locally
trivial fibration is a homomorphism rather than an antihomomorphism.
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The assignment symbol := is used as a shortcut for “is defined as”.
We use the conventional symbol � to mark the ends of the proofs. Some

statements are marked with C , meaning that the proof has already been explained
(for example, most corollaries).

2. Preliminaries

2A. Special classes of sextics. A plane sextic D ∈ P2 is called simple if all its
singularities are simple, i.e., those of type A–D–E. The total Milnor number µ of a
simple sextic D does not exceed 19; see [Persson 1985]; if µ= 19, then D is called
maximizing. Maximizing sextics are always defined over algebraic number fields
and their moduli spaces are discrete: two such sextics are equisingular deformation
equivalent if and only if they are related by a projective transformation of P2.

A sextic D is said to be of torus type if its equation can be represented in the form
f 3
2 + f 2

3 = 0, where f2 and f3 are some polynomials of degree 2 and 3, respectively.
The points of intersection of the conic { f2 = 0} and cubic { f3 = 0} are always
singular for D. These singular points play a very special rôle; they are called the
inner singularities (with respect to the given torus structure). For the vast majority
of curves, a torus structure is unique, and in this case it is common to parenthesize
the inner singularities in the notation.

An irreducible sextic D is called D2n-special if its fundamental group π1(P
2rD)

admits a dihedral quotient D2n := Zn oZ2. According to [Degtyarev 2008], only
D6-, D10-, and D14-special sextics exist, and an irreducible sextic is of torus type if
and only if it is D6-special. (In particular, torus type is a topological property.)

Any sextic D of torus type is a degeneration of Zariski’s six-cuspidal sextic,
which is obtained from a generic pair ( f2, f3). It follows that the fundamental group
of D factors to the modular group 0 := SL(2,Z)= Z2 ∗Z3 = B3/(σ1σ2σ1)

2; see
[Zariski 1929]; in particular, this group is infinite. Conjecturally, the fundamental
groups of all other irreducible simple sextics are finite.

2B. Sextics to be considered. It is expected that, with few explicit exceptions
(e.g., 9A2), any simple sextic degenerates to a maximizing one. (The proof of
this conjecture, which relies upon the theory of K 3-surfaces, is currently a work
in progress. In fact, most curves degenerate to one of those whose groups are
already known.) Hence, it is essential to compute the fundamental groups of the
maximizing sextics; the others would follow. The groups of all irreducible sextics
with a singular point of multiplicity three or higher are known (see [Degtyarev
2012] for a summary of the results), and those with A type singularities only are
still to be investigated.

A list of irreducible maximizing sextics with A type singular points only can be
compiled using the results of [Yang 1996] (a list of the sets of singularities realized
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# Singularities (r,c) Equation, π1, remarks

1. A19 (2,0) π1=Z6, see [Artal Bartolo et al. 2002]
2. A18⊕A1 (1,1) π1=Z6, see [ibid.]
3. (A17⊕A2) (1,0)∗ π1=0, see [ibid.] and [Degtyarev 2009a] (torus type)
4. A16⊕A3 (2,0) π1=Z6, see [Artal Bartolo et al. 2002]
5. A16⊕A2⊕A1 (1,1) π1=Z6, see [ibid.]
6. A15⊕A4 (0,1)∗ π1=Z6, see [ibid.]
7. A14⊕A4⊕A1 (0,3)
8. (A14⊕A2)⊕A3 (1,0) π1=0, see Section 4E (torus type)
9. (A14⊕A2)⊕A2⊕A1 (1,0) π1=0, see Section 4F (torus type)

10. A13⊕A6 (0,2)
11. A13⊕A4⊕A2 (2,0)
12. A12⊕A7 (0,1)
13. A12⊕A6⊕A1 (1,1)
14. A12⊕A4⊕A3 (1,0)
15. A12⊕A4⊕A2⊕A1 (1,1)
16. A11⊕2A4 (2,0)
17. (A11⊕2A2)⊕A4 (1,0) π1=0, see Section 4G (torus type)
18. A10⊕A9 (2,0)∗

19. A10⊕A8⊕A1 (1,1)
20. A10⊕A7⊕A2 (2,0)
21. A10⊕A6⊕A3 (0,1)
22. A10⊕A6⊕A2⊕A1 (1,1)
23. A10⊕A5⊕A4 (2,0)
24. A10⊕2A4⊕A1 (1,1)
25. A10⊕A4⊕A3⊕A2 (1,0)
26. A10⊕A4⊕2A2⊕A1 (2,0)
27. A9⊕A6⊕A4 (1,1)∗

28. A9⊕2A4⊕A2 (1,0)∗ π1= (2.2), see [Degtyarev 2009b] (D10-sextic)
29. (2A8)⊕A3 (1,0) π1=0, see [Degtyarev 2009a] (torus type)
30. A8⊕A7⊕A4 (0,1)
31. A8⊕A6⊕A4⊕A1 (1,1)
32. (A8⊕A5⊕A2)⊕A4 (0,1) nt104 in [Oka and Pho 2002] (torus type)
33. (A8⊕3A2)⊕A4⊕A1 (1,0) π1= (1.3), see Section 4H (torus type)
34. A7⊕2A6 (0,1)
35. A7⊕A6⊕A4⊕A2 (2,0)
36. A7⊕2A4⊕2A2 (1,0)
37. 3A6⊕A1 (1,0) π1=Z3×D14, see Section 4C (D14-sextic)
38. 2A6⊕A4⊕A2⊕A1 (2,0)
39. A6⊕A5⊕2A4 (2,0)

An ∗ marks sets of singularities that are realized by reducible sextics as well.
There are 42 real and 20 pairs of complex conjugate curves.

