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THE REDUCTION OF THE MORDELL–WEIL GROUP
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Let A be an abelian variety defined over a number field K . Let p be a
prime of K of good reduction and Ap the fiber of A over the residue field kp.
We call A(K )p the image of the Mordell–Weil group via reduction modulo
p, which is a subgroup of Ap(kp). We prove in particular that the size
of A(K )p, by varying p, encodes enough information to characterize the
K -isogeny class of A, provided that the following necessary condition holds:
the Mordell–Weil group A(K ) is Zariski dense in A. This is an analogue to
a 1983 result of Faltings, considering instead the size of Ap(kp).

1. Introduction

Statement of the theorems. Let K be a number field and A, A′ be abelian varieties
over K . Let S(A, A′) be the set of primes of K of good reduction for A and A′, and
let Ap, A′p be the respective fibers of A, A′ over the residue field kp for p∈ S(A, A′).

Faltings [1983] proved the following local-global principle for any S ⊆ S(A, A′)
of Dirichlet density 1: A, A′ are K -isogenous if and only if Ap, A′p are kp-isogenous
for every p ∈ S. The latter is equivalent, for a large class of abelian varieties, to
the identities #Ap(kp) = #A′p(kp) for p ∈ S. The motivation for this paper was
to consider instead identities using the reductions of the Mordell–Weil groups
A(K ), A′(K ), which we denote by A(K )p, A′(K )p and which are subgroups of
Ap(kp), A′p(kp). We prove in particular the following result:

Theorem 1.1. Suppose A, A′ are abelian varieties over a number field K such
that A(K ), A′(K ) are Zariski dense in A, A′, respectively. Let S ⊆ S(A, A′) have
Dirichlet density 1. If #A(K )p = #A′(K )p holds for every p ∈ S, then A and A′ are
K -isogenous.

In other words, if A(K ) is Zariski dense in A, then the function p∈ S 7→ #A(K )p
characterizes the K -isogeny class of A. Note, we define this function via a global
object, namely the Mordell–Weil group A(K ), and it only “sees” the Zariski closure
of A(K ), hence the reason we assume A(K ) is Zariski dense in A. This assumption
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is equivalent to the following: for every nontrivial abelian subvariety B ⊆ A, the
Mordell–Weil group B(K ) is infinite.

For each prime number l and finite group G, we denote by ordl(G), expl(G),
and radl(G) the l-adic valuation of the order, exponent, and radical of the order
of G, respectively. (Recall that the radical of a positive integer is the product of the
primes dividing it, the empty product being 1; so radl(G) is 1 or 0 depending on
whether or not l divides the order of G.)

We say an abelian variety A is square-free if and only if B = 0 is the only abelian
variety for which there exists a K -homomorphism B2

→ A with finite kernel. Then
we can prove the following stronger result:

Theorem 1.2. Suppose A, A′ are abelian varieties over a number field K such
that A(K ), A′(K ) are Zariski dense in A, A′ respectively. Let S ⊆ S(A, A′) have
Dirichlet density 1.

(i) If for some prime number l and for some m ≥ 0 the inequalities

|ordl(A(K )p)− ordl(A′(K )p)| ≤ m for all p ∈ S

hold, then A and A′ are K -isogenous.

(ii) Suppose that A, A′ are square-free.
If for some prime number l and for some m ≥ 0 the inequalities

|expl(A(K )p)− expl(A
′(K )p)| ≤ m for all p ∈ S

hold, then A and A′ are K -isogenous.

(iii) Suppose that A, A′ are square-free.
There exists l0 depending only on A, A′, K such that if for some prime

number l ≥ l0 the equalities

radl(A(K )p)= radl(A′(K )p) for all p ∈ S

hold, then A and A′ are K -isogenous.

The assumption on A and A′ that we required in the previous statement is in
general necessary. Indeed, if C is a nonzero abelian variety having trivial Mordell–
Weil group then A and A′ = A×C can not be distinguished with the data as in
the statement of the theorem, and indeed A′(K )= A(K )×{0} is not dense in A′.
Moreover, we cannot distinguish between A and A′ = A2 just by looking at the
exponent (or the radical of the size) of A(K )p.

