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ON SURGERY CURVES FOR GENUS-ONE SLICE KNOTS

PATRICK M. GILMER AND CHARLES LIVINGSTON

If a knot K bounds a genus-one Seifert surface F ⊂ S3 and F contains an
essential simple closed curve α that has induced framing 0 and is smoothly
slice, then K is smoothly slice. Conjecturally, the converse holds. It is known
that if K is slice and the determinant of K is not 1, then there are strong
constraints on the algebraic concordance class of such α, and it was thought
that these constraints might imply that α is at least algebraically slice. We
present a counterexample; in the process we answer negatively a question
of Cooper and relate the result to a problem of Kauffman. Results of this
paper depend on the interplay between the Casson–Gordon invariants of K
and algebraic invariants of α.

1. Introduction

For n > 1, if a smooth knotted S2n−1 in S2n+1 bounds an embedded disk in B2n+2,
such a smooth slicing disk can be constructed from a 2n-manifold bounded by K in
S2n+1 by ambient surgery. Whether the same is true for knots in S3 has remained
an open question for 40 years, though counterexamples exist in the topological
category [Freedman and Quinn 1990].

One well-known and simply stated conjecture [Kirby 1978, Problem 1.38] is a
special case: the untwisted Whitehead double of a knot J ⊂ S3 is smoothly slice if
and only if J is smoothly slice. More generally, if K is a knot in S3 that bounds
a genus-one Seifert surface F and is algebraically slice, then up to isotopy and
orientation change, there are exactly two essential simple closed curves on F , J1

and J2, with self-linking 0 with respect to the Seifert form of F . In this situation,
we will call J1 and J2 surgery curves for F . Conjecturally, if K is smoothly slice,
then one of J1 or J2 is necessarily smoothly slice (see [Kauffman 1987, Strong
conjecture, page 226] for instance).

Shortly after Casson and Gordon [1986] developed obstructions to slicing al-
gebraically slice knots, it was noticed that Casson–Gordon invariants could be
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expressed in terms of signature invariants of curves on Seifert surfaces [Gilmer
1983; Litherland 1984]. Moreover, Casson–Gordon invariants could be interpreted
in this way as obstructions to slicing K by slicing a surgery curve on a genus-one
Seifert surface for K . Casson–Gordon invariants actually obstruct topological
locally flat slice disks.

A genus-one knot K is algebraically slice if and only if it has an Alexander
polynomial of the form

1K (t)= (mt − (m+ 1))((m+ 1)t −m)

= m(m+ 1)t2
− (m2

+ (m+ 1)2)t +m(m+ 1)

for some m ≥ 0. Observe that if 1K has the form above, then the nonnegative
integer m is determined. For a genus-one algebraically slice knot K , let m(K )
denote this number; note that the determinant of K is (2m(K )+ 1)2.

We let σK (t) denote the Levine–Tristram signature function of K [Levine 1969;
Tristram 1969], as defined on the unit interval [0, 1] and redefined to be the average
of the one-sided limits at the jumps. Casson–Gordon theory implies that if a genus-
one knot K is slice and m(K ) 6= 0, then the signature function of one of the surgery
curves satisfies strong constraints. To state these, we make the following definition.

Definition 1. A knot J satisfies the (m, p)-signature conditions for integers m > 0
and p relatively prime to m and m+ 1 if

r−1∑
i=0

σJ (cai/p)= 0

for all c ∈ Zp
∗, and a = (m+ 1)/m mod p,where r is the order of a modulo p.

To get a feeling for this summation, consider the case of m(K )= 1 and p= 73. In
Z73, the number 2 generates the multiplicative subgroup {1,2,4,8,16,32,64,55,37}.
This subgroup has 8 cosets in the group of units (Z73)

∗. For instance, the coset
containing c = 5 is {5, 7, 10, 14, 20, 28, 39, 40, 56}. Thus the following arises as
one of the sums in the (1, 73)-signature condition:

σJ
( 5

73

)
+σJ

( 7
73

)
+σJ

( 10
73

)
+σJ

( 14
73

)
+σJ

( 20
73

)
+σJ

( 28
73

)
+σJ

( 39
73

)
+σJ

( 40
73

)
+σJ

( 56
73

)
.

Notice that the cosets appear to be fairly randomly distributed in the unit interval.
Nonetheless, as we show, the vanishing of all such sums is not sufficient to im-
ply the vanishing of the signature function itself. Consider the following simple
consequence of Theorem 8 below.

Theorem 2. If K is a genus-one smoothly slice knot, then one of the surgery curves
J satisfies (m(K ), p)-signature conditions for an infinite set of primes p.

In his thesis, Cooper states a stronger result:
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Theorem 3 [Cooper 1982]. Let K be a genus-one smoothly slice knot, then one of
the surgery curves J satisfies the (m(K ), p)-signature conditions for all p relatively
prime to m and m+ 1.

One quick corollary, first observed by Cooper, of either of these theorems is that
for a genus one slice knot K with m(K ) > 0, the integral of the signature function
of one of the slice curves J is 0. This follows by summing the signature sums in the
theorem over all values of c to get a sum of the form

∑p−1
i=1 σJ (i/p)= 0 and then

noting that for large p, this sum approximates the integral. (This integral condition
was later seen to follow from the L2-signature approach of [Cochran et al. 2003,
Theorem(1.4)].)

Clearly, the constraints given by these theorems are quite extensive. One ex-
plicit question asked by Cooper is whether the vanishing of the combined sum∑p−1

i=1 σJ (i/p) for the appropriate infinite sets of p implies the vanishing of the
signature function [Cooper 1982, Question (3.16)]. We will show that the answer
is no. In fact, the much stronger constraints given in Theorems 2 and 3 are not
sufficient to imply the vanishing of the signature function of one of the surgery
curves. Here is the algebraic formulation of the question.

