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MULTIPLICITY OF SOLUTIONS TO THE YAMABE PROBLEM
ON COLLAPSING RIEMANNIAN SUBMERSIONS

RENATO G. BETTIOL AND PAOLO PICCIONE

Let gt be a family of constant scalar curvature metrics on the total space
of a Riemannian submersion obtained by shrinking the fibers of an origi-
nal metric g, so that the submersion collapses as t → 0 (that is, the total
space converges to the base in the Gromov–Hausdorff sense). We prove
that, under certain conditions, there are at least 3 unit volume constant
scalar curvature metrics in the conformal class [gt] for infinitely many t
accumulating at 0. This holds, for instance, for homogeneous metrics gt

obtained via Cheeger deformation of homogeneous fibrations with fibers of
positive scalar curvature.

1. Introduction

A classic problem in Riemannian geometry is to find possible canonical metrics
on a given smooth manifold M . Along this quest, an important achievement was
the complete solution of the celebrated Yamabe problem, which states that given
a closed Riemannian manifold (M, g0) with dim M ≥ 3, there exists a constant
scalar curvature metric g conformal to g0. Such a metric g can be characterized
variationally as a critical point of the Hilbert–Einstein functional

(1-1) A(g)=
1

Vol(g)

∫
M

scal(g) volg,

restricted to the set [g0]1 of unit volume metrics in the conformal class of g0.
Existence of a metric that minimizes this constrained functional, called the Yam-
abe metric, is a consequence of the works of Yamabe [1960], Trudinger [1968],
Aubin [1976] and Schoen [1984]. In addition to the minimizer, there may also be
other critical points; thus the solution may be not unique. However, Anderson [2005]
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recently proved that, on generic conformal classes, the Yamabe metric is the unique
solution. In the present paper, we are interested in the complementary situation,
that is, finding conformal classes where the Yamabe problem has multiple solutions.
Our main results provide a large class of manifolds whose conformal class contains
at least 3 distinct solutions (see Theorems A and B).

A classic method to obtain new solutions of a PDE from a path of known solutions
is to use bifurcation theory. The basic setup for our framework consists of a given
one-parameter family gt of known solutions to the Yamabe problem,

(1-2) d
(
A|[gt ]1

)
(ĝt)= 0 for t ∈ [a, b],

where ĝt is the unit volume metric homothetic to gt . We study the case where
gt is obtained by shrinking the fibers of a Riemannian submersion with totally
geodesic fibers. By proving that certain topological invariants (for example, the
Morse index) of gt change as t crosses a value t∗, one obtains existence of new
solutions accumulating at gt∗ . Then, a simple trick (Proposition 7.1) implies that
for t’s close to t∗ there are at least 3 solutions to the Yamabe problem on [gt ]1.

In our main result, gt are homogeneous metrics, hence trivially solutions to
the Yamabe problem and good (that is, nongeneric) candidates for admitting other
solutions in their conformal class. Let H ( K ( G be compact connected Lie
groups with dim K/H ≥ 2, and assume that either H is normal in K or K is normal
in G. Consider the homogeneous fibration

(1-3) K/H → G/H
π
→ G/K , π(gH)= gK .

More precisely, π is the associated bundle with fiber K/H to the K -principal
bundle G→G/H . Endow the above spaces with compatible homogeneous metrics
(see Section 4). Shrinking the fibers of (1-3) by a factor t2, we get a family gt of
homogeneous metrics on G/H , sometimes called canonical variation of (1-3). This
is, up to reparametrization, the Cheeger deformation of G/H in the direction of the
natural K -action. As t approaches 0, the manifolds (G/H, gt) converge to the base
G/K in the Gromov–Hausdorff sense. We explore the existence of infinitely many
bifurcations of (1-2) along this collapse of (G/H, gt) onto the base to obtain the
following multiplicity result.

Theorem A. Let K/H → G/H → G/K be a homogeneous fibration endowed
with compatible homogeneous metrics such that K/H has positive scalar curvature.
Let gt be the family of G-invariant metrics on G/H obtained as described above.
Then, there exists a subset T⊂ ]0, 1[, accumulating at 0, such that for each t ∈ T

there are at least 2 solutions to the Yamabe problem in [gt ]1, other than ĝt , and they
are not G-invariant.
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Theorem A applies, for example, to short exact sequences K → G→ G/K of
compact connected Lie groups and to twisted product fibrations

K/H → ((K × L)/0)/H → G/K ,

where K/H is a compact homogenous space of positive scalar curvature and
G = (K × L)/0 is a connected compact Lie group. More interestingly, the result
also holds, for example, for any homogeneous fibrations (1-3) where H is normal in
K and the quotient K/H is a nonabelian compact connected Lie group. In this case,
G can have arbitrarily large rank and dimension, and the corresponding possible
total spaces can be much more general than twisted products. For more details and
examples, see Section 5. We also stress that the hypotheses made on the scalar
curvature (and dimension) of the fibers K/H are necessary. A counterexample is
given in the end of Section 4.

Various other nonuniqueness phenomena have been studied in the literature, but
usually this can only be achieved for very specific examples; see [Ambrosetti and
Malchiodi 1999; Berti and Malchiodi 2001; Bettiol and Piccione 2013; Fischer and
Marsden 1975; Lima et al. 2012; Schoen 1991]. One exception is a remarkable
result of Pollack [1993] that proved existence of arbitrarily C0-small perturbations
of any given metric, with an arbitrarily large number of solutions in its conformal
class. Previously, Schoen [1991] had proven the existence of an increasing number
of solutions, with larger energy and Morse index, in the conformal class of the
product S1(r)× Sm−1 of round spheres, as r tends to infinity. Lima, Piccione and
Zedda [Lima et al. 2012] generalized this result to families of product metrics on a
product M1×M2 of compact Riemannian manifolds given by rescaling one of the
factors, obtaining bifurcation of solutions. Inspired by these results, the authors
recently obtained similar bifurcation results for families of homogeneous spheres
in [Bettiol and Piccione 2013]. The core of Theorem A is a further generalization,
establishing that such bifurcations indeed occur on several other families of compact
homogeneous spaces.

The initial approach to detect bifurcation in a variational problem, such as (1-2),
is to look for a change in the Morse index. This is done by identifying eigenvalues
of the second variation (2-3) of A|[gt ]1 that change sign for certain values of t .
Nevertheless, a subtle compensation problem may occur when other eigenvalues
with the same combined multiplicity cross zero in the opposite direction. On the one
hand, it is not hard to detect passage through zero of certain explicitly computable
parts of the spectrum. On the other hand, it is in general not possible to rule out
that other eigenvalues also change sign at the same time, potentially producing this
compensation that leaves the Morse index unchanged.

In the case of the Yamabe problem, the spectral analysis required consists
of comparing eigenvalues of the Laplacian of Riemannian submersions with the
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scalar curvature. Since the fibers are assumed totally geodesic, eigenfunctions
of the Laplacian of the base may be lifted to eigenfunctions of the total space
that are constant along the fibers (see Section 3). This provides an easier subset
of the spectrum to deal with, in the sense that a direct computation of the scalar
curvature immediately gives infinitely many crossings through zero. Nevertheless,
no information is available in general regarding possible compensation due to other
crossings in the opposite direction.

The key to handle this situation is to use homogeneity, placing the problem in
an equivariant context where a subtler bifurcation criterion due to Smoller and
Wasserman [1990] applies. Linearizing the action, one gets a representation of the
symmetry group in each eigenspace of the second variation. The direct sum of
those representations that correspond to negative eigenvalues is called the negative
isotropic representation; see page 8. The equivariant criterion asserts that bifurcation
occurs at the degeneracy values where the negative isotropic representation changes,
which is the case of all degeneracy values mentioned above that correspond to
crossings of eigenvalues of the base. It is then a simple observation that such
bifurcation yields the desired multiplicity result (see Proposition 7.1).

