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VARIATION OF COMPLEX STRUCTURES AND
THE STABILITY OF KÄHLER–RICCI SOLITONS

STUART J. HALL AND THOMAS MURPHY

We investigate the linear stability of Kähler–Ricci solitons for perturbations
induced by varying the complex structure within a fixed Kähler class. We
calculate stability for the known examples of Kähler–Ricci solitons.

0. Introduction

We consider a stability problem for shrinking Kähler–Ricci solitons. These are
critical points of the ν-functional, defined by Perelman on the space of Riemannian
metrics on a closed manifold M . The main result is a formula for the second
variation of this functional when restricted to perturbations obtained by varying the
complex structure within a fixed Kähler class. Such perturbations were first studied
by Tian and Zhu [2008] for Kähler–Einstein manifolds, and our paper attempts
to extend their results to Kähler–Ricci solitons. Definitions and notation from the
main theorem are explained below.

Theorem 0.1 (Main Theorem). Let (M, g, f ) be a normalised Kähler–Ricci soliton
and let h be an f -essential variation. The second variation of the ν-functional at g,
〈Nh, h〉 f , is given as

〈Nh, h〉 f = 2
∫

M
f ‖h‖2e− f dVg.

The main utility of this result is that if one had explicit knowledge of the metric
and the function f then it is possible to calculate the quantity 〈Nh, h〉 f quite easily.
In Section 4, we do this for all the known examples of Kähler–Ricci solitons. Notice
also that for Kähler–Einstein metrics f = 0 and so N (h)= 0, recovering a result
of Tian and Zhu.

The structure of this paper is as follows: In Section 1, we begin with background
on Ricci solitons and the stability problem. In Section 2, the space W(g) and the
space of f -essential variations in the above theorem are studied. We obtain several
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useful characterizations of elements of these spaces. In Section 3, we give a proof
of the main theorem. In Section 4, the stability of the known examples of Ricci
solitons is investigated.

After a preliminary version of this work was posted on the arXiv, Yuanqi Wang
kindly made us aware that he had independently obtained our Main Theorem as
part of his Ph.D. thesis [Wang 2011]. His proof is similar to ours but proceeds by
direct calculation rather than using the results of Dai, Wang and Wei. His thesis
also contains interesting results about convergence of the Kähler–Ricci flow to a
Kähler–Einstein metric when the complex structure is allowed to vary.

1. Ricci solitons and stability

Background on solitons. Throughout this paper, (M, g) is a smooth closed Rie-
mannian manifold.

Definition 1.1 (Ricci soliton). Let X ∈ 0(TM) be a smooth vector field. The triple
(M, g, X) is called a Ricci soliton if it satisfies the equation

(1-1) Ric(g)+ L X g = cg

for a constant c ∈ R. If c < 0, c = 0, c > 0 then the soliton is referred to as
expanding, steady and shrinking respectively. When c 6= 0, set c= 1/2τ . If X =∇ f
for a smooth function f then the soliton is called a gradient Ricci soliton and (1-1)
becomes

(1-2) Ric(g)+Hess( f )= 1
2τ

g.

When the vector field X is Killing, an Einstein metric is recovered; Einstein
metrics are therefore referred to as trivial Ricci solitons. We can set c = 1 to factor
out homothety, and as one may change the soliton potential f by a constant, let us
also require that ∫

M
f e− f dVg = 0.

A soliton with these choices will be referred to as a normalised gradient Ricci
soliton.

As well as being interesting as generalisations of Einstein metrics, Ricci solitons
also occur as the fixed points of the Ricci flow

(1-3)
∂g
∂t
=−2 Ric(g)

up to diffeomorphism. In this paper we will be considering nontrivial Ricci solitons
on compact manifolds. Foundational results due to Hamilton [1995] and Perelman
[2002] imply that expanding and steady Ricci solitons on compact manifolds must
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be trivial. Hence our focus is on shrinking Ricci solitons. Perelman also showed
that such solitons are necessarily gradient Ricci solitons. We will henceforth refer
to these metrics as nontrivial shrinkers.

Due to the work of many people [Cao 1996; Dancer and Wang 2011; Koiso
1990; Podestà and Spiro 2010; Wang and Zhu 2004] there are now many (infinitely
many) examples of nontrivial shrinkers. One striking feature all known nonproduct
examples share is that they are Kähler. This means that Hess( f ) is J -invariant and
so the real vector field ∇ f is holomorphic (see [Besse 1987, 2.124]). In this case
the underlying manifold M is in fact a smooth Fano variety.