Question 4. Let σ be an integer-valued step function defined on [0, 1] with the
property that σ(x)= σ(1− x) for all x . Assume also σ(0)= σ(1)= 0, that there
are no jumps at points with denominator a prime power, and that σ is equal to the
average of the one-sided limits at the jumps. Suppose that for all p > 1 coprime to
m and m+ 1, for G the multiplicative subgroup of (Zp)

∗ generated by (m+ 1)/m,
and for all n ∈ Zp, we have ∑

r∈nG

σ(r/p)= 0.

Then does σ(t)= 0 for all t?

For each m > 0, the answer to the above question is emphatically no. Let K(r,s)

denote the (r, s)-cable of K (that is, r longitudes, and s meridians). Let −K denote
the mirror image of K .

Theorem 5. Let K be a knot with a nonzero signature function, and m > 0. The sig-
nature function of K(m,1) # −K(m+1,1) is nonzero and satisfies the (m, p)-signature
conditions for all p relatively prime to m and m+ 1.

We have a perhaps nicer family to work with in the case m = 1. Let Tr,s denote
the (r, s)-torus knot, which is the (r, s)-cable of the unknot.

Theorem 6. If r is an odd number and r ≥ 3, the signature function of (T2,r )(2,−r)

is nonzero and satisfies the (1, p)-signature conditions for odd p.
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Figure 1. Signature function of (T2,3)(2,−3) satisfying the
(1, p)-signature conditions for odd p.

Although Casson–Gordon theory gives a somewhat weaker version of Cooper’s
theorem, it provides access to the more powerful Witt class analogs of Theorem 2,
which carry more information than is given by signatures. Also, Casson–Gordon
theory obstructs topological sliceness, whereas Cooper worked in the smooth
category. We now describe these Witt class invariants.

If K is a knot, let Vt = (1− t)V + (1− t−1)V t , where V is a Seifert matrix of K
and t is an indeterminate. For p a prime power and j/p ∈ Z[1/p]/Z, let wK ( j/p)
denote the element represented by Ve2π i j/p in W (Q(ζp))⊗Z(2). Here, W (Q(ζp))

denotes the Witt group of hermitian forms over the field Q(ζp) and Z(2) denotes Z

localized at 2. An elementary proof shows that this defines a homomorphism on
the concordance group.

Definition 7. We say a knot J satisfies the (m, p)-Witt conditions for integers
m > 0 and p relatively prime to m and m+ 1 if

r−1∑
i=0

wJ [(c+ ai)/p] = 0 ∈W (Q(ζp))⊗Z(2)

for all c ∈ Zp
∗, a = (m+ 1)/m mod p, and r the order of a modulo p.

If a knot J satisfies the (m, p)-Witt conditions, it satisfies the (m, p)-signature
conditions as well. But the Witt conditions are stronger. For instance, one can
define a discriminant invariant on W (Q(ζp))⊗Z(2), which is discussed in [Gilmer
and Livingston 1992b].

Theorem 8. Let K be a genus one topologically slice knot. There is some finite set
of bad primes P such that one of the surgery curves J satisfies the (m(K ), p)-Witt
conditions for all p in the set

{rn
|n∈Z+, r is prime, r /∈ P, rn divides (m+1)q−(m)q for some prime power q}.

Consider Wh(J, n), the n-twisted Whitehead double of J . It is well-known
that this knot is algebraically slice if and only if n = m(m + 1). Moreover
m(Wh(J,m(m + 1))) = m. It is also known that the two surgery curves for
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Wh(J,m(m + 1)) both have the isotopy type of J # T(m,m+1). One can see this
using the techniques discussed in [Kauffman 1987, pages 214–223]. Using this fact,
for these knots one can sometimes remove the exceptions created by the unknown
set of bad primes.

Theorem 9. Let m>0. If Wh(J,m(m+1)) is topologically slice, then J # T(m,m+1)

satisfies the (m, p)-Witt conditions for all p in the set

{p | p is prime, gcd(p2, (m+ 1)q − (m)q)= p for some odd prime power q}.

Our examples of knots satisfying (m, p)-signature conditions also satisfy Witt
conditions.

Theorem 10. For any knot K and m > 0, K(m,1) # −K(m+1,1) satisfies the (m, p)-
Witt conditions for all p relatively prime to m and m + 1. For any odd integer n,
(T2,n)(2,−n) satisfies the (1, p)-Witt conditions for all odd p.

In the next theorems, we focus on some particularly nice examples.

Theorem 11. Let J = (T2,3)(2,−3), the (2,−3)-cable of trefoil knot T2,3. Let
K =Wh(J, 2).

(1) K is a genus one algebraically slice knot with both surgery curves having the
same knot type, J .

(2) J satisfies the (1, p)-Witt conditions for all odd p. In particular J satisfies
the (1, p)-signature conditions for all odd p. Another consequence is that the
constraints of Theorems 3, 8, and 9 on K are satisfied.

(3) The signature function of J is nonzero.

(4) 1J (t)= (t−1
−1+ t)(t−2

−1+ t2) does not satisfy the Fox–Milnor condition;
that is, 1J (t) cannot be written as f (t) f (t−1) for f (t) ∈ Z[t, t−1

].

(5) Arf J 6= 0.

We do not know whether Wh((T2,3)(2,−3), 2) is topologically locally flat slice or
smoothly slice. A conjecture made by Kauffman [1987, Weak Conjecture, page
226; Kirby 1978, Problem 1.52] implies that Wh((T2,3)(2,−3), 2) is not smoothly
slice since Arf((T2,3)(2,−3)) 6= 0. Thus examples such as this one offer a route to
possible counterexamples to this conjecture.

By modifying the example slightly (without changing the relevant signature
function, Alexander polynomial, Arf invariant, or even Witt class invariant), using
results of Hedden [2007; 2009] on the Ozsváth–Szabó invariant of cables and
Whitehead doubles, obstructing sliceness becomes possible. This is described in
the first part of the following theorem. We also give a second example of a knot
with similar properties.
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Theorem 12. Let J ′ = (T2,3 # Wh(T2,3, 0))(2,−3). Then K ′ = Wh(J ′, 2) is not
smoothly slice. Moreover the conclusions of Theorem 11 hold when K is replaced
by K ′ and J is replaced by J ′.