Table 1. Irreducible maximizing sextics with A type singularities.
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by such sextics) and [Shimada 2007] (a description of the moduli spaces). We
represent the result in Table 1, where the column (r, c) shows the number of classes:
r is the number of real sextics, and c is the number of pairs of complex conjugate
ones. The approach developed further in the paper lets one compute (or at least
estimate) the fundamental group of a sextic with A type singularities, provided that
its equation is known. In the literature, I could find explicit equations for lines 1–6,
8, 9, 17, 28, 29, 32, 33, and 37. With the results of this paper (Theorems 1.1 and 1.2)
taken into account, the groups of all these sextics except (A8⊕ A5⊕ A2)⊕ A4,
line 32 (which is not real), are known.

Remark 2.1. Unfortunately, our approach does not always work even if the curve
is real. Thus, each of the two sextics with the set of singularities A19, line 1, has a
single real point (the isolated singular point of type A19; see [Artal Bartolo et al.
2002] for the equations) and Theorem 3.16 does not provide enough relations to
compute the group.

2C. Known results. The fundamental group of the D10-special sextic with the set
of singularities A9⊕2A4⊕ A2, line 28 in Table 1, can be described as follows; see
[Degtyarev 2009b] (where ′ temporarily stands for the commutant of a group):

(2.2) π1/π
′′

1 = Z3×D10, π ′′1 = SL(2, k9),

where k9 is the field of nine elements. The fundamental groups of the first twelve
sextics, lines 1–6, have been found in [Artal Bartolo et al. 2002]: with the exception
of (A17⊕ A2), line 3 (sextic of torus type, π1 = 0), they are all abelian. To my
knowledge, the groups not mentioned in Table 1 have not been computed yet.

3. The braid monodromy

3A. Hirzebruch surfaces. A Hirzebruch surface 6d , d > 0, is a geometrically
ruled rational surface with a (unique) exceptional section E of self-intersection −d .
Typically, we use affine coordinates (x, y) in 6d such that E is given by y =∞;
then, x can be regarded as an affine coordinate in the base of the ruling. (The line
{x =∞} plays no special rôle; usually, it is assumed sufficiently generic.) The fiber
of the ruling over a point x in the base is denoted by Fx , and the affine fiber over x
is F◦x := Fx r E . This is an affine space over C; in particular, one can speak about
convex hulls in F◦x .

An n-gonal curve is a reduced curve C ⊂6d intersecting each fiber at n points,
i.e., such that the restriction to C of the ruling 6d → P1 is a map of degree n. A
singular fiber of an n-gonal curve C is a fiber F of the ruling intersecting C + E
geometrically at fewer than (n+ 1) points. A singular fiber F is proper if C does
not pass through F ∩ E . The curve C is proper if so are all its singular fibers. In
other words, C is proper if it is disjoint from E .
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In affine coordinates (x, y) as above an n-gonal curve C ⊂ 6d is given by a
polynomial of the form

∑n
i=0 ai (x)yi , where deg ai 6m+d(n− i) for some m ≥ 0

(in fact, m = C · E) and at least one polynomial ai does have the prescribed degree
(so that C does not contain the fiber {x =∞}). The curve is proper if and only if
m = 0; in this case an(x)= const.

A proper n-gonal curve C ⊂ 6d defines a distinguished zero section Z ⊂ 6d ,
sending each point x ∈ P1 to the barycenter of the n points of F◦x ∩C . Certainly,
this section does not need to coincide with {y = 0}, which depends on the choice
of the coordinates.

3B. The cubic resolvent. Consider a reduced real quartic polynomial

(3.1) f (x, y) := y4
+ p(x)y2

+ q(x)y+ r(x),

so that its roots y1, y2, y3, y4 (at each point x) satisfy y1+ y2+ y3+ y4 = 0, and
consider the (modified) cubic resolvent of f

(3.2) y3
− 2p(x)y2

+ b1(x)y+ q(x)2, b1 := p2
− 4r,

and its reduced form

(3.3) ȳ3
+ g2(x)ȳ+ g3(x)

obtained by the substitution y = ȳ+ 2
3 p. The discriminants of (3.1)–(3.3) are equal:

(3.4) D = 16p4r − 4p3q2
− 128p2r2

+ 144pq2r − 27q4
+ 256r3.

Recall that D = 0 if and only if (3.1), or, equivalently, (3.2) or (3.3), has a multiple
root. Otherwise, D < 0 if and only if exactly two roots of (3.1) are real. The roots
of (3.2) are

(3.5)

α := (y1+ y2)(y3+ y4)=−(y1+ y2)
2,

β := (y1+ y3)(y2+ y4)=−(y1+ y3)
2,

γ := (y1+ y4)(y2+ y3)=−(y1+ y4)
2,

and those of (3.3) are obtained from (3.5) by shifting the barycenter 1
3(α+β + γ )

to zero.

Remark 3.6. If { f (x, y) = 0} is a proper tetragonal curve in a Hirzebruch sur-
face 6d , then (3.2) defines a proper trigonal curve C ′ ⊂ 62d and a distinguished
section S := {y = 0} (in general, other than the zero section) which is tangent
(more precisely, has even intersection index at each intersection point) to C ′. Con-
versely, (3.1) can be recovered from (3.2) (together with the section S = {y = 0})
uniquely up to the automorphism y 7→ −y, which takes q to −q .
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Remark 3.7. One has

q =−(y1+ y2)(y1+ y3)(y1+ y4);

hence, q vanishes if and only if two of the roots of (3.1) are opposite. If all roots
are nonreal, y1,2 = α±β

′i , y3,4 =−α±β
′′i , α, β ′, β ′′ ∈ R, then

q = 2α
(
β ′

2
−β ′′

2)
, b1 =−8α2(β ′2+β ′′2)+ (β ′2−β ′′2)2

.

