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Let K/k be an abelian extension of number fields with a distinguished place
of k that splits totally in K . In that situation, the abelian rank-one Stark
conjecture predicts the existence of a unit in K , called the Stark unit, con-
structed from the values of the L-functions attached to the extension. In
this paper, assuming the Stark unit exists, we prove index formulae for it.
In a second part, we study the solutions of the index formulae and prove
that they admit solutions unconditionally for quadratic, quartic and sextic
(with some additional conditions) cyclic extensions. As a result we deduce a
weak version of the conjecture (“up to absolute values”) in these cases and
precise results on when the Stark unit, if it exists, is a square.

1. Introduction

Let K/k be an abelian extension of number fields. Denote by G its Galois group.
Let S∞ and Sram denote respectively the set of infinite places of k and the set of
finite places of k ramified in K/k. Let S(K/k) := S∞ ∪ Sram. Fix a finite set S
of places of k containing S(K/k) and of cardinality at least 2. Assume that there
exists at least one place in S, say v, that splits totally in K/k and fix a place w of
K dividing v. Let e be the order of the group of roots of unity in K . In this setting
Stark [1980] made the following conjecture.

Conjecture (abelian rank-one Stark conjecture). There exists an S-unit εK/k,S in
K such that

(1) For all characters χ of G,

L ′K/k,S(0, χ)=
1
e

∑
g∈G

χ(g) log |εg
K/k,S|w,
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where L K/k,S(s, χ) denotes the L-function associated to χ with Euler factors
at prime ideals in S deleted.

(2) The extension K (ε 1/e
K/k,S)/k is abelian.

(3) If furthermore |S| ≥ 3 then ε is a unit of K .

The unit εK/k,S is called the Stark unit associated to the extension K/k, the set
of places S and the place v.1 It is unique up to multiplication by a root of unity in
K . A good reference for this conjecture is [Tate 1984, Chap. IV].

The starting point of this research is the conjectural method used in [Cohen and
Roblot 2000; Roblot 2000] (and inspired by [Stark 1977]) to construct totally real
abelian extensions of totally real fields. Let L/k be such an extension. The idea is
to construct a quadratic extension K/L , abelian over k, satisfying some additional
conditions similar to the assumptions (A1), (A2) and (A3) below. Assuming the
Stark conjecture for K/k, S(K/k) and a fixed real place v of k, one can prove that
K =k(ε) and L=k(α), where α :=ε+ε−1 and ε :=εK/k,S(K/k) is the corresponding
Stark unit. Using part (1) of the conjecture, one computes the minimal polynomial
A(X) of α over k. The final step is to check unconditionally that the polynomial
A(X) does indeed define the extension L .

One notices in that setting that the rank of the units of K is equal to the rank of
units of L plus the rank of the module generated by the Stark unit and its conjugates
over k. A natural question to ask is whether the index of the group generated by the
units of L and the conjugates of the Stark unit has finite index inside the group of
units of K and, if so, if this index can be computed. A positive answer to the first
question is given by Stark in [1976, Theorem 1]. In [Arakawa 1985], Arakawa gives
a formula for this index when k is a quadratic field. Using similar methods, we
obtain a general result (Theorem 2.2) in the next section. Then we derive a “relative”
index formula (Theorem 2.3) that relates the index of the subgroup generated over
Z[G] by the Stark unit inside the “minus-part” of the group of units of K to the
cardinality of the “minus-part” of the class group of K .2 In the third section, we
use results of Rubin [1992] on a form of the Gras conjecture for Stark units to show
that the relative index formula implies local relative index formulae (Theorem 3.2).
Starting with the fourth section, we stop assuming the abelian rank-one Stark
conjecture and study directly the solutions to the index formulae. In section 4, we
look at how much these index formulae characterize the Stark unit (Proposition 4.1
and Corollary 4.5). In the next section, we introduce the algebraic tools that will be
needed to prove the existence of solutions in some cases in the following sections.
We also reprove in that section the abelian rank-one Stark conjecture for quadratic

1In fact the place w but changing the place w just amounts to replace the Stark unit by one of its
conjugate.

2Similar in some way to the index formulae for cyclotomic units; see [Washington 1997, Chap. 8].
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extensions (Theorem 5.5). Finally, sections 6 and 7 are devoted to a proof that
solutions to the index formulae always exist for quartic extensions (Theorem 6.1)
and sextic extensions (Theorem 7.1) with some additional conditions in that case.
We show that the existence of solutions in those cases imply a weak version of the
conjecture, where part (1) is satisfied only up to absolute values.3 We also obtain
results on when the Stark unit, if it exists, is a square (Corollary 2.4, Theorem 5.5,
Corollary 6.2 and Corollary 7.2).