Let J ′′ = (T2,3)(2,−3) # (T2,3)(2,−3). Then K ′′ =Wh(J ′′, 2) is not smoothly slice.
Moreover conclusions (1), (2), and (3) of Theorem 11 hold when K is replaced by
K ′′ and J is replaced by J ′′.

In Section 2, we outline the proofs of Theorems 5, 6 and 10. Section 3 presents
the proof of Theorem 12 using tools from Heegaard–Floer theory. In Section 4
and Appendices B and C, we review Casson–Gordon theory and prove Theorems 8
and 9. Similar arguments have appeared, but some depend on Theorem 1 of [Gilmer
1993], whose proof contains a gap (shared with [Gilmer 1983, Theorem (0.1)]).
We show how to modify this proof to obtain the results stated above. In Section 5,
we give some restrictions on signature functions which satisfy the m-signature
averaging conditions.

2. Proofs of Theorems 5, 6 and 10

Let S be a finite set in R/Z. For any function f (t) on R/Z taking values in an abelian
group, define µS( f (t))=

∑
s∈S f (s). We let φk :R/Z→R/Z denote multiplication

by the integer k. Observe that if φk is injective on S, then µφk(S)( f (t))=µS( f (kt)).
In particular, we have the following.

Lemma 13. If S ⊂ R/Z is a finite set on which φm and φn are both injective and
φm(S)= φn(S), then for all f , µS( f (mt)− f (nt))= 0.

In the current case of interest, we have an integer m, an integer p relatively prime
to m(m+1), and an integer c representing an element in Z∗p. We let a= (m+1)/m
mod p and S = {cai/p} ⊂ Q/Z. Notice that mai

= (m + 1)ai−1. Thus, in this
setting φm(S)= φm+1(S).

Corollary 14. With the notation of the previous paragraph, for all f ,

µS
(

f ((m+ 1)t)− f (mt)
)
= 0.

An immediate application is the case that f is the signature function of a knot J ,
in which case f (mt) is the signature function of the knot Jm,±1.

In the proof of Lemma 13, it is not required that f be defined on all of R/Z, but
only on the sets S, φm(S) and φn(S). For instance, for a knot J and prime power p,
there is the function wJ : { j/p} →W (Q(ζp))⊗Z(2) defined by

wJ ( j/p)= (1− ζ j
p )V + (1− ζ

− j
p )V t ,

where ζp = e2π i/p.
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The only missing ingredient in the proofs of Theorems 5, 6, and 10 is the
following theorem.

Theorem 15. If S is a satellite of C with orbit P and winding number n, then

wS( j/p)= wP( j/p)+wC(nj/p).

This result is very close to a result of Litherland [1984, Theorem 1], which states
that if Vt(K ) = (1− t)V + (1− t−1)V t , where V is the Seifert form of K , then
Vt(S) is Witt equivalent to the form Vtn (C)⊕ Vt(P) in the Witt group Wh(Q(t))
of the function field. One would like to argue at this point that the substitution of ζp

for t defines a map W (Q(t))→W (Q(ζp)), and Theorem 15 results. Unfortunately,
this procedure does not lead to a well-defined map W (Q(t))→ W (Q(ζp)), as a
class in W (Q(t)) may be represented by a matrix whose entries have poles at ζp.
We leave it to Appendix A to show how this hurdle can be overcome.

3. Smooth obstructions to slicing

In [Ozsváth and Szabó 2003], an invariant τ is defined with the property that if K
is smoothly slice, then τ(K ) = 0. In order to apply this, we need to modify our
knot K slightly. Let K ′ =Wh((T2,3 # Wh(T2,3, 0))(2,−3), 2). We show τ(K ′)= 1.

As a first step, it follows from [Ozsváth and Szabó 2003] that τ(T2,3)= 1. Next,
Hedden [2007] proved that for any J , τ(Wh(J, t)) = 1 for all t < 2τ(J ). Thus,
τ(Wh(T2,3, 0))= 1. By additivity, τ(T2,3 # Wh(T2,3, 0))= 2.

According to another theorem of Hedden [2009], if τ(J )= genus(J ), then

τ(J(s,sn+1))= sτ(J )+ 1
2 sn(s− 1)+ s− 1.

In the case of interest to us, we have s = 2 and n =−2, so τ(J(2,−3))= 2τ(J )− 1.
We do have τ(T2,3 # Wh(T2,3, 0))= genus(T2,3 # Wh(T2,3, 0))= 2, so

τ((T2,3 # Wh(T2,3, 0))(2,−3))= 2τ(T2,3 # Wh(T2,3, 0))− 1= 2(2)− 1= 3.

Finally, again by Hedden’s computation of τ of doubled knots,

τ(Wh((T2,3 # Wh(T2,3, 0))(2,−3), t))= 1

if t < 6. So in particular, τ(Wh((T2,3 # Wh(T2,3, 0))(2,−3), 2))= 1.
We can also consider K ′′ =Wh((T2,3)(2,−3) # (T2,3)(2,−3), 2). Using the same

formula of Hedden’s for cables, we have

τ((T2,3)(2,−3))= 1,
which gives us

τ((T2,3)(2,−3) # (T2,3)(2,−3))= 2.

Then using Hedden’s formula for doubles, τ(K ′′)= 1.
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4. Casson–Gordon theory

By a character χ on X , we mean a homomorphism χ : H1(X)→Q/Z. This is a
d-character if χ : H1(X)→ (1/d)Z/Z⊂Q/Z. Given a knot K and a prime power q ,
let Sq denote the q-fold branched cyclic cover of S3 along K . Given a d-character
on Sq , Casson and Gordon [1986] defined an invariant τ(K , χ) taking values in
W (Q[ζd ](t))⊗Q. Here, W (Q[ζd ](t)) is the Witt group of Hermitian forms over
Q[ζd ](t). If d is odd (as will be the case when K is a genus one algebraically slice
knot), then τ(K , χ) may be refined to take values in W (Q[ζd ](t))⊗Z(2) [Gilmer
and Livingston 1992a; 1992b]. This refinement is useful as these Witt groups have
2-torsion. Here is the theorem of Casson and Gordon [1986; 1978] which asserts
that certain τ(K , χ) vanish when K is slice. (Casson and Gordon proved this
theorem for smooth slice disks, and later, based on [Freedman and Quinn 1990], it
was seen to hold in the topological locally flat category.)

