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LANDAU–TOEPLITZ THEOREMS FOR
SLICE REGULAR FUNCTIONS OVER QUATERNIONS

GRAZIANO GENTILI AND GIULIA SARFATTI

The theory of slice regular functions of a quaternionic variable extends the
notion of holomorphic function to the quaternionic setting. This theory, al-
ready rich in results, is sometimes surprisingly different from the theory of
holomorphic functions of a complex variable; however, several fundamental
results in the two environments are similar even if their proofs for the case
of quaternions need new technical tools.

In this paper we prove the Landau–Toeplitz theorem for slice regular
functions in a formulation that involves an appropriate notion of regular 2-
diameter. We show that the Landau–Toeplitz inequalities hold in the case
of the regular n-diameter for all n � 2. Finally, a 3-diameter version of the
Landau–Toeplitz theorem is proved using the notion of slice 3-diameter.

1. Introduction

The Schwarz lemma, in its different flavors, is the basis of a chapter of fundamental
importance in the geometric theory of holomorphic functions of one and several
complex variables. Its classic formulation in one variable is the following:

Theorem 1.1 (Schwarz lemma). Let DD fz 2 C W jzj< 1g be the open unit disc of
C centered at the origin, and let f W D! D be a holomorphic function such that
f .0/D 0. Then

(1) jf .z/j � jzj

for all z 2 D, and

(2) jf 0.0/j � 1:

Equality holds in (1) for some z 2D n f0g, or in (2), if and only if there exists u 2 C

with juj D 1 such that f .z/D uz for all z 2 D.
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The Schwarz lemma and its extension due to Pick lead in a natural way to the
construction of the Poincaré metric, which plays a key role in the study of the
hyperbolic geometry of complex domains and manifolds. In the same year of
the first formulation of the Schwarz lemma, the Landau–Toeplitz theorem [1907]
was proven. This less known but quite interesting result concerns the study of the
possible shapes of the image of the unit disc under a holomorphic function and it is
formulated in terms of the diameter of the image set.

Theorem 1.2 (Landau–Toeplitz [1907]; see also Burckel et al. 2006). Let f be
holomorphic in D and such that the diameter diamf .D/ of f .D/ equals 2. Then

(3) diam f .rD/� 2r

for all r 2 .0; 1/ and

(4) jf 0.0/j � 1:

Equality holds in (3) for some r 2 .0; 1/, or in (4), if and only if f is of the form
f .z/D aC bz, with a; b 2 C and jbj D 1.

This result can be interpreted as a generalization of the classical Schwarz lemma
in which the diameter of the image set takes over the role of the maximum modulus
of the function; indeed, there exist infinite subsets of the plane that have constant
diameter and are different from a disc; the Reuleaux polygons are a well-known
example of such sets [Gardner 2006; Lachand-Robert and Oudet 2007].

The recent definition of slice regularity for quaternionic functions of one quater-
nionic variable, inspired by Cullen [1965] and developed in [Gentili and Struppa
2006; 2007], identifies a large class of functions, which includes natural quaternionic
power series and polynomials. The study of a geometric theory for this class of
functions has by now produced several interesting results, sometimes analogous to
those valid for holomorphic functions; the Schwarz lemma is among these results
[Gentili and Struppa 2007], together with the Bohr theorem and the Bloch–Laudau
theorem [Della Rocchetta et al. 2012; 2013; Sarfatti 2013].

Fairly new developments in the theory of holomorphic functions of one complex
variable include the analogue of the Schwarz lemma for meromorphic functions, and
open new fascinating perspectives for future research. In this setting, Solynin [2008]
recalls into the scenery the approach of Landau and Toeplitz and its modern reinter-
pretation and generalization due to Burckel, Marshall, Minda, Poggi-Corradini and
Ransford [Burckel et al. 2008].

In our paper, we first prove an analogue of the Landau–Toeplitz theorem for slice
regular functions. To this purpose we need to introduce a new tool to “measure” the
image of the open unit ball B of the space of quaternions H through a slice regular
function, the regular diameter.
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Definition 1.3. Let f be a slice regular function on BD fq 2 H W jqj< 1g and let

f .q/D
X
n�0

qnan

be its power series expansion. For r 2 .0; 1/, we define the regular diameter of the
image of rB under f as

Qd2.f .rB//D max
u;v2B

max
jqj�r
jfu.q/�fv.q/j;

where
fu.q/D

X
n�0

qnunan and fv.q/D
X
n�0

qnvnan:

We define the regular diameter of the image of B under f as

Qd2.f .B//D lim
r!1�

Qd2.f .rB//:

The introduction of this new geometric quantity is necessary because of the
peculiarities of the quaternionic environment, and in particular since a composition
of slice regular functions is not slice regular in general. The regular diameter can
play the role of the diameter; in fact, the former is finite if and only if the latter is
finite. The regular diameter hence appears in the statement of the announced result.

Theorem 3.9 (Landau–Toeplitz for regular functions). Let f be a slice regular
function on B such that Qd2.f .B// D 2 and let @cf .0/ be its slice derivative in 0.
Then

(5) Qd2.f .rB//� 2r

for all r 2 .0; 1/, and

(6) j@cf .0/j � 1:

Equality holds in (5) for some r 2 .0; 1/, or in (6), if and only if f is an affine
function; that is, f .q/D aC qb with a; b 2 H and jbj D 1.

As in the complex setting, this theorem can be interpreted as a generalization of
the Schwarz lemma.

The new version of the Landau–Toeplitz theorem proposed in [Burckel et al.
2008] concerns holomorphic functions whose image is measured with a notion of
diameter more general than the classic one, the n-diameter. In the quaternionic
setting, the analogue of this geometric quantity is defined:

Definition 1.4. Let E�H. For every n2N, n�2, the n-diameter of E is defined as

dn.E/D sup
w1;:::;wn2E

� Y
1�j<k�n

jwk �wj j

� 2
n.n�1/

:



384 GRAZIANO GENTILI AND GIULIA SARFATTI

Retracing the approach used in the complex setting, we are able to obtain only
the generalization of the first part of the statement of the Landau–Toeplitz theorem
for the n-diameter. As in the case nD 2, we need a notion of regular n-diameter
Qdn.f .B// for the image of B through a slice regular function f . This notion is
a generalization of Definition 1.3 modeled on Definition 1.4 and given in terms
of the �-product between slice regular functions (see Section 2). For all n � 2,
the regular n-diameter turns out to be finite when the n-diameter is finite. For this
reason, even if it may appear awkward, it makes sense to use the regular n-diameter
in the following statement:

Theorem 1.5. Let f be a slice regular function on B such that Qdn.f .B//D dn.B/.
Then

Qdn.f .rB//� dn.rB/ for all r 2 .0; 1/;

and
j@cf .0/j � 1:

Since the 3-diameter of a 4-dimensional subset of H is attained on a (specific)
bidimensional section, we are encouraged to introduce an appropriate notion Od3f .B/

of slice 3-diameter for f .B/ inspired by the power series expansion of the regular
3-diameter. This leads to the following complete result:

Theorem 5.7 (Landau–Toeplitz theorem for the slice 3-diameter). Let f be a slice
regular function on B such that Od3.f .B//D d3.B/. Then

(7) Od3.f .rB//� d3.rB/

for every r 2 .0; 1/, and

(8) j@cf .0/j � 1:

Equality holds in (7) for some r 2 .0; 1/, or in (8), if and only if f is an affine
function f .q/D aC qb with a; b 2 H and jbj D 1.