We generalize the previous result by considering more general objects than the
Mordell–Weil group. If A is an abelian variety, we call a subgroup 0 ⊆ A(K )
dense if and only if it is Zariski dense in A, and a submodule if and only if it is an
EndK (A)-submodule of A(K ). We denote 0p⊆ A(kp) the reduction of 0 modulo p.
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Theorem 1.3. Let A, A′ be abelian varieties defined over a number field K , and
0⊆ A(K ), 0′⊆ A′(K ) be submodules. Suppose 0 is dense. Consider the following
property:

(1) ∃ϕ ∈ HomK (A, A′) such that ker(ϕ) and [ϕ(0) : ϕ(0)∩0′] are finite.

Let S ⊆ S(A, A′) have Dirichlet density 1.

(i) If for some prime number l and for some m ≥ 0

(2) ordl(0p)≤ ordl(0
′

p)+m for all p ∈ S

holds, then (1) holds.

(ii) Suppose that A is square-free. If for some prime number l and for some m ≥ 0

(3) expl(0p)≤ expl(0
′

p)+m for all p ∈ S

holds, then (1) holds.

(iii) Suppose that A is square-free. There exists l0 depending only on A, A′, K , 0,
0′ such that if for some prime number l ≥ l0

(4) radl(0p)≤ radl(0
′

p) for all p ∈ S

holds, then (1) holds.

Conversely, property (1) implies that for all primes in S(A, A′) and for all but
finitely many prime numbers l, we have ordl(0p)≤ ordl(0

′
p), and similarly for expl

and radl (compare Lemma 3.4).
If A is a simple abelian variety and ψ ∈ EndK (A)\Z, then for any nontorsion

point P ∈ A(K ) and sufficiently large prime l, the subgroups 0 = ZP +Zψ(P)
and 0′ = ZP satisfy expl(0p) = expl(0

′
p) for all p ∈ S(A); however, 0′ does not

contain a finite index subgroup of ϕ(0) for ϕ 6= 0 ∈ EndK (A). This is the reason
we suppose 0,0′ are submodules and not merely subgroups in Theorem 1.3.

Our results relate to the so-called support problem, and especially to the following
result:

Theorem 1.4 [Demeyer and Perucca 2013, Theorem 1.2]. Let A be an abelian
variety defined over a number field K , and P ∈ A(K ) be a rational point. Suppose
ZP is Zariski dense in A. If S ⊆ S(A) has Dirichlet density 1, then the function
p ∈ S 7→ #(ZP)p characterizes the K -isomorphism class of A.

It is not possible to characterize the K -isomorphism class of A by knowing the
order and the exponent of A(K )p for every p ∈ S(A). Indeed, there exist pairs of
elliptic curves over a number field K which are not K -isomorphic, but such that
for every prime number l there is a K -isogeny between them of degree coprime to
l, as shown by Zarhin [2008, Section 12].



430 CHRIS HALL AND ANTONELLA PERUCCA

We will deduce Theorems 1.1 and 1.2 from Theorem 1.3. An overview of the
proof of Theorem 1.3 is given at the end of this section (page 431). In Section 2
we develop the notion of almost independent points to compensate for the fact that
the submodules we consider are in general not free. We also define what it means
for points to dominate a submodule (page 434), and for an infinite submodule we
show how to construct a finite dominating subset consisting of almost independent
points. We bring these notions together in Section 3, with preparatory theorems
(3.1 and 3.2) about the reduction of submodules and the proof of Theorem 1.3
(page 438).

Notation and conventions. We assume all abelian varieties, subvarieties, homo-
morphisms, etc. are defined over a fixed number field K . Given abelian varieties
A1, . . . , Ar we write S(A1, . . . , Ar ) for the primes of K of common good reduction.

If A is an abelian variety and p is a prime in S(A), we write kp for the residue
field and Ap for the fiber of A over kp. Given a subgroup 0 ⊆ A(K ), we write
0p⊆ Ap(kp) for the reduction of 0 modulo p. The symbol l always denotes a prime
number, and we define ordl(0p), expl(0p), radl(0p) to be the l-adic valuation of
the size, exponent, and radical of the size of 0p respectively.

By the order of a point we mean the order of the subgroup that it generates.

Two main ingredients. The proof of Theorem 1.3 is based on two main ingredients:
Theorem 1 of [Perucca 2011] and a basic structure theorem for abelian varieties,
known as Poincaré’s reducibility theorem. We recall these statements for the
convenience of the reader and for future reference; aside from these two inputs, this
paper will be self contained.