2. The index formulae

We assume from now on that the place v is infinite4 and that k has at least two
infinite places. Therefore we can always apply the conjecture for any finite set S
containing S(K/k). The cases that we are excluding are k =Q and k a complex
quadratic field. In both cases the conjecture is proved and the Stark unit is strongly
related to cyclotomic units and elliptic units respectively.

Fix a finite set S of places of k containing S(K/k). We make the following
additional assumptions.

(A1) k is totally real and the infinite places of K above v are real, the infinite
places of K not above v are complex.

(A2) The maximal totally real subfield K+ of K satisfies [K : K+] = 2.

(A3) All the finite primes in S are either ramified or inert in K/K+.

If S contains more than one place that splits totally in K/k then the conjecture
is trivially true with the Stark unit being equal to 1. Therefore the only non trivial
case excluded by (A1) is the case when k has exactly one complex place and K is
totally complex. It is likely that most of the methods and results in this paper can
be adapted to cover also that case. Assumptions (A2) and (A3) are necessary to
ensure that the rank of the group generated by the units of K+ and the conjugate
of the Stark unit has finite index inside the group of units of K . Without these
assumptions, global index formulae for Stark units as they are stated in this article
cannot exist although it is still possible to prove index formulae for some p-adic
characters if one takes also into account Stark units coming from subextensions
(see [Rubin 1992] or Section 3).

3Unfortunately, in most cases the values are complex and there does not appear to be any obvious
way to remove these absolute values.

4For v a finite place, the abelian rank-one Stark conjecture is basically equivalent to the Brumer–
Stark conjecture; see [Tate 1984, §IV.6]. Recent results of Greither and Popescu [Greither and Popescu
2011] imply the validity of the Brumer–Stark conjecture away from its 2-part and under the hypothesis
that an appropriate Iwasawa µ-invariant vanishes.
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We assume until further notice that the conjecture is true for the extension K/k, the
set of places S and the distinguished place v.5

Denote by ε := εK/k,S the corresponding Stark unit. From now on, all subfields
of K (including K itself) are identified with their image in R by w. We make the
Stark unit unique by imposing that ε > 0. It follows that εg > 0 for all g ∈ G; see
[Tate 1984, §IV.3.7]. One can also prove under these hypothesis — see [Roblot
2000, Lemma 2.8] — that |S(K/k)| ≥ 3 and therefore ε is a unit of K by part (3)
of the Conjecture, and that |ε|w′ = 1 for any place w′ of K not above v.

Let m be the degree of K+/k and d be the degree of k/Q. Thus we have
[K :k]=2m and [K :Q]=2md . Let τ denote the non trivial element of Gal(K/K+).
It is the complex conjugation of the extension K and, by the above remark, we
have ετ = ε−1. Let G+ denote the Galois group of K+/k, thus G+ ∼= G/〈τ 〉. It
follows from (A1) that the signatures of K+ and K are respectively (dm, 0) and
(2m,m(d − 1)). Therefore the rank of UK+ and UK , the group of units of K+ and
K , are respectively dm−1 and 2m+m(d−1)−1= (dm−1)+m. Let UStark be the
multiplicative Z[G]-module generated by±1, ε and UK+ . Let R := {ρ1, . . . , ρm} be
a fixed set of representatives of G modulo 〈τ 〉. Set ε` := ρ−1

` (ε) for `= 1, . . . ,m.
Since τ(ε) = ε−1, the group UStark is generated over Z by {±1, η1, . . . , ηdm−1,
ε1, . . . , εm}, where η1, . . . , ηdm−1 is a system of fundamental units of K+. Let
| · | j , 1≤ j ≤ (d+1)m denote the infinite normalized absolute values of K ordered
in the following way. The 2m real absolute values of K , corresponding to the
places over v, are | · | j := |ρ j ( · )| and | · | j+m := |ρ jτ( · )| for 1 ≤ j ≤ m. The
complex absolute values, corresponding to the infinite places not above v, are | · | j
for 2m + 1 ≤ j ≤ (d + 1)m. The regulator of UStark is the absolute value of the
determinant of the matrix of size (d + 1)m− 1 whose j-th row has entries

log |η1| j , log |η2| j , . . . , log |ηdm−1| j , log |ε1| j , . . . , log |εm | j .

