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NONRATIONALITY OF NODAL QUARTIC THREEFOLDS

KYUSIK HONG

We prove the factoriality of every nodal quartic threefold with 13 singular
points that contains neither planes nor quadric surfaces. As a corollary, any
nodal quartic threefold with 13 singular points that contains neither planes
nor quadric surfaces is nonrational.

1. Introduction

All varieties are assumed to be projective, normal, and defined over C. A nodal
variety is one that has, at most, isolated ordinary double points (nodes). A variety
V is said to be factorial if each Weil divisor is Cartier, and Q-factorial if a multiple
of each Weil divisor of V is Cartier. This simple-looking definition is quite subtle
when applied to projective varieties. It depends both on the kind of singularities
and on their position. In the case of a Fano threefold X , Q-factoriality is equivalent
to the condition rank(H 2(X,Z))= rank(H4(X,Z)). Thus a smooth Fano threefold
is always Q-factorial. The local class group at a node in a threefold has no torsion
[Milnor 1968], so each Weil divisor that is Q-Cartier must be a Cartier divisor on a
nodal hypersurface in P4. Therefore, Q-factoriality is equivalent to factoriality for
a nodal hypersurface in P4. Moreover, the factoriality of a nodal quartic threefold
implies its nonrationality; Mella [2004] proved that every factorial nodal quartic
threefold is nonrational. This generalizes a classical result by Iskovskikh and Manin
[1971] that every smooth quartic threefold is nonrational. On the other hand, there
exist nonfactorial nodal quartic threefolds that are nonrational.

In view of Mella’s result and the importance of rationality, studying the factoriality
of nodal quartic threefolds is of interest. Here we consider this problem when the
number of nodes is 13. This extends earlier results, which we now quote.

Throughout, X4 will represent a nodal quartic threefold.

Theorem 1.1 [Cheltsov 2006]. A quartic X4 with at most 9 nodes is factorial if it
contains no plane.
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Theorem 1.2 [Shramov 2007, Theorem 1.3]. A quartic X4 with at most 11 nodes
is factorial if it contains no planes. If X4 has 12 nodes, then X4 is factorial, with
the exception of the case when X4 contains a quadric surface.

In Section 3 of this paper, we prove the following results.

Theorem 1.3. A quartic X4 with at most 13 nodes is factorial if it contains neither
planes nor quadric surfaces.

Corollary 1.4. A quartic X4 with at most 13 nodes is nonrational if it contains
neither planes nor quadric surfaces.

Theorem 1.3 improves on the degree-4 case of [Cheltsov 2006, Conjecture 13],
which generalizes a well-known conjecture by Ciliberto [2004].

We present an example which motivates our study.

Example 1.5 [Cheltsov 2006, Example 10]. Let a2, h2, b3 and g1 be homogeneous
polynomials of degrees 2, 2, 3 and 1, respectively. Consider the quartic threefold
X4 defined by the equation

a2(x, y, z, w, t)h2(x, y, z, w, t)= b3(x, y, z, w, t)g1(x, y, z, w, t);

it is the general quartic threefold passing through the quadric surface Q defined by
a2 = g1 = 0. The quartic X4 has 12 nodes, given by h2 = g1 = a2 = b3 = 0, and it
is not factorial.

2. Preliminaries

If the nodes of a nodal quartic threefold X4 impose independent linear conditions
on hypersurfaces of degree 3 in P4, then X4 is factorial [Cynk 2001]. Hence, if a
nodal quartic threefold X4 is factorial, it must have at most 35 simple double points
because h0(P4,OP4(3))= 35. A nodal quartic threefold X4 cannot have more than
45 nodes [Friedman 1986; Varchenko 1983]. Moreover, there is a unique nodal
quartic threefold with 45 nodes [de Jong et al. 1990]. It is known as the Burkhardt
quartic, which has too many nodes to be factorial.

The following result is one of the main tools.