Proposition 1.5 [Perucca 2011]. Let A1, . . . , Ar be abelian varieties over K , and
Pi ∈ Ai (K ) be a rational point for 1≤ i ≤ r . If l is a prime number and e1, . . . , er

are nonnegative integers, then the set of primes

{p ∈ S(A1, . . . , Ar ) : ordl(Pi mod p)= ei for all i}

admits a Dirichlet density.
If the rational point P = (P1, . . . , Pr ) on A= A1×· · ·× Ar generates a Zariski

dense subgroup, then this Dirichlet density is positive.

Proof. This is the special case of [Perucca 2011, Theorem 1] where all semiabelian
varieties are abelian and we consider only one prime number l. The existence of
the density (in fact, it is a natural density) is proven there with a method from
[Jones and Rouse 2010]. The fact that under the additional assumption the density
is nonzero was first proven in [Pink 2004] and can also be proven with a method
from [Khare and Prasad 2004]. The proof uses Kummer theory, results on the l-adic
representation, and the Chebotarev density theorem. �
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Theorem 1.6 (Poincaré’s reducibility theorem [Mumford 1970, Theorem 1, p. 160]).
If A is an abelian variety over K and B ⊆ A is an abelian subvariety, then there
exists an abelian subvariety C ⊆ A such that B ∩C is finite, A = B+C , and A is
isogenous to B×C.

By applying this result finitely many times, we have:

Corollary 1.7. Let A be an abelian variety over K . There exist pairwise nonisoge-
nous simple abelian varieties B1, . . . , Br uniquely determined up to isogeny and
ordering, and positive integers e1, . . . , er such that A is isogenous to Be1

1 ×· · ·×Ber
r .

Overview of the proof of Theorem 1.3. Under the additional hypothesis that A
and A′ are simple and that 0 and 0′ are each generated by a rational point of infinite
order, the proof of Theorem 1.3 becomes technically much easier. We present the
proof of (i) in this special case.

Proposition 1.8. Let A and A′ be simple abelian varieties over K and let 0⊆ A(K )
and 0′ ⊆ A′(K ) be the submodules generated by points of infinite order P ∈ A(K )
and P ′ ∈ A′(K ) respectively. Let l be a prime number. Suppose that there exists a
set S ⊆ S(A, A′) of Dirichlet density 1 and an integer m ≥ 0 such that

(5) ordl(0p)≤ ordl(0
′

p)+m for every p ∈ S

holds. Then there exists an isogeny ϕ : A→ A′ such that the index [ϕ(0) :ϕ(0)∩0′]
is finite.

Proof. Consider the subgroup of A × A′ generated by (P, P ′), and denote by
B ⊆ A × A′ the connected component of the unity of its Zariski closure. A
closed algebraic subgroup of an abelian variety has only finitely many connected
components, hence there exists an integer n ≥ 1 such that (n P, n P ′) is a rational
point of B. Since A is simple and P is of infinite order, the Zariski closure of
ZP in A is equal to A. The projection π : B→ A is therefore surjective. For the
same reason, the projection π ′ : B→ A′ is surjective. Again, because A and A′ are
simple, there are now two possibilities: either π and π ′ are isogenies, or else B is
equal to A× A′. In the first case, there exists an isogeny ψ : A→ B such that ψ ◦π
is the multiplication-by-n′ endomorphism of B for some nonzero integer n′. The
composite isogeny ϕ := π ′ ◦ψ : A→ A′ has the required properties, since indeed

ϕ(n P)= π ′(ψ(n P))= π ′(ψ(π(n P, n P ′)))= π ′(nn′P, nn′P ′)= nn′P ′

holds. We are now left to show that (5) excludes the second possibility, that
B = A× A′. For this we use Proposition 1.5. Indeed, if B = A× A′, then there
exists by Proposition 1.5 a set S′ ⊆ S(A, A′) of positive Dirichlet density, such that
for all p ∈ S′,

ordl(P mod p)= m+ 1 and ordl(P ′ mod p)= 0
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holds. Hence, we have ordl(0p)>m and ordl(0
′
p)= 0 for all p∈ S′, because on one

hand 0p contains (P mod p), and on the other hand 0′p consists of images under
endomorphisms of (P ′ mod p). The complement of S′ has Dirichlet density< 1,
contradicting (5). �

2. Preliminaries

Dense submodules. Let A be an abelian variety. We call a subgroup 0 ⊆ A(K )
a submodule if and only if 0 is an End(A)-submodule of A(K ). We say that a
subgroup of A(K ) is dense if and only if it satisfies the equivalent conditions of
the following lemma:

Lemma 2.1. If A is an abelian variety and 0 is a subgroup of A(K ), then the
following are equivalent:

(i) 0 is Zariski dense in A.