Perelman [2002] showed that gradient Ricci solitons are the critical points of a
functional, which is usually denoted by ν(g). Let f ∈ C∞(M) and τ ∈ R. We say
that ( f, τ ) is compatible if ∫

M
e− f (4πτ)−n/2

= 1.

Definition 1.2. The ν-functional is given by

ν(g)= inf
compatible ( f,τ )

∫
M
[(R+ |∇ f |2)τ + f − n]e− f (4πτ)−n/2 dVg,

where R is the scalar curvature of g.

As well as giving a variational characterization of Ricci solitons, Perelman
showed that the functional is monotonically increasing under the Ricci flow. Hence,
if one could perturb a soliton in a direction that increases ν and then continue the
flow, one would not flow back to the soliton and the soliton would be regarded as
unstable.

Linear stability. In order to determine the behaviour of the flow around a soliton
one can investigate the second variation of ν(g) for an admissible perturbation.

Definition 1.3. Let h ∈ s2(T ∗M). Then g+ th, t ∈ R+ is said to be an admissible
perturbation. We have ∂g/∂t |t=0 = h.

If the second variation is strictly negative then the fixed point is stable and
attracting. If the second variation has positive directions then one may perturb the
soliton and then flow away. Natasha Sesum [2006] has obtained fundamental results
on this topic.

Proposition 1.4 [Cao et al. 2004; Cao and Zhu 2012]. Let h ∈ s2(TM∗) be an
admissible variation of a Ricci soliton g. The second variation of ν is given by

D2
gν(h, h)=

τ

(4πτ)n/2

∫
M
〈Nh, h〉e− f dVg,
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where

(1-4) Nh = 1
21 f h+Rm(h, · )+ div∗divf h+ 1

2 Hess(vh)−C(h, g)Ric.

Here 1 f ( · ) = 1( · )−∇∇ f ( · ), divf ( · ) = div( · )− ι∇ f , vh is the solution of the
equation

1 f vh +
vh

2τ
= divf divf (h),

and

C(h, g)=

∫
M〈Ric, h〉e− f dVg∫

M Re− f dVg
.

This operator allows us to define the concept of linear stability.

Definition 1.5. Let (M, g, f ) be a Ricci soliton. The soliton is linearly stable if
the operator N is nonpositive definite, and unstable otherwise.

We now focus upon Kähler–Ricci solitons. The first result regarding stability is
the following:

Theorem 1.6 [Cao et al. 2004; Hall and Murphy 2011; Tian and Zhu 2008]. Let
(M, g, f ) be a Kähler–Ricci soliton. If dim H (1,1)(M) > 1 then (M, g, f ) is
unstable.

Kähler–Ricci solitons can be viewed as fixed points of a flow related to the Ricci
flow (1-3) called the Kähler–Ricci flow, which in the Fano case can be written as

(1-5)
∂g
∂t
=−Ric(g)+ g, g(0)= g0.

One important point about this flow is that it preserves the Kähler class. A founda-
tional result about this flow, due to [Cao 1985], is that it exists for all time. The
convergence of it is an extremely subtle issue because the complex structure can
jump in the limit at infinity. Hence the type of convergence one expects is rather
weak. This is illustrated by the following example:

Theorem 1.7 [Tian and Zhu 2007]. Let M be a compact manifold which admits a
Kähler–Ricci soliton (gKRS, f ). Then any solution of (1-5) will converge to gKRS in
the sense of Cheeger–Gromov if the initial metric g0 is invariant under the maximal
compact subset of the automorphism group of M.

The unstable perturbations in Theorem 1.6 do not preserve the canonical class.
Therefore, from the point of view of the Kähler–Ricci flow it is natural to consider
perturbations which fix the Kähler class but allow the complex structure of the
manifold to vary. This was initiated by Tian and Zhu [2008].
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Definition 1.8. Let (M, gKRS) be a Kähler–Ricci soliton with complex structure
JKRS. The space of perturbations is defined as

W(gKRS)=
{
h ∈ s2(TM∗)

∣∣ there is a family of Kähler metrics (gt , Jt)

with ∂gt/∂t |t=0 = h, [gt(Jt · , · )] = c1(M, JKRS),

(g0, J0)= (gKRS, JKRS)
}
.

The following result was our main motivation for considering this space of
perturbations:

Theorem 1.9 [Tian and Zhu 2008]. Let (M, gKE) be a Kähler–Einstein metric and
let h ∈W(gKE). Then

〈N (h), h〉 f ≤ 0.

