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ON CROSSED HOMOMORPHISMS OF
THE VOLUME PRESERVING DIFFEOMORPHISM GROUPS

RYOJI KASAGAWA

We construct crossed homomorphisms of the groups of volume preserv-
ing diffeomorphisms of closed manifolds with nontrivial first cohomology
groups and give their applications to the volume flux groups. Moreover, we
see that they descend to crossed homomorphisms of their isotopy groups. In
the two dimensional case, we show that their restrictions to Torelli groups
are the first Johnson homomorphisms.

1. Introduction

In this paper we construct crossed homomorphisms J of the group Dvol of volume
preserving diffeomorphisms of a closed oriented smooth manifold M of dimension
n with volume form vol. Each J is related with a Pontryagin class p of degree k
and takes values in H= Hom

(∧n−4k H 1(M;R), H n−1(M;R)). This construction
is an analogy of that for the symplectomorphism groups of symplectic manifolds
in [Kasagawa 2008]. In it, crossed homomorphisms are constructed from certain
relations of Chern classes and the cohomology class of the symplectic form. In
this volume case, we use relations such as p(M) ∪ a1 ∪ · · · ∪ an−4k = κ[vol],
where ai ∈ H 1(M;R) and κ ∈ R. But there are usually many such relations, and
the domains of crossed homomorphisms constructed from such relations need to
be restricted to certain subgroups, so we consider them all together. This is the
reason why the target of J is the space of homomorphisms between cohomology
groups as above. The crossed homomorphism J , which is a 1-cocycle in terms
of group cohomology theory, depends on the choice of the ingredients used in
the construction, but we can show that its cohomology class does only on the
Pontryagin class p, not on the other ingredients. Some cohomology classes on
groups of volume preserving diffeomorphisms were studied by McDuff [1983],
but they are defined only on the identity component. A significant point of our
construction is that J ’s and their cohomology classes are defined on the whole
group of volume preserving diffeomorphisms.
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We calculate the derivative of J along smooth curves in Dvol. Its formula contains
the derivative of the volume flux homomorphism of (M, vol) as a term, so we have
an application of our crossed homomorphisms to the volume flux ones. As a
corollary of it, we obtain some conditions for which the volume flux groups vanish,
some of which have been obtained by Kędra, Kotschick, and Morita [2006]. They
studied more properties of flux groups not only for the volume case, but also for the
symplectic case and others. In the two dimensional case, Kotschick and Morita also
studied cohomology classes of the symplectomorphism groups of surfaces related
with the extensions of the flux homomorphisms in [Kotschick and Morita 2005;
2007]. Their work suggests some applications of the crossed homomorphisms J .

The derivative formula for J tells us that the image of the identity component
of Dvol under J is easily understood. It turns out that J descends to a crossed
homomorphism J, from π0Dvol to a quotient of H. It can be considered a crossed
homomorphism of the group π0D of path components of the diffeomorphism group
D of the oriented manifold M since it is isomorphic to π0Dvol by the induced
homomorphism of the standard inclusion Dvol ↪→ D by Moser [1965]. The first
nontrivial example of J is the two dimensional case. Let M be a closed oriented
surface 6g of genus g= 3. The group π0D is called the mapping class group of 6g.
The standard action of it on HZ = H1(6g;Z) gives the well-known representation
π0D→ Sp(2g;Z), whose kernel Ig is called the Torelli group. Johnson [1980]
defined a surjective homomorphism τg : Ig→

∧3 HZ/HZ, which is called the first
Johnson homomorphism. If we take p= 1 as a Pontryagin class of degree 0, the tar-
get of the crossed homomorphism J is H/∼=Hom

(∧2 H 1(6g;R), H 1(6g;R)
)
/∼.

Using the Poincaré duality, we have a natural injection
∧3 HZ→ H. We can see

that it induces an injective homomorphism from the target of τg to that of J.
Thus, we can compare τg with J on the Torelli group Ig and can show that J

coincides with −τg/2 on Ig. In other words, J is an extension of −τg/2 as a
crossed homomorphism of the whole mapping class group with larger target. Thus,
the J’s in dimension greater than 2 are considered analogues of the first Johnson
homomorphisms for higher dimensions. On the other hand, Morita [1993] had
already extended τg to a crossed homomorphism of π0D with target 1

2

∧3 HZ/HZ.
The target of Morita’s crossed homomorphism is also contained in that of J in the
same way as above. We do not know if they are essentially the same, but in this
paper we don’t pursue this problem.

We note that there are many ways of extending Johnson homomorphisms, such as
[Day 2007; Morita 1993; Morita and Penner 2008; Perron 2004] and others, and also
that some relations between first Johnson homomorphisms and flux homomorphisms
in the two dimensional case were obtained [Day 2011]. So, if we consider high
dimensional analogues of these works, our crossed homomorphisms give ingredients
for them.
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This paper is organized as follows: In Section 2, we define the crossed homo-
morphisms J and J and state the main results. In Sections 3 and 4, we show the
existence of main ingredients in the construction of J and some lemmas related
to them. In Section 5, we recall properties of Bott homomorphisms. In Section 6,
we prove Theorem 2.3, which states that the crossed homomorphism J is well
defined and defines a unique cohomology class. In Section 7, we calculate the
derivative of J along a smooth path in Dvol and show some results for the volume
flux homomorphisms and groups. In Section 8, we see that J descends to the
crossed homomorphism J. In Section 9, we recall the first Johnson homomorphism
τg of 6g. In Sections 10, 11, and 12, we explicitly describe ingredients needed to
calculate J in the 2 dimensional case. In Sections 13 and 14 we compute J, which
shows that it coincides with −1

2τg on the Torelli group Ig.

2. Definitions and main results

Let M be a closed oriented smooth manifold of dimension n with a volume form
vol. Let D = Diff+(M) be the group of orientation preserving diffeomorphisms
of M and Dvol = {ϕ ∈ D | ϕ∗ vol = vol} its subgroup of volume preserving ones.
Put C∞0 (M)= {g ∈C∞(M) | ∫M g vol= 0}, Dvol then acts on it by ϕ∗g = (ϕ−1)∗g
for ϕ ∈ Dvol and g ∈ C∞0 (M). Put ϕ]h(a) = ϕ∗(h(ϕ∗a)) for a ∈ H 1(M) and
h ∈Hom(H 1(M),C∞0 (M)), Dvol then acts on Hom(H 1(M),C∞0 (M)) by (ϕ, h) 7→
ϕ]h. Here, H 1(M) is the first cohomology group of M with real coefficients,
and hereafter we use cohomology groups with real coefficients if not mentioned
explicitly. In this paper, actions of Dvol on similar spaces of homomorphisms,
such as Hom

(∧l H 1(M), V
)
, (V = �n−1(M), H n−1(M), . . . ), are given by the

same formula, ϕ]g(a)= ϕ∗(g(ϕ∗a)), for g considered there. Take a linear section
r : H 1(M)→ Z1(M) of the projection Z1(M)→ H 1(M), where Z1(M) is the
space of closed 1-forms on M .

Lemma 2.1. There exists a unique crossed homomorphism

f : Dvol 3 ϕ 7→ fϕ ∈ Hom(H 1(M),C∞0 (M))

such that d fϕ(a)= ϕ]r(a)− r(a) for each ϕ ∈ Dvol and a ∈ H 1(M).

Here, ϕ]r(a)= ϕ∗{r(ϕ∗a)} as mentioned above, and by definition, f is a crossed
homomorphism if and only if the equality fϕψ = fϕ+ϕ] fψ holds for all ϕ,ψ ∈Dvol.

For any a = a1 ∧ · · · ∧ ah ∈
∧h H 1(M), put

∧
r a = r(a1) ∧ · · · ∧ r(ah) and⋃

a = a1 ∪ · · · ∪ ah , we then have the homomorphisms∧
r :
∧h H 1(M)→�h(M) and

⋃ : ∧h H 1(M)→ H h(M)

by linear extension for each h. We use the same symbols
∧

r and
⋃

for different h’s.



458 RYOJI KASAGAWA

Let I 2k
n be the set of invariant, symmetric, multilinear functions on gl(n,R)

of degree 2k with values in R. Take p ∈ I 2k
n . We have the Pontryagin class

p(M)∈H 4k(M) of M corresponding to it. Let A be a GL(n,R)-connection on T M ,
and FA ∈�2(M,End(T M)) its curvature form. We then have p(M)= [1(A)p] ∈
H 4k(M) by Chern–Weil theory, where 1(A)p := p(F (2k)

A )= p(FA, FA, . . . , FA).
We also need 1(A, B)p = 2k

∫ 1
0 p(B − A, F (2k−1)

A+t (B−A)) dt , which is the Chern–
Simons–Bott form, where B is another GL(n,R)-connection. This introduction of
Pontryagin classes, more generally of primary and secondary characteristic classes,
is referred to in Chapter 4 of [Vaisman 1987]. It is also helpful to compute them in
this paper.

Let l = n− 4k and κ : ∧l H 1(M)→ R, the homomorphism defined by

κ(a)= 〈p(M)∪⋃ a, [M]〉/∫
M

vol for a ∈∧l H 1(M).

Lemma 2.2. There exists a homomorphism

µ : ∧l H 1(M)→�n−1(M)

such that dµ(a)= κ(a) vol−1(A)p∧∧r a for all a ∈∧l H 1(M).

For ϕ ∈ Dvol and a = a1 ∧ · · · ∧ al ∈
∧l H 1(M), put

fϕ(a)=
l∑

m=1

(−1)m−1
m−1∧
j=1

ϕ]r(a j )∧ fϕ(am)

l∧
j=m+1

r(a j )

in � l−1(M) and extend it by linear combination for any a ∈∧l H 1(M). We use the
same symbol fϕ for all l, but there is no confusion. Put

Jϕ(a)=
[
1(A, ϕ∗A)p∧∧r a+1(ϕ∗A)p∧ fϕ(a)+ϕ]µ(a)−µ(a)

]
.

Then it is a well-defined element of H n−1(M). Here, ϕ∗A is the pushforward
connection of A by ϕ∗ : T M→ T M . Put

H= Hom
(∧l H 1(M), H n−1(M)

)
.

We can show Jϕ ∈H and the following theorem:

Theorem 2.3. The map

J : Dvol 3 ϕ 7→ Jϕ ∈H

is a well-defined crossed homomorphism depending on the choice of p, A, r , and µ.
Its cohomology class [J ] ∈ H 1(Dvol,H) in group cohomology depends only on p,
not on the choice of A, r , and µ.
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Here the action of Dvol on H is given by (ϕ, h) 7→ ϕ]h as mentioned before.
By definition, the map J is a crossed homomorphism if and only if the equality
Jϕψ = Jϕ+ϕ] Jψ holds for all ϕ,ψ ∈Dvol. See [Brown 1982] for group cohomology.