Theorem 16 [Casson and Gordon 1986]. Let K be a slice knot bounding a slice
disk 1⊂ B4. Let Wq be the q-fold cyclic branched cover of B4 over 1.

• If χ is a character on Sq of prime power order that extends to Wq , then
τ(K , χ)= 0.

• A character χ on Sq extends to Wq if and only if it vanishes on κ(1, q), the
kernel of H1(Sq)→ H1(Wq).

• The kernel κ(1, q) is a metabolizer for the linking form on H1(Sq) and is
invariant under the group of covering transformations.

• The set of characters χ on Sq that extend to Wq form a metabolizer m(q,1)
for the linking form on H 1(Sq ,Q/Z).

If p is a prime and G is an abelian group, let G(p) denote the p-primary summand
of G. Note that the obstruction to sliceness given by Theorem 16 can be reduced
to a sequence of obstructions associated to each prime p: τ(K , χ) = 0 for χ ∈
m(q,1)(p).

Let F be a Seifert surface K . Then F ∪1 bounds a 3-manifold R ⊂ B4. In
[Gilmer 1993, Theorem 1], the first author related m(q,1) to the metabolizer H
for Seifert form on H1(F) that arises as the kernel of the map induced by inclusion
H1(F)→ H1(R)/Torsion(H1(R)). However, Stefan Friedl [2004] found a gap in
the proof, appearing in the second to last sentence on page 6 of [Gilmer 1993]. We
now want to state a corrected version of the theorem.

Theorem 17. Assume the notations and suppositions of Theorem 16, and let R and
H be as above. Let p be a prime relatively prime to |Torsion(H1(R))|. Let {x ′i } be
a basis for H. Let {y′i } be a complementary dual basis in H1(F) to {x ′i } with respect
to the intersection pairing. View F as built from a disk by adding 2g bands, with
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cores representing the x ′i and y′i . Let the linking circles to those bands be denoted xi

and yi . Let Y be the subgroup of H1(Sq) generated by the lifts of the yi to a single
component of the inverse image of S3

\ F in Sq . Then κ(1, q)(p) = Y(p).

Two independent proofs of Theorem 17 are presented in Appendices B and C.
In [Friedl 2004, Theorem 8.6] and [Cochran et al. 2003, page 511], an equivalent
result is asserted for almost all primes p (rather than for all primes not dividing
|Torsion(H1(R))|).

To each element z ∈ H1(Sq)(p), there is an associated character

χz : H1(Sq)(p)→ Zpk ⊂Q/Z

(for some value of k), defined by χz(w)= `k(w, z) ∈Q/Z.

Corollary 18. Assuming the notations and suppositions of Theorems 16 and 17,
then m(q,1)(p) = {χz | z ∈ Y(p)}.

We can now summarize the proof of Theorem 8. Details follow as in [Gilmer
1993].

Proof of Theorem 8. By Theorem 17, one needs to show that the vanishing of the
Casson–Gordon invariants for characters χz with z ∈ Yp implies the surgery curve
J satisfies the specified (m(K ), p)-Witt conditions. There are two steps. First, one
considers a new knot K ′, formed from K by tying a knot −J in the band of the
Seifert surface representing J . This new knot is slice, since it has surgery curve
J # −J , which is slice. The manifold R for K ′ is built by adding a two-handle
to F × [0, 1], and can be seen to be a solid handlebody, in fact, a solid torus.
Thus, Theorem 17 implies that for all the relevant characters, the Casson–Gordon
invariants vanish. The proof is completed by proving that the effect of changing K
to K ′ on the Casson–Gordon invariants is to add the sum of invariants appearing in
the (m(K ), p)-Witt conditions. �

(We take this opportunity to remark that Theorem (3.5) of [Gilmer 1983] remains
valid. Although its proof uses Theorem 1.1 of the same paper,1 it only does so
in the case that R is a handlebody. For similar reasons, the proof of [Naik 1996,
Theorem 7] is valid.)

Proof of Theorem 9. If K is an algebraically slice knot of genus one, m=m(K ), and
q is odd, then H1(Sq) is the direct sum of two cyclic groups of order (m+1)q−mq .
For each odd prime p such that gcd(p2, (m+ 1)q − (m)q)= p, the p-primary part
of H1(Sq) (denoted H1(Sq)(p)) is a two-dimensional vector space over Zp. An
analysis of H1(Sq) (as in the proof of [Gilmer 1993, top of page 16]) shows that the
two metabolizers for the Seifert form spanned by the two surgery curves, say J1 and
J2, lead to two distinct metabolizers for the linking form restricted to H1(Sq)(p). In

1This is the same as [Gilmer 1993, Theorem 1] in the case q = 2.
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fact, these metabolizers are eigenspaces for a generator of the group of covering
transformations with the distinct eigenvalues (m+ 1)/m and m/(m+ 1). Thus this
linking form on H1(Sq)(p) is hyperbolic. It follows that an element in H1(Sq)(p) in
the complement of the union of these two metabolizers cannot have self-linking
zero. Therefore, the linking form on H1(Sq)(p) has only these two metabolizers.

If K is slice, then κ(1, q)(p) must be one of these two metabolizers. Thus by
Theorem 16, if χ : H1(Sq)→ (1/p)Z/Z vanishes on κ(1, q)(p), then τ(K , χ)= 0.
By [Gilmer 1993, proof of Theorem 3], for each of these p, either J1 or J2 must
satisfy the (m, p)-Witt conditions. But for K =W (J,m(m+ 1)), both J1 and J2

have the isotopy type of J # T(m,m+1). �

5. The averaging conditions restrict where the jumps can occur

We consider the family J of step functions f on [0, 1] that vanish at 0 and 1 and
have a finite number of jumps, with value at the jumps the average of the one-sided
limits. For f ∈ J, define

6p( f )=
p−1∑
i=1

f (i/p).