(ii) ϕ(0) 6= {0} for every abelian variety B and ϕ 6= 0 ∈ Hom(A, B).

Proof. Let C ⊆ A be the Zariski closure of 0. If ϕ(0) = 0 for some nonzero
ϕ ∈ Hom(A, B), then the kernel of ϕ is a proper subgroup containing 0, so (i)
implies (ii). Conversely, if C 6= A, then the projection A→ A/C is a nonzero
morphism between abelian varieties which kills 0; therefore (ii) implies (i). �

If 0 ⊆ A(K ) is a finite subgroup, then either 0 is not dense or A = 0. If A is
simple and if 0 ⊆ A(K ) is an infinite subgroup, then 0 is dense.

Almost independent points. In this subsection, we suppose A1, . . . , Ar are nonzero
abelian varieties and Pi ∈ Ai (K ) is a rational point for 1 ≤ i ≤ r . We let A =
A1× · · ·× Ar and P = (P1, . . . , Pr ).

We say that P1, . . . , Pr are independent if and only if the Zariski closure of ZP
satisfies ZP = A. Note that if A1= · · · = Ar , the points P1, . . . , Pr are independent
if and only if they form a basis for a free End(A1)-submodule of A1(K ) (see
Definition 3 and Remark 6 in [Perucca 2009]).

Lemma 2.2. The following are equivalent

(i) P1, . . . , Pr are independent.

(ii) For every abelian variety B, the following implication holds:

(6)
r∑

i=1

φi (Pi )= 0 for (φ1, . . . , φr )∈Hom(A1×· · ·×Ar , B) =⇒ φi = 0 for all i.

Proof. If A= A1×· · ·× Ar and 0 = ZP , then conditions (i) and (ii) are equivalent
to the respective conditions of Lemma 2.2. �

A weaker condition is the following:
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Definition 2.3. We say P1, . . . , Pr are almost independent if and only if ZP1, . . . ,
ZPr are nontrivial, connected, and satisfy

ZP = ZP1×ZP2× · · ·×ZPr .

The analogue of (6) for almost independent points is this:

(7)
r∑

i=1

φi (Pi )= 0 for (φ1, . . . , φr ) ∈ Hom(A1× · · ·× Ar , B)

=⇒ φi (Pi )= 0 for all i.

Lemma 2.4. Let B1, . . . , Bs be simple abelian varieties such that A is isogenous
to B1×· · ·× Bs . If ZP1, . . . ,ZPr are connected and nontrivial, then the following
are equivalent:

(i) P1, . . . , Pr are almost independent.

(ii) The implication (7) holds for every abelian variety B.

(iii) The implication (7) holds for B = B1, . . . , Bs .

Proof. If P1, . . . , Pr are almost independent and if B and φ ∈ Hom(A, B) satisfy
φ(P)= 0, then φi (ZP i )⊆ φ(ZP)= 0, and so φi (Pi )= 0 for each i ; therefore (i)
implies (ii). Conversely, if B is the quotient A/ZP and φ : A→ B is the natural
homomorphism, then (2) implies φi (ZP i )= 0, thus ZP1× · · ·×ZPr ⊆ ZP . The
reverse inclusion is trivial, thus (ii) implies (i).

It is clear (ii) implies (iii). We assume the latter holds and prove the converse.
Suppose B is an abelian variety and φ ∈ Hom(A, B) satisfies φ(P)= 0. We must
show φ1(P1)= · · · = φr (Pr )= 0. In fact, the only finite quotients of ZP1, . . . ,ZPr

are trivial since they are connected, hence it suffices to show φ1(P1), . . . , φr (Pr )

are torsion.
Up to rearranging B1, . . . , Bs , there exists an isogeny ψ : φ(A)→ B1× · · · ×

Bt for some t ≤ s. Let π j be the projection onto the factor B j . We have 0 =
π jψφ(P)=

∑
i π jψφi (Pi ), and by (iii) we deduce π jψφi (Pi )= 0 for every i , j .