In general, the cohomology classes [J ] are nontrivial. Proposition 7.8 gives a
condition for them to be nontrivial, and Corollary 7.7 is a simple example of them.
These are corollaries of Proposition 2.4 below. Since the target H of J is the same
for all p ∈ I 2k

n , we obtain the map from I 2k
n to H 1(Dvol,H) by Theorem 2.3, which

is easily checked to be linear, but we don’t study this homomorphism in this paper.
In order to state Proposition 2.4, we introduce the volume flux homomor-

phism. Let Dvol,0 be the identity component of Dvol, and π : D̃vol,0 → Dvol,0

its universal covering. Each element of D̃vol,0 is represented by a smooth curve
{ϕs}s∈[0,1] ⊂ Dvol,0 with ϕ0 = idM , which is denoted by [ϕs] ∈ D̃vol,0. The volume
flux homomorphism

Flux∼ : D̃vol,0→ H n−1(M), Flux∼([ϕs])=
∫ 1

0
[ι(Xs) vol] ds

with respect to vol is a well-defined surjective homomorphism [Banyaga 1997]. Here
Xs is the time-dependent vector field given by dϕs/ds = Xs ◦ϕs , and ι(Xs) denotes
the interior product by Xs . The image Flux∼(π−1(id)) of the fiber π−1(id)⊂ D̃vol,0

at the identity under Flux∼ is called the volume flux group, which is denoted by
0vol(M).

In order to state the relation of J with Flux∼, we define the homomorphisms

(2-1) L , L+ : H n−1(M)→H

as the linear extensions of

L(w)(a)= p(M)∪
l∑

m=1

(−1)m−1〈am ∪w, [M]〉
m−1⋃
j=1

a j ∪
l⋃

j=m+1
a j

/∫
M

vol

and L+(w)(a) = −κ(a)w+ L(w)(a) for w ∈ H n−1(M) and a = a1 ∧ · · · ∧ al ∈∧l H 1(M).

Proposition 2.4. The equality J ◦π = L+ ◦Flux∼ holds on D̃vol,0; that is,

Jϕ1(a)=−κ(a)Flux∼([ϕs])+ L(Flux∼([ϕs]))(a)
holds for any [ϕs] ∈ D̃vol,0 and a ∈∧l H 1(M).

Let L p, L p+ and κp be the homomorphisms L , L+, and κ with respect to p ∈
I 2k
n respectively. This proposition implies that the volume flux group 0vol(M) is

contained in the kernel of L p+ for all p, since 0vol(M) is defined independently of p.
In particular, if there exists an L p whose kernel is zero, we have 0vol(M)={0}. The
next theorem restates this consequence in terms of L p, and its examples are given
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in Corollary 7.6. Let P be the set of pairs (p, a) of p ∈ I 2k
n and a ∈∧n−4k H 1(M)

for some k, and P0 = {(p, a) ∈ P | κp(a)= 0}. For each (p, a) ∈ P, we have the
homomorphism L p( · )(a) : H n−1(M)→ H n−1(M).

Theorem 2.5. The volume flux group 0vol(M) of any closed oriented smooth mani-
fold M of dimension n with a volume form vol satisfies

0vol(M)⊂
{ ⋂
(p,a)∈P0

ker L p( · )(a)
}
∩
{ ⋂
(p,a)∈PrP0

Im L p( · )(a)
}
.

Proposition 2.4 tells us that the image of Dvol,0 by J is contained in Im L+. On
the other hand, we know from Moser’s result [1965] that the inclusion Dvol ↪→ D

is a weak homotopy equivalence. Using these, we can show the following theorem:

Theorem 2.6. The crossed homomorphism J descends to a well-defined one;

J : π0D→H/ Im L+.

Its cohomology class [J] ∈ H 1(π0D,H/ Im L+) depends only on p, not on the
choice of vol, A, r and µ.

As mentioned above, Corollary 7.7 gives a nontrivial example of Theorem 2.3.
But since the image of J in this corollary is contained in Im L+, it is a trivial case
of Theorem 2.6, so we need a nontrivial example of the cohomology class [J].

Let M =6g be a closed oriented surface of genus g= 3. The isotopy group π0D

is called the mapping class group of 6g. We take p = 1 ∈ I 0
2 . Then, our crossed

homomorphism J : Dvol → H = Hom
(∧2 H 1(6g), H 1(6g)

)
is simply given by

Jϕ(a)=[ fϕ(a)+ϕ]µ(a)−µ(a)] for an area form ω(= vol) on6g, which descends
to J on π0D. The subgroup Ig = {ϕ ∈ π0D | ϕ∗ = id on H1(6g;Z)} ⊂ π0D

is called the Torelli group. Let τg : Ig →
∧3 H1(6g;Z)/H1(6g;Z) be the first

Johnson homomorphism [Johnson 1980]. Using Poincaré duality, we have a natural
homomorphism

∧3 H1(6g;Z) ↪→H. Moreover, we can see that it descends to an
injective homomorphism

(2-2) j : ∧3 H1(6g;Z)/H1(6g;Z) ↪→H/ Im L+.

Theorem 2.7. For any closed oriented surface 6g of genus g = 3, the following
equality holds:

J|Ig =− 1
2 j ◦ τg.

We remark that J|Ig is a usual homomorphism because the subgroup Ig of π0D

acts trivially on the target of J. This theorem implies that the restriction J|Ig is a
nontrivial homomorphism, which defines a nontrivial first cohomology class. Thus,
the class [J] is also nontrivial. This gives a nontrivial example of Theorem 2.6.
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3. Lemmas

In this section we will prepare the lemmas which are needed to show that the homo-
morphism Jϕ is defined on the exterior product

∧l H 1(M) and that the cohomology
class of J is unique.

Let α j ∈ Z1(M) and ζ j ∈ C∞(M) with 1 ≤ j ≤ h. We expand the exterior
product

∧h
j=1(α j + dζ j ), we then have

h∧
j=1

(α j + dζ j )−
h∧

j=1

α j =
h∑

m=1

∑
1≤k1<···<km≤h

m∧
p=1

{ kp−1∧
j=kp−1+1

α j ∧ dζkp

}
∧

h∧
j=km+1

α j ,

where k0 = 0. Set α̃ = α1⊗ · · ·⊗αh , ζ̃ = ζ1⊗ · · ·⊗ ζh , and

Kh(α̃, ζ̃ )=
h∑

m=1

∑
1≤k1<···<km≤h

(−1)k1−1
k1−1∧
j=1

α j ∧ ζk1

m∧
p=2

{ kp−1∧
j=kp−1+1

α j ∧ dζkp

}
∧

h∧
j=km+1

α j ,

we then have Kh(α̃, ζ̃ ) ∈�h−1(M) and

(3-1)
h∧

j=1

(α j + dζ j )−
h∧

j=1

α j = d Kh(α̃, ζ̃ ).

This equality is the only requirement for Kh , so the choice of it is not unique.
The following lemma is an easy consequence of the definition of Kh , so we omit
the proof:

Lemma 3.1. The following equalities hold:

(i) Kh(α̃, ζ̃ )∧β = Kh+1(α̃⊗β, ζ̃ ⊗ η)− (−1)h
∧
α̃ · η− Kh(α̃, ζ̃ )∧ dη.

(ii) β ∧ Kh(α̃, ζ̃ )=−Kh+1(β⊗ α̃, η⊗ ζ̃ )+ η
∧
α̃+ ηd Kh(α̃, ζ̃ ).

where β ∈ Z1(M), η ∈ C∞(M), and
∧
α̃ = α1 ∧ · · · ∧αh .

Let Sh be the h-th symmetric group. Put α̃σ = ασ(1) ⊗ · · · ⊗ ασ(h) and ζ̃σ =
ζσ(1)⊗ · · ·⊗ ζσ(h) for σ ∈ Sh .

Lemma 3.2. The equality Kh(α̃σ , ζ̃σ )≡ sgn(σ )Kh(α̃, ζ̃ )(mod d�h−2(M)) holds
for each σ ∈ Sh .

Proof. It is sufficient to show the equality for any transposition σ = (s, t) ∈Sh with
s < t . For each 1 ≤ m ≤ h, put Im = {(k1, . . . , km) | 1 ≤ k1 < · · · < km ≤ h}, and
define the map σ : Im→ Im by
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σ(u)=


u if s, t 6∈ u,
u if s, t ∈ u,
{k1, . . . , km, t}r {s} reordered in ascending order if s ∈ u, t 6∈ u,
{k1, . . . , km, s}r {t} reordered in ascending order if s 6∈ u, t ∈ u,

where u= (k1, . . . , km)∈ Im , and s ∈ u means s ∈ {k1, . . . , km} by abuse of notation.
Put

Au = (−1)k1−1
k1−1∧
j=1

α j ∧ ζk1

m∧
p=2

{ kp−1∧
j=kp−1+1

α j ∧ dζkp

}
∧

h∧
j=km+1

α j

and

Aσu = (−1)k1−1
k1−1∧
j=1

ασ( j) ∧ ζσ(k1)

m∧
p=2

{ kp−1∧
j=kp−1+1

ασ( j) ∧ dζσ(kp)

}
∧

h∧
j=km+1

ασ( j)

for u = (k1, . . . , km) ∈ Im . It is easy to see the following equalities:

(i) If s, t 6∈ u, then Aσu =−Aσ(u).

(ii) If s, t ∈ u, then Aσu =−Aσ(u)+
{

an exact form if s = k1,

0 if s 6= k1.

(iii) If s ∈ u, t 6∈ u, then Aσu =−Aσ(u)+
{

an exact form if s = k1 < k2 < t,
0 otherwise.

(iv) If s 6∈ u, t ∈ u, then Aσu =−Aσ(u)+
{

an exact form if s < k1 < k2 ≤ t,
0 otherwise.

Thus, we have Aσu ≡ −Aσ(u)(mod d�h−2(M)). Since the map σ on Im is
bijective, we have

Kh(α̃σ , ζ̃σ )=
h∑

m=1

∑
u∈Im

Aσu ≡−
h∑

m=1

∑
u∈Im

Aσ(u)(mod d�h−2(M))

=−
h∑

m=1

∑
u∈Im

Au = sgn(σ )Kh(α̃, ζ̃ ). �

4. The proofs of Lemmas 2.1 and 2.2

In this section we will prove Lemmas 2.1 and 2.2 and show some properties of the
homomorphisms in these lemmas.

We preserve the notation in Section 2.

Proof of Lemma 2.1. Let B1(M) be the space of smooth exact 1-forms on M . We
have ϕ]r(a)−r(a)∈ B1(M) for any ϕ ∈Dvol and a ∈ H 1(M) since [ϕ]r(a)] = a=
[r(a)]∈ H 1(M). Since the exterior derivative d gives an isomorphism from C∞0 (M)
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to B1(M), we have a unique fϕ(a) ∈ C∞0 (M) satisfying d fϕ(a) = ϕ]r(a)− r(a).
The equality

(ϕψ)]r(a)− r(a)= ϕ]r(a)− r(a)+ϕ∗(ψ]r − r)(ϕ∗a)

for ϕ,ψ ∈Dvol and a ∈ H 1(M), and the injectivity of d on C∞0 (M) imply fϕψ(a)=
fϕ(a)+ (ϕ] fψ)(a). �

Let u : H 1(M)→ Z1(M) be another linear section of the projection Z1(M)→
H 1(M). We have two crossed homomorphisms fr and fu in Lemma 2.1 with
respect to r and u respectively. The proof of the following lemma is almost the
same as that of Lemma 2.1, so we omit it:

Lemma 4.1. There is a unique homomorphism

q = qru : H 1(M)→ C∞0 (M)

such that dq(a)= u(a)− r(a) for all a ∈ H 1(M). Moreover, the equality

fu,ϕ − fr,ϕ = ϕ]q − q

holds in Hom(H 1(M),C∞0 (M)).