Consider, also, the family of symmetric jump functions

S= { f ∈ J | f (x)= f (1− x)}.

These include the knot signature functions.
We say that σ ∈ S satisfies the m-signature averaging condition if 6p(σ ) = 0

for each p relatively prime to m and m+ 1. The m-signature averaging condition
is a consequence of the (m, p)-signature conditions for all p relatively prime to m
and m+ 1.

The Alexander polynomial of the knot 52 is 2− 3t + 2t2 [Cha and Livingston
2011] which has simple roots at 1

4(3± i
√

7). These roots lie on the unit circle and
have argument ±2πa, where a = 1

2π i log
( 1

4(3+ i
√

7)
)
≈ 0.115.

Proposition 19. The number a is irrational. The signature function of 52 #−(52)2,1

has jumps in the interval
[
0, 1

2

]
at a/2, a, and (1−a)/2, and this signature function

satisfies the (1, p)-signature conditions for all odd p.

Proof. If a were rational, 2−3t+2t2 would have to be a factor of some cyclotomic
polynomial; but these are monic. The signature function of 52 viewed as a function
on [0, 1] has jumps at a and 1− a. Using [Litherland 1984] or [Livingston and
Melvin 1985], the signature function of the knot (52) # −(52)2,1 jumps at exactly
a/2, a, (1− a)/2, (1+ a)/2, 1− a, and 1− a/2. By Theorem 5, (52) # −(52)2,1

satisfies the (1, p)-signature conditions for all odd p. �
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This example contradicts a claim that we once (see the sentence beginning on
the first line of [Gilmer and Livingston 1992a, page 486]) deferred to a future
publication, but now retract. Note that the locations of the irrational jumps a/2, a,
and (1−a)/2 in the first half interval together with 1 are linearly dependent over Q.
Our next theorem says that this is necessary for the jumps of a signature function
which satisfies the m-signature averaging condition.

For 0 < a < 1, let χa denote the characteristic function taking the value 1 on
[0, a), value 1

2 at a and value 0 on (a, 1]. We have

6p(χa)=

{
bpac if pa /∈ Z,

bpac− 1
2 if pa ∈ Z,

where bxc denotes the greatest integer in x .
For 0< a < 1

2 , consider the symmetric jump function Sa = χ1−a −χa on [0, 1].
Then Sa ∈ S and

6p(Sa)= bp(1− a)c− bpac.

We define Fp(a) by

(5-1) 6p(Sa)− p
∫ 1

0
Sa(x) dx = Fp(a)=

{
2〈pa〉− 1 if pa /∈ Z,

0 if pa ∈ Z,

where 〈x〉 = x −bxc denotes the fractional part of x .

Theorem 20. Let σ ∈S and let { j1, . . . , js} be the irrational points of discontinuity
of σ that lie in the interval [0, 1

2 ]. Suppose s ≥ 1. If σ satisfies the m-signature
averaging condition, then { j1, . . . , js, 1} are linearly dependent over Q.

Proof. It is easily seen that the integral of σ must be zero. We assume that there is
a jump at an irrational point. Thus s ≥ 1.

We have that σ can be written uniquely as
∑r

i=1 ci Sai with the ci nonzero and
the ai distinct. By reordering, we can assume that ai is rational if and only if
i > s, for some s ≤ r . Thus { j1, . . . , js} = {a1, . . . , as}. For each i > s, write
ai = bi/di in lowest terms. Let D be the least common multiple of the elements of
{di | i > s} ∪ {m,m + 1}. Let N = {p | p > 0, p ≡ −1 (mod D)}. For all p ∈ N ,
6pσ = 0, and pai /∈ Z. Hence, using (5-1), we have that

∑r
i=1 ci 〈pai 〉 = r/2 for

all p ∈ N .
Since p ∈ N is constant modulo D,

∑r
i=s+1 ci 〈pai 〉 is constant for p ∈ N . Hence

the sum over the irrational terms,
∑s

i=1 ci 〈pai 〉 is constant for p ∈ N , as well. Thus

I= {(〈pa1〉, 〈pa2〉, . . . , 〈pas〉) | p ∈ N }

is not dense in I s . Kronecker’s Theorem [Hardy and Wright 1938, Theorem
442] states that if the fractional parts of the positive integral multiples of a vector
(a1, a2, . . . , as) are not dense in I s , then {a1, . . . , as, 1} are linearly dependent over



416 PATRICK M. GILMER AND CHARLES LIVINGSTON

Q. It is not hard to see that the same holds for multiples by any arithmetic sequence,
like N . �

The above theorem still holds if one relaxes the hypothesis by removing the
condition that the value of σ at the jump points be given by the average of the one
sided limits, as one could redefine the values at these points without changing the
values of 6p(σ ) for the specified p’s.

Note that, if a is a rational whose denominator divides d , then

(5-2) Fp(a)= Fp+kd(a)=−F−p+kd(a).

Definition 21. Given an odd number d > 1, let D(d) be the determinant of the
(d − 1)/2× (d − 1)/2 matrix indexed by 1≤ i, j ≤ (d − 1)/2 with entries

Fi ( j/d)=

{
2〈i j/d〉− 1 if d - i j,

0 if d | i j .

Conjecture 22. For all odd numbers d > 1, D(d) 6= 0.

This conjecture is true for d prime according to the next proposition. We have
verified the conjecture for d < 1500 using Mathematica.

Proposition 23. If s is an odd prime, then D(s)=±2(s−3)/2hs/s, where hs is the
first factor of the class number of the cyclotomic ring Z[ζs]. Thus D(s) 6= 0.

Proof.
The result follows from Equations (1.7), (2.3), (2.4), and (2.5) of [Carlitz and

Olson 1955]. �

Theorem 24. Let d > 1 be a fixed odd integer for which D(d) 6= 0. Suppose σ ∈ S

has all jumps at rational points whose denominator divides d. If 6p(σ )= 0 for all
odd p, then σ = 0.