We point out that all the extensions of the Landau–Toeplitz results presented in
this paper generalize the Schwarz lemma to a much larger class of image sets; in
fact, for all n� 2 there exist infinitely many subsets of the space H which have fixed
n-diameter, do not coincide with a 4-ball, and neither contain nor are contained in
the 4-ball. The 4-bodies of constant width are examples of such subsets, presented
for instance in [Gardner 2006; Lachand-Robert and Oudet 2007].

2. Preliminaries

Let H be the skew field of quaternions obtained by endowing R4 with the mul-
tiplication operation defined on the standard basis f1; i; j ; kg by i2 D j 2 D

k2 D �1 and ij D k, and then extended by distributivity to all quaternions
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qD x0Cx1iCx2j Cx3k. For every q 2H, we define the real and imaginary part
of q as Re q D x0 and Im q D x1i Cx2j Cx3k, its conjugate as Nq D Re q� Im q,
and its modulus as jqj2 D q Nq. The multiplicative inverse of q ¤ 0 is q�1 D Nq=jqj2.
Let S be the unit 2-sphere of purely imaginary quaternions, SD fq 2H j q2D�1g.
Then for any I 2S, we will denote by LI the complex plane RCRI , and if��H,
we further set �I D �\LI . Notice that to every q 2 H n R, we can associate
a unique element in S by the map q 7! Im.q/=jIm.q/j D Iq; therefore, for any
q 2 H nR there exist and are unique x;y 2 R with y > 0 and Iq 2 S such that
q D xCyIq . If q is real then Iq can be any element of S.

The preliminary results stated in this section will be given for slice regular
functions defined on open balls of type B D B.0;R/ D fq 2 H j jqj < Rg. We
point out that in most cases these results hold, with appropriate changes, for a more
general class of domains introduced in [Colombo et al. 2009]. Let us now recall
the definition of slice regularity.

Definition 2.1. A function f W B D B.0;R/! H is said to be slice regular (often
abbreviated to regular later on) if for every I 2 S, its restriction fI to BI has
continuous partial derivatives and satisfies

@If .xCyI/D
1

2

�
@

@x
C I

@

@y

�
fI .xCyI/D 0 for every xCyI 2 BI :

In the sequel we may refer to the vanishing of @If by saying that the restriction
fI is holomorphic on BI . In what follows, for the sake of shortness we will omit
the prefix slice when referring to slice regular functions. A notion of derivative,
called slice (or Cullen) derivative, can be given for regular functions by

@cf .xCyI/D
@

@x
f .xCyI/ for xCyI 2 B:

This definition is well-posed because it is applied only to regular functions; moreover,
slice regularity is preserved by slice differentiation. A basic result connects slice
regularity and classical holomorphy:

Lemma 2.2 (splitting lemma; see [Gentili and Struppa 2007]). If f is a regular
function on BDB.0;R/ then for every I 2S and for every J 2S with J orthogonal
to I , there exist two holomorphic functions F;G W BI !LI such that

fI .z/D F.z/CG.z/J for every z D xCyI 2 BI :

Theorem 2.3 [Gentili and Struppa 2007]. A function f is regular on B D B.0;R/

if and only if f has a power series expansion

f .q/D
X
n�0

qnan with an D
1

n!

@nf

@xn
.0/

converging absolutely and uniformly on compact sets in B.0;R/.
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The next two results will be needed later.

Theorem 2.4 (identity principle, weak version; see [Gentili and Struppa 2007]).
Let f W B D B.0;R/! H be a regular function. Denote by Zf the zero set of
f , Zf D fq 2 Bjf .q/ D 0g. If there exists I 2 S such that BI \Zf has an
accumulation point in BI then f vanishes identically on B.

Theorem 2.5 (representation formula; see [Colombo et al. 2009]). Let f be a
regular function on B D B.0;R/ and let J 2 S. Then for all x C yI 2 B, the
following equality holds:

f .xCyI/D 1
2

�
f .xCyJ /Cf .x�yJ /

�
C I 1

2

�
J
�
f .x�yJ /�f .xCyJ /

��
:

The product of two regular functions is not, in general, regular. To guarantee
regularity we need to introduce the following multiplication operation:

Definition 2.6. Let f .q/D
P

n�0 qnan and g.q/D
P

n�0 qnbn be regular func-
tions on B D B.0;R/. The �-product of f and g is the regular function

f �g W B! H

defined by

f �g.q/D
X
n�0

qn
nX

kD0

akbn�k :

The �-product is associative but not, in general, commutative. The following
result clarifies the relation between the �-product and the pointwise product of
regular functions.

Proposition 2.7 [Gentili et al. 2013]. Let f .q/D
P

n�0

qnan and g.q/D
P

n�0

qnbn

be regular functions on B D B.0;R/. Then

f �g.q/D

�
f .q/g.f .q/�1qf .q// if f .q/¤ 0;

0 if f .q/D 0:

Notice that if q D xC yI (and if f .q/ ¤ 0) then f .q/�1qf .q/ has the same
modulus and same real part as q; hence, Tf .q/D f .q/

�1qf .q/ lies in xCyS, the
same 2-sphere as q. A zero x0Cy0I of the function g is not necessarily a zero of
f �g, but one element on the same sphere x0Cy0S is.

To conclude this section we recall a result that is basic for our purposes.

Theorem 2.8 (maximum modulus principle [Gentili and Struppa 2007]). Let f W
B!H be a regular function. If there exists I 2 S such that the restriction jfI j has
a local maximum in BI then f is constant in B. In particular, if jf j has a local
maximum in B then f is constant in B.
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3. The Landau–Toeplitz theorem for regular functions

In this section, we will prove our analogue of the Landau–Toeplitz theorem for
(quaternionic) regular functions. To reach the aim, we will need a few steps.