Theorem 2.1 [Eisenbud and Koh 1989, Theorem 2]. Let 6 be a set of points in PN

and let d ≥ 2 be an integer. If no dk+2 of the points of 6 lie in a projective k-plane
for all k ≥ 1, then 6 imposes independent conditions on forms of degree d in PN .

We see that the singular points of nodal threefolds are located in P4 with the
following properties:

Lemma 2.2 [Cheltsov and Park 2006, Lemma 2.9]. Let Xd be a nodal hypersurface
of degree d in P4.
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(1) A curve of degree k in P4 contains at most k(d − 1) nodes of Xd .

(2) If a 2-plane contains d(d−1)/2+1 nodes of Xd , then the 2-plane is contained
in Xd .

More generally, a nodal hypersurface Xd of degree d in P4 is factorial if and only
if the singular points of Xd impose linearly independent conditions on hypersurfaces
of degree 2d − 5 in P4 [Cynk 2001]. To prove the factoriality of Xd , we have to
compute whether h1(P4,OP4(2d − 5)⊗ISing(Xd )) is 0 or not. Therefore, we need
to study the dimension of the linear system |OP4(2d − 5)| having assigned base
points.

Fixing a nodal hypersurface Xd ⊂ P4 and r singular points of Xd in P4, what is
the dimension of the space of hypersurfaces of degree 2d−5 in P4 passing through
those points?

Let φ : P̃4
→ P4 be the blowing up of P4 along Sing(Xd) = {p1, . . . , pr }.

Let X̃d be the strict transform of Xd , let H be the divisor class of the pullback
of a hyperplane under φ, and let E =

∑r
i=1 Ei , where the Ei are the classes of

exceptional divisors. Suppose that F∈Pic P4 and F′=φ∗F. Then φ∗OP̃4
∼=OP4 and

Riφ∗F
′
= 0 for i > 0. Therefore, H j (P4,F)∼= H j (P̃4,F′) by the Leray spectral

sequence. Moreover, we have the equalities

φ∗(OP̃4(−E))= ISing(Xd ), Riφ∗(OP̃4(−E))= 0 for i > 0,(2.3)

φ∗(OP̃4(k E))= OP4, Riφ∗(OP̃4(k E))= 0 for i > 0, k = 0, 1, 2, 3.(2.4)

By (2.3), we get h j (P̃4,OP̃4((2d − 5)H − E))= h j (P4,OP4(2d − 5)⊗ISing(Xd )).
Let L4(2d − 5; 1r )= L4(2d − 5; 11, 12, . . . , 1r ) be the complete linear system∣∣(2d − 5)H −

∑r
i=1 Ei

∣∣ on P̃4. We will use the same notation to denote the corre-
sponding line bundle on P̃4, as well as the push-forward of

∣∣(2d − 5)H −
∑r

i=1 Ei
∣∣

to P4, i.e., the linear system of threefolds of degree 2d−5 with multiplicity 1 at pi .

Definition 2.5. A nonempty linear system L4(2d − 5; 1r ) is special if

h0(P̃4, L4(2d − 5; 1r )) > (2d − 1)(2d − 2)(2d − 3)(2d − 4)/24− r

or, which is the same, if h1(P̃4, L4(2d − 5; 1r )) 6= 0.

Note that h0(P̃4, L4(2d−5; 1r ))≥ h0(P4,OP4(2d−5))−r . We call the system
L4(2d−5; 1r ) nonspecial if h0(P̃4, L4(2d−5; 1r ))= h0(P4,OP4(2d−5))− r , or,
which is the same, if h1(P̃4, L4(2d − 5; 1r ))= 0.