Proof of Lemma 2.2. Note that κ(a) vol−1(A)p ∧∧r a ∈ �n(M) is exact for
any a ∈ ∧l H 1(M) by the definition of κ . Fix a basis {ei } ⊂

∧l H 1(M) and take
µ(ei ) ∈�n−1(M) arbitrarily such that dµ(ei )= κ(ei ) vol−1(A)∧∧r ei for all i .
The linear combination of µ(ei )’s give the required homomorphism. �

For each ã = a1⊗ · · ·⊗ ah ∈⊗h H 1(M), set

Kh(ã)= Kh
(
r(a1)⊗ · · ·⊗ r(ah), q(a1)⊗ · · ·⊗ q(ah)

)
,

where r and q are the homomorphisms in Lemma 2.1 and 4.1 respectively. Then
the linear extension defines a homomorphism

Kh : ⊗h H 1(M)→�h−1(M)

for each h. The composition
⊗h H 1(M)→ ∧h H 1(M)

∧
r−→ �h(M) is also de-

noted by the same symbol,
∧

r , where the first homomorphism is the projection⊗h H 1(M)→∧h H 1(M) given by ã = a1⊗ · · ·⊗ ah 7→ a = a1 ∧ · · · ∧ ah .
Similarly, we use the same symbol for a homomorphism on

∧h H 1(M) and the
composition of it with the projection

⊗h H 1(M)→∧h H 1(M). For example, the
image of ã by the composition

⊗l H 1(M)→∧l H 1(M)
µ→�n−1(M) is denoted

by µ(ã) := µ(a). There is no confusion since we can distinguish them by a or ã.
For each permutation σ ∈ Sh , let

⊗h H 1(M) 3 ã 7→ ãσ ∈⊗h H 1(M) be the
linear extension of a1⊗ · · ·⊗ ah 7→ aσ(1)⊗ · · ·⊗ aσ(h).
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Lemma 4.2. Let ã ∈⊗h H 1(M), b ∈ H 1(M), and ϕ ∈ Dvol. Then:

(i)
∧

u ã−∧r ã = dKh(ã).

(ii) ϕ]Kru,h = Kϕ]rϕ]u,h , where Kru,h and Kϕ]rϕ]u,h are Kh with respect to r, u, and
ϕ]r, ϕ]u respectively.

(iii) r(b)∧Kh(ã)=−Kh+1(b⊗ ã)+ q(b)
∧

r ã+ q(b)dKh(ã).

(iv) Kh(ã)∧ r(b)= Kh+1(ã⊗ b)− (−1)h
∧

r ã · q(b)−Kh(ã)∧ dq(b).

(v) ϕ]Kh(ã)∧ϕ]r(b)=ϕ]Kh+1(ã⊗b)−(−1)h
∧
ϕ]r ã ·ϕ]q(b)−ϕ]Kh(ã)∧dϕ]q(b).

(vi) Kh(ãσ )≡ sgn(σ )Kh(ã)(mod d�h−2(M)) for each σ ∈ Sh .

Proof. (i) and (ii) follow immediately from the definition of Kh . (iii), (iv), (v), and
(vi) are direct consequences of Lemmas 3.1 and 3.2. �

5. Bott homomorphisms

In this section we shall recall Bott homomorphisms [Vaisman 1987], which are
useful for our computation.

Let G be a Lie group, but we consider only G = GL(n,R) in this paper. Let
π : P→M be a principal G-bundle over a manifold M . Let Ah with h=0, 1, . . . , r
be r + 1 connection forms on P , and

1r :=
{
(t0, t1, . . . , tr ) ∈ Rr+1

∣∣∣ th = 0,
r∑

h=0
th = 1

}
the standard r -simplex. Then we have the average connection Ã =∑r

h=0 th Ah on
the product bundle π × id : P ×1r → M ×1r . Let I k(G)(= I k

n ) be the vector
space of invariant, symmetric, multilinear functions on the k-th product gk of the
Lie algebra g of G with values in R. For each p ∈ I k(G), put 1(A0, . . . , Ar )p =
(−1)

r+1
2
∫
1r p(F (k)

Ã
), where FÃ is the curvature form of Ã, the orientation of 1r is

given by dt1∧· · ·∧dtr with t0= 1−∑r
h=1 th , and p(FÃ, FÃ, . . . , FÃ) is denoted by

p(F (k)
Ã
). Then we have Bott homomorphisms1(A0, . . . , Ar ) : I k(G)→�2k−r (M).

They have the following properties:

(i) d1(A0, . . . , Ar )p = ∑r
h=0(−1)h1(A0, . . . , Ah−1, Ah+1, . . . , Ar )p, in par-

ticular, d1(A0)p = 0 for r = 0.

(ii) 1(A0) : I k(G) → �∗(M) is the Chern–Weil homomorphism; that is, the
equality 1(A0)p = p(F (k)A0

) holds.

(iii) 1(A0, A1)p = k
∫ 1

0 p(α, F (k−1)
At

) dt , where α = A1 − A0 and At = A0 + tα.
Let Q be another principal G-bundle over M , and ϕ̃ : Q → P a G-bundle
isomorphism over a diffeomorphism ϕ of M . The pushforward connection of
A by ϕ̃ is denoted by ϕ̃∗A := (ϕ̃−1)∗A.

(iv) 1(ϕ̃∗A0, ϕ̃∗A1, . . . , ϕ̃∗Ar )p = ϕ∗1(A0, A1, . . . , Ar )p.
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6. Proof of Theorem 2.3

Recall that for any integer h and any homomorphism v : H 1(M) → Z1(M),∧
v :
∧h H 1(M)→ �h(M) is defined as the linear extension of a1 ∧ · · · ∧ ah 7→

v(a1)∧· · ·∧v(ah). We use the same symbol
∧
v for the composition

⊗h H 1(M)→∧h H 1(M) → �h(M) as mentioned above. We consider mainly the cases of
v = r, u, ϕ]r, . . . .

For any ϕ,ψ ∈ Dvol and ã = a1⊗ · · ·⊗ al ∈⊗l H 1(M), put

fϕ(ã)=
l∑

m=1

(−1)m−1∧
ϕ]r ã1,m−1 ∧ fϕ(am)

∧
r ãm+1,l

and

fϕ,ψ(ã)

=−
∑

1≤k<m≤l

(−1)m+k∧
(ϕψ)]r ã1,k−1 ∧ϕ]( fψ)(ak)

∧
ϕ]r ãk+1,m−1 ∧ fϕ(am)

∧
r ãm+1,l,

where ãi, j = ai ⊗ · · ·⊗ a j with i < j and
∧
∗ai+1,i = 1. Linear extension defines

the maps
Dvol 3 ϕ 7→ fϕ ∈ Hom

(⊗l H 1(M),�l−1(M)
)

and
D2

vol 3 (ϕ, ψ) 7→ fϕ,ψ ∈ Hom
(⊗l H 1(M),�l−2(M)

)
.

Lemma 6.1. For any ϕ,ψ ∈ Dvol, and ã ∈⊗l H 1(M), the following equalities
hold:

(i) d fϕ(ã)=
∧
ϕ]r ã−∧r ã.

(ii) dϕ]( fψ)(ã)=
∧
(ϕψ)]r ã−∧ϕ]r ã.

(iii) ϕ] fψ(ã)− fϕψ(ã)+ fϕ(ã)= d fϕ,ψ(ã).

Proof. For (i), it is sufficient to show the equality for ã= a1⊗· · ·⊗al ∈⊗l H 1(M).
Direct computation shows

d fϕ(ã)=
l∑

m=1

∧
ϕ]r ã1,m−1 ∧ d fϕ(am)∧

∧
r ãm+1,l

=
l∑

m=1

∧
ϕ]r ã1,m−1 ∧ {ϕ]r(am)− r(am)} ∧

∧
r ãm+1,l

=
l∑

m=1

∧
ϕ]r ã1,m ∧

∧
r ãm+1,l −

l∑
m=1

∧
ϕ]r ã1,m−1 ∧

∧
r ãm,l

=∧ϕ]r ã−∧r ã.
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A similar computation to (i) shows (ii) and (iii), so we omit it. �

Lemma 6.2. For any ϕ ∈ Dvol and ã = a1⊗ · · · ⊗ al ∈⊗l H 1(M), the following
equalities hold:

(i) fϕ(ã)= fϕ(ã1,l−1)∧ r(al)+ (−1)l−1∧
ϕ]r ã1,l−1 ∧ fϕ(al).

(ii) fϕ(ã)= fϕ(a1)
∧

r ã2,l −ϕ]r(a1)∧ fϕ(ã2,l).

(iii) fϕ(ãσ ) = sgn(σ ) fϕ(ã)+ an exact form, where σ ∈ Sl is any permutation of
degree l and ãσ = aσ(1)⊗ · · ·⊗ aσ(l).

Proof. (i) and (ii) directly follow from the definition of f .
For (iii), we proceed by induction on l. It is trivial for l = 1. For l = 2 and

σ = (1, 2) ∈ S2, the equality fϕ(a1 ⊗ a2)+ fϕ(a2 ⊗ a1) = d{− fϕ(a1) fϕ(a2)} is
a desired one. Assume that the statement holds for l − 1(= 1). Let σ ∈ Sl . To
begin with, we consider the case of σ(l) = l. We can consider σ as an element
of Sl−1. By assumption, there exists h ∈ �l−3(M) such that fϕ(ãσ {1,l−1}) =
sgn(σ ) fϕ(ã1,l−1)+ dh, where ãσ {1,l−1} = aσ(1)⊗ · · ·⊗ aσ(l−1). Using (i), we have

fϕ(ãσ )= fϕ(ãσ {1,l−1}⊗ al)

= fϕ(ãσ {1,l−1})∧ r(al)+ (−1)l−1∧
ϕ]r ãσ {1,l−1} ∧ fϕ(al)

= {sgn(σ ) fϕ(ã1,l−1)+ dh} ∧ r(al)+ (−1)l−1 sgn(σ )
∧
ϕ]r ã1,l−1 ∧ fϕ(al)

= sgn(σ ) fϕ(ã)+ d{h ∧ r(al)}.
In the other cases we consider that σ can be given as the product of a transposition
and a permutation of essentially lower degree such as the case above. Using this
and induction hypothesis we can show the l case. By induction, we complete the
proof of (iii). �

For each ϕ ∈ Dvol, we define the map

J̃ϕ : ⊗l H 1(M)→�n−1(M)

by

J̃ϕ(ã)=1(A, ϕ∗A)p∧∧r ã+1(ϕ∗A)p∧ fϕ(ã)+ϕ]µ(ã)−µ(ã)
for each ã ∈⊗l H 1(M).

Lemma 6.3. (i) d J̃ϕ(ã) = 0 for any ϕ ∈ Dvol and ã ∈⊗l H 1(M). Put Jϕ(ã) =
[ J̃ϕ(ã)].

(ii) The map Jϕ :
⊗l H 1(M)→ H n−1(M) is a homomorphism.

(iii) The map J : Dvol 3 ϕ 7→ Jϕ ∈ Hom
(⊗l H 1(M), H n−1(M)

)
is a crossed

homomorphism.
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Proof. (i) Using the definitions, Lemma 2.2, Lemma 6.1, and properties of Bott
homomorphisms, we have

d J̃ϕ(ã)= {1(ϕ∗A)p−1(A)p} ∧∧r ã+1(ϕ∗A)p∧ {∧ϕ]r ã−∧r ã
}

+ϕ∗
{
κ(ϕ∗ã) vol−1(A)p∧∧rϕ

∗ã
}− {κ(ã) vol−1(A)p∧∧r ã

}
= 0.