Then ψφi (Pi )= 0 for every i . The latter implies φ1(P1), . . . , φr (Pr ) are torsion as
claimed since ψ is an isogeny. �

The following generalizes Proposition 1.5 to almost independent points:

Proposition 2.5. Suppose A1, . . . , Ar are abelian varieties and P1 ∈ A1(K ), . . . ,
Pr ∈ Ar (K ) are almost independent points. Let l be a prime number. If e1, . . . , er

are nonnegative integers, then the following set has a positive Dirichlet density:

{p ∈ S(A1, . . . , Ar ) : ordl(Pi mod p)= ei for all i}.

Proof. Let Bi ⊆ Ai be the abelian subvariety ZP i . The point P = (P1, . . . , Pr ) of
B := B1×· · ·×Br satisfies ZP= B. The statement follows from Proposition 1.5. �
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Domination of subgroups. Suppose A, A1, . . . , Ar are abelian varieties and let
0 ⊆ A(K ) be a subgroup.

Definition 2.6. Given subsets Mi ⊆ Ai (K ) for 1 ≤ i ≤ r , we say M1, . . . ,Mr

dominate 0 if and only if the submodule 0′ ⊆ A(K ), which is generated by
Hom(A1, A)M1, . . . , Hom(Ar , A)Mr , is such that 0 ∩0′ has finite index in 0.

We understand that an empty set of points dominates any finite subgroup.

Lemma 2.7. If A is an abelian variety and 0,0′ ⊆ A(K ) are submodules, then the
following are equivalent:

(i) 0 ∩0′ has finite index in 0.

(ii) 0∩0′∩ B(K ) has finite index in 0∩ B(K ) for every simple abelian subvariety
B ⊆ A.

Proof. The implication (i)⇒ (ii) is an easy remark about abelian groups, so we only
have to prove the converse. If A is simple, then (i) and (ii) are trivially equivalent,
so suppose A1, A2 ⊆ A are nontrivial complementary abelian subvarieties.

If C is an abelian variety and ϕ : A → C is an isogeny, then ϕ(0), ϕ(0′)
have finite index in the respective submodules 00, 0

′

0 ⊆ C(K ) they generate, thus
[0 : 0 ∩0′] is finite if and only if [00 : 00 ∩0

′

0] is finite. Moreover, if B ⊆ A is a
simple abelian subvariety, then [0 ∩ B(K ) : 0 ∩0′ ∩ B(K )] is finite if and only if
[00∩ϕ(B)(K ) :00∩0

′

0∩ϕ(B)(K )] is finite. We may then suppose without loss of
generality that A = A1× A2, so that 0 = 01×02 and 0′ = 0′1×0

′

2, where 0i , 0
′

i
are submodules of Ai (K ) for i = 1, 2. By induction on dim(A), we suppose that
(i) and (ii) are equivalent for A= A1, A2. If (ii) holds for 0,0′, A, it also holds for
0i , 0

′

i , Ai , where i = 1, 2. We deduce that [0i : 0i ∩0
′

i ] is finite for i = 1, 2, hence
[0 : 0 ∩0′] is finite. Thus, (ii) implies (i) as claimed. �

Proposition 2.8. Suppose A, A1, . . . , Ar are abelian varieties and 0 ⊆ A(K ) is a
submodule. If P1 ∈ A1(K ), . . . , Pr ∈ Ar (K ) are almost independent, then either
they dominate 0, or there exists a simple abelian subvariety Ar+1 ⊆ A and a point
Pr+1 ∈ 0 ∩ Ar+1(K ) such that P1, . . . , Pr+1 are almost independent.

Proof. Let 0′ ⊆ A(K ) be the submodule generated by Hom(Ai , A)Pi for 1≤ i ≤ r .
Suppose P1, . . . , Pr do not dominate 0 and thus 0∩0′ has infinite index in 0. Then
Lemma 2.7 implies 0 ∩0′ ∩ Ar+1(K ) has infinite index in 0 ∩ Ar+1(K ) for some
simple abelian subvariety Ar+1⊆ A. Let 00=0∩Ar+1(K ) and 0′0=0

′
∩Ar+1(K ).

The index of 00 ∩0
′

0 in 00 is infinite. Then since 00 is a finitely generated abelian
group, there exists a point Pr+1 ∈ 00 of infinite order such that ZPr+1 ∩0

′

0 = {0}.
We will show P1, . . . , Pr+1 are almost independent.