Lemma 2.6. h1(X̃d ,OX̃d
((2d−5)H−E))=0⇔ h1(P̃4,OP̃4((2d−5)H−E))=0

Proof. Consider the exact sequence

0→OP̃4(−X̃d+(2d−5)H−E)→OP̃4((2d−5)H−E)→OX̃d
((2d−5)H−E)→0.
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We have X̃d ≡ d H − 2E . By (2.4),

Riφ∗(OP̃4((d − 5)H + E))= OP4(d − 5)⊗ Riφ∗(OP̃4(E))= 0

for i > 0. Then we get h j (P̃4,OP̃3((d − 5)H + E))= h j (P4,OP4(d − 5))= 0 for
0< j < 4. Thus

h1(X̃d ,OX̃d
((2d − 5)H − E))= h1(P̃4,OP̃4((2d − 5)H − E)). �

Therefore, studying linear systems of threefolds with assigned base points pi

is equivalent to studying complete linear systems on the fourfold P̃4 obtained by
blowing up the points pi . Also, a nodal hypersurface Xd of degree d in P4 is
factorial if and only if a nonempty linear system L4(2d − 5; 1r ) is nonspecial.

In the rest of this section we present tools to investigate the speciality of L4(3; 1r )

for r ≥ 12. We need to consider the restriction on a quadric surface Q due to
Example 1.5 and Lemma 2.2.

Before stating these results, let Q be a smooth quadric surface (when Q is a
singular quadric, we don’t have a proof yet). Let Sing(Xd)∩Q = {p1, p2, . . . , pλ},
where λ the maximal number of points of Sing(Xd) that can belong to the quadric Q.
We consider a linear system |O(k1, k2)⊗ISing(Xd )∩Q | := L Q((k1, k2); 1λ)with k1>0
and k2 > 0 on the quadric Q (that is, a system of curves of type (k1, k2) through
points pi of multiplicity 1). Using a similar method to Definition 2.5, we define the
speciality for L Q(k1, k2). Then we see that

h0(Q, L Q((k1, k2); 1λ))= k1k2+ k1+ k2+ 1− λ

if and only if the system L Q((k1, k2); 1λ) is nonspecial.
To prove the factoriality of a nodal quartic X4, we have to investigate the speciality

of the restriction system L4(3; 1r )|Q = L Q((3, 3); 1λ).

Lemma 2.7. With the above notation, let #|Sing(X4)| = r ≥ 12. Suppose the
smooth quadric surface Q is defined by { f2(x, y, z, w, t) = 0} ∩ A1, where f2 is
a homogeneous polynomial of degree 2 and A1 is a hyperplane in P4 such that
#|A1 ∩ Sing(X4)| ≥ 12. Let λ be the maximal number of points of Sing(X4) that
can belong to the smooth quadric Q.

(1) Suppose that 0≤ r − λ≤ 2. Then a linear system L Q((3, 3); 1λ) is special if
and only if a linear system L4(3; 1r ) is special.

(2) Suppose that 3 ≤ r − λ. If a linear system L Q((3, 3); 1λ) is special, then a
linear system L4(3; 1r ) is special.

Proof. Let A1 ≡ H − Ê and let { f2 = 0} ≡ 2H − Ê , where Ê =
∑λ

i=1 Ei .
Consider the exact sequence

0→ O
P̃4(−H + Ê + 3H − E)→ O

P̃4(3H − E)→ O
P̃4(3H − E)|A1 → 0.
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We get the exact sequence

(2.8) 0→ H 0(OP̃4

(
2H −

r∑
i=λ+1

Ei
))
→ H 0(OP̃4(3H − E))

→ H 0(OP̃4(3H − E)|A1)→ H 1(OP̃4

(
2H −

r∑
i=λ+1

Ei
))

→ H 1(OP̃4(3H − E))→ H 1(OP̃4(3H − E)|A1)→ 0.

Notice that R jφ∗OP̃4(2H−E)=OP4(2)⊗R jφ∗OP̃4(−E)= 0 for all j > 0. If r =λ,
then h1

(
OP̃4

(
2H−

∑r
i=λ+1 Ei

))
= h1(OP4(2))= 0. Theorem 2.1 and Lemma 2.2(1)

tell us that h1
(
OP̃4

(
2H−

∑r
i=λ+1 Ei

))
= h1(P4,I∑r

i=λ+1 pi
(2))= 0 for 1≤ r−λ≤ 5.

