
Pacific
Journal of
Mathematics

ON THE STEINBERG CHARACTER OF
A SEMISIMPLE p-ADIC GROUP

JU-LEE KIM AND GEORGE LUSZTIG

Volume 265 No. 2 October 2013



PACIFIC JOURNAL OF MATHEMATICS
Vol. 265, No. 2, 2013

dx.doi.org/10.2140/pjm.2013.265.499
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Dedicated to Robert Steinberg on the occasion of his ninetieth birthday.

We show that the character of the Steinberg representation of a split semi-
simple p-adic group at a very regular element is given (up to sign) by a
power of q, the number of elements in the residue field. We also show that
(under an assumption on the characteristic) the character of an Iwahori-
spherical representation at a split very regular element is given by a trace
in the corresponding Hecke algebra module.

1. Introduction

1.1. Let K be a nonarchimedean local field and let K be a maximal unramified
field extension of K . Let O be the ring of integers of K and let p be the maximal
ideal of O; the counterparts for K are denoted by O and p. Let K ∗ = K −{0}. We
write O/p= Fq , a finite field with q elements of characteristic p.

Let G be a semisimple almost simple algebraic group defined and split over K
with a given O-structure compatible with the K -structure.

If V is an admissible representation of G(K ) of finite length, we denote by φV

the character of V in the sense of Harish-Chandra, viewed as a C-valued function
on the set G(K )rs := Grs ∩ G(K ). (Here, Grs is the set of regular semisimple
elements of G, and C is the field of complex numbers.)

In this paper we study the restriction of the function φV to:

(a) a certain subset G(K )vr of G(K )rs , namely, the set of very regular elements in
G(K ) (see 1.2) in the case where V is the Steinberg representation of G(K ),
and

(b) a certain subset G(K )svr of G(K )vr , namely, the set of split very regular
elements in G(K ) (see 1.2) in the case where V is an irreducible admissible
representation of G(K ) with nonzero vectors fixed by an Iwahori subgroup.
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In case (a), we show that φV (g) with g ∈ G(K )rs is of the form ±qn with
n ∈ {0,−1,−2, . . . } (see Corollary 3.4) with more precise information when
g ∈G(K )svr (see Theorem 2.2) or when g ∈G(K )cvr (see Theorem 3.2). In case (b)
we show (with some restriction on characteristic) that φV (g) with g ∈ G(K )svr can
be expressed as the trace of a certain element of an affine Hecke algebra on an
irreducible module (see Theorem 4.3).

Note that the Steinberg representation S is an irreducible admissible repre-
sentation of G(K ) with a one-dimensional subspace invariant under an Iwahori
subgroup on which the corresponding affine Hecke algebra acts through the “sign”
representation; see [Matsumoto 1969; Shalika 1970]. This is a p-adic analogue
of the Steinberg representation [Steinberg 1951] of a reductive group over Fq . In
[Rodier 1986], it is proven that φS(g) 6= 0 for any g ∈ G(K )rs .

1.2. Let g ∈ Grs ∩G(K ). Let T ′ = T ′g be the maximal torus of G that contains g.
We say that g is very regular if T ′ is split over K and for any root α with respect
to T ′ viewed as a homomorphism T ′(K )→ K ∗ we have α(g) /∈ (1+ p). If, in
addition, α(g) ∈O, we say that g is compact very regular.

Let G(K )vr be the set of elements in G(K ) that are very regular, and G(K )cvr

the set of compact very regular ones. We write G(K )vr = G(K )vr ∩ G(K ) and
G(K )cvr = G(K )cvr ∩G(K ). Let G(K )svr be the set of all g ∈ G(K )vr such that
T ′g is split over K .

1.3. Notation. Let K ∗ = K − {0}, and let v : K ∗→ Z be the unique (surjective)
homomorphism such that v(pn

− pn+1) = n for any n ∈ N. For a ∈ K ∗ we set
|a| = q−v(a).

We fix a maximal torus T of G defined and split over K . Let Y (resp. X )
be the group of cocharacters (resp. characters) of the algebraic group T . Let
〈 , 〉 : Y × X→ Z be the obvious pairing. Let R ⊂ X be the set of roots of G with
respect to T , let R+ be a set of positive roots for R, and let 5 be the set of simple
roots of R determined by R+. We write 5= {αi : i ∈ I }. Let R− = R− R+. Let
Y+ (resp. Y++) be the set of all y ∈ Y such that 〈y, α〉 ≥ 0 (resp. 〈y, α〉 > 0) for
all α ∈ R+. We define 2ρ ∈ X by 2ρ =

∑
a∈R+ α.