Although homogeneity is strongly used in our main result, one can replace it by
other hypotheses that make it possible to avoid the compensation problem. The
general context is then a Riemannian submersion with totally geodesic fibers,

(1-4) F→ M
π
→ B,

and metrics gt on M , obtained by shrinking the fibers. Unfortunately, in general,
these alternative hypotheses are quite restrictive. Since avoiding this compensation
is the central issue in our results, it is natural to expect that a deeper understanding
of this issue would allow weaker hypotheses; see Remark 6.2. One possibility is to
impose curvature conditions that imply certain lower bounds on eigenvalues of the
Laplacian, in which case bifurcation is obtained via the easier Morse index criterion.

Theorem B. Let F→ M→ B be a Riemannian submersion with totally geodesic
fibers. Let l = dim F ≥ 2 and m = dim M. Assume the metrics gt obtained by
shrinking the fibers have constant scalar curvature1 and that for some τ > 0 and
k1, k2 > 0, {

RicF ≥ (l − 1)k1

scalF < l(m− 1)k1
and

{
Ric(M,gτ ) ≥ (m− 1)k2

scalB ≤ m(m− 1)k2.

There exists an infinite subset T of positive real numbers accumulating at 0, such
that for each t ∈ T there are at least 3 solutions to the Yamabe problem in the
conformal class [gt ].

1For example, this happens if the original metric on M is Einstein; see [Besse 1987, Corollary 9.62].
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The paper is organized as follows. In Section 2, we briefly review the variational
setup for the Yamabe problem and the bifurcation techniques (Propositions 2.2
and 2.3) introduced in [Bettiol and Piccione 2013; Lima et al. 2012]. The effect
of shrinking the fibers on the spectrum of a Riemannian submersion with totally
geodesic fibers is recalled in Section 3. The core of the proof of Theorem A
(Theorem 4.1) is given in Section 4. Section 5 describes several examples to which
these theorems apply. Section 6 contains the core of the proof of Theorem B
(Theorem 6.1). Finally, Section 7 explains how to translate bifurcation of solutions
into the multiplicity results claimed above.

2. Variational framework and bifurcation criteria

We start by briefly recalling the classic variational setup for the Yamabe problem;
see [Bettiol and Piccione 2013; Lima et al. 2012; Schoen 1989] for details. Let M
be a closed smooth manifold of dimension m. Consider the set Met(M) of Cr,α

Riemannian metrics on M , which is an open convex cone in the Banach space of
Cr,α symmetric (0, 2)-tensors. Henceforth we fix r ≥ 3 and α ∈ ]0, 1[. For each
g ∈Met(M), define its Cr,α conformal class by

[g] =
{
φ g : φ ∈ Cr,α(M), φ > 0

}
.

Denote by Met1(M) the smooth codimension 1 embedded submanifold of Met(M)
formed by unit volume metrics. Finally, let

[g]1 =Met1(M)∩ [g].

The set [g]1 is a codimension 1 Banach submanifold of [g], and its tangent space
at the metric g can be canonically identified as

(2-1) Tg[g]1 ∼=
{
ψ ∈ Cr,α(M) :

∫
M
ψ volg = 0

}
.

The choice of Hölder regularity Cr,α for the metric tensors and functions is due to a
technical analytic aspect of our theory that employs certain Schauder estimates. To
simplify the exposition, these technicalities will not be discussed in further detail.

Hilbert–Einstein functional. Fix a metric g0 on the manifold M and consider the
Hilbert–Einstein functional A defined in (1-1). The restriction of A to [g0]1 is
smooth, and its critical points are the constant scalar curvature metrics in [g0]1.
Given one such critical point g ∈ [g0]1, the second variation of A at g can be
identified with the quadratic form on (2-1) given by

(2-2) d2(A|[g]1)(g)(ψ,ψ)= m− 2
2

∫
M

(
(m− 1)1gψ − scal(g)ψ

)
ψ volg,
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where 1g is the Laplace–Beltrami operator of g, or Laplacian of g, with the sign
convention such that its spectrum is nonnegative. The above quadratic form is
represented by the (formally) self-adjoint elliptic operator

(2-3) Jg(ψ)=
(m− 1)(m− 2)

2

(
1gψ −

scal(g)
m− 1

ψ

)
,

which we call the Jacobi operator at g. From the above formulas, the critical
point g ∈ [g0]1 is nondegenerate (in the usual sense of Morse theory) if and only
if scal(g)/(m − 1) is not an eigenvalue of the Laplacian 1g, or if scal(g) = 0.
Moreover, the Morse index N (g) of this critical point is given by the number of
negative eigenvalues of (2-3), that is, the number of positive eigenvalues of 1g,
counted with multiplicity, that are less than scal(g)/(m−1). More precisely, denote
by

0< λg
1 ≤ λ

g
2 ≤ λ

g
3 ≤ · · · ≤ λ

g
j ≤ · · ·

the sequence of eigenvalues of the Laplacian 1g, repeated according to their
multiplicity. Then, the Morse index of g is given by

(2-4) N (g)=max
{

j ∈ N : λ
g
j <

scal(g)
m− 1

}
.

Remark 2.1. For the purposes of this paper, the relevant data are the signs of the
eigenvalues of the operator (2-3). Note that, given α > 0, one has 1αg =

1
α
1g

and scal(αg) = 1
α

scal(g). Hence, the spectrum of (2-3) scales in a trivial way
under homotheties, in the sense that negative (respectively positive) eigenvalues
remain negative (respectively positive). On the other hand, volαg = α

m/2volg . Thus,
whenever necessary, we may renormalize a metric to have unit volume without
compromising the above spectral theory.

A classic result of variational bifurcation theory. Let us turn to the main tool
used in this paper, bifurcation theory. Consider a continuous path gt ∈Met(M) of
solutions to the Yamabe problem, as in (1-2). A value t∗ ∈ [a, b] is a bifurcation
value for the family gt if there exists a sequence {tq} in [a, b] that converges to t∗
and a sequence {gq} in Met(M) that converges to gt∗ satisfying for all q ∈ N:

(i) gtq ∈ [gq ], but gq 6= gtq .

(ii) Vol(gq)= Vol(gtq ).

(iii) scal(gq) is constant.

If t∗ ∈ [a, b] is not a bifurcation value, then the family gt is locally rigid at t∗. In
other words, the family gt is locally rigid at t∗ ∈ [a, b] if there exists a neighborhood
U of gt∗ in Met(M) such that, for t ∈ [a, b] sufficiently close to t∗, the conformal



MULTIPLICITY OF SOLUTIONS TO THE YAMABE PROBLEM ON SUBMERSIONS 7

class [gt ] contains a unique metric of constant scalar curvature in U whose volume
equals the volume of gt .

Using a suitable version of the Implicit Function Theorem, one sees that if gt∗
is a nondegenerate critical point, then gt is locally rigid at t∗; see [Lima et al.
2012, Proposition 3.1]. Thus, degeneracy is a necessary condition for bifurcation,
however it is in general not sufficient. A classic result in variational bifurcation
theory states that, given a continuous path of smooth functionals and a continuous
path of critical points, there is a bifurcating branch issuing from the given path at
each point where the Morse index changes (see [Kielhöfer 2004, Theorem II.7.3]
or [Smoller and Wasserman 1990, Theorem 2.1]). Translating this result to our
variational framework, we get the following.