Tian and Zhu then conjectured that a similar result should be true for Ricci solitons.
Our formula in Theorem 0.1 shows that this might not be true in general. The
integral in the main theorem does not seem to have a sign in general. However, the
examples we calculate in Section 4 do all have 〈N (h), h〉 f = 0; this seems be an
artefact of their construction rather than a manifestation of some result in complex
differential geometry.

We mention here the related study of stability by Dai, Wang, and Wei [Dai et al.
2007]. They prove that Kähler–Einstein metrics with negative scalar curvature are
stable. There is also the recent work of Nefton Pali [2012] in this area. He considers
a related functional known in the literature as the W -functional (here one is free to
pick a volume form whereas in the definition of the ν-functional one is determined
by the metric).

Notation and convention. We use the curvature convention that Rm(X, Y )Z =
∇Y∇X Z −∇X∇Y Z +∇[X,Y ]Z . The convention for divergence that we adopt is
div(h)= tr12(∇h). The rough Laplacian

1h = div(∇h)=−∇∗∇h

is then negative definite. Set

〈 · , · 〉 f =

∫
M
〈 · , · 〉e− f dVg

to be the twisted inner product on tensors at a Ricci soliton (M, g, f ). We will
denote pointwise inner products induced on tensor bundles by g with round brackets
( · , · ). The adjoint of a differential operator (such as ∇) with respect to this inner
product will be denoted with a subscript f (for example, divf ) throughout.
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2. Background on variations of complex structure

Variations of complex structure. We recall that an almost complex structure on
a manifold M is a section J of the endomorphism bundle End(TM) satisfying
J 2
=− id. For M to be a complex manifold we require that the complex structure is

integrable. By the Newlander–Nirenberg theorem we may take integrable to mean
that the Nijenhuis tensor N(J )= 0. We will be concerned with infinitesimal varia-
tions of complex structure that are modelled on those coming from a one-parameter
family of complex structures Jt . As we are only working at an infinitesimal level,
we don’t actually mind if our variations are induced by such a family.

Definition 2.1 (Infinitesimal variation of complex structure). Let (M, g, J ) be a
Kähler manifold. A tensor ζ ∈ End(TM) is called an infinitesimal variation of
complex structure if it satisfies the two equations

ζ J + Jζ = 0,(2-1)

Ṅ(ζ )= 0,(2-2)

where Ṅ(ζ ) is the infinitesimal variation in the Nijenhuis tensors N(J + tζ ).

Equation (2-1) simply says that the Jt are almost complex structures, and (2-2)
comes from requiring that they are integrable. In the above definition we are
viewing ζ as a section of the bundle End(TM) which is defined for any manifold.
Switching in the usual manner to the complex viewpoint, (2-1) can be thought of
as saying that ζ is a section of the bundle 3(0,1)⊗ TM (1,0). We will variously view
the variation as an element of the real bundle End(TM), a section of the bundle
3(0,1)⊗TM (1,0), and, using the metric to lower indices, as a section of TM∗⊗TM∗

and 3(0,1)⊗3(0,1). We note that in complex coordinates Equations (2-1) and (2-2)
become

ζ βα = 0 and ∇αζβγ =∇βζαγ .

The bundle 3(0,1)⊗ TM (0,1) is an element of the Dolbeault complex

TM (1,0) ∂̄
→3(0,1)⊗ TM (1,0) ∂̄

→3(0,2)⊗ TM (1,0) ∂̄
→ · · · ,

where ∂̄ is the usual d-bar operator associated to a holomorphic vector bundle over
a complex manifold. Equation (2-2) is equivalent to requiring that ∂̄ζ = 0.

Analogous to [Tian and Zhu 2008] and following [Koiso 1983], we will decom-
pose the space of infinitesimal variations into trivial variations and f -essential
variations.

By analogy with the twisted inner product, set

1∂̄, f := ∂̄ ∂̄
∗

f + ∂̄
∗

f ∂̄
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to be the twisted ∂̄-Laplacian.

Definition 2.2 ( f -essential variation). Let ζ be an infinitesimal variation of the
complex structure J . We say ζ is trivial if ζ = L Z J for a smooth vector field
Z ∈ TM . A variation ζ is said to be f -essential if∫

M
〈ζ, L Z J 〉e− f dVg = 0

for all Z ∈ 0(TM).