(We discard the last absolute value, | · |(d+1)m .) For 1 ≤ j ≤ (d + 1)m, let | · |+j
denote the restriction of the absolute value | · | j to K+. For 1≤ j ≤ m, the places
corresponding to | · | j and | · |+j are real and log |ηi |

+

j = log |ηi | j = log |ηi | j+m . For
2m+ 1≤ j ≤ (d + 1)m, the places corresponding to | · | j and | · |+j are respectively
complex and real, thus log |ηi |

+

j = 2 log |ηi | j . Note also that |ε`| j+m = |ε`|
−1
m for

1≤ j ≤ m and |ε`| j = 1 for 2m+ 1≤ j ≤ (d + 1)m. Therefore the matrix is equal
to 

log |ηi |
+

j log |ε`| j

log |ηi |
+

j − log |ε`| j

2 log |ηi |
+

j ′ 0


( j, j ′),(i,`)

,

5Since v is the only real place of k that stays real in K , we will usually not specify it.
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where 1 ≤ j ≤ m, 2m + 1 ≤ j ′ ≤ (d + 1)m − 1, 1 ≤ i ≤ dm − 1 and 1 ≤ ` ≤ m.
Now we add the j -th row to the (m+ j)-th row for 1≤ j ≤m and we obtain finally
the following matrix with the same determinant

log |ηi |
+

j log |ε`| j

2 log |ηi |
+

j 0

2 log |ηi |
+

j ′ 0


( j, j ′),(i,`)

.

Therefore the regulator of UStark is

(2.1) Reg(UStark)=
∣∣det(log |ε`| j ) j,` det

(
2 log |ηi |

+

j ′
)

j ′,i

∣∣,
where 1≤ `, j ≤ m, 1≤ i ≤ dm− 1 and j ′ runs through the set {1, . . . ,m, 2m+
1, . . . , (d+1)m−1}. The absolute values | · |+1 , . . . , | · |

+
m, | · |

+

2m+1, . . . , | · |
+

(d+1)m−1
are the absolute values corresponding to all the infinite places of K+ but one. Thus
the second term is 2dm−1 RK+ . For the first term, we have∣∣det(log |ε`| j ) j,`

∣∣= ∣∣det(log |ερλ
−1
|)ρ,λ∈R

∣∣.
We say that a character χ of G is even if χ(τ) = 1, otherwise χ is odd and
χ(τ)=−1. The even characters of G are the inflations of characters of G+. We
have the following modification of the classical determinant group factorization.

Lemma 2.1. Let ag ∈ C, for g ∈ G, be such that aτg =−ag for all g ∈ G. Then

det(aρλ−1)ρ,λ∈R =
∏
χ odd

∑
ρ∈R

χ(ρ)aρ .

Proof. Let E be the C-vector space of functions f :G→C such that f (τg)=− f (g)
for all g ∈ G. Clearly it has dimension m and admits (χ)χ odd has a basis. Another
basis is given by the functions (δρ)ρ∈R defined by

δρ(ρ)= 1, δρ(τρ)=−1 and δρ(g)= 0 for all g ∈ G with g 6= ρ, τρ.

The group G acts on E by f σ : g 7→ f (gσ) for f ∈ E and σ ∈ G. In particular, we
have f τ =− f . We extend this action linearly to give E a structure of C[G]-module.
Now consider the endomorphism defined by

T :=
∑
g∈G

agg.

We have

T (δρ)=
∑
g∈G

ρg−1
∈R

agδ
g
ρ +

∑
g∈G

ρg−1
6∈R

agδ
g
ρ =

∑
g∈G

ρg−1
∈R

agδρg−1 −

∑
g∈G

ρg−1
6∈R

agδτρg−1 .
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We write λ= ρg−1 in the first sum and λ= τρg−1 in the second one. We get

T (δρ)=
∑
λ∈R

aρλ−1δλ−
∑
λ∈R

aτρλ−1δλ = 2
∑
λ∈R

aρλ−1δλ.

Therefore the determinant of T is 2m det(aρλ−1)ρ,λ∈R . On the other hand, for χ
odd, we compute

T (χ)=
∑
g∈G

agχ
g
=

∑
g∈G

agχ(g)χ.

Thus χ is an eigenvector for T with eigenvalue
∑

g∈G agχ(g)= 2
∑

ρ∈R χ(ρ)aρ .
Therefore det(T )= 2m ∏

χ odd

∑
ρ∈R

χ(ρ)aρ and the result follows. �

By the lemma, we get

(2.2) det(log |ερλ
−1
|)ρ,λ∈R =

∏
χ odd

∑
ρ∈R

χ(ρ) log |ερ | =
∏
χ odd

1
2

∑
g∈G

χ(g) log |εg
|

=

∏
χ odd

L ′K/k,S(0, χ),

using part (1) for the last equality and the fact that the number of roots of unity in
K is 2 since K is not totally complex by (A1). On the other hand, we have

(2.3)
∏
χ odd

L K/k,S(s, χ)=
ζS,K (s)
ζS,K+(s)

,

where ζS,K (s) := ζSK ,K (s) and ζS,K+(s) := ζSK+ ,K+(s) denote respectively the
Dedekind zeta functions of K and K+ with the Euler factors at primes in SK and
SK+ removed. Here SK and SK+ denote respectively the set of places of K and of
K+ above the places in S. We will often use by abuse the subscript S instead of
SK or SK+ to simplify the notation. Taking the limit when s→ 0 in (2.3) and using
the expression for the Taylor development at s = 0 of Dedekind zeta functions —
see [Tate 1984, Corollary I.1.2] — we get

(2.4)
∏
χ odd

L ′K/k,S(0, χ)= 2tS
hK RK

h+K R+K
,

where tS is the number of prime ideals in SK+ that are inert in K/K+ and hK ,
RK , hK+ and RK+ are respectively the class numbers and regulators of K and K+.
Putting together equations (2.1), (2.2) and (2.4), we get the following result.

