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REGULARITY AT THE BOUNDARY
AND TANGENTIAL REGULARITY OF SOLUTIONS

OF THE CAUCHY–RIEMANN SYSTEM

TRAN VU KHANH AND GIUSEPPE ZAMPIERI

For a pseudoconvex domain D ⊂ Cn, we prove the equivalence of the local
hypoellipticity of the system (∂̄, ∂̄∗) with the system (∂̄b, ∂̄∗b ) induced at the
boundary. This develops a former result of ours in which the theory of
harmonic extension by Kohn was used. This technique is inadequate for the
purpose of the present paper and must be replaced by that of the holomor-
phic extension.

Let D be a pseudoconvex domain of Cn defined by r < 0 with C∞ boundary bD.
We use the standard notation �= ∂̄ ∂̄∗+ ∂̄∗∂̄ for the complex Laplacian, Q(u, u)=
‖∂̄u‖2 + ‖∂̄∗u‖2 for the energy form, and some variants such as QOp(u, u) =
‖Op ∂̄u‖2+‖Op ∂̄∗u‖2 for an operator Op. Here u is a (0, k) form belonging to
D∂̄∗ . We similarly define the tangential versions as �b, ∂̄b, ∂̄∗b , and Qb

Op. We take
local coordinates (x, r) in Cn , with x ∈R2n−1 being the tangential coordinates and r ,
the equation of bD, serving as the last coordinate. We define the tangential s-Sobolev
norm by |||u|||s := ‖3su‖0, where 3s is the standard tangential pseudodifferential
operator with symbol 3s

ξ = (1+ |ξ |
2)s/2. We note that

(1-1)


‖∂̄u‖2s +‖∂̄

∗u‖2s =
∑
j≤s

Q
3s− j∂

j
r
(u, u),

|||∂̄u|||2s + |||∂̄
∗u|||2s = Q3s (u, u),

‖∂̄bub‖
2
s +‖∂̄

∗

b ub‖
2
s = Qb

3s (ub, ub).

We decompose u into a tangential and normal component; that is,

u = uτ + uν,

and further decompose into microlocal components (see [Kohn 2002])

uτ = uτ++ uτ−+ uτ0.

We similarly decompose ub as u+b +u−b +u0
b. We use the notation L̄n for the normal

(0, 1)-vector field and L̄1, . . . , L̄n−1 for the tangential ones. Therefore we have the
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description for the totally real tangential and normal vector fields, denoted by T
and ∂r respectively: {

T = i(Ln − L̄n),

∂r = Ln + L̄n.

From this, we get back L̄n =
1
2(∂r + iT ). We denote the symbol of a (pseudo)-

differential operator by σ and the partial tangential Fourier transform of u by ũ.
We define a holomorphic extension (see [Khanh and Zampieri 2011]) uτ+(H) of
uτ +|bD by

(1-2) uτ+(H) = (2π)−2n+1
∫

R2n−1
ei xξerσ(Ṫ)ψ+(ξ)ũ(ξ, 0) dξ,

where Ṫ := T (x, 0). Note that σ(T )& (1+|ξ |2)
1
2 for ξ in suppψ+ and (x, r) in a

local patch; thus in the integral the exponential is dominated by e−|r |(1+|ξ |
2)1/2 for

r < 0. Differently from the harmonic extension by Kohn, the present one is well
defined only in positive microlocalization. We can think of uτ+(H) in two different
ways: as a modification of uτ+, or as an extension of u+b . The property which
motivates the terminology of holomorphic extension is

(1-3) ‖L̄nuτ+(H)‖ = ‖r Tan uτ+(H)‖ ≤ ‖uτ +b ‖− 1
2
.

This follows from the relationships L̄n =
1
2(∂r + iT ) and T − Ṫ = r Tan. We have

our first relationship between a trace vb and the general extension v ([Kohn 2002] p.
241); for any ε and suitable cε ,

(1-4) ‖vb‖s . cε |||v|||s+ 1
2
+ ε|||∂rv|||s− 1

2
.

This is also seen in [Khanh and Zampieri 2011] as the small/large constant argument.
As a specific property of our extension we have the reciprocal relation to (1-4):

(1-5) ‖r kuτ+(H)‖s . ‖u+b ‖s−k− 1
2
.