The following lemma gives a useful characterisation of f -essential variations:

Lemma 2.3 [Koiso 1983, Lemma 6.4]. Let ζ be an f -essential variation and let
h( · , · )= ω( · , ζ · ). If h is symmetric then

(1) ∂̄∗f ζ = 0, and

(2) divf h = 0.

In particular, an f -essential variation is 1∂̄, f -harmonic.

Proof. (1) As ζ is f -essential, ∫
M
〈L Z J, ζ 〉e− f

= 0

for all Z ∈ 0(TM). The Lie derivative of the complex stucture is related to the
∂̄-operator by

∂̄· Z =−
1
2 J L Z J ( · ).

Hence, up to a constant, 〈L Z J, ζ 〉 f = 〈∂̄Z , ζ 〉 f and ∂̄∗f ζ = 0, as claimed.

(2) We begin by noting that ζ being f -essential means that

〈L Z J, ζ 〉 f = 〈ω( · , L Z J ( · )), h〉 f = 0.

Rewriting and using the Cartan formula we have

ω( · , L Z J ( · ))= L Z g( · , · )− L Zω( · , · )= 2div∗Z [( · , · )− (d ◦ ιZω)( · , J · ).

The result follows by noting that

〈(d ◦ ιZω)( · , J · ), h〉 f =−〈(d ◦ ιZω)( · , · ), h( · , J · )〉 f ,

and that h( · , J · ) is symmetric. �

In the previous lemma we have assumed that h is symmetric. This is not strictly
necessary by the following argument: If there existed an antisymmetric, 1∂̄, f -
harmonic section of3(0,1)⊗TM (1,0) then there would have to exist an antisymmetric
1∂̄ -harmonic section of 3(0,1)⊗ TM (1,0) as

Hp,q(E)≡ Hq(M, E ⊗3(p,0))≡H
p,q
f (E)
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for any holomorphic vector bundle E . The Dai–Wei–Wang Weitzenböck formula
(Lemma 3.3) and Lemma 3.4 then imply that the associated (0, 2)-form is parallel.
This would imply that h0,2(M) > 0. One can then appeal to a classical result of
Bochner to show that on a Fano manifold such a holomorphic form cannot exist
(see [Besse 1987, 11.24]). Tian and Zhu [2008] give a straightforward proof of this
fact in the case one is at a Kähler–Einstein metric.

Tian and Zhu decompose the space W(g) modulo the action of the diffeomor-
phism group. They show that

W(g)/D(M)=A(1,1)
⊕ H 1(M, TM),

where A(1,1) is the space of ∂∂̄-exact (1,1)-forms and H 1(M, TM) is the usual
cohomology for the holomorphic vector bundle TM . Tian and Zhu then show that
for a general Kähler–Ricci soliton, N |A(1,1) ≤ 0 so that potentially destabilising
elements of W actually lie in H 1(M, TM) (they then show that N vanishes on this
space when g is an Einstein metric). Hence we will only consider perturbations
in H 1(M, TM) and we will use the special representatives given by f -essential
perturbations. Formally:

Proposition 2.4 [Tian and Zhu 2008]. Let (M, gKRS, J ) be a Kähler–Ricci soliton.
Then we have the following decomposition:

W(gKRS)/D(M)∼=A(1,1)(M, J )⊕ H 1(M, TM),

where D(M) is the diffeomorphism group of M. The operator N is nonpositive
when restricted to A(1,1)(M, J ).

3. Proof of Main Theorem

Consider an f -essential variation of the complex structure h ∈ H 1(M, TM). Firstly,
as h is J -anti-invariant it is apparent that C(h, g)= 0. Thus

〈N (h), h〉 f = 〈
1
21 f h+Rm(h, · ), h〉 f .

In order to evaluate the above we will use a Weitzenböck formula. In order to
explain the formula we will digress briefly into the spinorial construction used in
[Dai et al. 2007]. This is a powerful generalisation of the techniques used by Koiso
[1983].

As M is Fano it has a canonical spinc structure and parallel spinor σ0 ∈ 0(S
c),

where Sc
→ M is the spinc spinor bundle. This induces a map

8 : s2(TM∗)→ Sc
⊗ TM∗,

8(h)= hi j ei · σ0⊗ e j ,
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where {ei } is an orthonormal basis of TM and ei ·σ0 denotes Clifford multiplication
in Sc.

For 1≤ i ≤ m, following [Dai et al. 2007], choose

X i =
ei −
√
−1Jei
√

2
and X̄ i =

ei +
√
−1Jei
√

2
.