We have canonically T (K )= K ∗⊗Y ; we define a homomorphism χ : T (K )→Y
by χ(λ⊗ y) = v(λ)y for any λ ∈ K ∗, y ∈ Y . For any y ∈ Y , we set T (K )y =

χ−1(y). For y ∈ Y , let T (K )♠y = T (K )y ∩ G(K )svr . Note that if y ∈ Y++ then
T (K )♠y = T (K )y .

For each α ∈ R let Uα be the corresponding root subgroup of G.

2. Calculation of φS on G(K )svr

2.1. Let W ⊂ Aut(T ) be the Weyl group of G regarded as a Coxeter group; for
i ∈ I , let si be the simple reflection in W determined by αi . We can also view
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W as a subgroup of Aut(Y ) or Aut(X). Let w = w0 be the longest element of
W . For any J ⊂ I , let WJ be the subgroup of W generated by {si : i ∈ J } and let
RJ = R ∩

∑
i∈J Zαi . Let

R+J = RJ ∩ R+ and R−J = RJ − R+J .

Let g be the Lie algebra of G, and let t⊂ g be the Lie algebra of T . For any J ⊂ I ,
let lJ be the Lie subalgebra of g spanned by t and the root spaces corresponding
to the roots in RJ . Let nJ be the Lie subalgebra of g spanned by the root spaces
corresponding to roots in R+− R+J .

According to [Casselman 1973], φS is an alternating sum of characters of rep-
resentations induced from one-dimensional representations of various parabolic
subgroups of G defined over K . From this, one can deduce that if t ∈T (K )∩G(K )rs

then
φS(t)=

∑
J⊂I

(−1)]J
∑
w∈ JW

δJ (w(t))1/2 DI,J (w(t))−1/2,

where for any J ⊂ I and t ′ ∈ T (K )∩G(K )rs we set

DI,J (t ′)=
∣∣det(1−Ad(t ′)|g/lJ )

∣∣,
δJ (t ′)=

∣∣det(Ad(t ′)|nJ )
∣∣,

and JW is the set of representatives of minimal length for the cosets WJ\W . Here
for a real number a ≥ 0 we denote by a1/2 or

√
a the nonnegative square root of a.

Writing φ instead of φS, we have:

Theorem 2.2. Let y ∈ Y+ and let t ∈ T (K )♠y . Then φ(t)= q−〈y,2ρ〉.

2.3. More generally, let t ∈ T (K )♠y , where y ∈ Y . By a standard property of Weyl
chambers, there exists w ∈ W such that w(y) ∈ Y+. Let t1 = w(t). Then the
theorem is applicable to t1, and we have φ(t)= φ(t1)= q−〈w(y),2ρ〉.

2.4. Let y′ = w0(y), t ′ = w0(t). We have φS(t) = φS(t ′), t ′ ∈ T (K )♠y′,−y′ ∈ Y+.
We show that

(1) v(1−β(t ′))=
{
v(β(t ′)) if β ∈ R+,
0 if β ∈ R−.

Assume first that β ∈ R+. If v(β(t ′)) 6= 0 then v(β(t ′))< 0 (since 〈y′, β〉 6= 0 and
〈y′, β〉 ≤ 0); hence, v(1−β(t ′))= v(β(t ′)). If v(β(t ′))= 0 then β(t ′)−1 ∈O−p;
hence, v(1−β(t ′))= 0= v(β(t ′)) as required.

Assume next that β ∈ R−. If v(β(t ′)) 6= 0 then v(β(t ′)) > 0 (since 〈y′, β〉 6= 0
and 〈y′, β〉 ≥ 0); hence, v(1− β(t ′))= 0. If v(β(t ′))= 0 then β(t ′)− 1 ∈O− p;
hence, v(1−β(t ′))= 0 as required.
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For any w ∈W, J ⊂ I we have

DI,J (w(t ′)) =
∏

α∈R−RJ

q−v(1−α(w(t
′)))
=

∏
α∈R−RJ

w−1α∈R+

q−v(α(w(t
′)))
=

∏
α∈R−RJ

w−1α∈R+

q−〈y
′,w−1α〉

and
δJ (w(t ′))=

∏
α∈R+−R+J

q−v(α(w(t
′)))
=

∏
α∈R+−R+J

q−〈y
′,w−1α〉.