Denote by h ; i the scalar product of R4, and by � the vector product of R3.
Recall the equality uv D�hu; viCu� v, valid for purely imaginary quaternions
u; v. Also, if wD xCyL 2H, then hw; Ii D hyL; Ii D �Re.yLI/D�Re.wI/

for all I 2 S.

Definition 3.1. Let I 2 S. For any w 2 H, we define the imaginary component of
w along I as ImI .w/D hw; Ii D �Re.wI/.

Proposition 3.2. Letw2BDB.0;R/, 0< jwjD r <R, and let g be a holomorphic
function on B \LIw

. If

(9) g.w/D w and r D max
z2rBIw

jg.z/j

then ImIw
.@cg.w//D 0.

Proof. To simplify the notation, set IDIw . Define ' WR!R by '.�/Djg.weI� /j2.
The splitting lemma (2.2) implies that for every J 2 S orthogonal to I there
exist holomorphic functions F;G W BI ! LI such that g.z/ D F.z/C G.z/J

for every z 2 BI : A direct computation shows that '.�/D F.weI� /F.weI� /C

G.weI� /G.weI� /I hence,

'0.�/D�2 ImI

�
weI�

�
F 0.weI� /F.weI� /CG0.weI� /G.weI� /

��
;

where F 0 and G0 are the complex derivatives of F and G in BI . Since, by hypothesis,
� D 0 is a maximum for ', we have

(10) 0D '0.0/D�2 ImI

�
w
�
F 0.w/F.w/CG0.w/G.w/

��
:

Moreover, w D g.w/D F.w/CG.w/J , which implies F.w/Dw and G.w/D 0.
Putting these values in (10), we have 0D�2 ImI .wF 0.w/ Nw/D�2jwj2 ImI .F

0.w//,
which yields ImI .F

0.w//D 0. Finally, recalling the definition of the slice derivative
and Definition 3.1, we get

ImI .@cg.w//D ImI

�
F 0.w/CG0.w/J

�
D ImI .F

0.w//D 0: �

Remark 3.3. The proposition can be interpreted as a consequence of the Julia–
Wolff–Carathéodory theorem (see for instance [Abate 1989; Burckel 1979]); in fact,
the hypotheses in (9) yield that g W rBI! rB and thatw is a boundary fixed point for
the restriction of g to rBI ; hence, if we split the function g as g.z/DF.z/CG.z/J ,
for z 2 rBI , we have that w is a Wolff point for F W rBI ! rBI .



388 GRAZIANO GENTILI AND GIULIA SARFATTI

The proof of the classical Landau–Toeplitz theorem in the setting of holomorphic
maps [Burckel et al. 2008] relies upon the analogue of Proposition 3.2, which is
not sufficient for our purposes in the quaternionic environment; in fact, we need
the following:

Proposition 3.4. Let g WB!H be a regular function such that ImIq
.g.q//D 0 for

every q 2 B. Then g is a real constant function.

Proof. Let g.q/D
P

n�0 qnan on B. For any I 2 S, we split the coefficient an as
bnC cnJ with bn; cn 2LI and J 2 S orthogonal to I . By hypothesis, we have

0D ImI .g.z//D ImI

�X
n�0

zn.bnC cnJ /

�
D ImI

�X
n�0

znbn

�
for all z 2 BI :

As a consequence of the open mapping theorem, the holomorphic map
P

n�0 znbn

is constant; that is, bnD 0 for all n> 0. Therefore, the component of each an along
LI vanishes for all n> 0. Since I 2S is arbitrary, this implies anD 0 for all n> 0.
The hypothesis yields that a0 2 R. �

A basic notion used to state the classical Landau–Toeplitz theorem is the diameter
of the images of holomorphic functions. In the new quaternionic setting, due to the
fact that composition of regular functions is not regular in general, the definition of a
“regular” diameter for the images of regular functions requires a peculiar approach.

Definition 3.5. Let f W B! H be a regular function f .q/D
P

n�0 qnan, and let
u 2 H. We define the regular composition of f with the function q 7! qu as

fu.q/D
X
n�0

.qu/�nan D

X
n�0

qnunan:

If juj D 1, the radius of convergence of the series expansion for fu is the same as
that for f . Moreover, if u and q0 lie in the same plane LI then u and q0 commute,
hence fu.q0/D f .q0u/. In particular, if u 2 R then fu.q/D f .qu/ for every q.

Definition 3.6. Let f W B! H be a regular function. For r 2 .0; 1/, we define the
regular diameter of the image of rB under f as

Qd2.f .rB//D max
u;v2B

max
jqj�r
jfu.q/�fv.q/j:

We define the regular diameter of the image of B under f as

(11) Qd2.f .B//D lim
r!1�

Qd2.f .rB//:

Remark 3.7. By the maximum modulus principle for regular functions, Qd2.f .rB//

is an increasing function of r ; hence the limit (11) always exists. So Qd2.f .B// is
well defined.
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Let E be a subset of H. We will denote by diam E D supq;w2E jq�wj the
classical diameter of E.

Proposition 3.8. Let f be a regular function on B. Then

diamf .B/� Qd2.f .B//� 2 diamf .B/:

Proof. To prove the first inequality, let r 2 .0; 1/ and consider q; w 2 rB. We want
to bound jf .q/� f .w/j. Suppose without loss of generality that jwj � jqj and
w ¤ 0. Then

(12) jf .q/�f .w/j D
ˇ̌̌̌
f

�
q
jwj

jwj

�
�f

�
w
jwj

jwj

�ˇ̌̌̌
D
ˇ̌
f q
jwj
.jwj/�f w

jwj
.jwj/

ˇ̌
;

where the last equality is due to the fact that jwj, being real, commutes with both
q=jwj and w=jwj. Since q=jwj 2 B and w=jwj 2 @B, (12) yields

jf .q/�f .w/j � max
u;v2B

jfu.jwj/�fv.jwj/j

� max
u;v2B

max
jqj�r
jfu.q/�fv.q/j D Qd2.f .rB//:

This implies that diamf .rB/ � Qd2.f .rB//. Since this inequality holds for any
r 2 .0; 1/, we obtain

diamf .B/D lim
r!1�

diamf .rB/� lim
r!1�

Qd2.f .rB//D Qd2.f .B//:

To show the missing inequality, let u; v2B, r 2 .0; 1/, and let J;K be elements of S

such that u 2LJ and v 2LK . Using the representation formula (see Theorem 2.5)
and taking into account that u and xCyJ commute as well as v and xCyK, we
get, for all q D xCyI 2 rB,