(ii) By (i), ã 7→ Jϕ(ã) is well-defined as a map. Its linearity is obvious.

(iii) Direct computation using Lemma 6.1 and properties of Bott homomorphisms
shows the equality

ϕ] J̃ψ(ã)− J̃ϕψ(ã)+ J̃ϕ(ã)

= d
[
1(A, ϕ∗A, (ϕψ)∗A)p∧∧r ã+1((ϕψ)∗A)p∧ fϕ,ψ(ã)

−1(ϕ∗A, (ϕψ)∗A)p∧ fϕ(ã)
]

in �n−1(M). This implies that the map J is a crossed homomorphism. �

Let B be another GL(n,R)-connection on T M and u : H 1(M)→ Z1(M) another
linear section of the projection Z1(M)→ H 1(M). Let

ν̃ : ⊗l H 1(M)→�n−1(M)

be the homomorphism defined by

ν̃(ã)= µT (ã)−µS(ã)+1(A, B)p∧∧u ã+1(A)p∧Kl(ã)

for each ã ∈⊗l H 1(M). Here µT and µS are µ’s in Lemma 2.2 with respect to
T = {p, B, u} and S = {p, A, r} respectively.

Lemma 6.4. (i) d ν̃(ã)= 0 for any ã ∈⊗l H 1(M).

(ii) The map
ν : ⊗l H 1(M) 3 ã 7→ [ν̃(ã)] ∈ H n−1(M)

is a well-defined homomorphism.

Proof. (i) Using Lemma 2.2, Lemma 4.2, and properties of the Bott homomorphisms,
we have

d ν̃(ã)= κ(ã) vol−1(B)p∧∧u ã− {κ(ã) vol−1(A)p∧∧r ã
}

+{1(B)p−1(A)p}∧∧u ã+1(A)p∧ {∧u ã−∧r ã
}

= 0.

(ii) By (i), ν is defined as a map and its linearity is clear. �
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J̃ϕ(ã) is written as

J̃S,ϕ(ã)=1(A, ϕ∗A)p∧∧r ã+1(ϕ∗A)p∧ fr,ϕ(ã)+ϕ]µS(ã)−µS(ã)

for the choice S = {p, A, r, µS} of the ingredients to define it. S is doubly used,
but there is no confusion, and fr denotes the f in Lemma 2.1 with respect to r . We
consider also

J̃T,ϕ(ã)=1(B, ϕ∗B)p∧
∧

u ã+1(ϕ∗B)p∧ fu,ϕ(ã)+ϕ]µT (ã)−µT (ã)

with respect to another choice T = {p, B, u, µT }. We note that p in S and T is
common.

Lemma 6.5. For any ϕ ∈ Dvol and ã ∈⊗l H 1(M), the following equality holds:

J̃T,ϕ(ã)− J̃S,ϕ(ã)= ϕ]ν̃(ã)− ν̃(ã)+ an exact form.

Proof. It is sufficient to show the following equality for ã = a1 ⊗ · · · ⊗ al with
ai ∈ H 1(M):

J̃T,ϕ(ã)− J̃S,ϕ(ã)−
{
ϕ]ν̃(ã)− ν̃(ã)

}
= d

(
{1(A, B, ϕ∗B)p−1(A, ϕ∗A, ϕ∗B)p} ∧

∧
u ã

+ (−1)4k−11(A, ϕ∗A)p∧Kl(ã)− (−1)4k−1{ϕ∗1(A, B)p} ∧ fu,ϕ(ã)

+1(ϕ∗A)p∧
[ l∑

m=1

(−1)m−1{ϕ]Km−1(ã1,m−1)∧ fu,ϕ(am)
∧

u ãm+1,l

+ (−1)m−1∧
ϕ]r ã1,m−1 ∧ fr,ϕ(am)Kl−m(ãm+1,l)

}])
.

Here we note K0(∗)= 0 and
∧
∗∗ã∗+1,∗ = 1.

It is easy to show that the difference of both sides of the expression is equal to 0.
The computation is carried out by using Lemmas 2.1, 4.1, 4.2, and 6.1. But it is
standard, so we omit it. �

Proof of Theorem 2.3. For any ϕ∈Dvol, the homomorphism Jϕ defined in Lemma 6.3
descends to the homomorphism Jϕ :

∧l H 1(M)→ H n−1(M) by Lemma 6.2(iii) and
the closedness of 1(A)p. Here we use the same symbol Jϕ for different domains⊗l H 1(M) and

∧l H 1(M) as mentioned before. Lemma 6.3 implies that the map
J : Dvol → H is a crossed homomorphism. Since a crossed homomorphism is
a 1-cocycle in group cohomology theory, we have the cohomology class [J ] ∈
H 1(Dvol,H) in group cohomology [Brown 1982]. Similarly, the homomorphism ν

defined in Lemma 6.4(ii) descends to a homomorphism ν ∈H by Lemma 4.2(vi).
For any S = {p, A, r, µS} and T = {p, B, u, µT } with common p, Lemma 6.5
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implies JT,ϕ − JS,ϕ = ϕ]ν− ν; hence, JT − JS = δν as 1-cocycles in C1(Dvol,H),
where H= C0(Dvol,H)

δ→ C1(Dvol,H)
δ→ · · · is the cochain complex. Thus, we

have the independence of [J ] from the choice of S except for p ∈ S. �

7. The derivative of J

In this section we will compute the derivative of J along curves in Dvol and show
some results related to volume flux homomorphisms and groups.

Let {ϕs}s∈[0,1] ⊂ Dvol be any smooth curve and Xs the time-dependent vector
field on M defined by dϕs/ds = Xs ◦ϕs . Let

I : C∞(M)→ R

be the homomorphism defined by I (h)= ∫M h vol /
∫

M vol for h ∈C∞(M). Recall
that f is the crossed homomorphism defined in Lemma 2.1.

Lemma 7.1. d fϕs (a)/ds =−ι(Xs)ϕs]r(a)+ I (ι(Xs)ϕs]r(a)) for any a ∈ H 1(M).

Proof. Put Ys := −(ϕ−1
s )∗Xs , where ( · )∗ denotes the push-forward of vector fields.

It satisfies dϕ−1
s /ds = Ys ◦ϕ−1

s . Set b := ϕ∗s a ∈ H 1(M). It is constant with respect
to s and we have d fϕs (a)= (ϕ−1

s )∗r(b)− r(a). Using Cartan’s formula for the Lie
derivative L of differential forms, we have

d
{ d

ds
fϕs (a)

}
= d

ds
{(ϕ−1

s )∗r(b)} = (ϕ−1
s )∗LYs r(b)

= (ϕ−1
s )∗{dι(Ys)r(b)+ ι(Ys)dr(b)} = −d{ι(Xs)ϕs∗r(b)}

= d{−ι(Xs)ϕs]r(a)+ I (ι(Xs)ϕs]r(a))}.
Since (d fϕs/ds)(a) and −ι(Xs)ϕs]r(a)+ I (ι(Xs)ϕs]r(a)) belong to C∞0 (M), we
obtain the lemma. �

In the following lemma, fϕ and µ are the homomorphisms from
⊗l H 1(M) to

�n−1(M):

Lemma 7.2. For any ã1,l = a1 ⊗ · · · ⊗ al and ã ∈ ⊗l H 1(M), the following
equalities hold:

(i) d
ds

fϕs (ã1,l)= d
{∑l

m=1(−1)mι(Xs)
(∧

ϕs]r ã1,m−1
)∧ fϕs (am)

∧
r ãm+1,l

}
+∑l

m=1(−1)m−1∧
ϕs]r ã1,m−1 ∧ I (ι(Xs)ϕs]r(am))

∧
r ãm+1,l

− ι(Xs)
(∧

ϕs]r ã1,l
)
.

(ii) d
ds
{ϕs]µ(ã)−µ(ã)} = −κ(ã)ι(Xs) vol+{ι(Xs)1(ϕs∗A)p} ∧∧ϕs]r ã

+1(ϕs∗A)p∧ ι(Xs)
(∧

ϕs]r ã
)− d{ι(Xs)ϕs]µ(ã)}.
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Proof. We note that ϕ∗s a j ∈ H 1(M) is constant with respect to s.

(i) Similar to the proof of Lemma 7.1, we get

d
ds
(∧

ϕs]r ã1,m−1
)=−d

{
ι(Xs)

(∧
ϕs]r ã1,m−1

)}
,

and using Lemma 7.1, we have

d
ds

fϕs (ã1,l)=
l∑

m=1

(−1)md
{
ι(Xs)

(∧
ϕs]r ã1,m−1

)}∧ fϕs (am)
∧

r ãm+1,l

−
l∑

m=1

(−1)m−1∧
ϕs]r ã1,m−1 ∧

{
ι(Xs)ϕs]r(am)

}∧
r ãm+1,l

+
l∑

m=1

(−1)m−1∧
ϕs]r ã1,m−1 ∧ I (ι(Xs)ϕs]r(am))

∧
r ãm+1,l .

Computing the first term d{. . . }(= RH S1) in the right hand side of (i), and
comparing this result with the last equality, we have the desired equality. In the
computation, we note that

∑l
m=1 =

∑l
m=2 in RH S1 and that the interior product

is an antiderivation of degree −1.

(ii) Using Cartan’s formula for the Lie derivative, we can show (ii) by direct
computation. �

Lemma 7.3. The following equalities hold:

(i) d
ds (ϕs∗A − A) = dϕs∗Aβs − ι(Xs)Fϕs∗A for some βs ∈ 0(End(T M)), where
dϕs∗A denotes the covariant exterior derivative with respect to ϕs∗A.

(ii) d
ds1(ϕs∗A)p =−d {ι(Xs)1(ϕs∗A)p}.

(iii) d
ds1(A, ϕs∗A)p =−ι(Xs)1(ϕs∗A)p+ d Rs for some Rs ∈�4k−1(M).

Proof. For (ii), since 1(ϕs∗A)p = ϕs∗1(A)p is a closed form, we can show the
equality by using Cartan’s formula.

Equalities (i) and (iii) can be obtained in the same way as the proofs of Lemma
4.2 in [Kasagawa 2008] and the equality below (5.1) in the same paper, so we omit
the proofs. �

For each p ∈ I 2k
n , let

(7-1) L̃, L̃+ : H n−1(M)→ Hom
(⊗l H 1(M), H n−1(M)

)
be the homomorphisms defined as the linear extensions of

L̃(w)(ã)= p(M)∪
l∑

m=1

(−1)m−1〈am ∪w, [M]〉
m−1⋃
j=1

a j ∪
l⋃

j=m+1
a j

/∫
M

vol
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and
L̃+(w)(ã)=−κ(ã)w+ L̃(w)(ã)

for ã = a1⊗ · · ·⊗ al ∈⊗l H 1(M).
The following lemma can be easily checked, so we omit the proof.

Lemma 7.4. For any w ∈ H n−1(M), ã ∈ ⊗l H 1(M), and σ ∈ Sl , the equalities
L̃(w)(ãσ ) = sgn(σ )L̃(w)(ã) and L̃+(w)(ãσ ) = sgn(σ )L̃+(w)(ã) hold. Hence, L̃
and L̃+ induce the homomorphisms L and L+ in (2-1) respectively.