Let 0′′0 ⊆00 be the End(Ar+1)-submodule generated by Pr+1. If ϕ ∈ End(Ar+1)

is nonzero, then there exist ψ ∈End(Ar+1) and m≥ 1 such that ψϕ is multiplication
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by m. In particular, the identity ZPr+1 ∩0
′

0 = {0} implies 0′′0 ∩0
′

0 = {0}. Since
Pr+1 has infinite order and Ar+1 is simple, we have that ZPr+1= Ar+1 is nontrivial
and connected.

Suppose B1, . . . , Bs are simple abelian varieties such that A1 × · · · × Ar+1 is
isogenous to B1 × · · · × Bs , and either Bi = B j or Bi , B j are nonisogenous if
i 6= j . We may suppose Bs = Ar+1. Let B ∈ {B1, . . . , Bs} and (φ1, . . . , φr+1) ∈

Hom(A1 × · · · × Ar+1, B) satisfy
∑r+1

i=1 φi (Pi ) = 0. Let Q =
∑r

i=1 φi (Pi ). If
B 6= Ar+1, then Hom(Ar+1, B) = {0}, hence φr+1(Pr+1) = 0. If B = Ar+1 ⊆ A,
we have φr+1(Pr+1)=−Q ∈ 0′0, hence φr+1(Pr+1) lies in 0′0 ∩0

′′

0 = {0}.
Either way, φr+1(Pr+1)= 0, hence Lemma 2.4 implies φi (Pi )= 0 for 1≤ i ≤ r

since P1, . . . , Pr are almost independent. In particular, Lemma 2.4 also implies
P1, . . . , Pr+1 are almost independent as claimed. �

Any infinite submodule 0 ⊆ A(K ) contains an almost independent point (it
suffices to take any point P in 0 of infinite order and should ZP not be connected,
replacing P by a suitable multiple). One can then use the following corollary to
find finitely many points of 0 which are almost independent and dominate 0:

Corollary 2.9. Suppose A, A1, . . . , Ar are abelian varieties and let 0 ⊆ A(K )
be a submodule. If P1 ∈ A1(K ), . . . , Pr ∈ Ar (K ) are almost independent, then
either they dominate 0, or there exist s > r and points Pr+1, . . . , Ps ∈ 0 such that
P1, . . . , Ps are almost independent and dominate 0.

Proof. Repeated application of Proposition 2.8 yields a sequence P1, . . . , Pr ,
Pr+1, . . . of almost independent points and a strictly increasing sequence of sub-
groups of 0 which are dominated by those points. This process must terminate
after finitely many iterations because 0 is a finitely generated abelian group, and
when it does, by Proposition 2.8, the given points dominate 0. �

3. Proof of the theorems

Order of reductions of submodules.

Theorem 3.1. Let A, B be abelian varieties, and suppose that no element of
Hom(A, B) has finite kernel. Let 0 ⊆ A(K ) be a dense submodule and l be a
prime number.

(i) For every e ≥ 0 the following set has positive Dirichlet density:

O(A, B, 0)e := {p ∈ S(A, B) : ordl(0p)≥ ordl(B(K )p)+ e}.

(ii) If A is square-free, then for every e ≥ 0 the following set has positive Dirichlet
density:

E(A, B, 0)e := {p ∈ S(A, B) : expl(0p)≥ expl(B(K )p)+ e}.
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(iii) If A is square-free and if l is larger than a constant depending only on
A, B, 0, K , then the following set has positive Dirichlet density:

R(A, B, 0) := {p ∈ S(A, B) : radl(0p)= 1, radl(B(K )p)= 0}.

Proof. By our hypothesis on the elements of Hom(A, B), there exists a simple
abelian variety C which occurs with multiplicity a as an isogeny factor of A, and
with strictly smaller multiplicity b as an isogeny factor of B. Let A′ ⊆ A and
B ′ ⊆ B be abelian subvarieties for which there exist isogenies ϕ : A→ A′×Ca

and ψ : Cb
× B ′→ B. There is d1 > 0 satisfying∣∣ordl(B(K )p)− ordl((B ′×Cb)(K )p)

∣∣≤ vl(d1) for every p ∈ S(A, B).

Moreover, if ϕ∗(0)⊆ (A′×Ca)(K ) is the submodule generated by ϕ(0), then there
exists d2 > 0 satisfying

|ordl(0p)− ordl(ϕ∗(0)p)| ≤ vl(d2)

because ϕ(0) has finite index in ϕ∗(0); therefore,

O(A′×Ca, B ′×Cb, ϕ∗(0))vl (d1d2)+e ⊆ O(A, B, 0)e.