Proposition 2.2 [Lima et al. 2012, Theorem 3.3]. Let [a, b] 3 t 7→ gt ∈Met(M)
be a continuous path of constant scalar curvature metrics on M , and assume that
a and b are not degeneracy values for gt . If N (ga) 6= N (gb), then there exists a
bifurcation value t∗ ∈ ]a, b[ for the family gt .

Equivariant variational bifurcation. In many applications, the criterion of Propo-
sition 2.2 cannot be employed because establishing a change of the Morse index at a
given degeneracy value may be a difficult task. However, when the variational setup
has an equivariant nature, one can replace the change of Morse index condition
with a more general condition based on the representation theory of the group of
symmetries of the variational problem. This more general condition fits perfectly
the setup discussed in the present paper, and we now describe it in the variational
framework of the Yamabe problem.

Suppose there exists a finite-dimensional nice2 Lie group K that acts (on the left)
by diffeomorphisms on a compact manifold M , and let [a, b] 3 t 7→ gt ∈Met(M)
be a continuous path of constant scalar curvature metrics on M . Up to a suitable
normalization, let us assume that each gt has unit volume (see Remark 2.1). The
K -action on M induces a (right) K -action on Met(M) by pull-back; that is, the
action of k ∈ K on g ∈Met(M) is k∗g. Assume that the K -action on M is isometric
with respect to all metrics gt , that is,

2A group G is nice in the sense of [Smoller and Wasserman 1990] if, given unitary represen-
tations π1 and π2 of G on Hilbert spaces V1 and V2 respectively, such that B1(V1)/S1(V1) and
B1(V2)/S1(V2) have the same (equivariant) homotopy type as G-spaces, then π1 and π2 are unitarily
equivalent. Here, B1 and S1 denote respectively the unit ball and the unit sphere in the specified
Hilbert space, and the quotient B1(Vi )/S1(Vi ) is meant in the topological sense (that is, it denotes the
unit ball of Vi with its boundary contracted to one point).

For example, any compact connected Lie group G is nice. More generally, any compact Lie group
with less than 5 connected components is nice. Denoting by G0 the identity connected component of
G, then G is nice if the discrete part G/G0 is either the product of a finite number of copies of Z2 (for
example, the case G = O(n)); or the product of a finite number of copies of Z3; or if G/G0

= Z4.
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(2-5) k∗(gt)= gt for all k ∈ K , t ∈ [a, b].

In this situation, the K -action on Met(M) leaves every conformal class [gt ] invariant,
and also [gt ]1 is K -invariant for all t . Note that (2-5) means that, for all t , gt is a
fixed point of the K -action on Met(M).

It is easy to see that, given φ : M→ R a positive function,

A
(
φ4/(n−2) gt

)
=

∫
M

(
4

n−1
n−2

φ 1tφ+ scal(gt)φ
2
)

volgt ,

where 1t is the Laplacian of gt . Using that k∗(φ gt)= (φ ◦ k)gt , right-composition
with isometries commutes with1t and scal(gt) is constant, it follows from a change
of variables that

A
(
k∗(φ gt)

)
=A

(
φ gt

)
for all k ∈ K , t ∈ [a, b].

Thus, denoting by At the restriction of the Hilbert–Einstein functional (1-1) to the
conformal class [gt ]1, we have that At is invariant under the K -action on [gt ]1.

For each eigenvalue λ ∈ Spec(1t), denote by Eλt ⊂ L2(M, volgt ) the correspon-
dent eigenspace. Elements of Eλt are smooth functions, and dim Eλt <+∞ is the
multiplicity of λ. It is easy to see that, for every t ∈ [a, b] and λ ∈ Spec(1t), there
is a representation πλt of K in Eλt , given by right-composition with isometries:

(2-6) πλt (k)ψ = ψ ◦ k for all k ∈ K , ψ ∈ Eλt .

Note this is (the restriction to Eλt of) the isotropy representation of the K -action on
[gt ]1 at the fixed point gt , that is, the linearization of this K -action at gt . We remark
that since the K -action by pull-back on [gt ]1 is a right action, its linearization at a
fixed point is actually an antirepresentation. However, we will henceforth not make
distinctions between left/right actions and representations/antirepresentations since
this does not affect our arguments.

Denote by Nt the set of negative eigenvalues of the operator (2-3); that is,

Nt := Spec
(
Jgt

)
∩ ]−∞, 0[.

Now, for all t ∈ [a, b], define the negative isotropic representation π−t of K in⊕
λ∈Nt

Eλt as the direct sum representation

π−t :=
⊕
λ∈Nt

πλt .

Notice that the degree3 of π−t is always finite and equal to the Morse index N (gt)

defined in (2-4). Finally, recall that two representations πi : K →GL(Vi ), i = 1, 2,

3That is, the dimension of the vector space
⊕
λ∈Nt

Eλt .
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are isomorphic if there exists a K -equivariant isomorphism T : V1→ V2, that is,
such that π2(k) ◦ T = T ◦π1(k) for all k ∈ K .

Proposition 2.3. Let K be a nice Lie group acting on a compact manifold M
and [a, b] 3 t 7→ gt ∈ Met(M) be a continuous path of (unit volume) constant
scalar curvature metrics. Suppose the K -action is isometric on (M, gt) for all
t ∈ [a, b]. If a and b are not degeneracy values for gt , and if the negative isotropic
representations π−a and π−b are not isomorphic, then there exists a bifurcation value
t∗ ∈ ]a, b[ for the family gt .

Proof. This result is a direct application of an equivariant bifurcation result due to
Smoller and Wasserman [1990, Theorem 3.1]. More precisely, one needs a slightly
more general statement of the result, applied to functionals defined on a varying
manifold. In our case, the functional is the Hilbert–Einstein functional A, defined
on the varying manifold [gt ]1. Details can be found in [Lima et al. 2012, Theorem
3.4, Theorem A.2]. �

Notice the above is a refinement of Proposition 2.2, which corresponds to saying
that π−a and π−b do not have the same degree (and hence cannot be isomorphic).

3. Laplacian on collapsing Riemannian submersions

In order to study bifurcation from an initial family gt of solutions to the Yamabe
problem on M , it is crucial to have a good understanding of the spectra of their
Laplacians 1t . In all our applications, the family gt is obtained as a deformation of
the original metric g on the total space M of a Riemannian submersion with totally
geodesic fibers (1-4), by multiplying it by a factor t2 in the direction of the fibers.
We will be particularly interested in the behavior of the spectrum of 1t as the fibers
collapse to a point, that is, as t→ 0.

The effect of such deformation on the spectrum was first studied by Bérard-
Bergery and Bourguignon [1982], where gt is called canonical variation of g.
The starting point is that (1-4) remains a Riemannian submersion with totally
geodesic fibers when g is replaced by gt ; see [Bérard-Bergery and Bourguignon
1982, Proposition 5.2]. For the readers’ convenience, we briefly recall some related
results that are discussed in more detail in [Bettiol and Piccione 2013, Section 3].

Vertical Laplacian and lifts of eigenfunctions. Define the vertical Laplacian 1v
on a function ψ : M→ R by

(1vψ)(p) := (1Fψ |Fp)(p) for all p ∈ M,

where 1F is the Laplacian of the fiber and Fp = π
−1(π(p)) is the fiber through

p ∈ M . Just like a usual Laplacian, the vertical Laplacian is a nonnegative self-
adjoint unbounded operator on L2(M), however it is not elliptic (unless π is a
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covering). Since the fibers are isometric, 1v has a discrete spectrum equal to that
of the Laplacian 1F of the fiber. Let us denote

(3-1)
Spec(1M)=

{
0= µ0 < µ1 < · · ·< µk ↗+∞

}
,

Spec(1v)=
{
0= φ0 < φ1 < · · ·< φ j ↗+∞

}
,

where these eigenvalues are not repeated according to their multiplicity. Note that
the multiplicity of the eigenvalues of 1M is always finite, but the eigenvalues of
1v might have infinite multiplicity. For instance, 1vψ̃ = 0 implies only that ψ̃ is
constant along the fibers; that is, ψ̃ = ψ ◦π for some function ψ : B→ R on the
base.