(13) jfu.q/�fv.q/j

D
1
2
j.f ..xCyJ /u/�.f .xCyK/v//C.f ..x�yJ /u/�f ..x�yK/v//

CIJ.f ..x�yJ /u/�f ..xCyJ /u//�IK.f ..x�yK/v/�f ..xCyK/v//j

�
1
2
jf ..xCyJ /u/�.f .xCyK/v/jC 1

2
jf ..x�yJ /u/�f ..x�yK/v/j

C
1
2
jf ..x�yJ /u/�f ..xCyJ /u/jC 1

2
jf ..x�yK/v/�f ..xCyK/v/j

� 2 diamf .rB/:

Since inequality (13) holds for every u; v 2 B and for every q 2 rB, we get

(14) Qd2.f .rB//Dmax
u;v2B

max
jqj�r
jfu.q/�fv.q/j � 2 diamf .rB/I

and since this holds for every r 2 .0; 1/, we get Qd2.f .B//� 2 diamf .B/. �
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Notice that if f is an affine function, say f .q/D aCqb, then for every r 2 .0; 1/

we have Qd2.f .rB// D jbj diam rB D jbjr diam B. In particular, if f is constant
then Qd2.f .rB//D 0. Moreover, the regular diameter Qd2.f .rB// is invariant under
translations; in fact, if g.q/D f .q/�f .0/ then Qd2.g.rB//D Qd2.f .rB// for every
r 2 .0; 1/.

Theorem 3.9 (Landau–Toeplitz for regular functions). Let f W B!H be a regular
function such that Qd2.f .B//D diam BD 2. Then

(15) Qd2.f .rB//� 2r

for every r 2 .0; 1/, and

(16) j@cf .0/j � 1:

Equality holds in (15) for some r 2 .0; 1/, or in (16), if and only if f is an affine
function f .q/D aC qb with a; b 2 H and jbj D 1.

Proof. To prove the first inequality, take u; v 2B and consider the auxiliary function

gu;v.q/D
1
2
q�1.fu.q/�fv.q//:

This function is regular on B; indeed, if the power series expansion of f in B isP
n�0 qnan, then

gu;v.q/D
1
2
q�1

�X
n�0

qnunan�

X
n�0

qnvnan

�
D

1
2

X
n�0

qn.unC1
� vnC1/anC1:

From this expression of gu;v we can recover its value at q D 0:

(17) gu;v.0/D
1
2
.u� v/a1 D

1
2
.u� v/@cf .0/:

Since gu;v is a regular function, using the maximum modulus principle we get that

r 7! max
u;v2B

max
jqj�r
jgu;v.q/j

is increasing on .0; 1/. Moreover, the regularity of the function q 7! fu.q/�fv.q/

yields that for any fixed r 2 .0; 1/ we can write

max
jqj�r
jgu;v.q/j D max

jqj�r

jfu.q/�fv.q/j

2jqj
D

1

2r
max
jqj�r
jfu.q/�fv.q/j;

which leads to

(18)
Qd2.f .rB//

2r
D

1

2r
max
u;v2B

max
jqj�r
jfu.q/�fv.q/j Dmax

u;v2B

max
jqj�r
jgu;v.q/jI

therefore, Qd2.f .rB//=2r is an increasing function of r and so always less than or
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equal to the limit

lim
r!1�

1

2r
Qd2.f .rB//D

1

2
Qd2.f .B//D 1:

This means that

(19) Qd2.f .rB//� 2r for every r 2 .0; 1/;

proving inequality (15). To prove (16), consider the odd part of f ,

fodd.q/D
f .q/�f .�q/

2
:

It satisfies the hypotheses of the Schwarz lemma for regular functions (see [Gentili
and Struppa 2007]); indeed, fodd is a regular function on B, fodd.0/D 0, and

jfodd.q/j D
1
2
jf .q/�f .�q/j � 1

2
Qd2.f .B//D 1 for every q 2 BI

hence,

(20) 1� j@cfodd.0/j D
1
2
j@cf .q/� @c.f .�q//j

ˇ̌
qD0

D
1
2
j@cf .q/C @cf .�q/j

ˇ̌
qD0
D j@cf .0/j:

We will now prove the last part of the statement, covering the case of equality.
To begin with, notice that if f .q/D aCqb with a; b 2H and jbj D 1, then equality
holds in both (15) and (16).

Conversely, suppose that equality holds in (16), so j@cf .0/j D 1. In this case we
have j@cfodd.0/j D 1; therefore, by the Schwarz lemma (see [Gentili and Struppa
2007]),

(21) fodd.q/D q@cf .0/:

We want to show that in this case Qd2.f .rB//D 2r for every r 2 .0; 1/; in fact, from
(17) and (18) it follows that

Qd2.f .rB//

2r
�max

u;v2B

jgu;v.0/j Dmax
u;v2B

1
2
j.u� v/@cf .0/j D 1 for every r 2 .0; 1/:

Comparing the last inequality with (19) we get

(22) Qd2.f .rB//D 2r for every r 2 .0; 1/:

We now introducd a new auxiliary function. Take w 2 B with 0< jwj D r < 1 and
set

hw.q/D
1
2
.f .q/�f .�w//@cf .0/

�1:

The function hw is regular on B and fixes w; indeed,

hw.w/D
1
2
.f .w/�f .�w//@cf .0/

�1
D fodd.w/@cf .0/

�1
D w;
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where the last equality is due to (21). We need now to restrict our attention to what
happens in LIw

. By the maximum modulus principle (Theorem 2.8), we are able
to find z0 2LIw

, jz0j D r such that for z 2LIw
,

max
jzj�r
jhw.z/j D

1
2

max
jzj�r
jf .z/�f .�w/j D 1

2
jf .z0/�f .�w/j:

Let Ou 2LIw
with j Ouj D 1 be such that �w D z0 Ou. Then again for z 2LIw

, due to
the fact that z0 and Ou commute,

max
jzj�r
jhw.z/j D

1
2
jf .z0/�f .z0 Ou/j

D
1
2
jf .z0/�f Ou.z0/j �

1
2

max
u;v2B

max
jzj�r
jfu.z/�fv.z/j:

Recalling (22) for z 2LIw
and q 2 H we obtain

max
jzj�r
jhw.z/j �

1
2

max
u;v2B

max
jqj�r
jfu.q/�fv.q/j D

1
2
Qd2.f .rB//D r D jhw.w/j:

The function hw then satisfies the hypotheses of Proposition 3.2; hence,

0D ImIw
.@chw.q/jqDw/D ImIw

�
1
2
@cf .w/@cf .0/

�1
�
:

Now recall that w is an arbitrary element of B n f0g. By continuity, we get that
the function w 7! 1