Theorem 2.2. The index of UStark in the group of units of K is

(UK :UStark)= 2tS+dm−1hK /hK+,

where tS is the number of prime ideals in SK+ that are inert in K/K+. �
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Let ClK and ClK+ denote respectively the class groups of K and K+. Define
Cl−K and U−K as the kernel of the following maps induced by the norm N := 1+ τ
of the extension K/K+

Cl−K := Ker(N : ClK → ClK+) and U−K := Ker(N : ŪK → ŪK+),

where ŪK and ŪK+ are respectively UK /{±1} and UK+/{±1}. From now on, we
use the additive notation to denote the action of Z[G], and other group rings, on ŪK

and its subgroups U−K , ŪK+, . . . . For x ∈UK , we denote by x̄ its class in ŪK and
adopt the following convention: if x̄ ∈ ŪK , we let x denote the unique element in
the class x̄ such that x > 0. Note that N(x)= N(−x)= 1 since K/K+ is ramified
at least one real place.

Theorem 2.3. We have (
U−K : Z[G] · ε̄

)
= 2e+tS |Cl−K |,

where 2e
= (ŪK+ : N(ŪK )).

Proof. By class field theory the map N : ClK → ClK+ is surjective. Therefore
|Cl−K | = hK /hK+ . On the other hand, if we let ŪStark :=UStark/{±1}, we have

Ker
(
N : ŪStark→ ŪK+

)
= Z[G] · ε̄ and Im

(
N : ŪStark→ ŪK+

)
= 2 · ŪK+ .

Therefore we get

(ŪK : ŪStark)= (N(ŪK ) : 2 · ŪK+)
(
U−K : Z[G] · ε̄

)
.

Since (ŪK : ŪStark)= (UK :UStark), it follows from Theorem 2.2 that(
U−K : Z[G] · ε̄

)
=

2tS+dm−1
|Cl−K |(

N(ŪK ) : 2 · ŪK+
) .

We conclude by noting that

(
N(ŪK ) : 2 · ŪK+

)
=

(
ŪK+ : 2 · ŪK+

)(
ŪK+ : N(ŪK )

) = 2dm−1(
ŪK+ : N(ŪK )

) . �

It has been observed that the Stark unit is quite often a square. The theorem
provides us with a necessary condition for that to happen.

Corollary 2.4. Let c be the 2-valuation of the order of Cl−K . A necessary condition
for the Stark unit ε to be a square in K is

e+ tS + c ≥ m.

Proof. Assume that ε = η2 with η ∈ K . Then it is easy to see that η ∈ U−K and
therefore

(
Z[G] · η̄ : Z[G] · ε̄

)
= 2m divides 2e+tS |Cl−K |. �
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We will see in (5.10) that e ≥ (d − 1)m − 2. Therefore the inequality in the
corollary is always satisfied for d ≥ 2+2/m. However, this is not enough to ensure
that the Stark unit is a square in general. Indeed at the end of the paper we give
an example of a cyclic sextic extension K/k satisfying (A1), (A2) and (A3), and
with k a totally real cubic field where the Stark unit, assuming it exists, is not a
square even though e > m. But, in all the cases that we study, we can prove that
for d sufficiently large the Stark unit is always a square. Of course these cases are
quite specific and it is difficult to draw from them general conclusions, but still we
are lead to ask the following question.

Question. Fix a relative degree m. Does there exist a constant D(m), depending
only on m, such that for any extensions K/k of degree 2m and any finite set of
places S containing S(K/k) satisfying (A1), (A2) and (A3), and with d ≥ D(m),
the corresponding Stark unit, assuming that it exists, is always a square in K ?

It follows from the result of the next sections that the answer is positive for
1≤ m ≤ 3 and that D(1)= D(3)= 4 and D(2)= 3.

3. Rubin’s index formula

In [Rubin 1992], Rubin proves Gras conjecture type results for Stark units using
Euler systems. His results are generalized by Popescu [2004]. In this section, we
use the results of Rubin to get a similar result in our setting. To be able to use
Rubin’s results we need to make the following additional assumption:

(A4) K contains the Hilbert Class Field Hk of k.

We assume in this section that the conjecture is true for the extensions and set of
places as described in [Rubin 1992].