We then have h1(L4(3; 1r )) = h1(O
P̃4(3H − E)) = h1(OP̃4(3H − E)|A1) when

0≤ r − λ≤ 5.
Also, note that Q ≡ (2H − Ê)|A1 . From the short exact sequence

0→ OA1(−2H + Ê + 3H − E)→ OA1(3H − E)→ OA1(3H − E)|Q→ 0,

we obtain the sequence

(2.9) 0→ H 0(OA1

(
H −

r∑
i=λ+1

Ei
))
→ H 0(OA1(3H − E))

→ H 0(OA1(3H − E)|Q)→ H 1(OA1

(
H −

r∑
i=λ+1

Ei
))

→ H 1(OA1(3H − E))→ H 1(OA1(3H − E)|Q)→ 0.

Note that h1
(
OA1

(
H −

r∑
i=λ+1

Ei
))
= h1(P3,I∑r

i=λ+1 pi
(1))= 0 for 0≤ r − λ≤ 2.

We have h1(OA1(3H − E)) = h1(OA1(3H − E)|Q) = h1(L Q((3, 3); 1λ)) when
0≤ r − λ≤ 2.

The second statement follows from the last lines of (2.8) and (2.9). �

Corollary 2.10. With the above notation, if r = λ+ j for j = 0, 1, 2, then

h0(OP̃4(3H − E))

= h0(L Q((3, 3); 1λ)
)
+ h0(OA1

(
H −

r∑
i=λ+1

Ei
))
+ h0(OP̃4

(
2H −

r∑
i=λ+1

Ei
))
.

Proof. This follows immediately from Lemma 2.7(1). �

Lemma 2.11. Suppose that a curve of type (a, b), with 0< a ≤ b ≤ 3, and a curve
of type (3, 3) meet in 3a+ 3b points, say 6(a,b) = {p1, . . . , p3a+3b}.

(1) Let9⊂6(2,2) and let α= #|9|. Then a linear system L Q((3, 3); 1α) is special
if and only if α = 12, i.e., a curve of type (2, 2) contains 6(2,2).
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(2) Let�⊂6(2,3) (or6(3,2)) and let β=#|�|. Then a linear system L Q((3, 3); 1β)
is special if and only if β = 14.

(3) Letϒ ⊂6(3,3) and let γ = #|ϒ |. Then a linear system L Q((3, 3); 1γ ) is special
if and only if γ = 15.

Proof. By Lemma 2.2(1), a system L Q((3, 3); 1λ) has no fixed curve. The number
h6(a,b)(3, 3) of conditions imposed by 6(a,b) on forms of bidegree (3, 3) satisfies

h6(a,b)(3, 3)= h0(L Q(3, 3))− h0(L Q(3− a, 3− b))− 1.

There are four possible cases for the speciality of L Q((3, 3); 1λ).

When (a, b)= (2, 2), we get h6(2,2)(3, 3)= 11< #|6(2,2)|.

When (a, b) = (2, 3) (or (3, 2)), we can write h6(2,3)(3, 3) = 13 < #|6(2,3)| (or
#|6(3,2)|), so the statement (2) is true.

Finally, the inequality h6(3,3)(3, 3)= 14< #|6(3,3)| implies statement (3). �

3. The proof of Theorem 1.3

Let X4 be a nodal hypersurface in P4.

Definition 3.1. The set Sing(X4) satisfies the property∇ if the following conditions
hold:

• There is a hyperplane A1 in P4 which contains at least 11 points of Sing(X4).

• Fix an arbitrary point p of A1 ∩ Sing(X4). There is a reducible cubic surface
in A1 passing through (A1 ∩Sing(X4)) \ {p} but not passing through p.

Lemma 3.2. Let #|Sing(X4)| = 11. Suppose that there is a hyperplane A1 in P4

such that A1 ∩ Sing(X4) = Sing(X4), and every quadric surface in A1 does not
contain all the points of Sing(X4). Then Sing(X4) satisfies the property ∇.