Hence, q(x) = 0 if and only if either α = 0 (and then b1(x) > 0, assuming that
D(x) 6= 0) or β ′ =±β ′′ (and then b1(x) < 0). If y1 = y2, i.e., β ′ = 0, then q(x) > 0
if and only if one has the inequality y1 < Re y3 = Re y4 equivalent to y1 < 0.

Remark 3.8. Observe also that, if y1 = y2, then g3 takes the form

g3 =
2

27(y1− y4)
3(y1− y3)

3.

Hence, g3(x) < 0 if and only if the two other roots are real and separated by the
double root y1 = y2. Otherwise, either y1 < Re y3, Re y4 or y1 > Re y3, Re y4, and,
in view of Remark 3.7, the former holds if and only if q(x) > 0.

3C. The real monodromy. Choose affine coordinates (x, y) in the Hirzebruch
surface 6d so that the exceptional section E is {y =∞}. Consider a real proper
tetragonal curve C ⊂6d ; it is given by a real polynomial f (x, y) as in (3.1). Over
a generic real point x ∈ R, the four points y1, . . . , y4 of the intersection C ∩ F◦x
can be ordered lexicographically, according to the decreasing of Re y first and Im y
second. We always assume this ordering. Then, choosing a real reference point
y� 0, we have a canonical geometric basis {α1, . . . , α4} for the fundamental group
π(x) := π1(F◦x rC, y); see Figure 1.

Let x1, . . . , xr be all real singular fibers of C , ordered by increasing. For each i ,
consider a pair of nonsingular fibers x−i := xi − ε and x+i := xi + ε, where ε is a
sufficiently small positive real number; see Figure 2. Define x0 = xr+1 =∞ and,

Im y

Re y

yi

y j y j+1

...

Figure 1. The canonical basis.
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Re x

Im x

γiγ0 γr

β∞ =1
d

x+
∞

x−
∞

βi

x−i x+i

βi+1

x−i+1 x+i+1

. . . . . .

Figure 2. The monodromies βi and γ j .

assuming the fiber x =∞ is nonsingular, pick also a pair of real nonsingular fibers
x−r+1 = x−

∞
:= R� 0 and x+0 = x+

∞
:= −R. Identify all groups π(x±i ) with the free

group F4 by means of their respective canonical bases. (All reference points are
chosen in a real section y= const� 0, which is assumed disjoint from the fiberwise
convex hull of C over the disk |x |6 R.) Consider the semicircles t 7→ xi+εeiπ(1−t),
t ∈ [0, 1], and the line segments t 7→ t , t ∈ [x+j , x−j+1]; see Figure 2. These paths
give rise to the monodromy isomorphisms

βi : π(x−i )→ π(x+i ), γ j : π(x+j )→ π(x−j+1),

i = 1, . . . , r , j = 0, . . . , r . In addition, we also have the monodromy β0 = β∞ =

βr+1 : π(x−∞)→ π(x+
∞
) along the semicircle t 7→ Reiπ t , t ∈ [0, 1], and the local

monodromies
µi : π(x+i )→ π(x+i ), i = 1, . . . , r

along the circles t 7→ xi + εe2π i t , t ∈ [0, 1]. Using the identifications π(x±i )= F4

fixed above, all βi , µi , γ j can be regarded as elements of the automorphism group
Aut F4, and as such they belong to the braid group B4. Recall (see [Artin 1947])
that Artin’s braid group B4 ⊂ Aut〈α1, . . . , α4〉 is the subgroup consisting of the
automorphisms taking each generator αi to a conjugate of a generator and preserving
the product α1α2α3α4. It is generated by the three braids

σi : αi 7→ αiαi+1α
−1
i , αi+1 7→ αi , i = 1, 2, 3,

the defining relations being {σ1, σ2}3 = {σ2, σ3}3 = [σ1, σ3] = 1.

3D. The computation. The braids βi , µi , and γ j introduced in the previous section
are easily computed from the real part CR ⊂ R2 of the curve. In the figures, we use
the following notation:

• real branches of C are represented by solid bold lines;
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• pairs yi , yi+1 of complex conjugate branches are represented by dotted lines
(showing the common real part Re yi = Re yi+1);

• relevant fibers of 6d are represented by vertical dotted grey lines.

Certainly, the dotted lines are not readily seen in the figures; however, in most cases,
it is only the intersection indices that matter, and the latter are determined by the
indexing of the branches at the starting and ending positions.

We summarize the results in the next three statements. The first one is obvious:
essentially, one speaks about the link of the singularity y4

− x4d .

Lemma 3.9. Assume that R � 0 is so large that the disk {|x | < R} contains all
singular fibers of C. Then one has β∞ = 1d , where 1 := σ1σ2σ3σ1σ2σ1 ∈ B4 is
the Garside element. C

The following lemma is easily proved by considering the local normal forms
of the singularities. (In the simplest case of a vertical tangent, the circumventing
braids β are computed, e.g., in [Orevkov 1999]; the general case is completely
similar.) For the statement, we extend the standard notation Am , m ≥ 1, to A0 to
designate a simple tangency of C and the fiber.