Proposition 7.5. For any smooth curve {ϕs} ⊂ Dvol, the equality

(7-2) d
ds

Jϕs = L+([ι(Xs) vol]) ∈H

holds. Here, Xs is the time-dependent vector field on M given by dϕs/ds = Xs ◦ϕs .

Proof. To begin with, we compute the derivative d J̃ϕs (ã)/ds for each

ã = a1⊗ · · ·⊗ al ∈⊗l H 1(M).

By using Lemmas 7.1, 7.2, and 7.3, we have

d
ds

J̃ϕs (ã)

=
{ d

ds
1(A, ϕs∗A)p

}
∧∧r ã+

{ d
ds
1(ϕs∗A)p

}
∧ fϕs (ã)

+1(ϕs∗A)p∧ d
ds

fϕs (ã)+ d
ds
{ϕs]µ(ã)−µ(ã)}

= −κ(ã)ι(Xs) vol

+1(ϕs∗A)p∧
{ l∑

m=1
(−1)m−1∧

ϕs]r ã1,m−1∧ I (ι(Xs)ϕs]r(am))
∧

r ãm+1,l

}
+ d

[
Rs ∧

∧
r ã−{ι(Xs)1(ϕs∗A)p} ∧ fϕs (ã)

+1(ϕs∗A)p∧
{ l∑

m=1
(−1)mι(Xs)

(∧
ϕs]r ã1,m−1

)∧ fϕs (am)
∧

r am+1,l

}
− ι(Xs)ϕs]µ(ã)

]
.

Since ϕs]r(am)∧ vol = 0, we get {ι(Xs)ϕs]r(am)} vol = ϕs]r(am)∧ ι(Xs) vol.
By integrating this on M , we obtain

I (ι(Xs)ϕs]r(am))

∫
M

vol= 〈[am] ∪ [ι(Xs) vol], [M]〉.

Using these equalities and linearity, we have

d J̃ϕs (ã)/ds = [d Jϕs (ã)/ds] = L̃+([ι(Xs) vol])(ã)
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for each ã; therefore, we obtain d Jϕs/ds = L̃+([ι(Xs) vol]) as homomorphisms
from

⊗l H 1(M) to H n−1(M). By Lemma 7.4, we have the proposition. �

Proposition 2.4 and Theorem 2.5, which are results related with volume flux
homomorphisms and groups, easily follow from Proposition 7.5, so we show them
and their corollaries here.

Proof of Proposition 2.4. We integrate the equality in Proposition 7.5 with respect
to s for [ϕs] ∈ D̃vol,0. Since the map L+ is linear and Jid = 0, we have

Jϕ1 = L+
(∫ 1

0
[ι(Xs) vol] ds

)
= L+(Flux∼([ϕs])).

This implies the proposition. �

Proof of Theorem 2.5. Take [ϕs] ∈ π−1(id) ⊂ D̃vol,0. Since ϕ0 = ϕ1 = id and
Jp,id(a)= 0 for any (p, a) ∈P, by Proposition 2.4 we have −κp(a)Flux∼([ϕs])+
L p(Flux∼([ϕs]))(a) = 0; therefore, Flux∼([ϕs]) ∈ ker L p( · )(a) if κp(a) = 0,
otherwise Flux∼([ϕs]) ∈ Im L p( · )(a). Since the flux homomorphism is defined
independently of (p, a) ∈ P, the theorem follows. �

Let Pontk(M) be the space of the Pontryagin classes lying in H 4k(M). As an
application of Theorem 2.5, we can show the following corollary:

Corollary 7.6. Let M be a closed oriented smooth manifold of dimension n with a
volume form vol satisfying one of the following conditions:

(i) n = 4k and dim Pontk(M)= 1,

(ii) n = 4k+ 1 and dim Pontk(M)= 2, or

(iii) there exists a rational homology n− 1 sphere N ⊂ M separating M into two
connected submanifolds M1 and M2 with boundaries N and −N satisfying⋃n H 1(Mi , N )= H n(Mi , N ) with i = 1, 2.

Then the volume flux group of (M, vol) is trivial; that is, 0vol(M)= {0}.
Proof. (i) By the assumption, there is a nonzero Pontryagin class p(M) ∈ H n(M).
Take a = 1 ∈∧0 H 1(M)∼= R. The pair (p, 1) belongs to PrP0 in Theorem 2.5.
Since the map L p is the zero map, we have Im L p( · )(1)= {0}. By Theorem 2.5,
we have the result.

(ii) By the assumption, there are Pontryagin classes p(M) and q(M) which are
linearly independent in H n−1(M). By Poincaré duality, we can take a, b ∈ H 1(M)
satisfying p(M)∪a 6=0 and q(M)∪b 6=0 in H n(M). Then the pairs (p, a) and (q, b)
belong to PrP0, and we have Im L p( · )(a)=Rp(M) and Im Lq( · )(b)=Rq(M).
Since their intersection is {0}, the result follows.
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(iii) Let ιi : Mi ↪→ M with i = 1, 2 be the inclusions. Then we can show the
induced homomorphism ι∗1 + ι∗2 : H j (M1, N )⊕ H j (M2, N )→ H j (M) is an iso-
morphism for each 1 ≤ j ≤ n − 1. By the assumption, there exist ei1, . . . , ein ∈
H 1(Mi , N ) with

⋃n
j=1 ei j 6= 0 in H n(Mi , N ) for i = 1, 2. Put ai = ι∗i

(⋃n
j=1 ei j

) ∈
H n(M) with i = 1, 2, the pairs (1, a1) and (1, a2) then belong to PrP0, where
p = 1 ∈ I 0

2n . By the definition of the homomorphism L = L p=1, we have
Im L( · )(ai ) ⊂ ι∗i (H

n−1(Mi , N )) for i = 1, 2. Using Theorem 2.5, we have
0vol(M)⊂ ι∗1(H n−1(M1, N ))∩ ι∗2(H n−1(M2, N ))= {0}. �

We remark that Kędra, Kotschick, and Morita [2006] have obtained various
conditions for the volume flux group 0vol(M) to vanish. (i) in Corollary 7.6 is
one of them. The case of a connected sum in (iii) can also be obtained from
their stronger results for volume flux groups. Moreover, in the case of (i) in
Corollary 7.6, the volume flux homomorphism Flux∼ descends to a homomorphism
Flux : Dvol,0→ H n−1(M)/0vol(M)= H n−1(M), which is also called the volume
flux homomorphism. In this case they also proved that Flux extends to a crossed
homomorphism on the whole group Dvol, but they didn’t give an explicit formula
of it.

Corollary 7.7. In the case of (i) in Corollary 7.6, take a p ∈ I 2k
n such that

〈p(M), [M]〉 = ∫
M vol. Then the crossed homomorphism J with respect to p

is rewritten as

J : Dvol→ H n−1(M), Jϕ = [1(A, ϕ∗A)p+ϕ∗µ−µ],
and it is an extension of the flux homomorphism Flux as a crossed one.

Proof. Since l = n − 4k = 0, we have
∧l H 1(M) ∼= R. Then the target of J can

be considered as H n−1(M). By the same reason, we have the simple form of J
as above. In particular, µ is an (n− 1)-form satisfying dµ= vol−1(A)p. Since
L = 0, Proposition 2.4 and 0vol(M)= {0} imply that the restriction of J to Dvol,0

is equal to Flux∼ = Flux. �

This corollary also gives an example of the next proposition. We return to the
situation of Theorem 2.3.

Proposition 7.8. If the homomorphism L+ is nontrivial, so is the cohomology class
[J ] in Theorem 2.3.

Proof. Since Dvol,0 acts trivially on the target of J , the restriction J |Dvol,0 is a usual
homomorphism. Moreover, the assumption and Proposition 2.4 imply that it is
nonzero since the flux homomorphism Flux∼ is surjective. The cohomology class
of a nontrivial homomorphism is also nontrivial. Thus, the restriction [J |Dvol,0] of
the class [J ] in Theorem 2.3 is nonzero; hence, so is [J ]. �
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Since the flux homomorphism Flux∼ is surjective, the image J (Dvol,0) of Dvol,0

by J coincides with Im L+ by Proposition 2.4. This implies that J descends to a
map

J : π0Dvol→H/ Im L+.

The following lemma follows from Theorem 2.3:

Lemma 7.9. The map J is a crossed homomorphism and its cohomology class

[J] ∈ H 1(π0Dvol,H/ Im L+)

depends only on p, not on the choice of A, r and µ.

Here we give a trivial example of J .

Example 7.10. We consider the standard n-dimensional torus T n = Rn/Zn . Let
(x1, . . . , xn) ∈ Rn be the standard coordinates of Rn . The volume form dx1∧ · · ·∧
dxn also gives the standard one vol on T n with

∫
T n vol=1. One-forms dx1, . . . , dxn

give a basis [dx1], . . . , [dxn] of H 1(T n). Put Y = [dx1] ∧ · · · ∧ [dxn]. Then this
is the base of

∧n H 1(T n).
We consider the case of p= 1; hence, k = 0, l = n−4k = n, and a connection A

is not needed. We take the section r : H 1(T n)→ Z1(T n) given by r([dx i ])= dx i

with i = 1, . . . , n. Since κ(Y ) vol−∧r Y = 0, we can take µ = 0. Thus, we
have the crossed homomorphism J : Dvol → H = Hom

(∧n H 1(T n), H n−1(T n)
)
.

In this case we have Jϕ(a) = [ fϕ(a)] because µ = 0 and p = 1. Since κ(Y ) = 1
and L(w)(Y ) = w for any w ∈ H n−1(T n), which are easily checked, we have
Jϕ(Y ) = 0 for any ϕ ∈ Dvol,0 by Proposition 2.4. Let ϕ ∈ SL(n,Z) ⊂ Dvol. We
have ϕ]r(a)− r(a)= 0 for all a ∈ H 1(T n). This implies fϕ(a)= 0 hence Jϕ = 0.
Thus, J descends to a crossed homomorphism J∼ : π0Dvol→H, whose image of
SL(n,Z)(⊂ π0Dvol) is {0}.

Let n=5. There is a split exact sequence 0→K→π0 Diff(T n)→GL(n,Z)→0,
where K =Z∞2 ⊕

(n
2

)
Z2⊕∑n

i=0
(n

i

)
0i+1, by [Hatcher 1978] for n=5 and [Hsiang and

Sharpe 1976] for n = 6. So we have a split one 0→ K → π0Dvol→ SL(n,Z)→ 0.
Here the action of K on H∗(T n) is trivial. The groups 0i+1 of twisted spheres are
finite abelian groups (see [Milnor 2011] and its references). Hence, every element
of K is of finite order. This shows J∼(K )= {0}; hence, Im J∼ = {0}, so we have
J = 0 for the choice of r and µ as above. Its cohomology class [J ] is also zero.