Similarly we have d3 > 0 such that

E(A′×Ca, B ′×Cb, ϕ∗(0))vl (d3)+e ⊆ E(A, B, 0)e,

and such that for l - d3 we have:

R(A′×Ca, B ′×Cb, ϕ∗(0))⊆ R(A, B, 0).

Up to replacing A, B, 0 by A′×Ca , B ′×Cb, ϕ∗(0), we may suppose without loss
of generality that ϕ,ψ are the respective identity maps.

Lemma 2.1 implies Hom(A,C)0 is infinite since 0 is dense. It follows that
0 ∩ Hom(C, A)(C(K )) is infinite; thus it contains a point P which is almost
independent. Let 00 ⊆ 0 and 0′0 ⊆ B(K ) be the respective submodules generated
by P and Hom(A, B)P . They are respectively isomorphic to a and b copies of the
submodule of C(K ) generated by P; thus

ordl(0p)≥ ordl(00,p)≥ ordl(0
′

0,p)+ (a− b) ordl(P mod p) for p ∈ S(A, B).

Moreover, if A is square-free, then a = 1 and b= 0, so in particular, Hom(C, B)=
{0} and 0′0 = {0}.

Corollary 2.9 implies there exist t ≥ 0 points Qi ∈ B(K ) such that together with
P they are almost independent and dominate B(K ). Moreover, for every m ≥ 0,
the set

Sm := {p ∈ S(A, B) : ordl(P mod p)= m, ordl(Qi mod p)= 0 for all i}
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has a positive density by Proposition 2.5. Thus it suffices to show that each of
O(A, B, 0)e, E(A, B, 0)e, R(A, B, 0) contains Sm for some m ≥ 1.

Let 0′1 ⊆ B(K ) be the submodule generated by the points Qi . If 0′ = 0′0+0
′

1,
then the index d of 0′ in B(K ) is finite; therefore, if p ∈ Sm , then

ordl(B(K )p)≤ vl(d)+ ordl(0
′

0,p)+ ordl(0
′

1,p)

and
ordl(0p)− ordl(B(K )p)≥ (a− b) ·m− vl(d)≥ m− vl(d).

In particular, if m ≥ e+ vl(d), then Sm ⊆ O(A, B, 0)e, hence (i) holds. If p ∈ Sm

and if 0′0 = {0} (for example, if A is square-free), then

expl(B(K )p)≤ vl(d)+ expl(0
′

1,p)= vl(d),

while

expl(0p)≥ ordl(P mod p)= m ≥ expl(B(K )p)+ (m− vl(d)).

Thus, if A is square-free and m ≥ e+ vl(d), then Sm ⊆ E(A, B, 0)e, hence (ii)
holds. If l - d , then S1 ⊆ R(A, B, 0), hence (iii) holds. �

Exponents of reductions of submodules.

Theorem 3.2. Let A1, . . . , Ar be abelian varieties, and 0i ⊆ Ai (K ) for 1≤ i ≤ r be
submodules. Suppose that er ≥ · · · ≥ e1≥ 0, and that for 1≤ i < r we have ei+1= 0
whenever 01, . . . , 0i dominate 0i+1. Then there exists d ≥ 1 (depending only
on A1, . . . , Ar , K , 01, . . . , 0r ) such that the following set has positive Dirichlet
density for every prime number l:

E l,d = {p ∈ S(A1, . . . , Ar ) : ei ≤ expl(0i mod p)≤ ei + vl(d) for all i}.

Proof. For i = 1, . . . , r we apply Corollary 2.9 and choose Mi ⊆ 0i such that the
elements of Bi = M1 ∪ · · · ∪ Mi are almost independent and dominate 0i . Let
0′i ⊆ Ai (K ) be the submodule generated by Hom(A1, Ai )M1, . . . ,Hom(Ai , Ai )Mi

so that di = [0i : 0i ∩0
′

i ] is finite.
If Bi = Bi−1, then 01, . . . , 0i−1 dominate 0i , hence ei = 0 by hypothesis. In

particular, if we define expl(M mod p)=maxP∈M∪{0} expl(P mod p) for a finite
set M , then Proposition 2.5 implies the following set has positive density for every l:

Sl = {p ∈ S(A1, . . . , Ar ) : expl(Mi mod p)= ei for all i}.