Lemma 3.10. The braids β j and µ j about a singular fiber x j of type Am , m ≥ 0,
depend only on m and the pair (i, i +1) of indices of the branches that merge at the
singular point. They are as shown in Figure 3. C

Remark 3.11. At a point of type A2k−1, it is not important whether the two branches
of C at this point are real or complex conjugate. On the other hand, at a point of
type A2k it does matter whether the number of real branches increases or decreases.
If a fiber contains two double points, with indices (1, 2) and (3, 4), then the powers
of σ1 and σ3 contributed to β or µ by each of the points are multiplied; since σ1

and σ3 commute, the order is not important.

The following statement is our principal technical tool, most important being
Figure 4, right, describing the behavior of the “invisible” branches. (Note that the

A2k−1

i

i + 1

β = σ−k
i

µ= σ 2k
i

A2k

i

i + 1

β = σ−k−1
i

µ= σ 2k+1
i

A2k

i

i + 1

β = σ−k
i

µ= σ 2k+1
i

Figure 3. The braids β and µ.
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i − 1

i + 1
i

i + 1

i − 1
i

γ = σ−1
i σi−1

i + 1

i − 1
i − 1

i

i
i + 1

γ = σ−1
i−1σi

1
2

1
2

3
4

3
4

γ = τ t

Figure 4. The braids γ .

two dotted lines in the figure may cross; the permutation of the branches depends
on the parity of the twist parameter t introduced in the statement.)

Proposition 3.12. Let I be a real segment in the x-axis free of singular fibers of C.
Then the monodromy γ over I is

• identity, if all four branches of C over I are real, and

• as shown in Figure 4 otherwise.

Here, τ := σ−1
2 σ3σ

−1
1 σ2 and the twist parameter t in Figure 4, right, is the number

of roots x ′ ∈ I of the coefficient q(x) (see (3.1)) such that b1(x ′) > 0 (see (3.2))
and q changes sign at x ′; each root x ′ contributes+1 or−1 depending on whether q
is increasing or decreasing at x ′, respectively.

Proof. The only case that needs consideration, viz. that of four nonreal branches
(see Figure 4, right), is given by Remark 3.7. Indeed, the canonical basis in the
fiber F◦x over x ∈ I changes when the real parts of all four branches vanish, and this
happens when q(x)= 0 and b1(x) > 0. This change contributes τ±1 to γ , and the
sign ±1 (the direction of rotation) depends on whether q increases or decreases. �

Remark 3.13. A longer segment I with exactly two real branches of C over it can
be divided into smaller pieces I1, I2, . . . , each containing a single crossing point as
in Figure 4; then, the monodromy γ over I is the product of the contributions of
each piece. In fact, as explained above, the precise position and number of crossings
is irrelevant; what only matters is the final permutation between the endpoints of I .
For example, to minimize the number of elementary pieces, one can always assume
that the branches, both bold and dotted, are monotonous.

3E. The Zariski–van Kampen theorem. We are interested in the fundamental
group π1 := π1(6d̃ r (C̃ ∪ E)), where C̃ ⊂6d̃ is a real tetragonal curve, possibly
improper, and E ⊂6d̃ is the exceptional section. To compute π1, we consider the
proper model C ⊂ 6d , obtained from C̃ by blowing up all points of intersection
C̃ ∩ E and blowing down the corresponding fibers. In addition to the braids βi , µi ,
and γ j introduced in Section 3C, to each real singular fiber xi of C we assign its local
slope κi ∈ π(x+i ), which depends on the type of the corresponding singular fiber of
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the original curve C̃ . Roughly, consider a small analytic disk 8⊂6d transversal
to the fiber Fxi and disjoint from C and E , and a similar disk 8̃⊂6d̃ with respect
to C̃ . Let 8̃′ ⊂ 6d be the image of 8̃, and assume that the boundaries ∂8 and
∂8̃′ have a common point in the fiber over x+i . Then the loop [∂8̃′] · [∂8]−1 is
homotopic to a certain class κi ∈ π(x+i ), well defined up to a few moves irrelevant
in the sequel. This class is the slope.

Roughly, the slope measures (in the form of the twisted monodromy; see the
definitions prior to Theorem 3.16) the deviation of the braid monodromy of an
improper curve C̃ from that of its proper model C . Slopes appear in the relation
at infinity as well, compensating for the fact that, near improper singular fibers,
the curve intersects any section of 6d̃ . Details and further properties are found in
[Degtyarev 2012, Section 5.1.3]; in this paper, slopes are used in Theorem 3.16.

Remark 3.14. In all examples considered below, C̃ ⊂6d−1 has a single improper
fiber F , where C̃ has a singular point of type Ãm , m ≥ 1, maximally transversal to
both E and F . If F = {x = 0}, such a curve C̃ is given by a polynomial f̃ of the
form

∑4
i=0 yi ai (x) with a4(x)= x2 and x | a3(x), and the defining polynomial of

its transform C ⊂6d is fnr(x, y) := x2 f̃ (x, y/x). The corresponding singular fiber
of C has a node A1 at (0, 0) and another double point Am−2 (assuming m ≥ 2).

Thus, the only nontrivial example relevant in the sequel is the one described
below. (By the very definition, at each singular fiber xi proper for C̃ the slope is
κi = 1.) A great deal of other examples of both computing the slopes and using
them in the study of the fundamental group are found in [Degtyarev 2012].