We first introduce the results of Rubin. Let f be the conductor of K/k. For any
modulus g dividing f, let Kg = K ∩ k(g) be the intersection of K with the ray class
field of k of conductor g. Since v is totally split in K/k, one can apply the conjecture
to the extension Kg/k, the set of places S(Kg/k) and the place v, and get a Stark
unit that we denote by εg. Let Gg be the Galois group of Kg/k. Note that by (A1)
the group of roots of unity in Kg is {±1}. Part (2) of the conjecture is equivalent to
the fact that εg−1

g ∈U 2
Kg

for all g ∈ Gg; see [Tate 1984, Proposition IV.1.2]. Define
RStark as the following Z[G]-module:

RStark = 〈±1, (εg−1
g )1/2 for g | f and g ∈ Gg〉Z[G].

Let p be a prime number that does not divide the order of G. In particular, p is an
odd prime. Denote by Ĝ p the set of irreducible Zp-characters of G. For ψ ∈ Ĝ p

and M a Z[G]-module, we set

Mψ
:= M ⊗Z[G] Zp[ψ],
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where Zp[ψ] is the ring generated over Zp by the values of ψ and G acts on Zp[ψ]

via the character ψ . The following result is a direct consequence of Theorem 4.6
of [Rubin 1992].

Theorem 3.1 (Rubin). If ψ ∈ Ĝ p is odd then∣∣(UK /RStark)
ψ
∣∣= ∣∣∣ClψK

∣∣∣ .
From this we deduce an analogous statement for our case.

Theorem 3.2. For all ψ ∈ Ĝ p, we have∣∣(U−K /Z[G] · ε̄)ψ ∣∣= ∣∣(Cl−K )
ψ
∣∣ .

Proof. For M a Z[G]-module and ψ ∈ Ĝ p, it is direct to see that Mψ
= (M1+τ )ψ

if ψ is even and Mψ
= (M1−τ )ψ if ψ is odd. In particular, if ψ is even, we

get |(U−K /Z[G] · ε̄)
ψ
| = |(Cl−K )

ψ
| = 1 and the result follows trivially in that case.

Assume now that ψ is odd. Let ε0 be the Stark unit corresponding to the extension
K/k, the set of places S(K/k) and the distinguished place v. Assume first that
S = S(K/k) ∪ {p} for some finite prime ideal p of k not in S(K/k). It follows
from [Tate 1984, Proposition IV.3.4] that ε̄ = (1−Fp(K/k)) · ε̄0, where Fp(K/k)
is the Frobenius at p for the extension K/k. By (A3), τ is a power of Fp(K/k)
and thus ψ(Fp(K/k)) is a non trivial root of unity of order dividing |G|. Then
1− ψ(Fp(K/k)) is a p-adic unit and therefore (Z[G] · ε̄)ψ = (Z[G] · ε̄0)

ψ . By
repeating this argument if necessary, we see that this last equality also holds in the
general case. Now, by taking g = f and σ = τ in the definition of RStark, we see
that ε(τ−1)/2

0 = ε−1
0 ∈ RStark. Therefore we have εZ[G]

0 ⊂ RStark ⊂UK , and thus

ε
2Z[G]
0 ⊂ Rτ−1

Stark ⊂U τ−1
K .

We take the ψ-component, by the above remarks and the theorem, we get

|(U−K /Z[G] · ε̄)
ψ
| = |(U−K /Z[G] · ε̄0)

ψ
| = |(U τ−1

K /ε
2Z[G]
0 )ψ |

≥ |(U τ−1
K /Rτ−1

Stark)
ψ
| = |(UK /RStark)

ψ
| = |ClψK | = |(Cl−K )

ψ
|.

Assume there exists a character ψ for which this is a strict inequality. Multiplying
over all characters in Ĝ p, we get |(U−K /Z[G]· ε̄)⊗Zp|> |Cl−K⊗Zp|, a contradiction
with Theorem 2.3. Therefore the equality holds for all ψ ∈ Ĝ p and the theorem is
proved. �

4. The index property

From now on, we do not assume anymore that the conjecture is true.
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From the results of the previous sections, we see that the conjecture implies that
there exists a unit ε̄ ∈U−K such that6

(P1)
(
U−K : Z[G] · ε̄

)
= 2e+tS |Cl−K |,

(P2)
∣∣(U−K /Z[G] · ε̄)ψ ∣∣= ∣∣(Cl−K )

ψ
∣∣ for all p - [K : k] and ψ ∈ Ĝ p.