Then {X1, . . . , Xm} is a local unitary frame for T 1,0 M . Set {θ1, . . . , θm
} to be its

dual frame. Then
8(h)= h(X̄ i , X̄ j )θ̄ i ⊗ θ̄ j .

This can be identified with

9(h)= h(X̄ i , X̄ j )θ̄ i ⊗ X j ∈
∧0,1

(TM1,0),

where TM1,0 is the holomorphic tangent bundle.

Lemma 3.1 [Dai et al. 2005, Lemma 2.3]. For h, h̃ ∈ s2(TM∗),

Re(8(h),8(h̃))= (h, h̃).

We will also need the following, which is a result of the calculations on page 680
of [Dai et al. 2007]:

Lemma 3.2. Let (M, g) be a Fano manifold with canonical spinc spinor bundle Sc

and Dirac operator D. Let 8 and 9 be defined as above. Then

D8(h)=
√

2(∂̄ − ∂̄∗)9(h).

The main result we need is the following Weitzenböck formula:

Lemma 3.3 [Dai et al. 2007, Lemma 2.3]. Let h ∈ s2(TM∗) and let D be the Dirac
operator. Then

(3-1) D∗D(8(h))=8(∇∗∇h− 2Rm(h, · )+Ric ◦ h− h ◦ iρ),

where ρ is the Ricci form.

In order to deal with the Ricci curvature terms we use the following lemma, which
is implicit in the proof of Theorem 2.5 in [Dai et al. 2007]:

Lemma 3.4. Let h be a skew-hermitian section of s2(TM∗). Then

(Ric ◦ h− h ◦ iρ, h)= 0.

Proof. This is a pointwise calculation. Choose normal coordinates at p ∈ M ,
{e1, . . . , e2m}, where em+i = Jei for 1≤ i ≤ m. We can also choose this basis so
that the Ricci tensor is diagonalised; that is, Ric(ei , ej ) = ciδi j , where cm+i = ci .
We have
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Re(8(Ric ◦ h),8(h))=
2m∑

i, j=1

ci h2
i j ,

−Re(8(h ◦ iρ),8(h))=−2
m∑

j=1

m∑
i=1

cj (h(i+m) j hi( j+m)− hi j h(i+m)( j+m)).

If h is skew-Hermitian then

hi j =−h(i+m)( j+m) and hi( j+m) = h(i+m) j .

Hence

−Re(8(h ◦ iρ),8(h))=−2
m∑

i=1

2m∑
j=1

cj (h2
i j )=−

2m∑
i, j=1

ci h2
i j ,

and the result follows. �

The final lemma we need to prove the main result in this section is a technical
lemma to deal with the extra term one obtains by using the rescaled volume form
e− f dVg.

Lemma 3.5. Let A ∈�1(M) be a one-form and B ∈
⊗k TM∗. Then

(1) div(A⊗ B)= div(A)⊗ B+∇A] B,

(2) div(d f ⊗ h)= (1 f )h+∇∇ f h, and

(3) −〈∇∇ f h, h〉 f =
1
2

∫
M 1 f f ‖h‖2e− f dVg.

Proof. (1) We calculate using a normal, orthonormal basis {ei },

div(A⊗ B)=∇ei (A⊗ B)(ei , · )= div(A)⊗ B+∇A] B.

(2) We use A = d f, B = h in (1).

(3) We note that

〈∇∇ f h, h〉 f = 〈ι∇ f∇h, h〉 f = 〈∇h, d f ⊗ h〉 f =−〈h, divf (d f ⊗ h)〉 f .

Now using (2) we have

〈∇∇ f h, h〉 f =

∫
M
|∇ f |2‖h‖2e− f dVg −〈h, div(d f ⊗ h)〉 f

=−

∫
M
(1 f f )‖h‖2e− f dVg −〈∇∇ f h, h〉 f . �

As is well known, the soliton potential function of a normalised gradient Ricci
soliton solves the equation

1 f f =−2 f.
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Proof of Main Theorem. Lemmas 3.1, 3.2, and 3.3 yield that pointwise( 1
21h+Rm(h, · ), h

)
= Re

(
8(1

21h+Rm(h, · )),8(h)
)

= Re
(
(D∗D8(h),8(h))

)
= Re

(
−21∂̄9(h),9(h)

)
.