Proof. Fix an arbitrary point p of Sing(X4). Let Sing(X4)= {p1, p2, . . . , p10, p}.
Since every quadric surface does not contain all the points of Sing(X4), we can
find a quadric surface Q1 in A1 containing 9 points, say {p1, p2, . . . , p8, p9}, of
Sing(X4) \ {p} but not containing p. We shall take for the required cubic surface
the union of Q1 and a two-dimensional linear subspace in A1 passing through p10

and not passing through p. �

Lemma 3.3. Let M ⊆ |OP3(2)| be a linear subsystem that contains the set A1 ∩

Sing(X4), where A1 is a hyperplane in P4. Suppose that n= #|A1∩Sing(X4)| ≥ 11,
X4 contains no 2-planes, and a space curve of degree 4 in A1 contains at most 10
points of Sing(X4). Then the base locus Bs(M) is empty or two-dimensional.
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Proof. Suppose that Bs(M) is zero-dimensional. Let M1,M2, and M3 be the general
surfaces of M. Then the intersection number M1 ·M2 ·M3 has at most 8, but n > 11
holds.

Now we suppose that the curve B= Bs(M)⊂ A1. Then deg B ≤ 4. Since n> 11,
by Lemma 2.2(1), deg B = 4, and B must be reduced. Moreover, B is not contained
in a two-dimensional linear subspace, because a two-dimensional linear subspace
contains at most 6 points. This contradicts the assumption. �

Lemma 3.4. Let #|Sing(X4)| = 11. Suppose that X4 contains no 2-planes, there
is a hyperplane A1 in P4 such that A1 ∩ Sing(X4) = Sing(X4), every reducible
quadric surface does not contain all the points of Sing(X4), and a space curve of
degree 4 in A1 does not pass through all the points of Sing(X4). Then Sing(X4)

satisfies the property ∇.

Proof. Fix an arbitrary point p of Sing(X4). Let Sing(X4)= {p1, p2, . . . , p10, p}.
By Lemma 3.2, we assume that there is an irreducible quadric surface Q2 in A1

containing all the points of Sing(X4). By Lemma 3.3, any quadric surface in A1

passing through all the points of Sing(X4) coincides with Q2. Suppose that Q2 is
determined by 8 points, say {p1, p2, . . . , p8}, of Sing(X4) \ {p} together with p.
Then we can find a quadric Q3 in A1 containing {p1, p2, . . . , p8} and not containing
p. We can assume that pk /∈ Q3 for k = 9 or 10; otherwise, take a two-dimensional
linear subspace in A1 containing the point Sing(X4) \ Q3 but not containing p.

If p /∈ p9, p10, then we can easily construct a reducible cubic surface in A1 that
contains Sing(X4) \ {p} and does not contain p.

Now we suppose that three points {p9, p10, p} lie on a single line. By state-
ment (1) of Lemma 2.2, the line determined by {pi , p9} (or {pi , p10}), for 1≤ i ≤ 8,
does not pass through p. We consider the quadric surface Q4 determined by
{p1, p2, . . . , p8, p9}. We can assume that the quadric surface Q4 contains the
points p; otherwise, take a two-dimensional linear subspace in A1 containing the
point p10 but not containing p.

Then Q4 must be Q2, that is, the quadric surface Q2 is determined by the point
p and {p1, p2, . . . , p8, p9} \ {p j } for 1≤ j ≤ 9. Therefore, we can find a quadric
surface Q5 passing through {p1, p2, . . . , p8, p9} \ {p j }, for 1 ≤ j ≤ 8 and not
passing through p. Let l be the line determined by two points Sing(X4) \ Q5 \ {p}.
Then p cannot lie on the line l. Let Ā1 be a two-dimensional linear subspace in
A1 containing the line l but not containing p. Then the union of Q5 and Ā1 is the
desired form of degree 3. �

Lemma 3.5. Let #|Sing(X4)| = 11. Suppose that X4 contains no 2-planes, there
is a hyperplane A1 in P4 such that A1 ∩ Sing(X4) = Sing(X4), every reducible
quadric surface does not contain all the points of Sing(X4), and there is a space
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curve D of degree 4 in A1 that passes through all the points of Sing(X4). Then
Sing(X4) satisfies the property ∇.