A priori the existence of a solution to (P1) and (P2) does not imply in return
the conjecture (except for quadratic extensions; see Theorem 5.5 below). Indeed,
in general, properties (P1) and (P2) do not even characterize the Stark unit ε. To
see that assume that η̄ is a solution to (P1) and (P2), and let η̄′ := u · η̄, where
u ∈ Z[G]× is a unit of Z[G]. Then η̄′ also satisfies (P1) and (P2). If u belongs to
{±γ : γ ∈ G} ⊂ Z[G]×, the group of trivial units of Z[G], then η̄′ is essentially
the same solution since it is a conjugate of η̄ or the inverse of a conjugate of η̄.
However there may be some non trivial units in Z[G] (see the end of this section)
and thus solutions to (P1) and (P2) that are not related in any obvious way to the
Stark unit. In any case, we have the following result that shows that solutions to
(P1) satisfy a very weak version of part (1) of the conjecture.

Proposition 4.1. Let η̄ be an element of U−K satisfying (P1). Then we have

(4.5)
∏
χ odd

1
2

∑
g∈G

χ(g) log |ηg
| = ±

∏
χ odd

L ′K/k,S(0, χ).

Proof. Let x̄ ∈ U−K . Using the notations of Section 2, we have |xτ | j = |x | j for
2m + 1 ≤ j ≤ (d + 1)m since these absolute values are complex and τ is the
complex conjugation. Since, by construction, we have xτ = x−1, it follows that
|x |2j = |x

1+τ
| j = 1 and |x | j = 1 for 2m + 1 ≤ j ≤ (d + 1)m. We can therefore

reproduce the determinant computation done in Section 2 replacing ε by η and
UStark by the subgroup U0 of UK generated by UK+ and the conjugates of η. We
get

(UK :U0)=±2dm−1 RK+

RK

∏
χ odd

1
2

∑
g∈G

χ(g) log |ηg
|.

We then proceed as in Theorem 2.3 by looking at the kernel of the norm map acting
on U0/{±1}. Since η̄ satisfies (P1), it follows that

2dm−1 RK+

RK

∏
χ odd

1
2

∑
g∈G

χ(g) log |ηg
| = ±2dm−1+tS |Cl−K |.

6Although assumptions (A1) to (A4) are necessary to prove that the Stark unit is a solution of (P2),
it is not necessary to assume (A4) to prove that solutions exist in the cases that we study below. It is
an interesting question whether or not one could prove that the Stark unit is a solution to (P2) without
having first to assume (A4).



INDEX FORMULAE FOR STARK UNITS AND THEIR SOLUTIONS 401

Then, by (2.4), we get the result∏
χ odd

1
2

∑
g∈G

χ(g) log |ηg
| = ±2tS

hK RK

hK+RK+
=±

∏
χ odd

L ′K/k,S(0, χ). �

We now turn to the study of the structure of the Q[G]-module U−K ⊗Q. Since U−K
is killed by 1+τ , it is a Q[G]−-module where Q[G]− :=e−Q[G] and e− := 1

2(1−τ)
is the sum of the idempotents of odd characters of G.7 Since U−K injects into U−K⊗Q,
we will identify it with its image. The following result describes the structure of
U−K ⊗Q as a Galois module.

Proposition 4.2. The module U−K ⊗Q is a free Q[G]−-module of rank 1.

Proof. Let YK be the Q-vector space with basis the elements z in the set S∞(K ) of
infinite places of K . The group G acts on YK in the following way: zg for g ∈ G
and z ∈ S∞(K ) is the infinite place defined by x 7→ z(xg) for all x ∈ K . Denote
by XK the subspace of elements

∑
z az z ∈ YK such that

∑
z az = 0. Then the two

Q[G]-modules XK and UK ⊗Q are isomorphic by a result of Herbrand and Artin;
see [Artin 1932]. Fix a Q[G]-isomorphism f :UK⊗Q→XK . A direct computation
shows that X−K := f (U−K ⊗Q) is spanned by the vectors {wρ −wρτ }ρ∈R , where w
is the fixed place of K above v. In particular, X−K is generated as a Q[G]−-module
by the vector w−wτ . This proves the result. �

Corollary 4.3. There exist θ̄ ∈ Ū−K and q ∈Q× such that∏
χ odd

1
2

∑
g∈G

χ(g) log |θ g
| = q

∏
χ odd

L ′K/k,S(0, χ).

Proof. From the proposition, there exists u ∈U−K ⊗Q such that U−K ⊗Q=Q[G]− ·u.
We let θ̄ := n · u, where n ∈ N is large enough so that θ̄ ∈U−K . Then we set

q :=
(U−K : Z[G] · θ̄ )

2e+t |Cl−K |
.