Proof. We have σ =
∑(d−1)/2

j=1 a j S j/d for some a j . Since 6p(σ ) = 0 for all
odd p, we have

∫ 1
0 σ(x) dx = 0. We pick an odd integer p(i) congruent to i

modulo p for every i in the range 0 ≤ i ≤ (d − 1)/2. For each i , we have
6p(i)(σ )− p(i)

∫ 1
0 σ(x) dx = 0. Using Equations (5-1) and (5-2), this gives us

the linear equation
∑(d−1)/2

j=1 a j Fi ( j/d)= 0. The resulting system of (d − 1)/2
equations in the (d−1)/2 unknowns a j has only the trivial solution if D(d) 6= 0. �

Corollary 25. Suppose d > 1 is an odd integer and D(d) 6= 0. A nonzero knot
signature function satisfying the 1-signature averaging condition cannot have jumps
only at points whose denominator is a divisor of d.

Since knot signature functions cannot jump at points with prime denominators
[Tristram 1969], Proposition 23 does not say anything about knots, except to the
extent that it makes Conjecture 22 plausible.
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Appendix A: Witt invariants of cable knots

The proof of Theorem 15 follows fairly readily from work of Litherland, some
basic knot theoretic results, and consideration of Witt groups.

We begin with an observation: if S is a satellite of K with orbit P and winding
number n, then for an appropriate choice of Seifert surfaces for K , P , and S, the
Seifert matrix for S is the direct sum of a Seifert matrix for P and one for Cn,1.
The construction of the Seifert surfaces for a satellite knot, which leads to the above
result, goes back to [Seifert 1950].

Thus, to prove Theorem 15 we need only prove the following:

Theorem 26. For C(n,1), the (n, 1)-cable of C ,

wC(n,1)( j/p)= wC(nj/p).

Proof. The proof is largely contained in a diagram; note in the following description
that the central square of the diagram is not apparently commutative, while one has
commutativity around the other interior faces of the diagram.

C G W (Q[t, t−1
](φp)) W (Q(t))

C G W (Q[t, t−1
](φp)) W (Q(t))

W (Q(ζp))

?
λn

-α -β

?
λ′n

-γ

?
η′n

?
ηn

-α -β

HH
HHHjρ′

-γ

?
ρ

Here is the notation and necessary background:

• C is the concordance group; G is Levine’s algebraic concordance group of
Seifert matrices; α is the homomorphism induced by K → VK .

• W (Q[t, t−1
](φp) is the Witt group of the localization of Q[t, t−1

] at the p-
cyclotomic polynomial φp (that is, the domain formed by inverting all polyno-
mials relatively prime to φp); β is the map induced by

V → (1− t)V + (1− t−1)V t .

• W (Q(t)) is the Witt group of the field of fractions of Q[t, t−1
]; γ is induced

by inclusion. The inclusion map is injective (see [Milnor and Husemoller 1973,
Corollary IV 3.3] in the symmetric case, and [Ranicki 1981, Proposition 4.2.1
iii] for the hermitian case that arises here).

• λn is the function induced by forming the (n, 1)-cable; λ′n is the homomorphism
induced by λn . This map can be given explicitly in terms of Seifert matrices.
That this induces a map on G and that the map is a homomorphism is elementary
(see [Cha et al. 2008; Kawauchi 1980] for further discussion).
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• The map ρ is induced by the map t→ ζp.

• The map ηn (respectively η′n) is induced by the embedding of Q(t) (respectively
Q[t, t−1

](φp)) into itself which sends t to tn .

The proof of Theorem 15 is seen to be equivalent to showing that

ρ ′ ◦α ◦ λn = ρ ◦ η
′

n ◦β ◦α.

By writing ρ ′ = ρ ◦β, we see this will follow from

β ◦α ◦ λn = η
′

n ◦β ◦α.

According to Litherland [1984], we have

γ ◦β ◦α ◦ λn = ηn ◦ γ ◦β ◦α.

Using commutativity of the rightmost square, we have ηn◦γ =γ ◦η
′
n , so Litherland’s

equality can be rewritten as

γ ◦β ◦α ◦ λn = γ ◦ η
′

n ◦β ◦α.

Finally, because γ is injective, this implies β ◦α ◦ λn = η
′
n ◦β ◦α, as desired. �

Appendix B: One approach to Theorem 17

Let Q′ = {r/s ∈Q | gcd(s, r)= gcd(s, |Torsion(H1(R))|)= 1}.

Lemma 27. If T is a finitely generated torsion group, and the prime divisors of |T |
are all divisors of |Torsion(H1(R))|, then T ⊗ (Q′/Z)= 0, and Tor(T,Q′/Z)= 0.

Proof. It suffices to prove this for T a finite cyclic group of order k relatively prime
to all the denominators of elements of Q′. From the short exact sequence

0→ Z
k·
→ Z→ T → 0,

we obtain

0→ Tor(T,Q′/Z)→Q′/Z
k·
→Q′/Z→ T ⊗Q′/Z→ 0.

Suppose s is a denominator of an element in Q′; then gcd(k, s) = 1, so there
exists a, b ∈ Z such that ka+ sb = 1. It follows that k · a/s ≡ 1/s (mod 1). Thus
k · :Q′/Z→Q′/Z is surjective. It is easy to see that it is also injective. �

Lemma 28. A short exact sequence of the form

0→ T1
ψ
→ T2⊕ F2

φ
→ T3⊕ F3→ 0,

where the Fi are free abelian groups and the Ti are torsion groups, induces a short
exact sequence

0→ T1
πT2◦ψ
−−−→ T2

φ|T2
−−→ T3→ 0.
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Proof. Exactness on the left and at the middle of this sequence is immediate. We
only need to show that φ|T2 is surjective. Let x ∈ T3; there exist (y, z) ∈ T2⊕ F2

with φ((y, z))= x . We wish to show that z = 0. There exist nonzero integers n and
m such that nx = 0 and my = 0. Then φ((0,mnz))= φ((mny,mnz))= mnx = 0.
By exactness of the original sequence, (0,mnz) ∈ ψ(T1). Since z ∈ F2, we have
that z = 0. �

Lemma 29. If T=Torsion(H1(R)) and H denotes the kernel of H1(F)→H1(R)/T,
then H⊗Q′/Z is the kernel of the natural map H1(F)⊗(Q′/Z)→ H1(R)⊗(Q′/Z).