It is easy to see that, for any ψ : B→ R and its lift ψ̃ := ψ ◦π ,

(3-2) 1M ψ̃ = (1Bψ) ◦π + g
(
gradg ψ̃,

EH
)
,

where EH is the mean curvature vector field of the fibers. Since we assumed the fibers
of π are totally geodesic, EH vanishes identically. Thus, if ψ is an eigenfunction
of 1B , then its lift ψ̃ is an eigenfunction of 1M with the same eigenvalue (and
constant along the fibers). Therefore, there is a natural inclusion

(3-3) Spec(1B)⊂ Spec(1M).

Conversely, if ψ : M → R is constant along the fibers and satisfies 1Mψ = λψ ,
then there exists ψ̌ : B→ R such that 1Bψ̌ = λψ̌ and ψ = ψ̌ ◦π . Summing up, it
follows from (3-2), after checking the adequate regularity hypotheses (see [Bessa
et al. 2012, Lemma 3.11]), that the following holds.

Proposition 3.1. If π : M→ B is a Riemannian submersion with totally geodesic
fibers, then an eigenfunction of 1M is constant along the fibers if and only if it is
the lift of an eigenfunction of 1B .

Spectrum of deformed metrics. Another consequence of having totally geodesic
fibers is that L2(M) has a Hilbert basis consisting of simultaneous eigenfunctions
of the original Laplacian 1M and the vertical Laplacian 1v; see [Bérard-Bergery
and Bourguignon 1982, Theorem 3.6]. This means that these operators can be
simultaneously diagonalized, in the appropriate sense. Furthermore, it is a simple
calculation to show that that the Laplacian 1t of the deformed metric gt is 1t =

1M + (1/t2
− 1)1v; see [Bérard-Bergery and Bourguignon 1982, Proposition 5.3].

From this, we get the following description of its spectrum.

Proposition 3.2 [Bettiol and Piccione 2013, Corollary 3.6]. For each t > 0, the
following inclusion holds:

Spec(1t)⊂ Spec(1M)+ (1/t2
− 1)Spec(1v).
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Since these sets are discrete, every eigenvalue λ(t) of 1t is of the form

(3-4) λk, j (t)= µk + (1/t2
− 1)φ j ,

for some eigenvalues µk and φ j of 1M and 1v, respectively.

Remark 3.3. Not all possible combinations of µk and φ j in (3-4) give rise to an
eigenvalue of 1t . In fact, this only happens when the total space of the submersion
is a Riemannian product. In general, determining which combinations are allowed
depends on the global geometry of the submersion.

Note that, since the fibers of π remain totally geodesic with respect to gt , (3-3)
holds when 1M is replaced with 1t ; that is,

(3-5) Spec(1B)⊂ Spec(1t) for all t > 0.

Moreover, when j = 0 in (3-4), λk,0(t)= µk ∈ Spec(1M) remains an eigenvalue
of 1t for t 6= 1 if and only if µk ∈ Spec(1B). Such eigenvalues λk,0(t) of 1t will
be called constant eigenvalues, since they are independent of t . In other words, the
constant eigenvalues of 1t are the ones in the left-hand side of (3-5). We stress that
λk,0(t) is not necessarily a constant eigenvalue for all k.

4. Bifurcation on homogeneous fibrations

Let H ( K ( G be compact connected Lie groups such that dim K/H ≥ 2,
and assume that either H is normal in K , or K is normal in G. Consider the
homogeneous fibration (1-3),

K/H → G/H
π
→ G/K , where π(gH)= gK ,

and notice that the fiber over gK ∈ G/K is (gK )H ⊂ G/H . Define a K -action on
G/H by k ·gH = kgH if K is normal in G and by k ·gH = gk−1 H if H is normal
in K . Notice that the orbits of this K -action are exactly the fibers of π . Denote by
h( k( g the Lie algebras of H ( K ( G. We henceforth fix an AdG(K )-invariant
complement m to k in g, and an AdG(H)-invariant complement p to h in k; that is,

k⊕m= g, [k,m] ⊂m and h⊕ p= k, [h, p] ⊂ p.

There are natural identifications of m and p with the tangent spaces to G/K
and K/H at the origin,4 respectively. The sum m⊕ p is an AdG(H)-invariant
complement to h in g, which is identified with the tangent space to G/H at the
origin.

Any AdG(K )-invariant inner product on m defines a G-invariant metric on the
base G/K , and any AdG(H)-invariant inner product on p defines a K -invariant

4That is, m∼= T(eK )G/K and p∼= T(eH)K/H .
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metric on the fiber K/H . The orthogonal direct sum of these inner products on m⊕p

now gives a G-invariant metric on G/H . We call these metrics on (1-3) compatible
homogeneous metrics. We stress that not necessarily all G-invariant metrics on
G/H arise in this way. However, if m and p do not share equivalent AdG(H)-
submodules, then all G-invariant metrics on G/H that project to a G-invariant
metric on G/K are of this form. We will henceforth consider all homogeneous
fibrations to be endowed with compatible metrics. The homogeneous fibration
π : G/H → G/K is then automatically a Riemannian submersion with totally
geodesic fibers (isometric to K/H ); see [Bérard-Bergery 1978, Proposition 2] or
[Besse 1987, Theorem 9.80].

Theorem 4.1. Let K/H → G/H → G/K be a homogeneous fibration as above,
and assume that K/H has positive scalar curvature. Let gt be the family of
homogeneous metrics on G/H obtained by scaling the fibers by t2. There exists a
sequence {tq} in ]0, 1[, that converges to 0, of bifurcation values for the family gt .

Proof. Since π : (G/H, gt) → G/K is a Riemannian submersion with totally
geodesic fibers, we have

(4-1) scal(G/H, gt)=
1
t2 scal(K/H)+ scal(G/K ) ◦π − t2

‖A‖2,

where ‖A‖ is the Hilbert–Schmidt norm of the Gray–O’Neill tensor of integrability
of the horizontal distribution (see [Besse 1987, Proposition 9.70]). Note that
scal(K/H) > 0 implies

(4-2) lim
t→0+

scal(G/H, gt)=+∞.

Recall that the degeneracy values in this setup are those t > 0 such that

(4-3) (m− 1)1tψ − scal(G/H, gt)ψ = 0

has a nontrivial solution ψ , where m = dim G/H and 1t is the Laplacian of
(G/H, gt). From (3-4) and (4-1), the set of such degeneracy values is discrete.
From (4-2), there are infinitely many degeneracy values tq accumulating at 0 such
that scal(G/H, gtq )/(m− 1) ∈ Spec(1G/K )⊂ Spec(1t); see (3-5). We claim that
every such value tq is a bifurcation value.

Fix one such tq , and denote by λ ∈ Spec(1G/K ) the constant eigenvalue of 1t

such that scal(G/H, gtq )/(m−1)= λ. If there is a change in the Morse index at tq ,
that is, for ε > 0 sufficiently small, N (gtq−ε) 6= N (gtq+ε), then by Proposition 2.2, tq
is a bifurcation value. However, if the Morse index does not change, there must be
a compensation of eigenvalues. Namely, there must exist nonconstant eigenvalues
λk1, j1(t), . . . , λkn, jn (t) of 1t , whose combined multiplicity equals the multiplicity
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of λ, such that

λ < scal(G/H, gt)/(m− 1) < λki , ji (t) for all t < tq (close to tq) and 1≤ i ≤ n,

λ > scal(G/H, gt)/(m− 1) > λki , ji (t) for all t > tq (close to tq) and 1≤ i ≤ n.