The result follows by the proof of Proposition 4.1 mutatis mutandis and replacing
q by −q if necessary. �

Thanks to Proposition 4.2, it is enough to study the structure of Q[G]− to
understand that of U−K ⊗Q. Let X be the set of irreducible Z-characters of G. Each
ξ ∈ X is the sum of the irreducible characters in a conjugacy class Cξ of Ĝ under
the action of Gal(Q̄/Q). For ξ ∈ X , we let

eξ :=
∑
χ∈Cξ

eχ ∈Q[G]

7Note that Q[G]− is a ring with identity e−.
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be the corresponding rational idempotent, where eχ denotes the idempotent associ-
ated to the character χ . We have

Q[G] =
⊕
ξ∈X

eξQ[G] '
⊕
ξ∈X

Q(ξ),

where Q(ξ) is the cyclotomic field generated by the values of any character in Cξ .
Let Xodd be the set of Z-characters ξ ∈ X such that one, and thus all, characters in
Cξ are odd. We have e− =

∑
ξ∈Xodd

eξ and from the above decomposition, we get

(4.6) Q[G]− =
⊕
ξ∈Xodd

eξQ[G] '
⊕
ξ∈Xodd

Q(ξ).

We now define Z[G]− := e−Z[G] and let O−G be the maximal order of Q[G]−. We
have

(4.7) O−G =
⊕
ξ∈Xodd

eξZ[G] '
⊕
ξ∈Xodd

Z[ξ ].

Now let p be a prime number. By (4.6), we get

(4.8) Qp[G]− '
⊕
ξ∈Xodd

Q(ξ)⊗Q Qp '
⊕
ξ∈Xodd

⊕
p∈Sξ,p

Q(ξ)p,

where Sξ,p is the set of prime ideals of Q(ξ) above p and Q(ξ)p is the completion
of Q(ξ) at the prime ideal p. On the other hand, each rational character ξ ∈ X is
the sum of irreducible Zp-characters, say ξ =

∑
ψ∈Cξ,p ψ , and we have

Qp[G]− =
⊕
ξ∈Xodd

⊕
ψ∈Cξ,p

eψQp[G]−.

Therefore there is a bijection between the prime ideals in Sξ,p and the characters in
Cξ,p. For p a prime ideal in Sξ,p, we denote by ψξ,p the corresponding irreducible
Zp-character. Before stating the first result, we need one more notation. Let T be a
set of primes. We say that an element u ∈Q[G] is a T -unit if u ∈ Zp[G]−,× for all
p 6∈ T , where Zp[G]−,× is the group of units of Zp[G]−.

Proposition 4.4. Let M be a sub-Z[G]−-module of Q[G]− of finite index. Let x
be an element of M such that xZ[G]− has finite index inside M. Assume that y is
another element of M such that

(M : xZ[G]−)= (M : yZ[G]−) and (Mψ
: (xZp[G]−)ψ)= (Mψ

: (yZp[G]−)ψ)

for all p - |G| and all ψ ∈ Ĝ p with ψ odd. Then there exists a unique B-unit
u ∈ Q[G]− such that y = ux , where B is the set of primes dividing both |G| and
(M : xZ[G]−).
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Proof. Since Q[G]− = xQ[G]−, there exists u ∈Q[G]− such that y = ux . Assume
y=vx for another v∈Q[G]−. Then, for all ξ ∈ Xodd, we have ξ(u)ξ(x)= ξ(v)ξ(x).
Since ξ(x) 6= 0, it follows that ξ(u)= ξ(v) and thus by (4.6), we get u = v which
proves that u is unique.

Let p be a prime. Assume first that p does not divide |G|. Let ξ ∈ Xodd and
p ∈ Sξ,p. Write ψ := ψξ,p and denote by Z[ξ ]p := ψ(Zp[G]−) the ring of integers
of Q(ξ)p. Then Mψ is an ideal of Z[ξ ]p and we have

(Mψ
: (xZp[G]−)ψ)

(Mψ : (yZp[G]−)ψ)
=
(Mψ

: ψ(y)Z[ξ ]p)
(Mψ : ψ(x)Z[ξ ]p)

= |ψ(u)|p.

Thus ψξ,p(u) is a unit in Z[ξ ]p for all ξ ∈ Xodd and p ∈ Sξ,p and thus u lies in
Zp[G]−,×. Assume now that p does not divide the index (M : xZ[G]−). We have

(M ⊗Zp : xZp[G]−)= (M ⊗Zp : yZp[G]−)= 1.

Therefore xZp[G]− = M ⊗Zp = yZp[G]− and u ∈ Zp[G]−,×. �

By Propositions 4.2 and 4.4, we get the following result.

Corollary 4.5. Let B be the set of primes that divide both |G| and |Cl−K |. Assume
there exist η̄ and η̄′ two elements of U−K satisfying (P1) and (P2). Then there exists
a unique B-unit u ∈Q[G]− such that η̄′ = u · η̄. �

From this result and the discussion at the beginning of the section, one cannot
expect the properties (P1) and (P2) to characterize the Stark unit if Z[G]− has some
non trivial B-units and a fortiori if Z[G]− has some non trivial units.8 It follows
from the methods of Higman [1940] that Z[G]− has some non trivial units if and
only if O−G does. By (4.7), this is the case if and only if there exists an odd character
of G whose order does not divide 6. In particular, for G a cyclic group of even
order, Z[G]− has only trivial units if and only if the order of G is at most 6. We
will prove in the next sections that there exist solutions to (P1) and (P2) in these
cases (with some additional conditions for sextic extensions). From this we will
deduce another proof of the conjecture for quadratic extensions and a weak version
of the conjecture for quartic and sextic extensions.