(We have used (1) with β = w−1(α).) We see that

φ(t)= φ(t ′)=
∑
J⊂I

(−1)]J
∑
w∈JW

√
q −〈y

′,xw,J 〉,

where for w ∈ JW we have

xw,J =
∑

α∈R+−R+J

w−1α −
∑

α∈R−RJ

w−1α∈R+

w−1α

=

∑
α∈R+−R+J
w−1(α)∈R−

w−1α −
∑

α∈R−−R−J
w−1(α)∈R+

w−1α

= 2
∑

α∈R+−R+J
w−1α∈R−

w−1α ∈ X.

For w ∈ JW , we have α ∈ R+J =⇒ w−1α ∈ R+; hence,∑
α∈R+−R+J
w−1α∈R−

w−1α =
∑
α∈R+

w−1α∈R−

w−1α,

so that xw,J = xw, where

xw = 2
∑
α∈R+

w−1α∈R−

w−1α ∈ X.

Thus, we have

φ(t)=
∑
J⊂I

(−1)]J
∑
w∈ JW

√
q −〈y

′,xw〉
=

∑
w∈W

cw
√

q −〈y
′,xw〉,

where for w ∈W we set
cw =

∑
J⊂I
w∈ JW

(−1)]J .

For w ∈W , let L(w) = {i ∈ I : siw > w}, where > refers to the standard partial
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order on W . For J ⊂ I , we have w ∈ JW if and only if J ⊂ L(w); thus,

cw =
∑

J⊂L(w)
(−1)]J ,

and this is 0 unless L(w)=∅ (that is w = w0), in which case cw = 1. Note also
that xw0 =−4ρ; thus, we have

φ(t)= cw0

√
q −〈y

′,xw0 〉 = q〈y
′,2ρ〉
= q−〈y,2ρ〉.

Theorem 2.2 is proved. �

2.5. Assume now that τ ∈ T (K ) satisfies the following condition: for any α ∈ R
we have α(τ)−1 ∈ p−{0} so that α(τ)−1 ∈ pnα −pnα+1 for a well defined integer
nα ≥ 1. Note that n−α = nα and v(1−α(τ))= nα ≥ 1 for all α ∈ R; hence,

φ(τ)=
∑
J⊂I

(−1)]J
∑
w∈ JW

q
∑
α∈R nα/2−

∑
α∈RJ

n
w−1(α)/2.

Thus,

(2) φ(τ)= ](W)q
∑
α∈R nα/2+ strictly smaller powers of q.

In the case where K is the field of power series over Fq , the leading term in (2) is
equal to ](W)qm , where m is the dimension of the “variety” of Iwahori subgroups
of G(K ) that contain the topologically unipotent element τ (see [Kazhdan and
Lusztig 1988]).

3. Calculation of φS on G(K )vr

3.1. We will again write φ instead of φS. In this section we assume that we are
given γ ∈ G(K )vr . Let T ′ = T ′γ . Note that T ′ is defined over K ; let A′ be the
largest K -split torus of T ′. For any parabolic subgroup P of G defined over K
such that γ ∈ P , we set δP(γ )=

∣∣det(Ad(γ )|n)
∣∣, where n is the Lie algebra of the

unipotent radical of P .
Let X be the set of all pairs (P, A), where P is a parabolic subgroup of G

defined over K and A is the unique maximal K -split torus in the center of some
Levi subgroup of P defined over K . Then that Levi subgroup is uniquely determined
by A and is denoted by MA. Let X ′= {(P, A)∈X : A⊂ A′}. According to [Harish-
Chandra 1973], we have

(3) φ(γ )= (−1)dim T
∑

(P,A)∈X ′
(−1)dim AδP(γ )

1/2 DG/MA(γ )
−1/2,

where DG/MA(γ )=
∣∣det(1−Ad(γ )|g/l)

∣∣ (we denote by l the Lie algebra of MA).

Theorem 3.2. Assume in addition that γ ∈G(K )cvr . Then φ(γ )= (−1)dim T−dim A′ .
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Proof. From our assumptions we see that δP(γ )=1=DG/MA(γ ) for all (P, A)∈X ′;
hence, (3) becomes

φ(γ )= (−1)dim T
∑

(P,A)∈X ′
(−1)dim A.