Denoting by Eαt the eigenspace of the eigenvalue α∈Spec(1t), we have the negative
isotropic representations π−t on the linear spaces (of same finite dimension):

(4-4)
E ⊕ Eλt for t < tq (close to tq),

E ⊕
⊕

i

Eλ
ki , ji

t for t > tq (close to tq),

where E is the space spanned by the eigenfunctions with eigenvalues less than
scal(G/H, gt)/(m−1) for t close to tq . We claim that for small ε > 0, the negative
isotropic representations π−tq−ε and π−tq+ε on the spaces (4-4) cannot be isomorphic.
From Proposition 2.3, it then follows that tq is a bifurcation value, concluding the
proof.

Let us verify the above claim. Given a representation π of a compact group,
denote by I(π) the number of copies of the trivial representation in the irreducible
decomposition of π . It is easily seen that a necessary condition for the two rep-
resentations πa and πb to be isomorphic is that I(πa) = I(πb). For the negative
isotropic representation π−t , one can compute

(4-5) I(π−t )=
∑

η∈Spec(1G/K )

η<scal(gt )/(m−1)

mul(η),

where mul(η) is the multiplicity of η as an eigenvalue of 1G/K . Indeed, an eigen-
function ψ of 1t is constant along the fibers K/H of the homogeneous fibration
(1-3) if and only if it is K -invariant, that is, ψ◦k=ψ for all k ∈K . This is equivalent
to saying that ψ is a fixed point of π−t ; see (2-6). So, from Proposition 3.1, the
left-hand side of (4-5) is greater than or equal to the right-hand side. Conversely,
it is easy to see that if ψ : G/H → R is the linear combination of eigenfunctions
ψi : G/H → R of 1t , and if ψ is constant along the fibers of G/H → G/K , then
each ψi must be constant along such fibers. This follows from the fact that the
subspace of L2(G/H) of functions that are constant along the fibers (which is
isomorphic to L2(G/K )) is spanned by the (lift of) eigenfunctions of 1G/K . In
other words, the space spanned by the eigenfunctions of 1G/H that are constant
along the fibers and the space spanned by the eigenfunctions of 1G/H that are not
constant along the fibers are L2-orthogonal. This completes the proof of (4-5).

From (4-4) and (4-5) we see that, for any ε > 0 small, I(π−tq−ε) > I(π−tq+ε).
Therefore these representations are not isomorphic, concluding the proof. �
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Remark 4.2. At all bifurcation values for the family gt a break of symmetry occurs,
in the sense that any solutions in the bifurcating branch are not G-homogeneous.
This follows easily from the fact that each conformal class contains at most one
homogeneous metric (up to rescaling).

Sharpness of fiber hypotheses. If the fibers K/H have flat scalar curvature or
have dimension 1, then scal(gt) remains bounded as t → 0, and there are not
infinitely many degeneracy values as above. For instance, consider a fibration of
tori, G = K × K , K = T 2 and H = {e}, where the inclusion of K is as one of the
factors of G. If K is endowed with the flat metric and G with the product metric,
shrinking the fibers keeps the total space G/H flat, hence the family obtained is
(trivially) locally rigid, for all t > 0.

5. Examples

We now discuss how to construct examples of homogeneous fibrations with fibers
of positive scalar curvature to which Theorem 4.1 (hence also Theorem A) applies.

Normal homogeneous metrics. A K -invariant metric on K/H is called normal if
it is obtained from the restriction to p of a bi-invariant inner product on k. Since K
is compact, it admits a bi-invariant metric. Hence, normal homogeneous metrics
always exist5 on K/H . Endowed with such a metric, the sectional curvature of a
tangent plane at the origin, spanned by orthonormal vectors X and Y , is

(5-1) sec(X, Y )= 1
4

∥∥[X , Y ]
∥∥2
+

3
4

∥∥[X , Y ]h
∥∥2
≥ 0,

where X = (0, X) and Y = (0, Y ) are the horizontal lifts of X and Y to k= h⊕ p

and ( · )h denotes the h-component of a vector in k. In particular, scal(K/H)≥ 0,
and it is equal to zero if and only if p is an abelian ideal of k. This, in turn, is
equivalent to the existence of an abelian subgroup A ⊂ K that acts transitively on
K/H . Since (the closure of) A is a compact connected abelian Lie group, it must
be a torus. Hence, K/H itself is a torus. Thus, any normal metric on K/H has
positive scalar curvature, unless K/H is a torus.

More generally, K/H admits a (normal) metric of positive scalar curvature if
and only if its universal covering is not diffeomorphic to an Euclidean space; see
[Bérard-Bergery 1978, Theorem 2]. In particular, if K/H is not an aspherical
manifold, then K/H has a metric of positive scalar curvature. We also stress that,
generally, there are other K -invariant metrics (not necessarily normal) on K/H
that have positive scalar curvature, and any such metric can be used to obtain

5There exist homogeneous spaces on which all homogeneous metrics are normal. These spaces
are called of normal type in [Bérard-Bergery 1978, Section 7]. Examples are spaces whose isotropy
representation is irreducible (for example, irreducible symmetric spaces) and their products.
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examples of applications of our results. In this direction, examples with nonnormal
homogeneous metrics with positive scalar curvature on spheres will be discussed
below.

In any of the cases above, one can endow the remaining spaces of (1-3) with
compatible homogeneous metrics. In this way, it is possible to construct many
classes of homogeneous fibrations to which our results apply.

Twisted products. Let us now describe explicit triples H ( K ( G of compact
connected Lie groups with either H normal in K or K normal in G. Starting with
the latter, if a compact connected Lie group G has a proper connected normal
subgroup K , then there exists another connected normal subgroup6 L of G such
that G = (K × L)/0, where 0 ⊂ K × L is finite. For any subgroup H of K , one
then gets the homogeneous fibration

(5-2) K/H → ((K × L)/0)/H → G/K .

This provides an algorithm to build examples, whose input are the groups H , K ,
L and 0. Setting G = (K × L)/0 we then have that the factor K is a normal
subgroup.

Example 5.1. Consider G = SO(4), which is double-covered by S3
× S3. In this

case, K = L = S3 and 0 = Z2 is the diagonal embedding into K × L; that is, 0 is
the subgroup generated by (−1,−1) ∈ S3

× S3. We then have

G = (K × L)/0 = (S3
× S3)/Z2,

and the quotient G/K is isomorphic to S3/Z2=SO(3). One can choose H⊂K = S3

to be trivial, so that K/H = S3; or to be a circle, for example the circle that gives the
Hopf action on S3, so that K/H = S2. The corresponding homogeneous fibrations
that (5-2) gives are

S3
→ SO(4)→ SO(3) and S2

→ SO(4)/S1
→ SO(3).

In these cases the total space G/H is a twisted product, while in the special
case where 0 is trivial we have the splitting G = K × L , so that G/K = L and
G/H = K/H × L is an actual product manifold. That is, (5-2) becomes

(5-3) K/H → K/H × L→ L .