Proof. Let I and Î be the images of H1(F)→ H1(R) and H1(F)→ H1(R)/T,
respectively. We have a short exact sequence

0→ H → H1(F)→ Î→ 0.

As Î is free abelian, Tor(Î,Q′/Z)= 0, and we then have a short exact sequence

0→ H ⊗ (Q′/Z)→ H1(F)⊗ (Q′/Z)→ Î⊗ (Q′/Z)→ 0.

Let R denote H1(R), and note that I/(I ∩ T) = Î. Consider the lattice of
subgroups consisting of R, I, T, and I∩T. Their inclusions fit into the following
commutative diagram with exact rows and columns:

0 0 0

0 I∩T T T/(I∩T) 0

0 I R R/I 0

0 Î R/T (R/T)/Î 0

0 0 0

? ? ?
- -

?

-

?

-

?
- -

?

-

?

-

?
- -

?

-

?

-

?

To see exactness, view the first two columns as the inclusion of one chain complex
into another. The third column is the quotient chain complex. Thus we have a short
exact sequence of chain complexes. The first two chain complexes are clearly exact.
It follows that the third column is exact, using the associated long exact sequence
of homology groups.

Using the long exact sequence of the pair (R, F), we may identify R/I with
H1(R, F). Using Lefschetz duality and the universal coefficient theorem, we have
H1(R, F)≈ H 2(R,1)≈ H 2(R)≈T⊕Zβ2(R). With these identifications, the last
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column of the diagram becomes a short exact sequence

0→ T/(I∩T)→ T⊕F→ Torsion((R/T)/Î)⊕F′ → 0,

where F and F′ are free abelian groups. By Lemma 28, there is a short exact
sequence

0→ T/(I∩T)→ T→ Torsion((R/T)/Î) → 0.

We conclude that |Torsion(R/T)/Î)| = |I∩T|. By Lemma 27, we have

Tor((R/T)/Î,Q′/Z)= Tor(Torsion((R/T)/Î),Q′/Z)= 0,

so the sequence obtained from the last row of the diagram upon tensoring with Q′/Z

is exact. In particular, the map Î⊗ (Q′/Z)→ (H1(R)/T)⊗ (Q′/Z) is injective.
It follows that H ⊗ (Q′/Z), the kernel of H1(F)⊗ (Q′/Z)→ Î⊗ (Q′/Z), is the
same as the kernel of H1(F)⊗ (Q′/Z)→ (H1(R)/T)⊗ (Q′/Z).

Considering the middle column, we obtain the following exact sequence:

T⊗ (Q′/Z)→ H1(R)⊗ (Q′/Z)→ H1(R)/T⊗ (Q′/Z)→ 0.

Since T⊗ (Q′/Z)= 0 by Lemma 27, we see that

H1(R)⊗ (Q′/Z)→ (H1(R)/T)⊗ (Q′/Z)

is injective. Thus the kernel of H1(F)⊗ (Q′/Z)→ (H1(R)/T)⊗ (Q′/Z) is also
the kernel of H1(F)⊗ (Q′/Z)→ H1(R)⊗ (Q′/Z). �

The second to last sentence of [Gilmer 1993, page 6] asserts without justification,
in the situation of Lemma 29, that H ⊗ Q/Z is the kernel of the natural map
H1(F)⊗ (Q/Z)→ H1(R)⊗ (Q/Z). The original proof of the theorem may then
be modified using Lemma 29 and replacing Q/Z by Q′/Z judiciously. This proof
then yields the conclusion: Aq

p ∩ (H ⊗Q/Z) (in the notation of [Gilmer 1993])
is equal to m(q,1)(p) for primes p relatively prime to |Torsion(H1(R)|. This, in
turn, can be rephrased as Theorem 17.

Appendix C: Another approach to Theorem 17

C.1. Notation.

• K is a slice knot with a genus g Seifert surface F ; K bounds a slice disk 1;
R ⊂ B4 is a 3-manifold bounded by F ∪1.

• Sq is the q-fold branched cover of S3 branched over K ; Wq is the q-fold
branched cover of B4 branched over 1.

• H is the kernel of H1(F)→ H1(R)/Torsion(H1(R)); κ(q,1) is the kernel
of H1(Sq)→ H1(Wq).
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We further choose generators for various homology groups:

• {x ′i } ∪ {y
′

i } is a symplectic basis of H1(F) where the xi generate H .

• F is built from a disk with 1-handles added corresponding to this basis. The
dual linking circles to the bands represent homology classes in H1(S3

\ F)
denoted {xi } ∪ {yi }.

Recall (see [Rolfsen 1976]) that Sq is built from q copies of S3
\ F . These

copies can be enumerated cyclically, corresponding to translates under the deck
transformation. There is a corresponding enumeration of the lifts of F to Sq .

• The lifts of the xi are denoted x̃i,α, and similarly for the ỹi , x̃ ′i and ỹ′i . The α
are indices denoting the appropriate lift of S3

\ F and F . Here, α ∈ Zq .

• Y denotes the subgroup of H1(Sq) generated by the ỹi,α. Similarly for X, Y′,
and X′.

• Y denotes the subgroup of H1(Sq)generated by a single set of lifts {ỹi,0}.

C.2. Statement and proof summary. Theorem 17 can now be stated succinctly: if
p is relatively prime to the order of Torsion(H1(R)), then κ(1, q)(p) = Y(p). The
proof has several steps:

• Lemma 30: H1(Sq)(p) = Y(p)⊕X(p) and |Y(p)| = |X(p)|.

• Lemma 31: X′(p) = Y(p).

• Lemma 32: X′(p) ⊂ κ(1, q)(p) and |κ(1, q)(p)|2 = |H1(Sq)(p)|.

• Lemma 33: Y(p) = Y(p).