Example 3.15. At the only improper fiber xi = 0 described in Remark 3.14 the
slope is the class of α jα j+1, where ( j, j + 1) are the two branches merging at the
node; see Figure 3. This fact can easily be seen using a local model. In a small
neighborhood of x = 0, one can assume that C̃ is given by (y− a)(y− b)= 0. Let
8̃ ⊂ 6d̃ and 8 ⊂ 6d be the disk {y = c, |x | 6 1}, c ∈ R and c� |a|, |b|. Then,
the relevant part of C is the node (y− ax)(y− bx) = 0, and 8̃ projects onto the
disk 8̃′ = {y = cx, |x |6 1}, which meets 8 at (1, c). Now, consider one full turn
x = exp(2π i t), t ∈ [0, 1], and follow the point (x, cx) in ∂8̃′: it describes the circle
y = c exp(2π i t) encompassing once the two points of the intersection C ∩ F◦1 . The
class α jα j+1 of this circle is the slope. Even more precisely, one should start with
the constant path [0, 1] → (1, c) and homotope this path in F◦x rC , keeping one
end in 8 and the other in 8̃′. In the terminal position, the path is a loop again, and
its class α jα j+1 is the slope.

Define the twisted local monodromy µ̃i := µi · innκi , where inn : G→Aut G is
the homomorphism sending an element g of a group G to the inner automorphism
inn g : h 7→ g−1hg. Thus, µ̃i : π(x+i )→ π(x+i ) is the map α 7→ κ−1

i (α ↑µi )κi . In
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general, µ̃i is not a braid. Take x+0 = x+
∞

for the reference fiber and consider the
braids

ρi :=

i∏
j=1

γ j−1β j : π(x+0 )→ π(x+i ), i = 1, . . . , r + 1=∞

(left to right product), the (global) slopes

κ̄i := κi ↑ ρ
−1
1 ∈ π(x

+

0 ), i = 1, . . . , r,

and the twisted monodromy homomorphisms

m̃i := ρi µ̃iρ
−1
i : π(x

+

0 )→ π(x+0 ), i = 1, . . . , r.

The following theorem is essentially due to Zariski and van Kampen [van Kampen
1933], and the particular case of improper curves in Hirzebruch surfaces, treated by
means of the slopes, is considered in detail in [Degtyarev 2012, Section 5.1.3]. Here,
we state and outline the proof of a very special case of this approach, incorporating
the (partial) computation of the braid monodromy of a real tetragonal curve in terms
of its real part.

We use the following common convention: given an automorphism β of the free
group 〈α1, . . . , α4〉, the braid relation β = id stands for the quadruple of relations
α j ↑β = α j , j = 1, . . . , 4. Note that, since β is an automorphism, this is equivalent
to the infinitely many relations α = α ↑β, α ∈ 〈α1, . . . , α4〉.

Theorem 3.16. In the notation above, the inclusion of the reference fiber induces
an epimorphism

π(x+0 )= 〈α1, . . . , α4〉� π1,

and the relations m̃i = id, i = 1, . . . , r , hold in π1. If the fiber x =∞ is nonsingular
and all nonreal singular fibers are proper for C̃ , then one also has the relations at
infinity ρ∞ = id and (α1 · · ·α4)

d
= κ̄r · · · κ̄1. If , in addition, C has at most one

pair of conjugate nonreal singular fibers, then the relations listed define π1.

Proof. The assertion is a restatement of the classical Zariski–van Kampen theorem
modified for the case of improper curves; see [Degtyarev 2012, Theorem 5.50].
The relation at infinity (α1 · · ·α4)

d
= κ̄r · · · κ̄1 holds in π1 whenever all slopes

not accounted for, namely those at the nonreal fibers, are known to be trivial. The
automorphism ρr+1 : π(x+0 )→ π(x+r+1) = π(x

+

0 ) is the monodromy along the
“boundary” of the upper half-plane Im x > 0 (see Figure 2), i.e., the product of the
monodromies about all singular fibers in this half-plane; if the slopes at these fibers
are all trivial, then ρr+1 = id in π1. Finally, if C̃ has at most one pair of conjugate
nonreal singular fibers, then all but possibly one braid relations are present and
hence they define the group; see [Degtyarev 2012, Lemma 5.59]. �
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4. The computation

4A. The strategy. We start with a plane sextic D ⊂ P2 and choose homogeneous
coordinates (z0 : z1 : z2) so that D has a singular point of type Am , m ≥ 3, at
(0 : 0 : 1) tangent to the axis {z1 = 0}. Then, in the affine coordinates x := z1/z0,
y := z2/z0, the curve D is given by a polynomial f̃ as in Remark 3.14, and the same
polynomial f̃ defines a certain tetragonal curve C̃ ⊂61, viz. the proper transform
of D under the blow-up of (0 : 0 : 1). The common fundamental group

π1 := π1(P
2 r D)= π1(61 r (C̃ ∪ E))

is computed using Theorem 3.16 applied to C̃ and its transform C ⊂ 62, with
the only nontrivial slope κ = α1α2 or α3α4 over x = 0 given by Example 3.15.
(Here, E ⊂61 is the exceptional section, i.q. the exceptional divisor over the point
(0 : 0 : 1) blown up.) A priori, Theorem 3.16 may only produce a certain group g
that surjects onto π1 rather than π1 itself; however, in most cases this group g is
“minimal expected” (see Section 4D below) and we do obtain π1.