6The subgroup L is obtained as the connected subgroup of G whose Lie algebra l is the orthogonal
complement (with respect to a bi-invariant metric) of the Lie algebra k of K . Since K is normal, k is
an ideal and then l= k⊥ is also an ideal, because the adjoint representation is skew-symmetric with
respect to the bi-invariant metric. This implies that L is normal, and K L generates the entire group G
by connectedness, since it does so locally near the identity. Finiteness of 0 = K ∩ L follows since the
intersection k∩ l is trivial.
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In contrast to the cases above, the deformed metrics gt in this situation are
product metrics, obtained by rescaling the directions tangent to the first factor K/H
by t2 and keeping the metric constant in the directions tangent to L . In this way,
any product of a compact homogeneous space (with positive scalar curvature) and
a compact connected Lie group satisfies the hypotheses of Theorem 4.1 (hence also
of Theorem A). We note that this particular case is covered by the results of [Lima
et al. 2012].

Sphere fibers. An important observation is that in the above product situation
where K/H = Sn is a sphere, our result allows for any homogeneous metric (not
necessarily normal) on K/H = Sn whose scalar curvature is positive, as opposed
to only the round metric. Homogeneous metrics on spheres were classified by
Ziller [1982]; they are obtained by rescaling the fibers of one of the Hopf fibrations:

S1
→ S2n+1

→ CPn, S3
→ S4n+3

→ HPn, S7
→ S15

→ S8( 1
2

)
.

In the first and last case, there is only one direction in which the fibers can be
rescaled, while for the fibration with S3 fiber, each of the 3 coordinate S1 subgroups
can be rescaled with a different factor. This gives rise to the following metrics:

• gs , a 1-parameter family of U(n+ 1)-invariant metrics on S2n+1;

• hs1,s2,s3 , a 3-parameter family of Sp(n+ 1)-invariant metrics on S4n+3;

• ks , a 1-parameter family of Spin(9)-invariant metrics on S15.

All these metrics have scal> 0 for a certain range of parameters (see table below).
Thus, if K/H = Sn is isometric to one of those spheres, the submersion (5-3)
satisfies the hypotheses of Theorem 4.1 (hence also of Theorem A).

metric K H dim K/H

SO(n+ 1) SO(n) n (≥ 2)
round Spin(7) G2 7

G2 SU(3) 6

gs
SU(n+ 1) SU(n) 2n+ 1 (≥ 2)
U(n+ 1) U(n) 2n+ 1 (≥ 2)

Sp(n+ 1) Sp(n) 4n+ 3
hs1,s2,s3 Sp(n+ 1)×Sp(1) Sp(n)×Sp(1) 4n+ 3

Sp(n+ 1)×U(1) Sp(n)×U(1) 4n+ 3

ks Spin(9) Spin(7) 15

It is proved in [Bettiol and Piccione 2013, Proposition 4.2] that the range of
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parameters for which these K -invariant metrics have scal> 0 is 0< s < smax, where

smax =



√
2n+ 2 in the case of gs ,√
2n+4

3
+

√
18n+16(n2+2n)2

6n
in the case of hs,s,s ,√

2+ 1
2

√
19 in the case of ks .

When s = 1, these metrics are isometric to the round metric (which is the only
normal homogeneous metric in each family).

Remark 5.2. The above construction can be interpreted as having a chain

H ( H ′ ( K ( G

of Lie groups, and first performing a Cheeger deformation with respect to the
H ′-action in the total space of H ′/H → K/H → K/H ′ to obtain positive scalar
curvature on K/H , and then using this metric on the fiber of K/H→G/H→G/K .
The Cheeger deformation with respect to the K -action on G/H gives the desired
1-parameter family gt that satisfies the hypotheses of our results. More generally,
one could perform multiple “preliminary” Cheeger deformations with a longer
chain of groups in order to gain scal> 0 on the fibers of the “last” homogeneous
fibration.

Example 5.3. Another interesting class of examples with K normal in G is when H
is trivial, so that the resulting homogeneous fibration (1-3) is a short exact sequence
of Lie groups K→G→G/K . This is precisely the case of S3

→ SO(4)→ SO(3)
in Example 5.1. Here, the deformed metrics gt are obtained by shrinking the original
metric in the direction of the cosets of K in G.

Other examples. As explained above, instead of having K normal in G, one can
also consider the case where H is normal in K . This poses far fewer restrictions
on the homogeneous fibrations that can be obtained, since the group K will split
as a product (up to a finite quotient); however, no conditions are imposed on G.
For instance, G may have arbitrarily large dimension and rank. It follows from
the above discussion on normal homogenous metrics that our results apply to the
submersion (1-3) with H normal in K as soon as the quotient K/H is not abelian.
More precisely, if K/H is not a torus, then any normal homogeneous metric will
have positive scalar curvature. Any choice of G will then yield a triple H ( K ( G
whose corresponding homogeneous fibration can be endowed with compatible
metrics for which Theorem 4.1 (hence also Theorem A) applies.

Example 5.4. To illustrate the above comments, let us build on the case described
in Example 5.1. Instead of G, set K =SO(4)= (S3

×S3)/Z2 and H as one of the S3
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factors, so that K/H = SO(3). Then G can be chosen arbitrarily among compact
connected Lie groups that have a subgroup isomorphic to SO(4). As concrete
examples, we may set G = SO(5) so that G/K = S4 is a sphere; or G = SO(6) so
that G/K = T1S4 is the unit tangent bundle of S4. The corresponding homogeneous
fibrations are

SO(3)→ SO(5)/S3
→ S4 and SO(3)→ SO(6)/S3

→ T1S4.

Remark 5.5. Any of the above examples can be trivially used to obtain new
ones with nonsimply connected total space. Consider F ⊂ K a finite subgroup
and its action on K/H and G/H , so that the inclusion map K/H → G/H is
equivariant. One can form a new fibration replacing K/H and G/H by their
(nonsimply connected) quotients by the F-action. Since F ⊂ K , the base of
the fibration remains G/K . If the original metrics satisfied the conditions of
Theorem 4.1, then the induced metrics in the new fibration also do.

6. Bifurcation on nonhomogeneous fibrations

A natural question is how the presence of many symmetries affects the bifurcation
result obtained above. Homogeneity played a pivotal role in employing the equivari-
ant bifurcation criterion (Proposition 2.3). When this assumption is dropped, the
only tool at hand is the Morse index criterion (Proposition 2.2), so extra hypotheses
are needed to guarantee a change in the Morse index at the degeneracy values.
One such possibility is to impose certain curvature conditions that allow us to
bound (from below) the growth of the eigenvalues of a nonhomogeneous collapsing
Riemannian submersion.

Theorem 6.1. Let F→ M→ B be a Riemannian submersion with totally geodesic
fibers. Let l = dim F ≥ 2 and m = dim M. Assume the metrics gt obtained by
shrinking the fibers have constant scalar curvature, and that for some τ > 0 and
k1, k2 > 0, {

RicF ≥ (l − 1)k1

scalF < l(m− 1)k1
and

{
Ric(M,gτ ) ≥ (m− 1)k2

scalB ≤ m(m− 1)k2.

There exists a sequence {tq} in ]0, τ [, that converges to 0, of bifurcation values for
the family gt .

Proof. Since π : M→ F is a Riemannian submersion with totally geodesic fibers,

(6-1) scal(M, gt)=
1
t2 scalF + scalB ◦π − t2

‖A‖2,

where ‖A‖ is the Hilbert–Schmidt norm of the Gray–O’Neill tensor A. From
scalF > 0, we have limt→0+ scal(M, gt)=+∞. As before, the set of degeneracy
values is discrete, and infinitely many of them occur due to Spec(1B)⊂ Spec(1t);



MULTIPLICITY OF SOLUTIONS TO THE YAMABE PROBLEM ON SUBMERSIONS 19

see (3-5). Denote by tq the sequence of degeneracy values, accumulating at 0, such
that scal(M, gtq )/(m− 1) ∈ Spec(1B). We claim that for q sufficiently large (that
is, tq sufficiently small), tq is a bifurcation value.