8. Proof of Theorem 2.6

In this section we will prove Theorem 2.6, whose main part is that the crossed
homomorphism J is essentially independent of the choice of volume form on M .
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Let vol and vol′ be two positive volume forms on M . By Moser [1965], there
exist ε >0 and ξ ∈Diff+(M) such that ξ∗ vol= ε vol′. We consider the isomorphism

cξ : Dvol→ Dvol′ with cξ (ϕ)= ξϕξ−1

given by the conjugation by ξ . Let C∞0 (M)
′ be the vector space of smooth functions

on M with integral 0 with respect to vol′. It is easy to see that the map ξ∗ : C∞0 (M)→
C∞0 (M)

′ given by ξ∗h := (ξ−1)∗h for h ∈ C∞0 (M) is a well-defined isomorphism.
Let

ξ] : Hom(H 1(M),C∞0 (M))→ Hom(H 1(M),C∞0 (M)
′)

be the homomorphism defined by (ξ]h)(a) = ξ∗(h(ξ∗(a))) for a ∈ H 1(M) and
h ∈ Hom(H 1(M),C∞0 (M)). We also need the homomorphism

ξ] : H→H

defined in the same way as before. Here we use the same symbol ξ] as above.
We recall that r : H 1(M)→ Z1(M) is an injective linear section of the projection

Z1(M)→ H 1(M) and so is ξ]r . Let f be the crossed homomorphism in Lemma 2.1
with respect to the volume form vol and r , and f ′ with respect to vol′ and ξ]r . Let
J be the crossed homomorphism in Theorem 2.3 with respect to volume forms vol
and S= {p, A, r, µ(=µS)}, and J ′ with respect to vol′ and S′= {p, ξ∗A, ξ]r, ξ]µ}.
Lemma 8.1. The following diagrams commute:

(i)

Dvol
f� Hom(H 1(M),C∞0 (M))

Dvol′

cξ
g

f ′� Hom(H 1(M),C∞0 (M)
′)

ξ]g and (ii)

Dvol
J � H

Dvol′

cξ
g

J ′� H

ξ]
g

.

Proof. Let ϕ ∈ Dvol.

(i) For any a ∈ H 1(M), we have

d{(ξ] fϕ)(a)} = {ξ]ϕ]r}(a)− (ξ]r)(a)= {cξ (ϕ)]ξ]r}(a)− (ξ]r)(a)= d{ f ′cξ (ϕ)(a)};
then (ξ] fϕ)(a)= f ′cξ (ϕ)(a) because (ξ] fϕ)(a), f ′cξ (ϕ)(a)∈C∞0 (M)

′. This implies (i).

(ii) For any a ∈∧l H 1(M), we can show

d{ξ]µ(a)} = κ ′(a) vol′−1(ξ∗A)p∧∧ξ]r a,

where κ ′ is the κ with respect to vol′. Thus, we can take ξ]µ as µ in Lemma 2.2
with respect to vol′ and {p, ξ∗A, ξ]r}. Using (i), we can find (ξ] Jϕ)(a)= J ′cξ (ϕ)(a)
by direct computation. This implies that the diagram commutes. �

Let L+, L ′+ : H n−1(M)→ H be the homomorphisms in (2-1) with respect to
vol and vol′ respectively.
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Lemma 8.2. (i) Im L+ = Im L ′+.

(ii) ξ](Im L+)= Im L ′+.

Proof. Since ξ∗ vol= ε vol′, we have
∫

M vol= ε ∫M vol′ and κ ′ = εκ . Those imply
L ′+ = εL+ and L ′+(ξ∗w)= εξ]{L+(w)} for all w ∈ H n−1(M), which show (i) and
(ii). �

By Lemmas 8.1 and 8.2, we have the following commutative diagram:

π0Dvol
J� H/ Im L+

π0Dvol′

cξ∗
g

J′� H/ Im L+,

ξ]
g

where J and J′ are induced from J and J ′ respectively. By Moser, the inclusion
Dvol ↪→ D is a weak homotopy equivalence. Hence, it induces an isomorphism
π0Dvol ∼= π0D.

Hereafter, we assume that ξ is isotopic to the identity ξ ' id, which is always
possible in Moser’s method. We have the following commutative diagram:

π0D
∼=� π0Dvol

J� H/ Im L+

π0D

wwww
∼=� π0Dvol′

cξ∗=id
g

J′� H/ Im L+,

ξ]=id
g

which implies that any J with respect to vol coincides with some J′ with respect
to vol′. The remaining part of Theorem 2.6 can be shown in the same way as
Theorem 2.3. Thus, we complete the proof of Theorem 2.6.

9. Johnson homomorphisms

Let 6g be a closed oriented surface of genus g = 3, and HZ := H1(6g;Z) its first
homology group with coefficients in Z. Let Diff+(6g) be the group of orientation
preserving diffeomorphisms of 6g with the C∞ topology. The mapping class group
Mg of 6g is the group of path components of Diff+(6g). The standard action of
Mg on HZ induces a well-known representation Mg → Aut(HZ, · ) ∼= Sp(2g,Z),
where · denotes the intersection pairing on HZ. The kernel Ig of the representation
is called the Torelli group. Take a base point ∗ ∈ 6g as depicted in Figure 1,
and fix it. We can consider the mapping class group Mg,∗ of (6g, ∗), which
is the group of path components of the subgroup Diff+(6g, ∗) ⊂ Diff+(6g) of
diffeomorphisms preserving the base point. The kernel Ig,∗ of the composition
Mg,∗→Mg→ Sp(2g,Z) is also called the Torelli group.
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1 k g

γ

δ

∗

Figure 1. A base point ∗ and a bounding pair (γ, δ).

1 i g

bi

ai

bg

ag

b1

a1

Figure 2. A basis ai , bi of HZ.

Let Tγ be a Dehn twist along a simple closed curve (SCC) γ in 6g. Let (γ, δ)
be a bounding pair (BP); that is, a pair of disjoint homologous SCC’s which are
not homologically trivial. A BP map is given by Tγ T−1

δ . D. Johnson [1979]
showed that Ig,∗ are generated by all BP maps. He also defined the (first) Johnson
homomorphism τ = τg : Ig,∗→

∧3 HZ. Let

ϕk = Tγ T−1
δ ∈ Diff+(6g, ∗)

be the BP map for the BP (γ, δ) as depicted in Figure 1. Johnson [1980] calculated
the value of τ at ϕk ∈Mg,∗, which is τ(ϕk)=

(∑k−1
i=1 ai ∧bi

)∧bk . Here {ai , bi }gi=1
is the symplectic basis for HZ as depicted in Figure 2, and the mapping class [ϕk]
of ϕk is also denoted by the same symbol ϕk . Hereafter we use this symbol for a
diffeomorphism and its mapping class.

The Johnson homomorphism τ descends to τ : Ig→
∧3 HZ/HZ, which is also a

Johnson homomorphism, and is denoted by the same letter τ . Here, HZ is considered
a subgroup of

∧3 HZ by the injection HZ 3 x 7→ x ∧ (∑g
i=1 ai ∧ bi

) ∈∧3 HZ. Let
{a∗i , b∗i } be the dual basis of H 1(6g;Z) = H∗Z to {ai , bi }. Poincaré duality gives
the identification HZ

∼= H∗Z by ai 7→ −b∗i , bi 7→ a∗i . Using it, we have∧3 HZ ⊂ HZ⊗
∧2 HZ

∼= Hom(HZ,
∧2 HZ).

The image τ(ϕk)=
(∑k−1

i=1 ai ∧bi
)∧bk ∈

∧3 HZ of ϕk by τ is given, as an element
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of Hom(HZ

∧2 HZ), by

(9-1) τ(ϕk) :
{

ai 7→ bk ∧ ai for 1≤ i ≤ k− 1, ak 7→∑k−1
i=1 ai ∧ bi ,

bi 7→ bk ∧ bi for 1≤ i ≤ k− 1, c 7→ 0,

where c denotes the remaining base elements, and it is given as an element of
H∗Z ⊗

∧2 HZ by

(9-2) τ(ϕk)=−
k−1∑
i=1

{a∗i ⊗ (ai ∧ bk)+ b∗i ⊗ (bi ∧ bk)− a∗k ⊗ (ai ∧ bi )}.

10. The homomorphism L+ in the 2-dimensional case

In this section we will compute the homomorphism L+ defined in Section 2 in the
2-dimensional case with p = 1.

Let M = 6g be a closed oriented surface of genus g = 3 and ω an area form
with area A = ∫

6g
ω. Let {ai , bi } and {a∗i , b∗i } be the dual bases of HZ and H∗Z to

each other in Section 9. Set H = H1(6g) and H∗ = H 1(6g). The bases {ai , bi }
and {a∗i , b∗i } can also be considered bases of H and H∗ respectively.

In this case, since n = l = 2 and p = 1, the homomorphism L+ : H∗ →
Hom

(∧2 H∗, H∗
)

of (2-1) is given by

L+(w)=
[
a 7→ 1

A
{〈c1 ∪w, [6g]〉c2−〈c2 ∪w, [6g]〉c1−〈c1 ∪ c2, [6g]〉w

}]
for w ∈ H∗ and c = c1 ∧ c2 ∈

∧2 H∗. In particular, for w = a∗l , b∗l ∈ H∗ with
1≤ l ≤ g, we have

L+(a∗l ) :


a∗i ∧ a∗j 7→ 0,
b∗i ∧ b∗j 7→ 1

A (−δilb∗j + b∗i δ jl),

a∗i ∧ b∗j 7→ 1
A (a
∗
i δ jl − δi j a∗l ),

and

L+(b∗l ) :


a∗i ∧ a∗j 7→ 1

A (δila∗j − a∗i δ jl),

b∗i ∧ b∗j 7→ 0,
a∗i ∧ b∗j 7→ 1

A (δilb∗j − δi j b∗l ),

for all 1≤ i, j ≤ g, where δi j denotes Kronecker’s delta.
We can represent L+(a∗l ) and L+(b∗l ) as elements of H∗⊗∧2 H as follows:

L+(a∗l )= 1
2A

g∑
i=1

{a∗i ⊗ (ai ∧ bl)+ b∗i ⊗ (bi ∧ bl)− a∗l ⊗ (ai ∧ bi )},(10-1)

L+(b∗l )= 1
2A

g∑
j=1

{a∗j ⊗ (al ∧ a j )+ b∗j ⊗ (al ∧ b j )− b∗l ⊗ (a j ∧ b j )}.(10-2)
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We remark that under the identification
(∧2 H∗

)∗ ∼=∧2 H , the dual basis of
∧2 H∗

to {a∗i ∧ a∗j (i < j), b∗i ∧ b∗j (i < j), a∗i ∧ b∗j (∀i, j)} is given by

{ 12ai ∧ a j (i < j), 1
2 bi ∧ b j (i < j), 1

2ai ∧ b j (∀i, j)} ⊂∧2 H

by our convention.

11. A section r

In this section we will explicitly give a section r as in Section 2, which is needed
in order to define our crossed homomorphism.

Let Ti (1≤ i ≤ g) be compact submanifolds of 6g — as depicted in Figure 3 —
which are diffeomorphic to a 2-torus with two open disks deleted. We consider each
Ti as a submanifold of R2/(2πZ)2 and use the induced coordinates (x, y) ∈ Ti ⊂
R2/(2πZ)2. But we mainly take (x, y)∈ (−π, π]×(−π, π]\(int D2qint D2)⊂ Ti

as depicted in Figure 4. We assume

(−π, π]× [−1, 1] ∪ [−1, 1]× (−π, π] ⊂ (−π, π]× (−π, π] \ (int D2q int D2).