However, as h is f -essential then 9(h) is orthogonal to the image of 1∂̄ with
respect to the global inner product. Hence∫

M

( 1
21h+Rm(h, · ), h

)
e− f dVg = 0. �

4. Examples and applications

Setup. As mentioned in the introduction, there are three main sources for concrete
examples of Kähler–Ricci solitons: the Dancer–Wang, Podestà–Spiro, and the
Wang–Zhu examples. The Wang–Zhu solitons exist on toric-Kähler manifolds and
are nontrivial precisely when the Futaki invariant is nonzero. Unfortunately, this
class of manifold does not admit any nontrivial deformations of complex structure:

Theorem 4.1 [Bien and Brion 1996, Theorem 3.2]. Every Fano toric-Kähler mani-
fold M has H 1(M, TM)= 0.

Similarly, one can see the Podestà–Spiro examples are rigid. The next class of
examples to investigate are provided by the Dancer–Wang solitons. These solitons
are generalisations of the soliton on CP2 ]CP

2
constructed by Koiso [1990] and

Cao [1996]. We begin by reviewing their construction.
Let (Vi , ri , Ji ), 1≤ i≤r be Fano Kähler–Einstein manifolds with first Chern class

c1(Vi , Ji )= pi ai , where pi are positive integers and ai ∈ H 2(Vi ;Z) are indivisible
classes. The Kähler–Einstein metrics ri are normalised so that Ric(ri ) = piri .
For q = (q1, . . . , qr ) with qi ∈ Z− {0}, let Pq be the total space of the principal
U (1)-bundle over B := V1× V2× · · ·× Vr with Euler class

∑r
1 qiπ

∗

i ai , where

πi : V1× · · ·× Vr → Vi

is the projection onto the i-th factor. Denote by M0 the product I × Pq for the unit
interval I . We denote by θ the principal U (1)-connection on Pq with curvature

� :=

r∑
i=1

qiπ
∗

i ηi ,

where ηi is the Kähler form of ri . There is a one-parameter family of metrics on
Pq given by

gt := f 2(t)θ ⊗ θ +
r∑

i=1

l2
i (t)π

∗

i ri ,
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where f and li are smooth functions on I with prescribed boundary behaviour.
Finally, consider the metric on M0 given by

g = dt2
+ gt ,

with the correct boundary behaviour of f and the li . This metric then extends to a
metric on a compactification of M0, which we denote M .

The complex structure on this manifold can be described explicitly by lifting
the complex structure on the base and requiring that J (N ) = − f (t)−1 Z , where
N = ∂t is normal to the hypersurfaces, and Z is the Killing vector that generates
the isometric U (1) action on Pq .

Deformations of Dancer–Wang solitons. The Ricci soliton equations in this setting
reduce to a system of ODEs. We have the following existence theorem:

Theorem 4.2 [Dancer and Wang 2011, Theorem 4.30]. Let M denote the compact-
ification of M0 as above. Then M admits a Kähler–Ricci soliton (M, g, u) which is
Einstein if and only if the associated Futaki invariant vanishes.

We refer to [Dancer and Wang 2011] for details of the constructions. If one chooses
the components Vi to be homogeneous Kähler–Einstein manifolds then the resulting
M is toric. However, by choosing the components Vi to be nonhomogeneous, Fano
and Kähler–Einstein, and calculating the Futaki invariant, they give examples of
nontoric Kähler–Ricci solitons. It is these that may admit complex deformations.

Suppose that Vi is a Fano, Kähler–Einstein manifold admitting deformations of
its complex structure Ji . We consider an essential variation hi in the Kähler metric
ri such that the Kähler form ηi = ri (Ji · , · ) remains in the class c1(Vi , J0). This
induces a variation in the metric on the whole space given by

h = l2
i (t)π

∗hi .

Clearly the same procedure works for any product of Kähler–Einstein manifolds
with some (or all) of the factors admitting complex deformations. Here it is simply
stated for one factor for simplicity. Let us state our final result:

Theorem 4.3. For this perturbation h, one has N (h)= 0.

Proof. It follows from the construction of h that the pointwise norm ‖h‖ is inde-
pendent of t . It also follows that if hi is essential then h is u-essential. We see now
that

〈Nh, h〉 =
∫

M
u‖h‖2e−u dVg = ‖h‖2L2(Vi )

∫
I

ue−u dt = 0. �

Remark 4.4. The significance of this result is that it verifies Tian–Zhu’s conjecture
for every obvious example of a complex deformation of the known Kähler–Ricci
solitons. We do not know of any explicit deformations beyond these.
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It is notable that for all f -essential perturbations h known to us, one has N (h)=0.
Understanding if this is always the case would involve calculating H 1(M, TM),
which is not easy to calculate in general.
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