From Proposition 2.2, we must verify that, for tq sufficiently small, there is a
change of the Morse index N (gt) at tq . It suffices to prove that every nonconstant
eigenvalue λk, j (t) of 1t is strictly larger than scal(M, gt)/(m−1) for t sufficiently
small, so that no compensation of eigenvalues can occur (compare the proof of
Theorem 4.1). Up to a simple rescaling, assume τ = 1. Since the eigenvalues µk of
1M and φ j of 1v are ordered to be monotonically increasing, it suffices to prove

(6-2) scal(M, gt)/(m−1)<λ1,1(t)=µ1+

( 1
t2 − 1

)
φ1 for t sufficiently small;

see Proposition 3.2. From the Lichnerowicz estimates, since RicF ≥ (l − 1) k1 and
RicM ≥ (m− 1) k2, we have

(6-3) φ1 ≥ l k1 and µ1 ≥ m k2;

see [Chavel 1984, Chapter 3, Theorem 9]. When we combine the latter with
scalB ≤ m(m− 1) k2, we get

(6-4) scalB ◦π − t2
‖A‖2 ≤ scalB ◦π ≤ (m− 1)µ1.

Also, from (6-3) and scalF < l(m− 1) k1, it follows that scalF < (m− 1)φ1. Thus,
for t sufficiently small, we have scalF < (1− t2)(m− 1)φ1, hence

(6-5) 1
t2 scalF < (m− 1)

( 1
t2 − 1

)
φ1.

Adding (6-4) and (6-5) and using (6-1), we obtain (6-2), concluding the proof. �

The above result can be applied, for example, to low-dimensional Hopf fibrations,
reobtaining the conclusion of Theorem 4.1. Nevertheless, for larger dimensions,
the curvature pinching conditions are not satisfied, although the result remains true.

Remark 6.2. The curvature pinching conditions above are solely needed to avoid
compensation of eigenvalues, in a rather forceful way. Given a Riemannian submer-
sion F→ M→ B with totally geodesic fibers of positive scalar curvature, suppose
the metrics gt obtained by shrinking the fibers have constant scalar curvature. If
under certain conditions there is an inclusion of (a nontrivial subgroup of) the
isometry group of F in the isometry group of (M, gt), t ∈ ]0, τ [, then one can
employ the equivariant techniques to deal with possible compensation of eigenvalues
and still obtain infinitely many bifurcation values in this nonhomogeneous context.

7. Multiplicity of solutions to the Yamabe problem

We now explain how to obtain the multiplicity result claimed in the Introduction.
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Proposition 7.1. Let gt , with t ∈ ]0, τ [, be a family of metrics on M with N (gt) > 0
and suppose there exists a sequence {tq} in ]0, τ [, that converges to 0, of bifurcation
values for gt . Then, there is an infinite subset T⊂ ]0, τ [ accumulating at 0, such
that for each t ∈ T, there are at least 3 solutions to the Yamabe problem in the
conformal class [gt ].

Proof. For all t , denote by ĝt the unit volume metric homothetic to gt . Since tq is a
bifurcation value, there are values of t arbitrarily close to tq for which the conformal
class [gt ] contains a unit volume constant scalar curvature metric g distinct from ĝt .
Since N (gt) > 0, by continuity of the Morse index, also N (g) > 0. In particular,
neither ĝt nor g are minima of the Hilbert–Einstein functional in [gt ]. Therefore,
[gt ] contains at least 3 distinct unit volume constant scalar curvature metrics, that
is, 3 solutions to the Yamabe problem. The set T of such t’s clearly accumulates at
0, since tq converges to 0. �

Theorems A and B now follow easily from Theorems 4.1 and 6.1, respectively.
Indeed, in order to apply Proposition 7.1, it is only necessary to verify that N (gt)>0.
In the first case, if gt comes from a homogeneous fibration, there must be a value τ
of t , when scal(t)/(m − 1) crosses the first eigenvalue from the base, before any
compensation is even possible. At this value t = τ , the Morse index changes from
0 to a positive integer. Then, for t ∈ ]0, τ [, we have N (gt)≥ N (gτ−ε) > 0. In the
second case, N (gt) gets arbitrarily large as t→ 0, so this condition is also satisfied.

References

[Ambrosetti and Malchiodi 1999] A. Ambrosetti and A. Malchiodi, “A multiplicity result for the
Yamabe problem on Sn”, J. Funct. Anal. 168:2 (1999), 529–561. MR 2000k:53032 Zbl 0949.53028

[Anderson 2005] M. T. Anderson, “On uniqueness and differentiability in the space of Yamabe
metrics”, Commun. Contemp. Math. 7:3 (2005), 299–310. MR 2006d:53031 Zbl 1082.58013

[Aubin 1976] T. Aubin, “Équations différentielles non linéaires et problème de Yamabe concernant la
courbure scalaire”, J. Math. Pures Appl. (9) 55:3 (1976), 269–296. MR 55 #4288 Zbl 0336.53033

[Bérard-Bergery 1978] L. Bérard-Bergery, “Sur la courbure des métriques riemanniennes invariantes
des groupes de Lie et des espaces homogènes”, Ann. Sci. École Norm. Sup. (4) 11:4 (1978), 543–576.
MR 80k:53078 Zbl 0426.53038

[Bérard-Bergery and Bourguignon 1982] L. Bérard-Bergery and J.-P. Bourguignon, “Laplacians
and Riemannian submersions with totally geodesic fibres”, Illinois J. Math. 26:2 (1982), 181–200.
MR 84m:58153 Zbl 0483.58021

[Berti and Malchiodi 2001] M. Berti and A. Malchiodi, “Non-compactness and multiplicity re-
sults for the Yamabe problem on Sn”, J. Funct. Anal. 180:1 (2001), 210–241. MR 2002b:53049
Zbl 0979.53038

[Bessa et al. 2012] G. P. Bessa, J. F. Montenegro, and P. Piccione, “Riemannian submersions with
discrete spectrum”, J. Geom. Anal. 22:2 (2012), 603–620. MR 2891739 Zbl 1257.58018

[Besse 1987] A. L. Besse, Einstein manifolds, Results in Mathematics and Related Areas (3) 10,
Springer, Berlin, 1987. MR 88f:53087 Zbl 0613.53001

http://dx.doi.org/10.1006/jfan.1999.3458
http://dx.doi.org/10.1006/jfan.1999.3458
http://msp.org/idx/mr/2000k:53032
http://msp.org/idx/zbl/0949.53028
http://dx.doi.org/10.1142/S0219199705001751
http://dx.doi.org/10.1142/S0219199705001751
http://msp.org/idx/mr/2006d:53031
http://msp.org/idx/zbl/1082.58013
http://msp.org/idx/mr/55:4288
http://msp.org/idx/zbl/0336.53033
http://www.numdam.org/item?id=ASENS_1978_4_11_4_543_0
http://www.numdam.org/item?id=ASENS_1978_4_11_4_543_0
http://msp.org/idx/mr/80k:53078
http://msp.org/idx/zbl/0426.53038
http://projecteuclid.org/euclid.ijm/1256046790
http://projecteuclid.org/euclid.ijm/1256046790
http://msp.org/idx/mr/84m:58153
http://msp.org/idx/zbl/0483.58021
http://dx.doi.org/10.1006/jfan.2000.3699
http://dx.doi.org/10.1006/jfan.2000.3699
http://msp.org/idx/mr/2002b:53049
http://msp.org/idx/zbl/0979.53038
http://dx.doi.org/10.1007/s12220-010-9207-3
http://dx.doi.org/10.1007/s12220-010-9207-3
http://msp.org/idx/mr/2891739
http://msp.org/idx/zbl/1257.58018
http://msp.org/idx/mr/88f:53087
http://msp.org/idx/zbl/0613.53001