Proof of Theorem 17. We want to show that κ(1, q)(p) = Y(p). By Lemma 33, this
is equivalent to showing that κ(1, q)(p) =Y(p). By Lemmas 30 and 32, the orders
of these two groups are the same. By Lemmas 31 and 32, Y(p) ⊂ κ(1, q), and the
proof is complete. �

C.3. Proofs of lemmas.

Lemma 30. H1(Sq)(p) = Y(p)⊕X(p) and |Y(p)| = |X(p)|.

Proof. We use the convention that the Seifert form V is the pairing V (a, b) =
link(i+(a), b), where i+ is the positive push-off. For transformations, we have
matrices acting on the left; in presentation matrices, the rows give the relations.

The Seifert matrix of V for the surface F with respect to the basis {x ′i }∪ {y
′

i } for
H1(F) is of the form (

0 M
M t
+ I B

)
for some g dimensional square matrices M and B, with B symmetric.
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The first homology of Sq is generated by (all) the lifts of the xi and yi , which
we have denoted x̃i,α and ỹi,α. As described, for instance in [Rolfsen 1976, page
213], a presentation matrix of the first homology of Sq with respect to this basis is
determined by V . In this case, the result is a matrix of the form(

0 M

M′ B

)
,

where M and B are qg dimensional matrices that are built out of the blocks of V
as follows (we illustrate in the case q = 3):

M=

M + I −M 0
0 M + I −M
−M 0 M + I

 , M′ =

 M t
−M t

− I 0
0 M t

−M t
− I

−M t
− I 0 M t

 ,
B=

 B −B 0
0 B −B
−B 0 B

 .
The first columns correspond to the x̃i,α and the later columns to the ỹi,α.

Notice first that |M| = |M′| and |M|2 = |H1(Sq)|.
Forming the quotient, H1(Sq)/Y yields a group X generated by the image of

X. This quotient is presented by M′, and thus has order
√
|H1(Sq)|, so X has order

at least this large. Thus |X(p)|2 ≥ |H1(Sq)(p)|. On the other hand, since X(p) is a
self-annihilating subgroup for a nonsingular form, |X(p)|2 ≤ |H1(Sq)(p)|.

We now have |X(p)|2 = |H1(Sq)(p)|, and thus |X(p)| = |X(p)|. From this we can
conclude that Xp ∩Y(p) = 0, so H1(Sq)(p) = X(p)⊕Y(p). �

Lemma 31. X′(p) = Y(p).

Proof. The positive and negative push-off maps i± : H1(F)→ S3
\ F send the

span of the x ′i to the span of the yi . Denote the restriction of these maps by
j± : 〈{x ′i }〉 → 〈{yi }〉. With respect to these bases, the maps j± are given by the
matrices M t and M t

+ I . Now view these matrices as defining maps from Zg to itself
with M t corresponding to an automorphism T . Then any element y ∈ Zg can be
written y= Id(y)= (T+Id)(y)−T (y). Thus, Image( j+)+Image( j−)=Span({yi }).
Lifting to the q-fold branched covers, we see that the ỹi,α are all in the image of the
x̃ ′i,α (in more detail, each ỹi,α is in the span of the images of the {x̃ ′i,α} and {x̃ ′i,α+1}).
Also, the images of the x̃ ′i,α are all in Span({ỹi,α}). The same thus holds on the
level of the p-torsion, completing the proof of the lemma. �

Lemma 32. X′(p) ⊂ κ(1, q)(p) and |κ(1, q)(p)|2 = |H1(Sq)(p)|.

Proof. Let γ = |Torsion(H1(R))|. Then γ z = 0 ∈ H1(R) for all z ∈ H . Lifting,
we see that z′ ∈ X′(p) for all γ z′ = 0 ∈ H1(Wq), so γX′(p) ⊂ κ(1, q)(p). But
multiplication by γ is an isomorphism on X′(p) since p is relatively prime to γ .
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We have from Theorem 16 that |κ(1, q)|2 = |H1(Sq)|, so the same holds for the
p-torsion. �

Lemma 33. Y(p) = Y(p).

Proof. Let 3= Z[Zq ], the group ring of the cyclic group. We write Zq multiplica-
tively, generated by t . The standard derivation of a presentation of the homology
H1(Sq), such as in [Rolfsen 1976], is a Mayer–Vietoris argument. The homology
groups involved are all modules over 3, where t acts by the deck transformation.
From this viewpoint, the Mayer–Vietoris sequence now yields that as a 3-module
the homology is given as a quotient H1(Sq)∼=3

2g/(V − tV t)32g.
Since V − V t is invertible, we can multiply the quotienting submodule by

(V − V t)−1 without changing the quotient space. Some elementary algebra then
shows that

H1(Sq)∼=3
2g/(0+ t (I −0))32g,

where 0 = (V − V t)−1V .
It is clear from this that for any z ∈ 32g, we have 0z = t (0 − I )z ∈ H1(Sq).

Thus, 0q z = tq(0− I )q z ∈ H1(Sq). However, tq
= 1, so 0q

− (0− I )q annihilates
H1(Sq).

Expanding, we have that for some polynomial f with constant term 0 and of
degree q−1, the action of f (0) on H1(Sq) coincides with I . The leading coefficient
of f is q. If p does not divide the order |H1(Sq)|, the lemma is immediately true,
so assume p divides the order |H1(Sq)|. We know that p is relatively prime to q.
Thus, we can switch to Z(p)-coefficients, in which case the leading coefficient of f
is a unit, and we see that with Z(p)-coefficients, 0 is invertible.

We now focus on the Seifert matrix V of the algebraically slice knot. In the
coordinates we have been using, we see that

0 =

(
M t
+ I B
0 −M

)
.

From this we conclude that with Z(p)-coefficients, M and M+ I are both invertible.
Recall that for each k, M and M + I determine the maps from Span(x̃ ′i,k) and
Span(x̃ ′i,k+1) to Span(ỹi,k). Thus, any element in Span(ỹi,k) is also in Span(ỹi,k+1).
This completes the proof of the lemma. �
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