Let Y be the group of cocharacters of A′ and let H = Y ⊗ R. The real vector
space H can be partitioned into facets FP,A indexed by (P, A) ∈ X ′ such that
FP,A is homeomorphic to Rdim A. Note that the Euler characteristic with compact
support of FP,A is (−1)dim A, and the Euler characteristic with compact support
of H is (−1)dimR H

= (−1)dim A′ . Using the additivity of the Euler characteristic
with compact support we see that

∑
(P,A)∈X ′(−1)dim A

= (−1)dim A′ ; thus, φ(γ )=
(−1)dim T−dim A′ , as required. �

3.3. In the setup of 3.1, let Pγ be the parabolic subgroup of G associated to γ as
in [Casselman 1977]. Note that Pγ is defined over K . The following result can be
deduced by combining Theorem 3.2 with the results in [Casselman 1977] and with
Proposition 2 in [Rodier 1986].

Corollary 3.4. We have φ(γ )= (−1)dim T−dim A′δPγ (γ ).

The corollary provides another proof of Theorem 2.2.

4. Iwahori spherical representations: split elements

4.1. Let B be the subgroup of G(K ) generated by

{Uα(O) : α ∈ R+} ∪ {Uα(p) : α ∈ R−} ∪ T (K )0.

(The subgroups Uα(O),Uα(p) of Uα are defined by the O-structure of G.) Then
B is an Iwahori subgroup of G(K ). For any α ∈ R we choose an isomorphism
xα : K

∼
→Uα(K ) (the restriction of an isomorphism of algebraic groups from the

additive group to Uα), which carries O onto Uα(O) and p onto Uα(p). We set
W := Y ·W with Y normal in W (recall that W acts naturally on Y ). Let Y ′ be the
subgroup of Y generated by the coroots. Then W ′ := Y ′ ·W is naturally a subgroup
of W . According to [Iwahori and Matsumoto 1965], W is an extended Coxeter
group (the semidirect product of the Coxeter group W ′ with the finite abelian group
Y/Y ′) with length function

l(yw)=
∑
α∈R+

w−1(α)∈R+

‖〈y, α〉‖ +
∑
α∈R+

w−1(α)∈R−

‖〈y, α〉− 1‖,

where ‖a‖ = a if a ≥ 0 and ‖a‖ = −a if a < 0. From the same reference we know
that the set of double cosets B\G(K )/B is in bijection with W ; to yw (where
y ∈ Y, w ∈W) corresponds the double coset �yw containing T (K )yẇ (here ẇ is
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an element in G(O) which normalizes T (K )0 and acts on it in the same way as w);
moreover, ](�yw/B) = ](B\�yw) = ql(yw) for any y ∈ Y , w ∈W . For example,
if y ∈ Y++ then l(y)= 〈y, 2ρ〉.

Let H be the algebra of B-biinvariant functions G(K ) → C with compact
support with respect to convolution (we use the Haar measure dg on G(K ) for
which vol(B)= 1). For y, w as above, let Tyw ∈ H be the characteristic function
of �yw. Then the functions Tw, w ∈ W form a C-basis of H , and according to
[Iwahori and Matsumoto 1965], we have

TwTw′ = Tww′ for w,w′ ∈W with l(ww′)= l(w)+ l(w′),

(Tw + 1)(Tw − q)= 0 for w ∈W ′ with l(w)= 1.

In other words, H is what one now calls the Iwahori–Hecke algebra of the (extended)
Coxeter group W with parameter q .

4.2. Let C∞0 (G(K )) be the vector space of locally constant functions with compact
support from G(K ) to C. Let (V, σ ) be an irreducible admissible representation
of G(K ) such that the space V B of B-invariant vectors in V is nonzero. If f ∈
C∞0 (G(K )) then there is a well defined linear map σ f : V → V such that for
any x ∈ V we have σ f (x)=

∫
G f (g)σ (g)(x) dg. This linear map has finite rank;

hence, it has a well defined trace tr(σ f ) ∈ C. From the definitions we see that for
f, f ′ ∈ C∞0 (G(K )) we have σ f ∗ f ′ = σ f σ f ′ : V→ V where ∗ denotes convolution. If
f ∈ H then σ f maps V into V B and tr(σ f )= tr(σ f |V B ). (Recall that dim V B <∞.)

We see that the maps σ f |V B define a (unital) H -module structure on V B . It is known
that the H -module V B is irreducible [Borel 1976]. Moreover, for w ∈W we have
tr(σTw)= tr(Tw), where the trace in the right side is taken in the H -module V B .