This is readily checked; see [Khanh and Zampieri 2011, (1.12)].
A combination of (1-3) and (1-4) shows that L̄n acts on uτ+(H) as an operator

of order 0. On the other hand, on the straightening of b� in which r = xn , we have
that J∂r — i.e., T — coincides with ∂yn , and therefore L̄n is the Cauchy–Riemann
operator ∂z̄n . A reference to the related literature is in order. The extension of
generalized functions to half-spaces or wedges of Cn using the decomposition of
the δ-function in plane waves as in (1-2) was introduced by Sato, Kashiwara, and
Kawai in [Sato et al. 1973] as a general method for microlocal decomposition of the
singularities. It has been used, among others, by Boutet de Monvel and Sjöstrand
[1976] and by Hsiao [2010] in the study of the singularities of Szegő and Bergman
kernels.
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We denote by the symbol ∂̄τ the extension of the ∂̄b from b� to �, which stays
tangential to the level surfaces r ≡ const. It acts on tangential forms uτ and its
action is ∂̄τuτ = (∂̄uτ )τ . We denote its adjoint by ∂̄τ ∗; thus ∂̄τ ∗uτ = ∂̄∗(uτ ). We
use the notations �τ and Qτ for the corresponding Laplacian and energy forms.
We notice that

(1-6) Q(uτ+(H), uτ+(H))= Qτ (uτ+(H), uτ+(H))+‖L̄nuτ+(H)‖20.

We have to describe how (1-4) and (1-5) are affected by ∂̄ and ∂̄∗.

Proposition 1.1. We have for any extension v of vb that

(1-7) Qb(vb, vb). Qτ

3
1
2
(v, v)+ Qτ

∂r3
−

1
2
(v, v),

and specifically for uτ+(H),

(1-8) Qτ (uτ+(H), uτ+(H)). Qb

3
−

1
2
(u+b , u+b )+‖u

+

b ‖
2
−

1
2
.

Proof. We have
∂̄τv|bD = ∂̄bvb, ∂̄τ∗v|bD = ∂̄

∗

bvb.

Then, (1-7) follows from (1-4).
We proceed to prove (1-8). We have ∂̄τ = ∂̄b + r Tan, and ∂̄τ∗ = ∂̄∗b + r Tan,

which yields

(1-9)
∂̄τuτ+(H) = (∂̄bub)

τ+(H)
+ r Tan uτ+(H),

∂̄τ∗uτ+(H) = (∂̄∗b ub)
τ+(H)

+ r Tan uτ+(H).

Application of (1-5) yields

‖∂̄τuτ+(H)‖2+‖∂̄τ∗uτ+(H)‖2

= ‖(∂̄bub)
τ+(H)

‖
2
+‖(∂̄∗b ub)

τ+(H)
‖

2
+‖r Tan uτ+(H)‖2

. ‖∂̄bu+b ‖
2
−

1
2
+‖∂̄∗b u+b ‖

2
−

1
2
+‖u+b ‖

2
−

1
2
. �

We decompose uτ+ as uτ+(H) + uτ+(0), which also serves as a definition of
uτ+(0). Let ζ and ζ ′ be cut-offs with ζ ≺ ζ ′ in the sense that ζ ′|supp ζ ≡ 1.

Proposition 1.2. Each of the forms u#
= uν, uτ −, uτ 0, uτ+(0), u−b , and u0

b enjoy
elliptic estimates; that is,

(1-10) ‖ζu#
‖s . ‖ζ

′∂̄u#
‖s−1+‖ζ

′∂̄∗u#
‖s−1+‖u#

‖0, s ≥ 2.

Proof. Estimate (1-10) follows by iteration from

(1-11) ‖ζu#
‖s . ‖ζ ∂̄u#

‖s−1+‖ζ ∂̄
∗u#
‖s−1+‖ζ

′u#
‖s−1.
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As for uν and uτ+(0), this latter follows from uν |bD ≡ 0 and uτ+(0)|bD ≡ 0. For
the terms with − and 0, this follows from the fact that |σ(T )| . |σ(∂̄)| in the
region of 0-microlocalization, and from σ [∂̄, ∂̄∗] ≤ 0 and σ(T ) < 0 in the negative
microlocalization. We refer to (1) in the Main Theorem of [Folland and Kohn 1972]
as a general reference, but also give an outline of the proof. We start from

(1-12) |||ζu#
|||

2
1 . Q

(
ζu#, ζu#)

+‖ζ ′u#
‖

2
0;

this is the basic estimate in the case of uν and uτ+(0) (which vanish at bD), and
it is Lemma 8.6 of [Kohn 2002] for uτ −, uτ 0 and u−b , u0

b. Applying (1-12) to
ζ3s−1ζu# one gets the estimate of tangential norms for any s; that is, (1-11) with
the usual norm replaced by the triplet norm. Finally, by noncharacteristicity of
(∂̄, ∂̄∗), one passes from tangential to full norms along the guidelines of [Zampieri
2008, Theorem 1.9.7]. The version of this argument for � can be found in [Kohn
2002, second part of p. 245]. �

Let s and l be indices.