1 i g

bi

ai

Ti

Figure 3. Compact submanifolds Ti of 6g.

i

bi

ai

Ti

ai

bi

π

π

−π
−π

0

∂2∂1

∂2∂1

∼=

x

y

supp βi

supp αi

0

Figure 4. Coordinates of Ti .
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Let ρ : R→ R be a smooth function such that

ρ(x)=


0 if x ≤ 0,
monotone increasing if 0< x < ε,
1 if ε ≤ x,

for a sufficiently small ε > 0. We define closed 1-forms αi , βi ∈ Z1(6g) with
1≤ i ≤ g by

αi (p)=
{

dρ(x) if p = (x, y) ∈ Ti ,

0 if p ∈6g \ Ti ,
βi (p)=

{
dρ(y) if p = (x, y) ∈ Ti ,

0 if p ∈6g \ Ti , .

It is easy to see that {αi , βi } represents the basis {a∗i , b∗i } of H∗.
We use the section r : H∗→ Z1(6g) of the projection Z1(6g)→ H∗ defined

as the linear extension of r(a∗i )= αi and r(b∗i )= βi with 1≤ i ≤ g.

12. BP maps ϕk

In this section, we will define BP maps ϕk with 1< k < g as ω-preserving diffeo-
morphisms. We will compute Jϕk in later sections.

Let (x, y) ∈ Tk be the local coordinates of Tk given in Section 11. We explicitly
give simple closed curves γ and δ on Tk by{(−5

2ε, y
) ∈ Tk | y ∈ R/2πZ

}
and {(

π − 5
2ε, y

) ∈ Tk | y ∈ R/2πZ
}

respectively. A BP map ϕk : 6g→6g is given by

ϕk(p)=

(x, a(x)+ y) if p = (x, y) ∈ [−3ε,−2ε]× (−π, π] ⊂ Tk

(x,−a(x −π)+ y) if p = (x, y) ∈ [π − 3ε, π − 2ε]× (−π, π] ⊂ Tk

p otherwise,

where a : [−3ε,−2ε] → R is a nonincreasing smooth function satisfying

a(t)=
{

0 near t =−3ε
−2π near t =−2ε.

See Figure 5 for the support of ϕk . It is easy to check ϕk ∈ Dω = {ϕ ∈ Diff(6g) |
ϕ∗ω = ω} and

ϕ−1
k (p)=


(x,−a(x)+ y) if p = (x, y) ∈ [−3ε,−2ε]× (−π, π] ⊂ Tk,

(x, a(x −π)+ y) if p = (x, y) ∈ [π − 3ε, π − 2ε]× (−π, π] ⊂ Tk,

p otherwise.
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ak

bk

π

π

−π
−π

0

∂2∂1

x

y δγ

− 5
2ε

π − 5
2ε

−2ε−3ε π − 2επ − 3ε

supp ϕk supp ϕk

ε

ε

supp αk

supp βk

0

i

Ti

∂2∂1

∼=

δ

γ

Figure 5. Simple closed curves γ and δ and suppϕk .

13. Jϕk

In this section we will compute Jϕk and prove Theorem 2.7 without showing some
lemmas, whose proofs are given in the next section.

In the case of (M, vol) = (6g, ω), the crossed homomorphism J is written as
J : Dω 3 ϕ 7→ Jϕ ∈H= Hom

(∧2 H∗, H∗
)
, where Jϕ(a)= [ J̃ϕ(a)] ∈ H∗ and

J̃ϕ(a)= fϕ(c1)r(c2)−ϕ]r(c1) · fϕ(c2)+ϕ]µ(a)−µ(a)
for a = c1 ∧ c2 ∈

∧2 H∗.
Hereafter, we fix k as 1< k < g and write ϕ = ϕk for simplicity.
Let ∗ ∈ 6g be the base point depicted in Figure 1 as before. Since ϕ∗βk − βk

is exact, we have a unique function h ∈ C∞(6g) satisfying dh = ϕ∗βk − βk and
h(∗) = 0. Let 6k− and 6k+ be the connected components of 6g \ Tk such that
∗ ∈6k+. The following lemma is easily checked, so its proof is omitted:

Lemma 13.1. (i) h ≡−1 on 6k−.

(ii) h ≡ 0 on 6k+.

Set h0 :=
∫
6g

hω.
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Lemma 13.2. Assume ϕ = ϕk with 1< k < g.

(i) Jϕ(a)= 0 for a = a∗i ∧a∗j (∀i, j) or a = b∗i ∧b∗j (i 6= k, j 6= k) or a = a∗i ∧b∗j
(i 6= j , i 6= k, j 6= k).

(ii) For a = b∗i ∧ b∗k (i 6= k), we have Jϕ(a)=
{
(1+ h0/A)b∗i if i < k,
(h0/A)b∗i if i > k.

(iii) For a = a∗i ∧ b∗k (i 6= k), we have Jϕ(a)=
{
(1+ h0/A)a∗i if i < k,
(h0/A)a∗i if i > k,

(iv) For a = a∗k ∧ b∗j with j 6= k, we have Jϕ(a)= 0.

(v) For a = a∗i ∧ b∗i , we have Jϕ(a)=

−(1+ h0/A)a∗k if i < k,
0 if i = k,
−(h0/A)a∗k if i > k,

For a while we admit this lemma. It implies that Jϕ is given by

Jϕ =
∑
i<k

(b∗i ∧ b∗k )
∗⊗

(
1+ h0

A

)
b∗i +

∑
i>k

(b∗i ∧ b∗k )
∗⊗ h0

A
b∗i

+
∑
i<k

(a∗i ∧ b∗k )
∗⊗

(
1+ h0

A

)
a∗i +

∑
i>k

(a∗i ∧ b∗k )
∗⊗ h0

A
a∗i

+
∑
i<k

(a∗i ∧ b∗i )
∗⊗

(
− 1− h0

A

)
a∗k +

∑
i>k

(a∗i ∧ b∗i )
∗⊗

(
− h0

A

)
a∗k

as an element of
(∧2 H∗

)∗⊗H∗. Under the identification
(∧2 H∗

)∗ ∼=∧2 H , which
is given by (a∗i ∧a∗j )

∗ 7→ 1
2ai∧a j , (b∗i ∧b∗j )

∗ 7→ 1
2 bi∧b j , and (a∗i ∧b∗j )

∗ 7→ 1
2ai∧b j

by our convention as remarked before, we have

Jϕ =1
2

∑
i<k

{b∗i ⊗ (bi ∧ bk)+ a∗i ⊗ (ai ∧ bk)− a∗k ⊗ (ai ∧ bi )}

+ h0

2A

g∑
i=1

{b∗i ⊗ (bi ∧ bk)+ a∗i ⊗ (ai ∧ bk)− a∗k ⊗ (ai ∧ bi )}

as an element of H∗⊗∧2 H ; therefore, by (9-2) and (10-1), we obtain

Jϕ =− 1
2τ(ϕ)+ h0L+(a∗k ).

Proof of Theorem 2.7. As mentioned before, we use the same symbol ϕ for the
mapping class [ϕ] ∈ π0D∼= π0Dω of ϕ ∈Dω. The computation above implies Jϕ =
− 1

2 j ◦τ(ϕ) for ϕ = ϕk (1< ∀k < g), where j is the homomorphism (2-2). Johnson
[1980] showed that τ is π0D-equivariant, which means τ(ψϕψ−1)= ψ∗{τ(ϕ)} for
any ϕ ∈ Ig and ψ ∈ π0D. J is also π0D-equivariant on Ig; in fact, since J is a
crossed homomorphism on π0D, we have Jψϕψ−1 = Jψ +ψ]Jϕ− (ψϕψ−1)]Jψ =
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ψ]Jϕ , where we used (ψϕψ−1)] = id because ψϕψ−1 ∈ Ig. Clearly j is also
π0D-equivariant, which means j (ϕ∗t) = ϕ]{ j (t)} for any t ∈ ∧3 HZ/HZ. Since
all B P maps generate Ig by [Johnson 1979] and are conjugate to some ϕk by an
element of π0D. Thus, J and −1

2 j ◦ τ coincide on all BP maps. This implies
J=− 1

2 j ◦ τ on Ig. �

To show Lemma 13.2, note that we can retake homomorphisms r and µ for every
ϕ ∈ Ig so as to compute Jϕ easily; in fact, we have shown JT,ϕ − JS,ϕ = ϕ]ν− ν
for different choices of S and T with common p in the proofs of Theorem 2.3
and Lemma 6.5. Since ϕ ∈ Ig acts trivially on the cohomology group of 6g, we
obtain JT,ϕ − JS,ϕ = 0. In particular, the value Jϕ is independent of the choice of r
and µ. So we can use r defined in Section 11, namely r(a∗i )= αi and r(b∗j )= β j ,
in the computation below. With regard to µ, for any ϕk and a0 ∈

∧2 H 1(6g) we
take µ(a0) and extend it linearly to µ on whole

∧2 H 1(6g). A connection A is
not needed since we compute J with respect to p = 1. The computation below is
carried out using such r and µ.

Recall that fϕ ∈ Hom(H 1(6g),C∞0 (6g)) in the following lemma is the image
of ϕ = ϕk under the crossed homomorphism f in Lemma 2.1.

Lemma 13.3. We have fϕ(a∗i )= 0 with 1≤ i ≤ g, and

fϕ(b∗j )=
{

0 if 1≤ j ≤ g, j 6= k,
h− h0/A if j = k.

Proof. Since supp(ϕ)∩supp(αi )=∅ (see Figure 5), we have d fϕ(a∗i )=ϕ∗αi−αi=0.
The condition fϕ(a∗i ) ∈C∞0 (6g) implies fϕ(a∗i )= 0. For the same reason, we have
fϕ(b∗j ) = 0 for j 6= k. Since d fϕ(b∗k ) = ϕ∗βk − βk , fϕ(b∗k ) is equal to h up to a
constant. The result follows from the condition fϕ(b∗k ) ∈ C∞0 (6g). �

Next we prove Lemma 13.2 using lemmas in Section 14, which are needed only
for (v) in Lemma 13.2 and are shown there.

Proof of Lemma 13.2. (i) For a= a∗i ∧a∗j , we have
∧

r a= αi ∧α j = 0 and κ(a)= 0.
Hence, we can take µ(a)= 0. Using Lemma 13.3, we have

J̃ϕ(a)= fϕ(a∗i )α j −ϕ∗αi · fϕ(a∗j )+ϕ]µ(a)−µ(a)= 0.

Similarly we obtain the equality for the other cases since all terms in J̃ϕ(a) are
zero.

(ii) Since
∧

r a = 0 and κ(a)= 0, we can take µ(a)= 0. Using Lemma 13.3, we
obtain J̃ϕ(a)=−(h− h0/A)ϕ∗βi . Since ϕ = id and h ≡−1 on suppβi for i < k,
and h ≡ 0 for i > k by Lemma 13.1, we have (ii).

(iii) and (iv) These items are shown in the same way as (i) and (ii), so we omit the
proofs.
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(v) In order to compute Jϕ(a) for a = a∗i ∧ b∗i , we can take µ satisfying µ(a) =
µ−+µ++ 1

Aλxdy− τi by Lemma 14.2 and use the notation there.
Let i 6= k. By Lemma 13.3 we have

J̃ϕ(a)= ϕ∗µ(a)−µ(a)= 1
A
{ϕ∗(λxdy)− λxdy}− (ϕ∗τi − τi ).

By Lemmas 14.3 and 14.4, we obtain, for 1≤ l,m ≤ g,

∫
al

J̃ϕ(a)=


0 if l 6= k,
−(2π2+ A+)/A if l = k, i < k,
−(2π2− A−)/A if l = k, i > k,∫

bm

J̃ϕ(a)= 0.