Proof. Fix an arbitrary point p of Sing(X4). Let Sing(X4)= {p1, p2, . . . , p10, p}.
By Lemma 3.2, we assume that there is an irreducible quadric surface containing
all the points of Sing(X4). By Lemma 2.2(1), a twisted cubic contains at most 9
singular points of X4. Lemma 3.3 tells us that D can be written as an intersection
of two different quadric surfaces in A1. Then there is a quadric surface in A1

containing 7 points, say {p1, . . . , p7}, of Sing(X4) \ {p} but not containing p. We
consider the two-dimensional linear subspace Â1 in A1 determined by {p8, p9, p10}.
We can assume that p ∈ Â1; otherwise, one can easily construct the required cubic
surface in A1.

By Lemma 2.2(1), renumbering p8, p9, and p10 if necessary, we can assume
that {p9, p10, p} span Â1. By Lemma 2.2(2), Â1 contains at most 2 points of
{p1, . . . , p7}. We can assume that Â1 contains 2 points, say {p6, p7}, of {p1, . . . , p7}

(a similar method applies to the case when Â1 passes through one or none of
{p1, . . . , p7}). Assume that all the quadric surfaces in A1 containing 7 points,
{p1, . . . , p7, p8} \ {pi } for 1 ≤ i ≤ 5, also pass through p. Then each quadric
surface containing the points p6, p7, and p8 also contains p, and hence p6, p7, p8,
and p lie on a single line. This is a contradiction to Lemma 2.2(1). Thus, we can
find a quadric surface Q6 in A1 containing 7 points, {p1, . . . , p7, p8} \ {pi } for
1≤ i ≤ 5, and not containing p. Take the two-dimensional linear subspace A′1 in
A1 determined by three points Sing(X4) \ Q6 \ {p}. Then A′1 does not contain p,
and hence Q6+ A′1 is the required cubic surface. �

Proposition 3.6. Let #|Sing(X4)| = 11. Suppose that X4 contains no 2-planes, a
hyperplane in P4 contains all the points of Sing(X4), and every reducible quadric
surface does not contain all the points of Sing(X4). Then Sing(X4) satisfies the
property ∇.

Proof. By Lemma 3.2, we can assume that there is an irreducible quadric surface
containing all the points of Sing(X4). It immediately follows from Lemmas 3.4
and 3.5. �

The following result is proved in [Shramov 2007].

Corollary 3.7 [Shramov 2007, Corollary 3.4]. Let Sing(X4) = {p1, . . . , ps}. As-
sume that s ≥ 11, and no 2-plane contains 7 points of Sing(X4). Let p1, . . . , ps be
points lying in a reducible quadric surface (that is, in a pair of planes spanning a
three-dimensional surface). Then either p1, . . . , ps impose independent conditions
on the forms of degree 3 or p1, . . . , ps also lie in an irreducible quadric surface.

Proposition 3.8. Let #|Sing(X4)| = 13. Suppose that X4 contains no 2-planes, and
a hyperplane in P4 contains at most 11 points of Sing(X4). Then X4 is factorial.
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Proof. Fix an arbitrary point p of Sing(X4). It is enough to construct a cubic
threefold T that contains Sing(X4) \ {p} and does not contain p.

Suppose that there is a hyperplane A1 in P4 containing 11 points of Sing(X4);
otherwise, X4 is factorial due to Theorem 2.1 and Lemma 2.2.

Suppose that p /∈ A1. We can find a quadric threefold G passing through two
points Sing(X4) \ A1 \ {p} but not passing through p. Then T = A1+G.