Theorem 1.3. Consider the estimates

(1-13) ‖ζub‖s . ‖ζ
′∂̄bub‖s+l +‖ζ

′∂̄∗b ub‖s+l +‖ub‖0 for any ub ∈ C∞(b�),

(1-14) ‖ζu‖s . ‖ζ ′∂̄u‖s+l +‖ζ
′∂̄∗u‖s+l +‖u‖0 for any u ∈ D∂̄∗ ∩C∞(�̄),

(1-15) ‖ζu‖s ≤ ε(‖ζ ∂̄u‖s +‖ζ ∂̄∗u‖s)+ cε‖u‖

for any ε, for suitable cε , and for any u ∈ D∂̄∗ ∩C∞(�̄).

Then (1-13) implies (1-14) and (1-15) implies (1-13) for l = 0.

Remark 1.4. (i) The above estimates (1-13) and (1-14) for any s, ζ, ζ ′ and for
suitable l, characterize the local hypoellipticity of the system (∂̄b, ∂̄

∗

b ) and (∂̄, ∂̄∗)
respectively (see [Kohn 2005]). When l > 0, one says that the system has a loss of
l derivatives; when l < 0, one says that it has a gain of −l derivatives.

(ii) The point in (1-15), as opposed to (1-13) and (1-14), is that we have the same
cut-off ζ in both sides, and also that there is a factor ε of compactness. Though
(1-15) is stronger than (1-14), there are wide classes of domains � for which it
holds, including all domains of infraexponential type, for which a superlogarithmic
estimate holds (see [Baracco et al. 2014]). Indeed, let Rs be the pseudodifferential
operator defined by R̃su =3sσ(x)

ξ ũ (see [Kohn 2002, p. 234]). On one hand, we
have Rs

∼3s modulo operators of order −∞ over u such that σ |supp u ≡ 1. On the
other, we have that [Rs, ζ ′] has order −∞ if ζ ′|supp σ ≡ 1 and hence the supports
of σ and ζ̇ ′ are disjoint. Finally, we have

|ζ ′′[∂̄, Rs
]ζ ′|. log3Rsζ ′
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in the sense of operators when σ ≺ ζ ′ ≺ ζ ′′. Using Rs as a substitute for 3s , we can
prove (1-15) whenever a superlogarithmic estimate holds (see [Kohn 2002, § 7]).

Proof. First, it is clearly not restrictive that u and ub have compact support. Because
of Proposition 1.2, it suffices to prove (1-13) for u+b and (1-14) for uτ +. It is
also obvious that we can consider cut-off functions ζ and ζ ′ only in tangential
coordinates, not in r . We start by proving that (1-13) implies (1-14). We recall the
decomposition

uτ+ = uτ+(H)+ uτ+(0)

and begin by estimating uτ+(H). We then have

(1-16) |||ζuτ+(H)|||2s .
(1-5)
‖ζu+b ‖

2
s− 1

2

.
(1-13)

Qb

3
s+l− 1

2 ζ ′
(u+b , u+b )+‖u

+

b ‖
2
−

1
2

.
(1-7)

Qτ
3s+lζ ′

(uτ+, uτ+)+ Qτ
∂r3s+l−1ζ ′

(uτ+, uτ+)+‖uτ+‖20.

It remains to estimate uτ+(0). Since uτ+(0)|bD ≡ 0, then by 1-elliptic estimates

(1-17) |||ζuτ+(0)|||2s

.
(1-11)

Q3s−1ζ (u
τ+(0), uτ+(0))+ |||ζ ′uτ+(0)|||2s−1

. Q3s−1ζ (u
τ+, uτ+)+Qτ

3s−1ζ
(uτ+(H), uτ+(H))+|||rζuτ+(H)|||2s + |||ζ

′uτ+(0)|||2s−1

. Q3s−1ζ (u
τ+, uτ+)+ |||ζuτ+(H)|||2s + |||ζ

′uτ+(H)|||2s−1+ |||ζ
′uτ+(0)|||2s−1,

where we have used Q = Qτ
+ O(r)3 over hτ+(H); that is, (1-6) in addition to

(1-3) in the second inequality, together with the estimate

Qτ
3s−1 .3

s

in the third. We estimate terms in the last line. First, the term |||ζuτ+(H)|||2s is
estimated by means of (1-16). Next, the terms in (s− 1)-norm can be brought to
0-norm by combined inductive use of (1-16) and (1-17), and eventually their sum
is controlled by ‖uτ+‖20. We put together (1-16) and (1-17) (with the above further
reductions), recall the first part of (1-1) in order to estimate Qτ

3s+lζ ′
+ Qτ

∂r3s+l−1ζ ′

in the right side of (1-16), and end up with

(1-18) |||ζuτ+|||s . ‖ζ ′∂̄uτ+‖s+l +‖ζ
′∂̄∗uτ+‖s+l +‖uτ+‖0.