The assumption that the fiber x =∞ is nonsingular is not essential as long as
the singularity over ∞ is taken into consideration: one can always move ∞ to
a generic point by a real projective change of coordinates. To keep the defining
equations as simple as possible, we assume such a change of coordinates implicitly.
Furthermore, it is only the cyclic order of the singular fibers in the circle P1

R that
matters, and sometimes we reorder the fibers by applying a cyclic permutation to
their “natural” indices. In other words, the braid β∞ =12 is in the center of B4

and, hence, it can be inserted at any place in the relation γ0β1γ1 · · · γrβ∞ = id.
To compute the braids, we outline the real (bold lines) and imaginary (dotted

lines) branches of C in the figures. Recall that it is only the mutual position of the
real branches and their intersection indices with the imaginary ones that matters;
see Remark 3.13. The “special” node that contributes the only nontrivial slope (the
blow-up center in the passage from C to C̃ ; see Remark 3.14) is marked with a
white dot; the other singular points of C (including those of type A0) are marked
with black dots. The shape of the curve can mostly be recovered using Remarks 3.7
and 3.8; however, it is usually easier to determine the mutual position of the roots
directly via Maple. The braids βi , µi , and γ j are computed from the figures as
explained in Section 3D.

Warning 4.1. The polynomial fnr given by Remark 3.14 is used to determine the
slope and mutual position of the two singular points over x = 0: the “special”
node is always at (0, 0). For all other applications, e.g., for Proposition 3.12, this
polynomial should be converted to the reduced form (3.1).

4B. Relations. Recall that a braid relation m̃i = id stands for a quadruple of
relations α j ↑ m̃i = α j , j = 1, . . . , 4. Alternatively, this can be regarded as an
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infinite sequence of relations α ↑ m̃i = α, α ∈ F4, or, equivalently, as a quadruple of
relations α′j ↑ m̃i = α

′

j , j = 1, . . . , 4, where α′1, . . . , α
′

4 is any basis for F4. For this
reason, in the computation below we start with the braid relations α′j ↑ µ̃i = α

′

j in
the canonical basis over x+i and translate them to x+0 via ρ−1

i . In the most common
case µ̃i = σ

p
r , r = 1, 2, 3, p ∈ Z, the whole quadruple is equivalent to the single

relation {α′r , α
′

r+1}p = 1, where

{α, β}2k := (αβ)
k(βα)−k, {α, β}2k+1 := (αβ)

kα(αβ)−kβ−1.

Remark 4.2. The braid relations about the fiber xk = 0 with the only nontrivial
slope (see Example 3.15) can also be presimplified. Let α′1, . . . , α

′

4 be the canonical
basis in x+k . If κk = α

′

1α
′

2 and µk = σ
2
1 σ

p
3 , the braid relations µ̃k = id and relation

at infinity (α′1 · · ·α
′

4)
2
= κk together are equivalent to

α′1α
′

2(α
′

3α
′

4)
2
= {α′3, α

′

4}p+4 = 1.

Similarly, if κk = α
′

3α
′

4 and µk = σ
p

1 σ
2
3 , we obtain

(α′1α
′

2)
2α′3α

′

4 = {α
′

1, α
′

2}p+4 = 1.

Certainly, these relations should be translated back to x+0 via ρ−1
k . Note, though,

that we do not use this simplification in the sequel.

Remark 4.3. In some cases, simpler relations are obtained if another point x+i ,
i > 0, is taken for the reference fiber. To do so, one merely replaces the braids ρ j ,
j = 1, . . . , r + 1=∞, with ρ ′j := ρ

−1
i ρ j .

All computations below were performed using GAP [GAP Group 2008], with the
help of the simple braid manipulation routines contained in [Degtyarev 2012]. The
GAP code can be found at http://www.fen.bilkent.edu.tr/~degt/papers/papers.htm.
The processing is almost fully automated, the input being the braids βi , µi , γ j and
the only nontrivial slope κk = α1α2 or α3α4, which are read off from the diagrams
depicting the curves.

4C. The set of singularities 3A6 ⊕ A1, line 37. Any sextic with this set of singu-
larities is D14-special (see [Degtyarev 2008]), and, according to [Degtyarev and
Oka 2009], any D14-special sextic can be given by an equation of the form

2t (t3
− 1)(z4

0z1z2+ z4
1z2z0+ z4

2z0z1)

+ (t3
− 1)(z4

0z2
1+ z4

1z2
2+ z4

2z2
0)+ t2(t3

− 1)(z4
0z2

2+ z4
1z2

0+ z4
2z2

1)

+ 2t (t3
+ 1)(z3

0z3
1+ z3

1z3
2+ z3

2z3
0)+ 4t2(t3

+ 2)(z3
0z2

1z2+ z3
1z2

2z0+ z3
2z2

0z1)

+ 2(t6
+ 4t3

+ 1)(z3
0z1z2

2+ z3
1z2z2

0+ z3
2z0z2

1)+ t (t6
+ 13t3

+ 10)z2
0z2

1z2
2,

http://www.fen.bilkent.edu.tr/~degt/papers/papers.htm
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A6 A0

A2

A2

A6

id σ−1
2 σ3 id σ−1

2 σ3 σ−1
1 σ2

σ−3
1 id σ−1

1 σ−2
3 σ−1

2 σ−4
3

Figure 5. The set of singularities 3A6⊕ A1, line 37.

t3
6= 1. The set of singularities of this curve is 3A6⊕ A1 if and only if t3

=−27; we
use the real value t =−3. After the substitution z0 = 1, z1 = x + 1

3 , and z2 = y/x
the equation is brought to the form considered in Remark 3.14. Up to a positive
factor, the discriminant (3.4) with respect to y is

−x5(27x3
− 648x2

+ 6363x + 7)(3x − 2)2(3x + 1)7,

which has real roots

x1 =−
1
3 , x2 ≈−0.001, x3 = 0, x4 =

2
3 , x5 =∞

and two simple imaginary roots. Hence, Theorem 3.16 does compute the group.
The only root of q on the real segment [−∞, x1] is x ′ ≈−3.48, and b1(x ′) < 0;

hence, one has γ0 = id; see Proposition 3.12. The other braids βi , γ j are easily
found from Figure 5, and, using Theorem 3.16 and GAP, we obtain a group of
order 42. This concludes the proof of Theorem 1.1. �

4D. Sextics of torus type. All maximal, in the sense of degeneration, sextics of
torus type are described in [Oka and Pho 2002], where a sextic D is represented
by a pair of polynomials f2(x, y), f3(x, y) of degree 2 and 3, respectively, so
that the defining polynomial of D is ftor := f 3

2 + f 2
3 . (Below, these equations

are cited in a slightly simplified form: I tried to clear the denominators by linear
changes of variables and appropriate coefficients.) Each curve (at least, each of
those considered below) has a type Am , m ≥ 3, singularity at (0, 0) tangent to the
y-axis. Hence, we start with the substitution f̃ (x, y) := y6 ftor(x/y, 1/y) to obtain
a polynomial f̃ as in Remark 3.14; then we proceed as in Section 4A.

To identify the group g given by Theorem 3.16 as 0, we use the following GAP
code, which was suggested to me by E. Artal:

(4.4)
P := PresentationNormalClosure(g, Subgroup(g, a));
SimplifyPresentation(P);

here, a is an appropriate ratio αiα
−1
j which normally generates the commutant

of g. If the resulting presentation has two generators and no relations, we conclude
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that g = π1 = 0, even when the statement of Theorem 3.16 does not guarantee a
complete set of relations. Indeed, a priori we have epimorphisms g� π1 � 0

(the latter follows from the fact that the curve is assumed to be of torus type),
which induce epimorphisms [g, g]� [π1, π1]� [0,0] = F2 of the commutants. If
[g, g] = F2, both these epimorphisms are isomorphisms (since F2 is Hopfian) and
the 5-lemma implies that g� π1� 0 are also isomorphisms.

In some cases (e.g., in Sections 4E and 4F), the call SimplifiedFpGroup(g)
returns a recognizable presentation of 0.

4E. The set of singularities (A14 ⊕ A2) ⊕ A3, line 8. The curve in question is
nt139 in [Oka and Pho 2002]:

f2 = 80(−36y2
+120xy−82x2

+2x),

f3 = 100(−1512y3
+7794y2x−18y2

−11664yx2
+144xy+5313x3

−194x2
+x).

Up to a positive coefficient, the discriminant of fnr is

x13(5120x4
+ 36864x3

+ 3456x2
− 2160x − 405)(x − 1)3.

It has five real roots, which we reorder cyclically as follows:

x1 = 0, x2 ≈ 0.27, x3 = 1, x4 =∞, x5 ≈−7.1.

Besides, there are two conjugate imaginary singular fibers, which are of type A0.
The curve is depicted in Figure 6, from which all braids βi , γ j are easily found.

Taking x+0 for the reference fiber and using a= α1α
−1
2 in (4.4), we obtain π1 = 0.

4F. The set of singularities (A14 ⊕ A2)⊕ A2 ⊕ A1, line 9. The curve is nt142 in
[Oka and Pho 2002]:

f2 =−45y2
−240yx−106x2

+90x,

f3 = 1025y3
+6045y2x−375y2

+5490yx2
−4050yx+1354x3

−2040x2
+750x .

Up to a positive coefficient, the discriminant of fnr is

x13(8x3
− 10720x2

+ 14250x − 5625)(x + 1)2(14x + 15)3,

A10

A0

A2

A3 A0

σ−1
2 σ3σ

−1
1 σ2 id σ−1

1 σ2 id id

σ−5
1 σ−1

3 σ−1
2 σ−1

1 σ−2
2 σ−1

3

Figure 6. The set of singularities (A14⊕ A2)⊕ A3, line 8.
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A2

A1

A10

A0

A2

σ−1
1 σ2 id id σ−1

2 σ1σ
−1
3 σ2 id

σ−1
1 σ−1

2 σ−6
1 σ−1

3 id σ−2
2

Figure 7. The set of singularities (A14⊕ A2)⊕ A2⊕ A1, line 9.

and all its roots are real:

x1 =−
15
14 , x2 =−1, x3 = 0, x4 ≈ 1338, x5 =∞.

The braids βi , γ j are found from Figure 7 and, using x+0 as the reference fiber and
a= α1α

−1
2 in (4.4), we conclude that π1 = 0.

4G. The set of singularities (A11 ⊕ 2A2) ⊕ A4, line 17. This is nt118 in [Oka
and Pho 2002]:

f2 =
1
5(−3456y2

+ 1200yx − 3005x2
+ 240x),

f3 =
1
5(−89856y3

+ 130464y2x − 6912y2
− 112680yx2

+ 8640yx

+ 91345x3
− 13320x2

+ 480x).

Up to a positive coefficient, the discriminant of fnr is

−x10(25x3
+ 290x2

+ 360x + 162)(35x2
− 384x + 1152)3.

It has three real roots, which we reorder cyclically as follows:

x1 = 0, x2 =∞, x3 ≈−10.26.

In addition, there are two pairs of complex conjugate singular fibers, of types A2

and A0. Thus, a priori Theorem 3.16 only gives us a certain epimorphism g� π1.
However, using a= α1α

−1
2 in (4.4), we conclude that g= π1 = 0. (All braids are

found from Figure 8 and the reference fiber is x+1 ; see Remark 4.3.)