Theorem 4.3. Assume that K has characteristic zero and that p is sufficiently large.
Let y ∈ Y+ and t ∈ T (K )♠y . We have

φV (t)= q−〈y,2ρ〉tr(Ty),

where the trace in the right side is taken in the irreducible H-module V B .

An equivalent statement is that

φV (t)= tr(σTy )/ vol(�y).

(Recall that Ty on the right side is the characteristic function of �y = BT (K )y B.)
The assumption on characteristic in the theorem is needed only to be able to use

a result from [Adler and Korman 2007]; see (5) below. We expect that the theorem
holds without that assumption.

In the case where y = 0, the theorem becomes

(4) t ∈ T (K )∩Gcvr =⇒ φV (t)= dim(V B).
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As pointed out to us by R. Bezrukavnikov and S. Varma, in the special case where
y ∈ Y++, Theorem 4.3 can be deduced from results in [Casselman 1977].

4.4. In the case where V = S (see 1.1), for any y ∈ Y+, Ty acts on the one-
dimensional vector space V B as the identity map, so that φV (t)= q−〈y,2ρ〉 for all
t ∈ T (K )♠y . We thus recover Theorem 2.2 (which holds in any characteristic).

5. Proof of Theorem 4.3

5.1. Let B= B0, B1, B2, . . . be the strictly decreasing Moy–Prasad [1994] filtration
of B. This is a sequence associated to a point x in the building such that B = Gx,0.
Each Bi/Bi+1 is abelian. Let Tn := T (K )∩Bn . Applying [Adler and Korman 2007,
Corollary 12.11] to φV , we conclude that

(5) φV is constant on the Ad(G)-orbit G(tT1) of tT1.

Lemma 5.2. Let n ≥ 1. For any t ′ ∈ T (K )♠y and z ∈ Bn , there exist g ∈ Bn , t ′′ ∈ Tn ,
and z′ ∈ Bn+1 such that Ad(g)(t ′z)= t ′t ′′z′.

Proof. Let Z = {α ∈ R : Uα ∩ Bn ) Uα ∩ Bn+1}. If Z = ∅ then Bn = Tn Bn+1;
hence, z = t ′′z′ for some t ′′ ∈ Tn and z′ ∈ Bn+1, and one can take g = 1. If
Z 6= ∅ then we can find aα ∈ K for each α ∈ Z such that xα(aα) ∈ Bn and
z ≡

∏
α∈Z xα(aα) (mod Tn Bn+1). Such aα can be chosen independent of the order

of the product since Bn/Tn Bn+1 is abelian. Take g =
∏
α∈Z xα((1−α(t ′−1))−1aα).

Then g∈ Bn since |1−α(t ′−1)|≥1 for y∈Y+. (To show |1−α(t ′−1)|≥1 for y∈Y+,
we argue as for (1). Assume first that α ∈ R+. If v(α(t ′−1)) 6= 0 then v(α(t ′−1))< 0
(since 〈y, α〉 6= 0, 〈y, α〉 ≥ 0); therefore, v(1 − α(t ′−1)) = v(α(t ′−1)) < 0 and
|1−α(t ′−1)|>1. If v(α(t ′−1))=0 then α(t ′−1)−1∈O−p; hence, v(1−α(t ′−1))=0
and |1− α(t ′−1)| = 1 as required. Assume next that α ∈ R−. If v(α(t ′−1)) 6= 0
then v(α(t ′−1)) > 0 (since 〈y, α〉 6= 0, 〈y, α〉 ≤ 0); hence, v(1 − α(t ′−1)) = 0
and |1− α(t ′−1)| = 1 as required. If v(α(t ′−1)) = 0 then α(t ′−1)− 1 ∈ O − p;
hence, v(1 − α(t ′−1)) = 0 and |1 − α(t ′−1)| = 1 as required.) Now, we have
t ′−1gt ′g−1

≡ z−1 (mod Tn Bn+1).
Writing Ad(g)(t ′z) = t ′ · (t ′−1gt ′g−1) · (gzg−1), we observe that gzg−1

≡ z
(mod Bn+1) and t ′−1gt ′g−1z ∈ Tn Bn+1; hence, Ad(g)(t ′z) can be written as t ′t ′′z′

with t ′′ ∈ Tn and z′ ∈ Bn+1. �

Lemma 5.3. B1tB1 ⊂
B1(tT1).