Finally, by noncharacteristicity of (∂̄, ∂̄∗), one passes from tangential to full norms
in the left side of (1-18) along the guidelines of [Zampieri 2008, Theorem 1.9.7].
The version of this argument for � can be found in [Kohn 2002] in the second part
of p. 245. Thus we get (1-14).
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We prove that (1-15) implies (1-13) for l = 0. Thanks to ∂r = L̄n +Tan and to
(1-3), we have

∂r uτ+(H) = Tan uτ+(H) and L̄nuτ+(H) = r Tan uτ+(H).

It follows that

(1-19) ‖ζu+b ‖
2
s

.
(1-4)
|||ζuτ+(H)|||2

s+ 1
2
+ |||∂rζuτ+(H)|||2

s− 1
2

. |||ζuτ+(H)|||2
s+ 1

2
+‖L̄nζuτ+(H)‖2

s− 1
2

.
(1-15)

ε
(
Qτ

3
s+ 1

2 ζ
(uτ+(H), uτ+(H))+ |||ζ L̄nuτ+(H)|||2

s+ 1
2

)
+ cε

(
|||ζ ′uτ+(H)|||2

s− 1
2
+ |||uτ+(H)|||20

)
.

(1-8)
ε
(
Qb
3sζ (u

+

b , u+b )+‖ζu+b ‖
2
s
)
+ cε

(
Qb
3s−1ζ ′

(u+b , u+b )+‖ζ
′u+b ‖

2
s−1+‖u

τ +
b ‖

2
−

1
2

)
. Qb

3sζ ′(u
+

b , u+b )+ ε‖ζu+b ‖
2
s + cε

(
‖ζ ′u+b ‖

2
s−1+‖u

τ +
b ‖

2
−

1
2

)
,

where in the second-to-last line we have calculated [ζ, #(H)], which yields

|||ζuτ+(H)|||s+ 1
2
. ‖ζu+b ‖s +‖ζ

′u+b ‖s−1

(and similarly for [ζ, Q(H)
]). We absorb the term with ε and get (1-13). �

Since on a pseudoconvex domain the H 0-ranges of � and �b are closed by basic
estimates and by [Kohn 1986] respectively, then there are well defined H 0-inverses
denoted by N and G, and named the Neumann and Green operators.

Remark 1.5. Equations (1-13) and (1-14) imply local regularity in degree ≥ 2 of
G and N respectively. We first prove regularity for N . We start by remarking that

(1-20)
∂̄∗Nq is regular over Ker ∂̄ if q ≥ 2,

∂̄Nq is regular over Ker ∂̄∗ if q ≥ 0.

In the first case, we set u = ∂̄∗N f for f ∈ Ker ∂̄ . We have (∂̄u = f, ∂̄∗u = 0), and
hence by (1-14)

‖ζu‖s . ‖ζ ′ f ‖s+l +‖u‖0.

To prove the second case, we simply set u = ∂̄N f for f ∈ Ker ∂̄∗ and reason
likewise. It follows from (1-20) that the Bergman projection Bq is regular in any
degree q ≥ 0. (Notice that even if one started from exact regularity by assuming
(1-15), this is perhaps lost by taking the additional ∂̄ in B := Id− ∂̄∗N ∂̄ .) Finally,
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we exploit formula (5.36) in [Straube 2010] in unweighted norms; that is, for t = 0:

(1-21) Nq = Bq(Nq ∂̄)(Id−Bq−1)(∂̄
∗Nq)Bq

+ (Id−Bq)(∂̄
∗Nq+1)Bq+1(Nq+1∂̄)(Id−Bq).

Now, in the right side, the ∂̄N ’s and ∂̄∗N ’s are evaluated over Ker ∂̄∗ and Ker ∂̄
respectively; thus they are regular for q ≥ 2. The B’s are also regular and therefore
such is N . This concludes the proof of the regularity of N . The proof of the
regularity of G is similar, apart from replacing (1-21) by its version for the Green
operator G stated in Section 5 of [Khanh 2010].
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