Now assume that p ∈ A1. We divide the case into two subcases. Let {q1, q2} =

Sing(X4) \ A1.
First, assume that a reducible quadric surface in A1 does not contain all the

points of Sing(X4). By Proposition 3.6, we obtain a cubic surface W = Q′+3,
where Q′ is a quadric surface and 3 is a two-dimensional linear subspace, in A1

containing Sing(X4)∩ (A1 \ {p}) but not containing p. Take the cone Q′′ over Q′

with vertex q1 and a hyperplane 3′ in P4 containing 3 together with q2. Then we
can get the required cubic threefold T as the union of Q′′ and 3′.

Second, assume that a reducible quadric surface in A1 contains all the points of
Sing(X4). Applying the proof of Corollary 3.7, we can construct a reducible cubic
surface Y in A1 passing through (Sing(X4)∩ A1) \ {p} and not passing through p
such that Y consists of three two-dimensional linear subspaces, say L1, L2, and L3.
Note that q1, q2 /∈ A1. Then we obtain the required cubic threefold T as the union
of a hyperplane in P4 containing {L1, q1}, a hyperplane in P4 containing {L2, q2},
and a hyperplane in P4 containing L3 but not containing p. �

The following three results are proved in [Shramov 2007]. They are very useful
for the proof of Theorem 1.3. We let Sing(X4)= {p1, . . . , ps}.

Lemma 3.9 [Shramov 2007, Lemma 3.5]. Assume that s ≤ 12, and no 2-plane
contains 7 points of Sing(X4). Let p1, . . . , ps be points in a 3-dimensional subspace
P3
⊂ P4 not lying in some quadric surface. Then p1, . . . , ps impose independent

conditions on the forms of degree 3 in P3 (and therefore also in P4).

Lemma 3.10 [Shramov 2007, Lemma 3.8]. Assume that no 2-plane contains 7
points of Sing(X4). Let p1, . . . , p12 be points in a quadric surface. Then either
p1, . . . , p12 impose independent conditions on the forms of degree 3 in P4 or
p1, . . . , p12 lie in a pencil of quadric surfaces in some 3-dimensional subspace.

Lemma 3.11 [Shramov 2007, Lemma 3.9]. Assume that no 2-plane contains 7
points of Sing(X4). Let p1, . . . , p12 be points lying in a pencil of quadric surfaces
in a 3-dimensional subspace. Then X4 contains a quadric surface.

Proposition 3.12. Let #|Sing(X4)| = 13. Suppose that X4 contains no 2-planes,
and a hyperplane in P4 contains at most 12 points of Sing(X4). Then X4 is either
factorial or contains a quadric surface.
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Proof. Fix an arbitrary point p of Sing(X4). We can assume that there is a hyper-
plane A1 in P4 containing 12 points of Sing(X4). Let {q} = Sing(X4) \ A1.

First, suppose that a quadric surface contains at most 11 points of Sing(X4).
We can assume that p ∈ A1; otherwise, one can easily check that X4 is fac-
torial. By Lemma 3.9, we can find a cubic surface U in A1 passing through
(Sing(X4) ∩ A1) \ {p} and not passing through p. Taking a cone over U with
vertex q, we obtain a cubic threefold passing through Sing(X4) \ {p} and not
passing through p. In this case, X4 is factorial.

Second, suppose that there is a quadric surface Q̂ containing 12 points, say 4,
of Sing(X4). We can assume that 4 cannot lie on a pencil of quadric surface in A1;
otherwise, by Lemma 3.11, X4 contains a quadric surface.

Now we have to prove that X4 is factorial. We can assume that p ∈ Q̂. Let
4= {p1, . . . , p11, p}. Applying the proof of Lemma 3.10, we obtain a reducible
cubic surface K in A1 containing 4 \ {p} but not containing p. Note that q /∈ A1.
Let K = S + L , where S is a quadric surface and L is a two-dimensional linear
subspace. Then we can construct a cubic threefold as the union of the cone over S
with vertex q and a hyperplane in P4 containing L but not containing p. Thus, X4

is factorial. �

Proposition 3.13. Let #|Sing(X4)| = 13. Suppose that X4 contains no 2-planes,
and there is a hyperplane A1 in P4 containing all the points of Sing(X4). Then X4

is either factorial or contains a quadric surface.