Proof. It is enough to show that tB1⊂
B1(tT1). Let t0z1 ∈ tB1 with t0= t and z1 ∈

B1. We will construct inductively sequences g1, g2, . . . , t1, t2, . . . , and z1, z2, . . .

such that Ad(gk · · · g2g1)(t0z1) = Ad(gk)(t0t1 · · · tk−1zk) = (t0t1 · · · tk)zk+1 with
gi ∈ Bi , ti ∈ Ti , and zi ∈ Bi .
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Applying Lemma 5.2 to n = 1, t ′ = t0, and z = z1, we find t1 ∈ T1 and z2 ∈ B2

such that g1t0z1g−1
1 = t0t1z2 with t1 ∈ T1 and z2 ∈ B2. Suppose we found gi ∈ Bi ,

zi+1 ∈ Bi+1, and ti ∈ Ti for i = 1, . . . , k where k ≥ 1. Applying Lemma 5.2 to
n= k+1, t ′= t0t1 · · · tk , and z= zk+1, we find gk+1 ∈ Bk+1, tk+1 ∈ Tk+1, and zk+2 ∈

Bk+2 so that gk+1t0t1 · · · tkzk+1g−1
k+1=Ad(gk+1 · · · g2g1)(t0z1)= t0t1t2 · · · tk+1zk+2.

(To apply Lemma 5.2 we note that t ′ ∈ T (K )♠y since t0 ∈ T (K )♠y and t1 · · · tk ∈ T1,
so that for any α ∈ R we have α(t1 · · · tk) ∈ 1+ p.) Taking g ∈ B1 to be the limit of
gk · · · g2g1 as k→∞, we have Ad(g)(t0z1) ∈ tT1. �

5.4. Continuing with the proof of Theorem 4.3, we note that by Lemma 5.3 and
(5), for the characteristic function ft of B1tB1, we have

tr(σ ft )=
∫

G ft(g)φV (g) dg =
∫

B1tB1
φV (t) dg = vol(B1tB1)φV (t).

Thus it remains to show
tr(σ ft )

vol(B1tB1)
=

tr(σTy )

vol(BtB)
.

Since B1 is normalized by B, B acts on V B1 ; moreover, since V is irreducible and
V B
6= 0, B acts trivially on V B1 . (Otherwise, there would exist a nonzero subspace

of V on which B acts through a nontrivial character of B/B1; since V B
6= 0, we

see that (V, σ ) would have two distinct cuspidal supports, a contradiction.) Thus
we have V B1 = V B . Since σ ft and σTy have images contained in V B1 = V B , it is
enough to show

(6)
tr(σ ft |V B )

vol(B1tB1)
=

tr(σTy |V B )

vol(BtB)
.

We can find a finite subset L of T (K )0 such that BtB =
⊔
τ∈L

B1tB1τ . It follows that

(7) vol(BtB)= vol(B1tB1)](L)

and σTy =
∑

τ∈L σ ftσ(τ) as linear maps V → V . Restricting this equality to V B

and using the fact that σ(τ) acts as identity on V B , we obtain

(8) σTy |V B = ](L)σ ft |V B

as linear maps V B
→ V B . Clearly, (6) follows from (7) and This completes the

proof of Theorem 4.3. �

The following result will not be used in the rest of the paper:

Proposition 5.5. If y ∈ Y++ and t ∈ T (K )y then BtB ⊂ B1T (K )y .

Proof. It is enough to show that t z ⊂ B1T (K )y for any z ∈ B. We can write z = t0z′,
where t0 ∈ T (K )0, z′ ∈ B1. We have t z = t t0z′, where t t0 ∈ T (K )y = T (K )♠y (here
we use that y ∈ Y++). Using Lemma 5.3, we have t t0z′ ∈ B1(t t0T1)⊂

B1T (K )y . �
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5.6. In the remainder of this section we assume that G is adjoint. In this case,
the irreducible representations (V, σ ) as in 4.2 (up to isomorphism) are known
to be in bijection with the irreducible finite-dimensional representations of the
Hecke algebra H (see [Borel 1976]) by (V, σ ) 7→ V B . The irreducible finite-
dimensional representations of H have been classified in [Kazhdan and Lusztig
1987] in terms of geometric data; moreover, in [Lusztig 2010], an algorithm to
compute the dimensions of the (generalized) weight spaces of the action of the
commutative semigroup {Ty : y ∈ Y+} on any tempered H module is given. In
particular the right hand side of the equality in Theorem 4.3 (hence also φV (t) in
that theorem) is computable when V is tempered.
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