A7

A4

A0
σ−1

2 σ3σ
−1
1 σ2 σ−1

2 σ1 id

σ−4
1 σ−1

3 σ−3
2 id

Figure 8. The set of singularities (A11⊕ 2A2)⊕ A4, line 17.
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4H. The set of singularities (A8 ⊕ 3A2) ⊕ A4 ⊕ A1, line 33. This curve is nt83
in [Oka and Pho 2002]:

(4.5)

f2 =−565y2
− 14yx + 176y− 5x2

+ 104x − 16,

f3 = 13321y3
+ 3135y2x − 6294y2

+ 207yx2
− 3516yx + 1056y

+ 25x3
− 558x2

+ 624x − 64.

Up to a positive coefficient, the discriminant of fnr is

x3(x + 3)(x + 9)2(11915x3
+ 96579x2

− 14823x + 729)3(x − 9)9.

It has five real roots, which we reorder cyclically as follows:

x1 = 0, x2 = 9, x3 =−9, x4 ≈−8.26, x5 =−3.

We conclude that the curve has only two nonreal singular fibers, which are cusps.
Hence, Theorem 3.16 gives us a complete presentation of π1.

In the interval (x5, x1), where f has four imaginary branches, q has four roots

x ′1 ≈−2.93, x ′2 =−1.92, x ′3 ≈−0.79, x ′4 ≈−0.14,

with b1 negative at x ′1, x ′3 and positive at x ′2, x ′4; at the latter two points one also has
q ′ < 0. Hence, γ0 = τ

−2; see Proposition 3.12. All other braids are easily found
from Figure 9.

Remark 4.6. For a further simplification, observe that the braid ρ∞ appearing in
Theorem 3.16 equals

σ−1
2 σ1σ

−1
3 σ1σ

−1
3 σ2 · σ

−1
1 · σ

−1
2 σ1 · σ

−4
2 · σ

−1
3 · σ

−2
2 · σ

−1
3 σ2 · σ

−1
1 · (σ3σ1σ2)

4,

and one can check that ρ∞ = ρ−1
im σ

3
1 ρim, where ρim := σ2σ

−1
1 σ 2

3 σ2. (Note that ρ∞
represents the monodromy about a single imaginary cusp of the curve; hence, it is
expected to be conjugate to σ 3

1 .) Thus, we can replace the quadruple of relations
ρ∞ = id with a single relation {α1, α2}3 ↑ ρim = 1; see Section 4B.

Now, taking x+3 for the reference fiber (see Remark 4.3), using Remark 4.6, and
applying SimplifiedFpGroup(g), we arrive at (1.3). This presentation has three

A0
A8

A1

A2 A0

τ−2 σ−1
2 σ1 id id σ−1

3 σ2

σ−1
1 σ−4

2 σ−1
3 σ−2

2 σ−1
1

Figure 9. The set of singularities (A8⊕ 3A2)⊕ A4⊕ A1, line 33, projected from A4.
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A2

A1

A4

A4 A0

σ−1
2 σ1σ

−1
3 σ2 id id σ−1

2 σ3 id

σ−1
3 σ−1

2 σ−1
1 σ−3

3 σ−2
2 σ−1

1

Figure 10. The set of singularities (A8 ⊕ 3A2) ⊕ A4 ⊕ A1, line 33,
projected from A8.

generators and four relations of total length 48. Together with the previous sections,
this concludes the proof of Theorem 1.2. �

Remark 4.7. The Alexander module of the group π1 considered in this section is
Z[t, t−1

]/(t2
− t + 1), and the finite quotients π1/α

p
2 , p = 2, 3, 4, are isomorphic

to the similar quotients of 0. My laptop failed to compute the order of π1/α
5
2 .

Remark 4.8. In (4.5), the singular point at the origin is of type A4. One can
start with a change of variables x 7→ y + 9, y 7→ x + 1 and resolve the type A8

point instead. The tetragonal model is depicted in Figure 10, and the computation
becomes slightly simpler, but the resulting presentation is of the same complexity,
even with the additional observation that ρ∞=ρ−1

im σ
3
1 ρim, where ρim :=σ2σ

−1
1 σ3σ2;

see Remark 4.6.

4I. Proof of Proposition 1.4. For the sets of singularities (A14⊕ A2)⊕ A3, line 8,
(A14 ⊕ A2)⊕ A2 ⊕ A1, line 9, and (A11 ⊕ 2A2)⊕ A4, line 17, the statement is
an immediate consequence of [Degtyarev 2012, Theorem 7.48]. For 3A6 ⊕ A1,
line 37, the only proper quotient of the commutant [π1, π1] = Z7 is trivial; hence,
the group π ′1 of any perturbation D′ is either abelian, π ′1 = Z6, or isomorphic to π1,
the latter being the case if and only if D′ is D14-special; see [Degtyarev 2008].

For the remaining set of singularities (A8⊕3A2)⊕ A4⊕ A1, line 33, we proceed
as follows. Any proper perturbation factors through a maximal one, where a single
singular point P of type Am splits into two points Am′ , Am′′ , so that m′+m′′=m−1.
Assume that P 6= (0 : 0 : 1); see Section 4A. Then this point corresponds to a
certain singular fiber xi of the tetragonal model C and gives rise to a braid relation
{αk, αk+1}m+1↑ρ

−1
i = 1; see Section 4B. For the new curve D′, this relation changes

to {αk, αk+1}s ↑ ρ
−1
i = 1, where s := g.c.d.(m′+ 1,m′′+ 1).

For any perturbation of any point P , we have s = 3 if P is of type A8 or A2 and
the result is still of torus type, and s = 1 otherwise. Now, the statement is easily
proved by repeating the computation with the braid µi = σ

m+1
k replaced with σ s

k .
(If it is the type A4 point that is perturbed, one can use the alternative tetragonal
model given by Remark 4.8.) �
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