MULTIPLICITY OF SOLUTIONS TO THE YAMABE PROBLEM ON SUBMERSIONS 21

[Bettiol and Piccione 2013] R. G. Bettiol and P. Piccione, “Bifurcation and local rigidity of homoge-
neous solutions to the Yamabe problem on spheres”, Calc. Var. Partial Differential Equations 47:3-4
(2013), 789–807. MR 3070564

[Chavel 1984] I. Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics 115,
Academic Press, Orlando, FL, 1984. MR 86g:58140 Zbl 0551.53001

[Fischer and Marsden 1975] A. E. Fischer and J. E. Marsden, “Deformations of the scalar curvature”,
Duke Math. J. 42:3 (1975), 519–547. MR 52 #1804 Zbl 0336.53032

[Kielhöfer 2004] H. Kielhöfer, Bifurcation theory: An introduction with applications to PDEs,
Applied Mathematical Sciences 156, Springer, New York, 2004. MR 2004i:47133 Zbl 1032.35001

[Lima et al. 2012] L. L. de Lima, P. Piccione, and M. Zedda, “On bifurcation of solutions of the
Yamabe problem in product manifolds”, Ann. Inst. H. Poincaré Anal. Non Linéaire 29:2 (2012),
261–277. MR 2901197 Zbl 1239.58005

[Pollack 1993] D. Pollack, “Nonuniqueness and high energy solutions for a conformally invariant
scalar equation”, Comm. Anal. Geom. 1:3-4 (1993), 347–414. MR 94m:58051 Zbl 0848.58011

[Schoen 1984] R. Schoen, “Conformal deformation of a Riemannian metric to constant scalar
curvature”, J. Differential Geom. 20:2 (1984), 479–495. MR 86i:58137 Zbl 0576.53028

[Schoen 1989] R. M. Schoen, “Variational theory for the total scalar curvature functional for Riemann-
ian metrics and related topics”, pp. 120–154 in Topics in calculus of variations (Montecatini Terme,
1987), edited by M. Giaquinta, Lecture Notes in Math. 1365, Springer, Berlin, 1989. MR 90g:58023
Zbl 0702.49038

[Schoen 1991] R. M. Schoen, “On the number of constant scalar curvature metrics in a conformal
class”, pp. 311–320 in Differential geometry, edited by B. Lawson and K. Tenenblat, Pitman Monogr.
Surveys Pure Appl. Math. 52, Longman Sci. Tech., Harlow, 1991. MR 94e:53035 Zbl 0733.53021

[Smoller and Wasserman 1990] J. Smoller and A. G. Wasserman, “Bifurcation and symmetry-
breaking”, Invent. Math. 100:1 (1990), 63–95. MR 91f:58019 Zbl 0721.58011

[Trudinger 1968] N. S. Trudinger, “Remarks concerning the conformal deformation of Riemannian
structures on compact manifolds”, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265–274. MR 39
#2093 Zbl 0159.23801

[Yamabe 1960] H. Yamabe, “On a deformation of Riemannian structures on compact manifolds”,
Osaka Math. J. 12 (1960), 21–37. MR 23 #A2847 Zbl 0096.37201

[Ziller 1982] W. Ziller, “Homogeneous Einstein metrics on spheres and projective spaces”, Math.
Ann. 259:3 (1982), 351–358. MR 84h:53062 Zbl 0469.53043

Received August 6, 2012.

RENATO G. BETTIOL

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF NOTRE DAME

NOTRE DAME, IN 46556-4618
UNITED STATES

rbettiol@nd.edu

PAOLO PICCIONE

DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE DE SÃO PAULO

SÃO PAULO, SP, 05508-090
BRAZIL

piccione@ime.usp.br

http://dx.doi.org/10.1007/s00526-012-0535-y
http://dx.doi.org/10.1007/s00526-012-0535-y
http://msp.org/idx/mr/3070564
http://msp.org/idx/mr/86g:58140
http://msp.org/idx/zbl/0551.53001
http://www.cds.caltech.edu/~marsden/bib/1975/02-FiMa1975/FiMa1975.pdf
http://msp.org/idx/mr/52:1804
http://msp.org/idx/zbl/0336.53032
http://msp.org/idx/mr/2004i:47133
http://msp.org/idx/zbl/1032.35001
http://dx.doi.org/10.1016/j.anihpc.2011.10.005
http://dx.doi.org/10.1016/j.anihpc.2011.10.005
http://msp.org/idx/mr/2901197
http://msp.org/idx/zbl/1239.58005
http://msp.org/idx/mr/94m:58051
http://msp.org/idx/zbl/0848.58011
http://projecteuclid.org/euclid.jdg/1214439291
http://projecteuclid.org/euclid.jdg/1214439291
http://msp.org/idx/mr/86i:58137
http://msp.org/idx/zbl/0576.53028
http://dx.doi.org/10.1007/BFb0089180
http://dx.doi.org/10.1007/BFb0089180
http://msp.org/idx/mr/90g:58023
http://msp.org/idx/zbl/0702.49038
http://msp.org/idx/mr/94e:53035
http://msp.org/idx/zbl/0733.53021
http://dx.doi.org/10.1007/BF01231181
http://dx.doi.org/10.1007/BF01231181
http://msp.org/idx/mr/91f:58019
http://msp.org/idx/zbl/0721.58011
http://archive.numdam.org/article/ASNSP_1968_3_22_2_265_0.pdf
http://archive.numdam.org/article/ASNSP_1968_3_22_2_265_0.pdf
http://msp.org/idx/mr/39:2093
http://msp.org/idx/mr/39:2093
http://msp.org/idx/zbl/0159.23801
http://projecteuclid.org/euclid.ojm/1200689814
http://msp.org/idx/mr/23:A2847
http://msp.org/idx/zbl/0096.37201
http://dx.doi.org/10.1007/BF01456947
http://msp.org/idx/mr/84h:53062
http://msp.org/idx/zbl/0469.53043
mailto:rbettiol@nd.edu
mailto:piccione@ime.usp.br


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2013 is US $400/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:pacific@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 266 No. 1 November 2013

1Multiplicity of solutions to the Yamabe problem on collapsing
Riemannian submersions

RENATO G. BETTIOL and PAOLO PICCIONE

23Rank gradient of small covers
DARLAN GIRÃO

31Nonrationality of nodal quartic threefolds
KYUSIK HONG

43Supertropical linear algebra
ZUR IZHAKIAN, MANFRED KNEBUSCH and LOUIS ROWEN

77Isometry groups among topological groups
PIOTR NIEMIEC

117Singularities and Liouville theorems for some special conformal
Hessian equations

QIANZHONG OU

129Attaching handles to Delaunay nodoids
FRANK PACARD and HAROLD ROSENBERG

185Some new canonical forms for polynomials
BRUCE REZNICK

221Applications of the deformation formula of holomorphic one-forms
QUANTING ZHAO and SHENG RAO

Pacific
JournalofM

athem
atics

2013
Vol.266,N

o.1


	1. Introduction
	2. Variational framework and bifurcation criteria
	3. Laplacian on collapsing Riemannian submersions
	4. Bifurcation on homogeneous fibrations
	5. Examples
	6. Bifurcation on nonhomogeneous fibrations
	7. Multiplicity of solutions to the Yamabe problem
	References
	
	