This case follows from A++ A− = A, h0 = 2π2− A− (which is Lemma 14.5) and
the fact that J̃ϕ(a) is a closed form.

Let i = k. We have

J̃ϕ(a)=−ϕ∗αk · fϕ(b∗k )+ϕ∗µ(a)−µ(a)=
h0

A
αk +ϕ∗µ(a)−µ(a),

where we use ϕ = id and h ≡ 0 on suppαk . By a similar computation of
∫

c J̃ϕ(a)
with c = al, bm as above, we obtain

Jϕ(a)= h0

A
a∗k +
−2π2− (−A−)

A
a∗k = 0

by Lemma 14.5. This implies (v). �

14. The main part of the computation

In this section we will show the lemmas needed to prove Lemma 13.2. These are
the main parts of the computation of Jϕ(a). Throughout this section, we fix the
integer k as 1< k < g.

Let λ : 6g→ [0, 1] be a smooth function with support as depicted in Figure 6
such that 

supp λ⊂ Tk

∂(supp λ)∼=q3 S1

supp dλ⊂ small neighborhood of ∂ (supp λ)
λ≡ 1 on supp λ \ supp dλ.

Since ε > 0 is sufficiently small, we can also assume

T ′k := Tk ∩ {(x, y) | −4ε ≤ x ≤ 0} ⊂ λ−1(1).
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ak

bk

π

π

−π
−π

0

∂2∂1

x

y δγ

− 5
2ε

π − 5
2ε

−2ε−3ε π − 2επ − 3ε

supp ϕk supp ϕk

ε

ε

supp αk

supp βk

supp dλ supp dλ

supp dλ

supp λ

0

Figure 6. Support of λ.

Let λ± : 6g→ [0, 1] be two smooth functions uniquely defined by
λ−+ λ+ λ+ = 1,
supp λ− ⊂6k− ∪ Tk,

supp λ+ ⊂6k+ ∪ Tk,

supp λ− ∩ supp λ+ =∅.

As depicted in Figure 6, supp λ+ and supp λ− are closed subsurfaces of 6g with
one circle boundary and two respectively.

Hereafter, we assume ω|Tk = dx ∧ dy since the crossed homomorphism J is
independent of the choice of ω.

We consider the 2-form d(λx dy) on Tk as that on 6g by extending it by 0 on
6g \Tk . Let ω± ∈�2(6g) be the two closed 2-forms defined by suppω±⊂ supp λ±
and

(14-1) ω−+ d(λx dy)+ω+ = ω.
Set A± =

∫
6g
ω±. We have A−+ A+ = A.

Lemma 14.1. For any i with 1 ≤ i ≤ g and p, q ∈ R with p+ q = 1, there exists
τi ∈�1(6g) satisfying

(i) αi ∧βi = pα1 ∧β1+ qαg ∧βg + dτi ,

(ii) supp τi ⊂ the image of an embedding of a rectangle,

(iii) supp τi ∩ suppϕ ⊂ T ′k , and

(iv) τi |T ′k = s dρ(y) with s =
{

q if i < k,
−p if i = k.
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Figure 7. Support of τi .

Proof. Let ρ be the smooth function on R in Section 11. For any t−, t0, t+ ∈ R

satisfying t− + ε ≤ t0 + ε ≤ t+, we define the smooth function ρW : R→ [0, 1],
where W = {t−, t0, t+, p, q}, by

ρW (t)=



0 if t < t−,
−pρ(t − t0) if t− ≤ t < t−+ ε,
−p if t1+ ε ≤ t < t0
−p+ ρ(t − t0, if t0 ≤ t < t0+ ε,
1− p (= q) if t0+ ε ≤ t < t+,
q{1− ρ(t − t+)} if t+ ≤ t < t++ ε,
0 if t++ ε ≤ t,

for t ∈ R. Let τ̃W ∈ �1(R × [−ε, 2ε]) be the 1-form defined by τ̃W (x, y) =
ρW (x) dρ(y) for (x, y) ∈ R×[−ε, 2ε]. We have

d τ̃W (x, y)=



0 if x < t−,
−p dρ(x − t0)∧ dρ(y) if t− ≤ x < t−+ ε,
0 if t−+ ε ≤ x < t0,
dρ(x − t0)∧ dρ(y) if t0 ≤ x < t0+ ε,
0 if t0+ ε ≤ x < t+,
−q dρ(x − t+)∧ dρ(y) if t+ ≤ x < t++ ε,
0 if t++ ε ≤ x .

By the definition of αi and βi in Section 11, we have αi ∧βi = dρ(x)∧ dρ(y)
on the local coordinates (x, y) ∈ Ti for each 1 ≤ i ≤ g. So, we can appropriately
choose t+, t0, t− ∈ R and an embedding [t−, t++ ε]× [−ε, 2ε] ↪→6g as depicted
in Figure 7 such that the extension τi of τ̃W by 0 on the complement of the image
of the embedding satisfies the required properties. �

We apply Lemma 14.1 for p= A−/A and q = A+/A, we then have τi ∈�1(6g).
Let a = a∗i ∧ b∗i ; then κ(a)= 1/A. Using (14-1) and (i) in Lemma 14.1, we obtain

κ(a)ω−αi ∧βi = 1
A
ω−− pα1 ∧β1+ 1

A
ω+− qαg ∧βg + d

{ 1
A
λxdy− τi

}
.
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Since

supp
( 1

A
ω−− pα1 ∧β1

)
⊂ supp λ−, supp

( 1
A
ω+− qαg ∧βg

)
⊂ supp λ+,

and ∫
supp λ−

( 1
A
ω−− pα1 ∧β1

)
=
∫

supp λ+

( 1
A
ω+− qαg ∧βg

)
= 0,

there exist µ−, µ+ ∈�1(6g) such that suppµ− ⊂ supp λ−, suppµ+ ⊂ λ+, dµ− =
1
Aω−− pα1 ∧β1 and dµ+ = 1

Aω+− qαg ∧βg. Thus, we have

κ(a)ω−αi ∧βi = d
(
µ−+µ++ 1

A
λxdy− τi

)
.

Hence, we can take

(14-2) µ(a)= µ−+µ++ 1
A
λx dy− τi .

Thus, we have:

Lemma 14.2. In the situation above, for every ϕ = ϕk and a = a∗i ∧b∗i , there exists
a homomorphism µ : ∧2 H 1(6g)→�1(6g) in Lemma 2.2 satisfying (14-2).

Lemma 14.3. (i)
∫

a j
{ϕ∗(λx dy)− λx dy} =

{
0 if j 6= k,
−2π2 if j = k,

(ii)
∫

b j
{ϕ∗(λx dy)− λx dy} = 0 for all j .

Proof. Since supp{ϕ∗(λxdy)− λxdy} ⊂ suppϕ is disjoint from a j ( j 6= k) and b j

for all j , the integrals along them are equal to 0. So, we have only to compute the
integral along ak . We recall that λ is equal to 1 on suppϕ. On Tk , we have

ϕ∗(λx dy)− λx dy = (ϕ−1)∗(x dy)− x dy

=

−xa′(x) dx (x, y) ∈ [−3ε,−2ε]× (−π, π]
xa′(x −π) dx (x, y) ∈ [π − 3ε, π − 2ε]× (−π, π]
0 otherwise;

hence,∫
ak

{ϕ∗(λx dy)− λx dy} =
∫ −2ε

−3ε
{−xa′(x)} dx +

∫ π−2ε

π−3ε
xa′(x −π) dx

= π{a(−2ε)− a(−3ε)} = −2π2. �

Lemma 14.4. (i)
∫

a j

(ϕ∗τi − τi )=


0 if j 6= k,
q = A+/A if j = k, i < k,
−p =−A−/A if j = k, i = k.

(ii)
∫

b j

(ϕ∗τi − τi )= 0 for all j .
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Proof. We have only to compute the integral along ak since the others are clear by
considering the support of the integrand. Let ρ̃ be the smooth function on R with
ρ̃(0) = 0 whose differential dρ̃ agrees with the pullback of dρ by the projection
R→ R/2πZ. By Lemma 14.1, on T ′k we have

ϕ∗τi − τi = (ϕ−1)∗{s dρ(y)}− s dρ(y)

=−sρ̃ ′(−a(x)+ y)a′(x) dx + s{ρ̃ ′(−a(x)+ y)− ρ̃ ′(y)} dy

for (x, y) ∈ [−3ε,−2ε]× (−π, π], and ϕ∗τi − τi = 0 otherwise. Since

supp(ϕ∗τi − τi )⊂ T ′k ,

we have∫
ak

(ϕ∗τi − τi )=−s
∫ −2ε

−3ε
ρ̃ ′(−a(x)+ 0)a′(x) dx = s[ρ̃(−a(x))]−2ε

−3ε = s. �

Finally, we prove the following lemma:

Lemma 14.5. h0 = 2π2− A−.

Proof. Since supp h ∩ supp λ+ =∅ and h ≡−1 on supp λ−, we have

h = (λ−+ λ+ λ+)h =−λ−+ λh

and

(14-3) h0 =
∫
6g

hω =−
∫
6g

λ−ω+
∫
6g

λhω.

Since dh = ϕ∗βk −βk by definition and ω|Tk = dx ∧ dy by assumption, we obtain

d(λhx dy)= dλ∧ hx dy+ λ(ϕ∗βk −βk)∧ x dy+ λhω.

Then we have

(14-4)
∫
6g

λhω =−
∫
6g

dλ− ∧ x dy−
∫
6g

(ϕ∗βk −βk)∧ x dy

by Stokes’ formula and h ≡−1 on supp dλ∩ supp h ⊂ supp dλ−.
On the other hand, since supp λ⊂ Tk , we have

λω = d(λx dy)− dλ∧ x dy = dλ− ∧ x dy+ d(λx dy)+ dλ+ ∧ x dy

and
ω = λ−ω+ dλ− ∧ x dy+ d(λx dy)+ dλ+ ∧ x dy+ λ+ω.

By considering supports, we get ω− = λ−ω+ dλ− ∧ x dy and

(14-5) −
∫
6g

λ−ω =−
∫
6g

ω−+
∫
6g

dλ− ∧ x dy.
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Summing up equalities (14-3), (14-4), and (14-5), we have

h0 =−
∫
6g

ω−−
∫
6g

(ϕ∗βk −βk)∧ x dy.

Since βk = dρ(y)= dρ̃(y) on Tk , we have

(ϕ∗βk −βk)∧ x dy = d[ϕ∗{ ˜ρ(y)}] ∧ x dy =
−ρ̃ ′(−a(x)+ y)a′(x) dx∧ x dy if (x, y) ∈ [−3ε,−2ε]×(−π, π],
ρ̃ ′(a(x−π)+ y)a′(x−π) dx∧ x dy if (x, y) ∈ [π−3ε, π−2ε]×(−π, π],
0 otherwise,

and then we obtain∫
6g

(ϕ∗βk −βk)∧ x dy =−
∫ −2ε

−3ε
a′(x)x dx +

∫ π−2ε

π−3ε
a′(x −π)x dx

= π
∫ −2ε

−3ε
a′(x) dx = π [a(x)]−2ε

−3ε =−2π2.

Since
∫
6g
ω− = A−, we have h0 =−A−+ 2π2. �
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