Proof. Fix an arbitrary point p of Sing(X4). Let Sing(X4)= {p1, . . . , p12, p}.
Suppose that every quadric surface does not contain all the points of Sing(X4).

Then we find a quadric surface containing 9 points, say {p1, . . . , p9}, of Sing(X4)

but not containing p. We consider the two-dimensional linear subspace Â1 in A1

determined by {p10, p11, p12}. We can assume that p ∈ Â1; otherwise, one can
easily check that X4 is factorial.

By Lemma 2.2(1), renumbering p10, p11, and p12 if necessary, we can assume
that {p11, p12, p} span Â1. By Lemma 2.2(2), Â1 contains at most 2 points
of {p1, . . . , p9}. We can assume that Â1 contains 2 points, say {p8, p9}, of
{p1, . . . , p9} (a similar method applies to the case when Â1 passes through one
or none of {p1, . . . , p9}). Assume that all the quadric surfaces in A1 containing 9
points, {p1, . . . , p9, p10}\{pi } for 1≤ i ≤7, also pass through p. Then each quadric
surface containing the points p8, p9, and p10 also contains p, and hence p8, p9, p10,
and p lie on a single line. This is a contradiction to Lemma 2.2(1). Thus, we can
find a quadric surface Q7 in A1 containing 9 points, {p1, . . . , p9, p10} \ {pi } for
1≤ i ≤ 7, and not containing p. The union of Q7 and the two-dimensional linear
subspace A′′1 in A1 determined by three points Sing(X4)\Q7\{p} is a cubic surface
containing Sing(X4) \ {p} but not containing p. It implies that X4 is factorial.
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Now suppose that there is a quadric surface Q8 containing all the points of
Sing(X4). Then, by Lemma 2.2(2), Q8 is irreducible. We may assume that Q8 is
a quadric cone; otherwise, by Lemma 2.7(1) and 2.11(1), X4 is either factorial or
contains a quadric surface. For instance, since a curve of type (1, 1) contains at
most 6 points of Sing(X4), X4 cannot contain a 2-plane.

If there is a quadric surface different from Q8 containing 12 points of Sing(X4),
then X4 contains a quadric surface due to Lemma 3.11.

We can assume Q8 is unique; that is, any quadric surface different from Q8

passes through at most 11 points of Sing(X4). Consider a nodal quartic threefold
X̂4 defined by

a1(x, y, z, t, w)h3(x, y, z, t, w)+ b2(x, y, z, t, w)g2(x, y, z, t, w)= 0,

where a1, h3, b2 and g2 are homogeneous polynomials of degree 1, 3, 2, and 2,
respectively. Suppose that the quadric Q8 is the quadric cone given by {a1= b2= 0},
and V2 is a quadric surface given by {a1 = g2 = 0}. Then the nodes of X̂4 are
{a1 = h3 = b2 = g2 = 0} and the vertex of Q8. The quartic X̂4 has 13 nodes with
Sing(X̂4)= Sing(X4), and all the points of Sing(X̂4) lie on a hyperplane {a1 = 0}.
By the uniqueness of Q8, X4 must be X̂4. Since V2 contains 12 points of Sing(X4),
this contradicts the assumption. �

Proof of Theorem 1.3. Suppose that every two dimensional linear subspace contains
at most 6 singular points of a nodal quartic X4, i.e, by Lemma 2.2(2), X4 contains
no 2-planes; otherwise, X4 is defined by an equation of the form

y1(x, y, z, t, w) f3(x, y, z, t, w)+ ŷ1(x, y, z, t, w)g3(x, y, z, t, w)= 0,

where y1, f3, ŷ1, and g3 are homogeneous polynomials of degree 1, 3, 1, and 3,
respectively. Then X4 is not factorial.

Theorem 1.3 immediately follows from Propositions 3.8, 3.12, and 3.13. �
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