We claim Sl is contained in E l,d for d = d1 . . . dr , and thus the latter has positive
density.

If p ∈ S(A1, . . . , Ar ), then

expl(0i ∩0
′

i mod p)≤ expl(0i mod p)≤ expl(0i ∩0
′

i mod p)+ vl(d).
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If, moreover, p ∈ Sl , then

ei = expl(Mi mod p)≤ expl(0i ∩0
′

i mod p)≤max{e1, . . . , ei } = ei

because either Mi = ∅ and ei = 0, or ∅ 6= Mi ⊆ 0i ∩0
′

i ; therefore, Sl ⊆ E l,d as
claimed. �

In particular, we may apply this theorem as soon as no 0i is dominated by the
other submodules. We deduce that this is a necessary and sufficient condition for
the set

{p ∈ S(A1, . . . , Ar ) : expl(0i mod p)= ei for all i}

to have a positive Dirichlet density for all but finitely many prime numbers l, and
for every e1, . . . , er ≥ 0.

Corollary 3.3. Suppose A1, . . . , Ar are abelian varieties, and 0i ⊆ Ai (K ) for
1≤ i ≤ r are submodules. If 01, . . . , 0i do not dominate 0i+1 for 1≤ i < r , then for
every m ≥ 0 and for every prime number l, the following set has positive Dirichlet
density:

Ol,m={p∈ S(A1, . . . , Ar ) :ordl(0i+1 mod p)>ordl(0i mod p)+m for 1≤ i<r}.

Proof. Let d ≥ 1 and E l,d be as in Theorem 3.2. Choose e1 ≥ 0 and ei+1 >

dim(Ai )(ei+vl(d))+m for 1≤ i<r . Then E l,d has positive density by Theorem 3.2,
and it lies in Ol,m since

expl(0i mod p)≤ ordl(0i mod p)≤ dim(Ai (K )) · expl(0i mod p)

holds for p ∈ S(Ai ). �

Proof of the main theorems.

Proof of Theorem 1.3. Suppose that property (1) fails. We show that (2), (3), and
(4) fail accordingly.

If there is no homomorphism A → A′ with finite kernel, then Theorem 3.1
(i) shows that (2) fails for every l and m, that (3) fails for every l and m if A is
square-free, and that (4) fails if A is square-free and l is greater than a constant
depending only on A, A′, 0, K .

Suppose now that there is ϕ ∈ Hom(A, A′) with finite kernel. Since (1) fails,
then ϕ(0)∩0′ has infinite index in ϕ(0), which means that 0′ does not dominate
ϕ(0). Consequently, 0′ does not dominate 0. Let A1 = A′, A2 = A, 01 = 0

′, and
02 = 0. Corollary 3.3 implies (2) fails for every l and m. Theorem 3.2 (applied
with e1 = 0 and e2 > vl(d)+ m) implies (3) fails for every l and m, moreover
(applied with e1 = 0 and e2 = 1), it implies (4) fails for l greater than a constant
depending only on A, A′, K , 0, 0′. �
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Proof of Theorem 1.2. Applying Theorem 1.3 by taking 0= A(K ), 0′= A′(K ), we
find in particular that A is isogenous to an abelian subvariety of A′. Moreover, by
reversing the roles of 0,0′ we analogously find that A′ is isogenous to an abelian
subvariety of A, so we deduce that A, A′ are isogenous. �

Proof of Theorem 1.1. This is an immediate consequence of Theorem 1.2. �

We conclude with a converse to Theorem 1.3:

Lemma 3.4. With the notations of Theorem 1.3, property (1) implies that, for some
integer d > 0, we have

ordl(0p)≤ ordl(0
′

p), expl(0p)≤ expl(0
′

p), radl(0p)≤ radl(0
′

p)

for every p ∈ S(A, A′) and for every prime number l - d.

Proof. Let ϕ ∈ Hom(A, A′) be as in (1). Let k be the size of the kernel of ϕ, and c
the index of ϕ(0)∩0′ in ϕ(0). If p ∈ S(A, A′) and letting d = kc, we have

ordl(0p)≤ vl(k)+ vl(c)+ ordl((ϕ(0)∩0
′)p)≤ vl(d)+ ordl(0

′

p).

Similarly, we have

expl(0p)≤ vl(d)+ expl(0
′

p), radl(0p)≤ vl(d)+ radl(0
′

p). �
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