2
@cf .w/@cf .0/

�1, regular on B, satisfies the hypotheses of
Proposition 3.4. Consequently, 1

2
@cf .w/@cf .0/

�1 is a real constant function
hence @cf .w/ is constant as well; therefore, f has the required form f .q/ D

f .0/C q@cf .0/.
We will show now how equality in (15) for some s 2 .0; 1/ implies equality

in (16); this and the preceding step will conclude the proof. Suppose that there
exists s 2 .0; 1/ such that Qd2.f .sB//=2s D 1. By (19) and since Qd2.f .rB//=2r is
increasing in r , we have

Qd2.f .rB//

2r
D 1 for every r 2 Œs; 1/:

Let us prove that this equality holds for all r 2 .0; 1/. Let Ou; Ov 2 B be such that

Qd2.f .sB//

2s
D max

u;v2B

max
jqj�s
jgu;v.q/j D max

jqj�s
jg Ou; Ov.q/j;

where the first equality follows from (18). Let r > s. By the choice of Ou; Ov 2 B, we
get

1D
Qd2.f .rB//

2r
D max

u;v2B

max
jqj�r
jgu;v.q/j � max

jqj�r
jg Ou; Ov.q/j � max

jqj�s
jg Ou; Ov.q/j D 1:
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By the maximum modulus principle, the function g Ou; Ov must be constant in q 2 B

and equal to 1 in modulus. Now consider r 2 .0; s/. Then

1�
Qd2.f .rB//

2r
D max

u;v2B

max
jqj�r
jgu;v.q/j � max

jqj�r
jg Ou; Ov.q/j D 1;

which implies Qd2.f .rB//=2r D 1 for every r 2 .0; 1/. The claim is now that
j@cf .0/j D 1. By (20), we first of all obtain

(23) lim
r!0C

Qd2.f .rB//

2r
D 1� j@cf .0/j:

Recalling that
Qd2.f .rB//

2r
D max

u;v2B

max
jqj�r
jgu;v.q/j;

we can get, for every n 2 N, the existence of un; vn 2 B and qn with jqnj D
1
n

(converging up to subsequences), such that

1D lim
n!1

Qd2.f .
1
n

B//

21
n

D lim
n!1

jgun;vn
.qn/jDjgQu;Qv.0/j� max

u;v2B

jgu;v.0/jDj@cf .0/j:

(The last equality is due to (17).) A comparison with (23) concludes the proof. �

4. The n-diameter case

We next prove the n-diameter version of the Landau–Toeplitz theorem for regular
functions. Recall from Definition 1.4 the definition of the n-diameter of a subset
of H. As in the complex case (see [Burckel et al. 2008]), we have:

Proposition 4.1. For all n � 2, we have dn.E/ � d2.E/ D diam E. Moreover,
dn.E/ is finite if and only if d2.E/ is finite.

As we did in Section 3, in the case of the classical diameter d2, we will adopt a
specific definition for the n-diameter of the image of a subset of H under a regular
function. We will always consider images of open balls of the form rB.

Definition 4.2. Let n� 2 and let f be a regular function on B. For r 2 .0; 1/ we
define, in terms of the �-product, the regular n-diameter of the image of rB under
f as

Qdn.f .rB//D max
w1;:::;wn2B

max
jqj�r

ˇ̌̌̌ Y
*

1�j<k�n

.fwk
.q/�fwj

.q//

ˇ̌̌̌ 2
n.n�1/

:

We define the regular n-diameter of the image of B under f as

Qdn.f .B//D lim
r!1�

Qdn.f .rB//:
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The same argument used for the regular diameter in Remark 3.7 guarantees
that Qdn.f .B// is well-defined. Notice that because of the noncommutativity of
quaternions, the order of the factors of a �-product has its importance. We can
choose any order we like, but it has to be fixed once chosen. In what follows,
when we write 1 � j < k � n we always mean to order the couples .j ; k/ with
the lexicographic order. To simplify the notation, we will sometimes write j < k,
meaning 1� j < k � n.

The first step toward understanding the relation between the n-diameter and the
regular n-diameter is the following result:

Proposition 4.3. Let f W B ! H be a regular function, and let n � 2. Then
Qdn.f .B//� Qd2.f .B//.

Proof. We omit the (technical) proof. The idea is to turn the �-product into a usual
product with an iterated application of Proposition 2.7. �

Notice that Proposition 4.1 and Proposition 4.3 imply that if dn.f .B// is finite
then Qdn.f .B// is finite as well (for any regular function f and n� 2).

Let us make some simple remarks about the definition of regular n-diameter.
As for the case n D 2, the regular n-diameter is invariant under translation; in
fact, if f is a regular function on B and g is defined as g.q/D f .q/�f .0/ then
Qdn.g.rB//D Qdn.f .rB//. Moreover, if f .q/D qb with b 2 H then Qdn.f .rB//D

jbjdn.rB/. In particular, if f is constant then Qdn.f .rB//D 0; hence, if f is of the
form f .q/D aC qb for some quaternions a and b then the regular n-diameter of
f .rB/ coincides with its n-diameter.

In order to obtain analogues of inequalities (15) and (16) in the n-diameter case,
we study the ratio between the regular n-diameter of the image of rB under a regular
function f and the n-diameter of the domain rB of f .

Lemma 4.4. Let f be a regular function on B and let n 2 N, n� 2. Then

'n.r/D
Qdn.f .rB//

dn.rB/
D

Qdn.f .rB//

dn.B/r

is an increasing function of r on the open interval .0; 1/, and

lim
r!0C

'n.r/D j@cf .0/j:

Proof. If f is a constant or affine function, 'n.r/ is a constant function. So let f be
neither constant nor affine. Fix w1; : : : ; wn 2 B and consider the auxiliary function

gw1;:::;wn
.q/D dn.B/

�
n.n�1/

2 q�
n.n�1/

2

Y
*

1�j<k�n

.fwk
.q/�fwj

.q//:

Since fwj
.0/D f .0/ for every j D 1; : : : ; n, we get that gw1;:::;wn

is regular on B.
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Moreover, using the maximum modulus principle as in (18), we can write

'n.r/
n.n�1/

2 D max
w1;:::;wn2B

max
jqj�r
jgw1;:::;wn

.q/jI

hence, we can conclude that 'n.r/ is increasing in r .
In turn, to prove the second part of the statement, we proceed as follows:

lim
r!0C

'n.r/D lim
r!0C

Qdn.f .rB//

dn.B/r

D lim
r!0C

dn.B/
�1r�1 max

w1;:::;wn2B

max
jqj�r

ˇ̌̌̌Y
*

j<k

.fwk
.q/�fwj

.q//

ˇ̌̌̌ 2
n.n�1/

:

We can turn the �-product into a usual product with an iterated application of
Proposition 2.7 (omitting the points where some factor fwk

.q/�fwj
.q/ vanishes),

thus obtaining

lim
r!0C

'n.r/

D lim
r!0C

dn.B/
�1r�1 max

w1;:::;wn2B

max
jqj�r

ˇ̌̌̌Y
j<k

�
fwk

.Tj ;k.q//�fwj
.Tj ;k.q//

�ˇ̌̌̌ 2
n.n�1/

;

where for all j < k, Tj ;k.q/ is a suitable quaternion belonging to the same sphere
Re q C jIm qjS of q. Since for every j < k we have jTk;j .q/j D jqj if jqj D r ,
using the power series expansion of f we can write

lim
r!0C

'n.r/

D lim
r!0C

dn.B/
�1 max
w1;:::;wn2B

max
jqj�r

Y
j<k

ˇ̌̌̌X
n�1

.Tk;j .q//
n�1.wn

k �w
n
j /an

ˇ̌̌̌ 2
n.n�1/

:

Since 'n.r/ is lowerbounded by 0 and it is increasing in r then the limit of 'n.r/ as
r goes to 0 always exists. Proceeding as in the proof of Theorem 3.9, we can find a
sequence of points fqmgm2N such that jqmj D

1
m

for any m 2 N, and a sequence
of n-tuples f.w1;m; : : : ; wn;m/gm2N � Bn converging to some . Ow1; : : : ; Own/ 2 Bn

such that

lim
m!1

'n

�
1

m

�
D dn.B/

�1
Y
j<k

ˇ̌̌̌X
n�1

.Tk;j .0//
n�1. Own

k � Ow
n
j /an

ˇ̌̌̌ 2
n.n�1/

I

therefore, by Definition 1.4 we obtain

lim
m!1

'n

�
1

m

�
D dn.B/

�1
ja1j

Y
j<k

j. Owk � Owj /j
2

n.n�1/ � ja1j D j@cf .0/j:
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To prove the opposite inequality, notice that for every choice of f Qw1; : : : ; Qwng � B,

lim
r!0C

max
w1;:::;wn2B

max
jqjDr

Y
j<k

ˇ̌̌̌X
n�1

.Tk;j .q//
n�1.wn

k �w
n
j /an

ˇ̌̌̌ 2
n.n�1/

� lim
r!0C

max
jqjDr

Y
j<k

ˇ̌̌̌X
n�1

.Tk;j .q//
n�1. Qwn

k � Qw
n
j /an

ˇ̌̌̌ 2
n.n�1/

;

whence

lim
r!0C

max
w1;:::;wn2B

max
jqjDr

Y
j<k

ˇ̌̌̌X
n�1

.Tk;j .q//
n�1.wn

k �w
n
j /an

ˇ̌̌̌ 2
n.n�1/

� max
Qw1;:::; Qwn2B

lim
r!0C

max
jqjDr

Y
j<k

ˇ̌̌̌X
n�1

.Tk;j .q//
n�1. Qwn

k � Qw
n
j /an

ˇ̌̌̌ 2
n.n�1/

I

therefore, we conclude that

lim
r!0C

'n.r/� dn.B/
�1 max
w1;:::;wn2B

Y
j<k

j.wj �wk/a1j
2

n.n�1/ D ja1j D j@cf .0/j: �

Using Lemma 4.4, one easily proves the following result:

Theorem 4.5. let f be a regular function on B such that Qdn.f .B//D dn.B/. Then

(24) Qdn.f .rB//� dn.rB/

for every r 2 .0; 1/, and

(25) j@cf .0/j � 1:

We believe that if equality holds in (24) for some r 2 .0; 1/ or in (25) then f is
affine, but we were not able to prove this statement. On the one hand, it is easy to
see that if f is affine, f .q/D aC qb with a; b 2 H, jbj D 1 then equality holds
both in (24) and in (25); on the other hand, we do not yet know, in general, if the
converse holds using the notion of regular n-diameter (for n> 2).

5. A 3-diameter version of the Landau–Toeplitz theorem

In this section we prove a complete 3-diameter version of the Landau–Toeplitz
theorem. The proof relies upon the elementary fact that three points lie always
in the same plane. For this reason, the 3-diameter of a subset of H, which has
dimension 4, is always attained on a bidimensional section of the set. To compute
the 3-diameter of the unit ball of H we need to recall a preliminary result about what
happens in the complex case (for a proof, see [Burckel et al. 2008], for instance).
Let D be the open unit disc of C.
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Lemma 5.1. Given n points fw1; : : : ; wng � D, we haveY
1�j<k�n

jwj �wk j � n
n
2 :

Equality holds if and only if (after relabeling) wj D u˛j , where u 2 S1 and
˛ D ei2�=n is an n-th root of unity.

Lemma 5.2. Fix any I 2 S and u 2 @B. The 3-diameter of the unit ball of H is

d3.B/D .j˛2�˛1jj˛3�˛1jj˛3�˛2j/
1=3;

where j̨ D ueI2�j=3 for j D 1; 2; 3.

Proof. The result can be easily proved showing that the 3-diameter is attained on a
maximal disc that, without loss of generality, can be chosen to be some BI . �

In particular, d3.B/ D d3.D/ D
p

3. To prove our 3-diameter version of
the Landau–Toeplitz theorem, we introduce an appropriate notion of “slicewise”
3-diameter, inspired by the power series expansion of the regular 3-diameter.

Definition 5.3. Let f W B! H be a regular function, and let
P

n�0qnan be its
power series expansion. If aN is the first nonvanishing coefficient, let Of be the
function obtained by multiplying f (on the right) by a�1

N
jaN j:

Of .q/D
X
n�0

qnana�1
N jaN j D

X
n�0

qnbn:

This is regular on B as well. For any I 2 S, let w1; w2; w3 be points in the closed
disc BI , and consider the function

Ogw1;w2;w3
.z/D

X
n�0

zn
nX

kD0

kX
jD0

�
w

j
2
�w

j
1

��
w

k�j
3
�w

k�j
1

��
wn�k

3 �wn�k
2

�
bj bk�j bn�k ;

which is holomorphic in all variables z; w1; w2; w3 on BI . We define the slice
3-diameter of f .rB/ by

(26) Od3.f .rB//D sup
I2S

max
w1;w2;w32BI

max
z2rB

ˇ̌
Ogw1;w2;w3

.z/
ˇ̌1=3

;

and the slice 3-diameter of f .B/ as the limit

Od3.f .B//D lim
r!1�

Od3.f .rB//:

By the maximum modulus principle (Theorem 2.8), the function r 7! Od3.f .rB//

is increasing; hence, the previous definition is well posed. It is not difficult to prove
that Ogw1;w2;w3

.z/ is continuous as a function of I and of the real and imaginary
parts of z; w1; w2; w3; hence, the supremum in (26) is actually a maximum.
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Remark 5.4. For any regular function f WB!H, the slice 3-diameter Od3.f .B// is
the same as the slice 3-diameter Od3..f �f .0//.B//D Od3.f .B/�f .0//. Moreover,
it is easy to prove that if the slice 3-diameter Od3.f .B// vanishes then f is constant.

Lemma 5.5. In analogy with what happens in the regular n-diameter case, let f
be a regular function on B, and for r 2 .0; 1/ let O'3.r/ be the ratio defined as

O'3.r/D
Od3.f .rB//

d3.rB/
D

Od3.f .rB//

d3.B/r
:

Then O'3.r/ is increasing in r and

lim
r!0C

O'3.r/D j@cf .0/j:

Proof. One proves that

O'3.r/
3
D d3.B/

�3 max
I2S

max
w1;w2;w32BI

max
z2rBI

ˇ̌
z�3
Ogw1;w2;w3

.z/
ˇ̌
;

(see Definition 5.3) and uses the technique of the proof of Lemma 4.4 on each
slice. �

The fundamental tool to prove the “equality case” is the following:

Theorem 5.6. Let f be a regular function on B and for r 2 .0; 1/, let

O'3.r/D
Od3.f .rB//

d3.B/r
:

Then O'3.r/ is strictly increasing in r except if f is a constant or affine function;
that is, if f .q/D aC qb with a; b 2 H.

Proof. Thanks to Remark 5.4 we can suppose f .0/D 0. Since O'3.r/ is increasing
for r 2 .0; 1/, if it is not strictly increasing then there exist s; t , 0< s < t < 1 such
that O'3 is constant on Œs; t �. We will show that this yields that O'3 is constant on
.0; t �. Let I 2 S and w1; w2; w3 2 BI be such that

O'3.s/
3
D d3.B/

�3 max
z2sBI

ˇ̌
z�3
Ogw1;w2;w3

.z/
ˇ̌
:

For r 2 Œs; t �, we have O'3.r/D O'3.s/ and by the choice of w1; w2; w3,

O'3.r/
3
� d3.B/

�3 max
z2rBI

ˇ̌
z�3
Ogw1;w2;w3

.z/
ˇ̌

� d3.B/
�3 max

z2sBI

ˇ̌
z�3
Ogw1;w2;w3

.z/
ˇ̌
D O'3.s/

3
I

hence, by the maximum modulus principle (see Theorem 2.8), we get that the
function z 7! z�3 Ogw1;w2;w3

.z/ is constant on BI . If we now consider r 2 .0; s/
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then O'3.r/� O'3.s/, and

O'3.r/
3
� d3.B/

�3max
z2rBǏ̌

z�3
Ogw1;w2;w3

.z/
ˇ̌

D d3.B/
�3max

z2sBǏ̌

z�3
Ogw1;w2;w3

.z/
ˇ̌
D O'3.s/

3
I

hence, O'3.r/D O'3.s/ for all r 2 .0; t �. Thanks to Lemma 5.5, we obtain

O'3.r/� lim
r!0C

O'3.r/D j@cf .0/j D ja1j for r 2 Œ0; t �:

Recalling Remark 5.4, we get that either f is constant or a1 D @cf .0/¤ 0. Let us
suppose that f is not constant (so that bnD ana�1

1
ja1j for any n2N). Recalling the

definition of Ogw1;w2;w3
.z/, and since the (constant) function z 7! z�3 Ogw1;w2;w3

.z/

is equal to its limit at 0, we have

ja1j
3

D O'3
3.r/

D
1

d3.B/3

ˇ̌̌̌X
n�3

zn�3
nX

kD0

kX
jD0

�
w

j
2
�w

j
1

��
w

k�j
3
�w

k�j
1

��
wn�k

3 �wn�k
2

�
bj bk�j bn�k

ˇ̌̌̌
D

1

d3.B/3

ˇ̌
.w2�w1/.w3�w1/.w3�w2/b

3
1

ˇ̌
for any z 2 BI ; therefore, thanks to Lemma 5.2, without loss of generality we
can suppose that w1 D 1; w2; w3 are cube roots of unity in LI . Now let J be an
imaginary unit, J ¤ I , and consider v1; v2; v3 cube roots of unity in LJ . Then, for
any r 2 Œ0; t �,

ja1j D O'3.r/D d3.B/
�1 max

I2S

max
w1;w2;w32BI

max
z2rBI

jz�3
Ogw1;w2;w3

.z/j1=3

� d3.B/
�1 max

z2rBJ

jz�3
Ogv1;v2;v3

.z/j1=3 � d3.B/
�1
jz�3
Ogv1;v2;v3

.z/j
1=3
zD0
D ja1jI

therefore, for any J 2 S, if v1; v2; v3 are cube roots of unity in LJ , the function
z 7! z�3 Ogv1;v2;v3

.z/ � cJ is constant on BJ . Notice that jcJ j does not depend
on J 2 S. Now let I be an imaginary unit in S, fix z 2 tBI with jzj D r , and let
w1 D 1; w2; w3 be cube roots of unity in LI . Consider the function defined for
� 2 BI by

hI
z .�/D z�3

Og�;w2;w3
.z/

D

X
n�3

zn�3
nX

kD0

kX
jD0

�
w

j
2
� �j

��
w

k�j
3
� �k�j

��
wn�k

3 �wn�k
2

�
bj bk�j bn�k :
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By construction, � 7! hI
z .�/ is holomorphic on a neighborhood of BI , and

jhI
z .�/j � O'3.r/

3d3.B/
3
D ja1j

3d3.B/
3:

Its value at � D 1 is

hI
z .1/D z�3g1;w2;w3

.z/D .w2� 1/.w3� 1/.w3�w2/b
3
1 D�3

p
3I ja1j

3:

Then the function

� 7! hI
z .�/.h

I
z .1//

�1
D hI

z .�/I.3
p

3/�1
ja1j
�3

fixes the point � D 1 and maps the closed unit disc BI to itself; in fact,ˇ̌
hI

z .�/I.3
p

3/�1
ja1j
�3
ˇ̌
D jhI

z .�/j.3
p

3/�1
ja1j
�3

� ja1j
3d3.B/

3.3
p

3/�1
ja1j
�3
D 1:

We can therefore apply Proposition 3.2 and we get

ImI

�
@

@�

ˇ̌̌
�D1

hI
z .�/I.3

p
3/�1
ja1j
�3

�
D 0I that is, Re

�
@

@�
hI

z .1/

�
D 0:

Doing the same construction for any J 2 S, we get that

(27) Re
�
@

@�
hJ

z .1/

�
D 0

for any fixed z 2 tBJ . An easy computation shows that

@

@�
hI

z .1/

D�

X
n�3

zn�3
n�1X
kD2

k�1X
jD1

�
j .w

k�j
3
�1/C.k�j /.w

j
2
�1/

�
.wn�k

3 �wn�k
2 /bj bk�j bn�k :

Thanks to the uniform convergence of the series expansion and since (27) holds for
any z 2 tBI , we get that the real part of each coefficient must vanish. Namely, for
any n 2 N, n� 3,

Re
� n�1X

kD2

k�1X
jD1

�
j .w

k�j
3
�1/C .k�j /.w

j
2
�1/

�
.wn�k

3 �wn�k
2 /bj bk�j bn�k

�
D 0:

That this is true for any I 2 S will allow us to show that bn D an.a
�1
1
ja1j/ is real

for any n 2 N. We do this by induction. The first step is trivial; b0 D 0 and

b1 D a1.a
�1
1 ja1j/D ja1j:
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Suppose then that b1; : : : ; bs�1 are real numbers. The first coefficient of the series
expansion of .@=@�/hI

z .1/ that contains bs is the one for which n D s C 2, and
which has to satisfy
(28)

Re
sC1X
kD2

k�1X
jD1

�
j .w

k�j
3
�1/C.k�j /.w

j
2
�1/

�
.wsC2�k

3
�wsC2�k

2
/bj bk�j bsC2�kD0:

Three terms in this sum involve bs: those with .k; j /D .sC1; s/; .sC1; 1/; .2; 1/.
After some manipulations, their sum is seen to equal�p

3I.3sC 2� .ws
2Cw

s
3//� 3.ws

2�w
s
3//
�
ja1j

2bs:

hence, we can split the sum in (28) into

(29)
�p

3I.3sC 2� .ws
2Cw

s
3//� 3.ws

2�w
s
3//
�
ja1j

2bsC†1C†2;

where

†1D

s�1X
jD2

�
j .w

sC1�j
3

�1/C.sC1�j /.w
j
2
�1/

�
.w3�w2/bj bsC1�j b1;

†2D

sX
kD3

k�1X
jD1

�
j .w

k�j
3
�1/C.k�j /.w

j
2
�1/

�
.wsC2�k

3
�wsC2�k

2
/bj bk�j bsC2�k :

We claim that Re†1 and Re†2 vanish. Indeed, if s is even, we can express †1 as

s=2X
jD2

�
j .w

sC1�j
3

Cw
sC1�j
2

�2/C.sC1�j /.w
j
2
Cw

j
3
�2/

�
.w3�w2/bj bsC1�j b1:

The real part of each summand vanishes because wn
2
Cwn

3
2 R and wn

2
�wn

3
2 IR

for any n 2 N, while bn 2 R for any nD 1; : : : ; s� 1. This shows that Re†1 D 0

when s is even. The proofs for †1 with s odd and for †2 are similar.
We have reduced (28) to

Re
��p

3I.3sC 2� .ws
2Cw

s
3//� 3.ws

2�w
s
3//
�
ja1j

2bs

�
D 0:

Therefore, for any s 2N, there exists ˛s 2 R such that Re.˛sIbs/D ˛s Re.Ibs/D

ImI .bs/D 0 for all I 2 S; hence, we get bs 2 R for all s. Recalling that the bn are
the coefficients of the power series of Of , we get that Of .BI / � LI for all I 2 S;
hence, Of is complex holomorphic on each slice.
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We now claim that for any r 2 .0; t � the slice 3-diameter of f .rB/ coincides
with the usual 3-diameter of Of .rB/. Indeed, for any I 2 S, we have

Ogw1;w2;w3
.z/

D

X
n�0

zn
nX

kD0

kX
jD0

.w
j
2
�w

j
1
/.w

k�j
3
�w

k�j
1

/.wn�k
3 �wn�k

2 /bj bk�j bn�k

D

�X
n�0

�
.zw2/

n
� .zw1/

n
�

bn

��X
n�0

�
.zw3/

n
� .zw1/

n
�

bn

�

�

�X
n�0

�
.zw3/

n
� .zw2/

n
�

bn

�
;

which is to say

Ogw1;w2;w3
.z/D

�
Of .zw2/� Of .zw1/

��
Of .zw3/� Of .zw1/

��
Of .zw3/� Of .zw2/

�
:

For each side we take the absolute value, the third root and the maximum over
z 2 rBI and w1; w2; w3 2 BI , to obtain Od3.f .rB//D d3. Of .rBI //, as desired.

Thanks to the complex n-diameter version of the Landau–Toeplitz theorem
[Burckel et al. 2008] we conclude that Of is an affine function,

Of .q/D b0C qb1 D a0a�1
1 ja1jC qja1j:

Hence f is affine as well: f .q/D a0C qa1. �

Theorem 5.7 (Landau–Toeplitz theorem for the slice 3-diameter). Let f be a
regular function on B such that Od3f .B/D d3.B/. Then

(30) Od3.f .rB//� d3.rB/

for every r 2 .0; 1/, and

(31) j@cf .0/j � 1:

Equality holds in (30) for some r 2 .0; 1/, or in (31), if and only if f is an affine
function f .q/D aC qb with a; b 2 H and jbj D 1.

Proof. By Lemma 5.5, both inequalities hold true. For the equality case, if f .q/D
aCqb with a; b 2H, jbj D 1, it is easy to see that equality holds in both statements;
otherwise, if equality holds in (30) or in (31) then O'3.r/ defined in Lemma 5.5
is not strictly increasing. Theorem 5.6 then implies that f is an affine function.
Since Od3..f .B//D d3.B/, the coefficient of the first degree term of f has unitary
modulus. �
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Notice that the notion of the slice 3-diameter does not make sense for n � 4.
Moreover, the n-diameter of B, when n� 4, is not anymore attained at points that
lie on the same plane LI ; in fact, the following result holds true:

Proposition 5.8. For all I 2 S the inequality d4.B/ > d4.BI / holds.

Proof. The proof follows from the direct computation of the 4-diameter of a maximal
tetrahedron contained in B. �

The proof of Theorem 5.6 heavily relies upon the fact that both the 3-diameter of
B and the slice 3-diameter of f .B/ are attained at a complete set of cube roots of
unity lying on a same plane LI . We have no alternative proof to use when n� 4.
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