5. Algebraic tools

In this section we introduce some algebraic tools and results that will be useful
in the next sections. We start with the properties of Fitting ideals. Let R be a
commutative ring with an identity element. Let M be a finitely generated R-module.
Therefore there exists a surjective homomorphism f : Ra

→M for some a≥ 1. The

8If η̄ is a solution to (P1) and (P2) and u is a B-unit then u · η̄ is not necessarily a solution to (P1)
and (P2). A necessary and sufficient condition for that is that the linear map x 7→ ux of Q[G]− has
determinant ±1. This is always true if u is a unit of Z[G]−.
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Fitting ideal of M as an R-module, denoted FittR(M), is the ideal of R generated
by det(Ev1, . . . , Eva), where Ev1, . . . , Eva run through the elements of the kernel of f .
One can prove that it does not depend on the choice of f . We will use the following
properties of Fitting ideals; see [Northcott 1976, Chapter 3] or [Eisenbud 1995,
Chapter 20].

• If there exist ideals A1, . . . , At of R such that M ' R/A1⊕· · ·⊕ R/At , then
we have

FittR(M)= A1 · · · At .

• Let T be an R-algebra. We have

FittT (M ⊗R T )= FittR(M)T .

• Let N be another finitely generated R-module. We have

FittR(M ⊕ N )= FittR(M)FittR(N ).

Lemma 5.1. Let M be a finite O−G-module. Then

|M | = |(O−G/FittO−G (M))|.

Proof. We have

(O−G : FittO−G (M))=
∏
ξ∈Xodd

(eξZ[G] : eξFittO−G (M))=
∏
ξ∈Xodd

(Z[ξ ] : FittZ[ξ ](eξ M)).

Fix ξ ∈ Xodd. Since eξ M is a finite Z[ξ ]-module, there exist ideals a1, . . . , ar such
that

eξ M = Z[ξ ]/a1⊕ · · ·⊕Z[ξ ]/ar .

Therefore FittZ[ξ ](eξ M)= a1 · · · ar and

(Z[ξ ] : FittZ[ξ ](eξ M))= NQ(ξ)/Q(a1 · · · ar )= |eξ M |.

It follows that (O−G : FittO−G (M))=
∏
ξ∈Xodd

|eξ M | = |M |. �

Lemma 5.2. Let M be a finite Z[G]−-module. Let p be a prime number not
dividing |G| and let ψ be an odd irreducible Zp-character. Then

|Mψ
| = |(Z[G]−/FittZ[G]−(M))ψ | = |(O−G/FittO−G (M))

ψ
|.

Proof. We have (FittZ[G]−(M))ψ = FittZp[ψ](M
ψ). Since Mψ is a finite Zp[ψ]-

module, there exist integers c1, . . . , cr ≥ 1 such that

Mψ
'

r⊕
i=1

Zp[ψ]/p
ci ,

where p is the prime ideal of Zp[ψ]. Then FittZ[G]−(M)ψ =pc with c := c1+· · ·+cr
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and therefore |(Z[G]−/FittZ[G]−(M))ψ | = (Zp[ξ ] : p
c)= |Mψ

|. The last equality
is clear since (O−G)

ψ
= Zp[ψ]. �

In what follows we will also use repeatedly the Tate cohomology of finite cyclic
groups; see [Lang 1994, §IX.1]. Let A be a finite cyclic group with generator a and
let M be a Z[A]-module. The zeroth and first group of cohomology are defined by

Ĥ 0(A,M) := M A/NA(M) and Ĥ 1(A,M) := Ker(NA : M→ M)/(1− a)M,

where NA :=
∑

b∈A b and M A is the submodule of elements in M fixed by A. Let
N and P be two other Z[A]-modules such that the following short sequence is
exact:

1 // M // N // P // 1.

Then the hexagon below is also exact.

(5.9)

Ĥ 0(A,M)

&&

Ĥ 1(A, P)

88

Ĥ 0(A, N )

��

Ĥ 1(A, N )

OO

Ĥ 0(A, P)

xx

Ĥ 1(A,M)

ff

The Herbrand quotient of M is defined by

Q(A,M) :=
|Ĥ 0(A,M)|

|Ĥ 1(A,M)|
.

The Herbrand quotient is multiplicative, that is for an exact short sequence as above,
we have Q(A, N )= Q(A,M) Q(A, P). The following result plays a crucial rôle
in the next sections. It is a direct consequence of [Lang 1994, Corollary IX.4.2].

Lemma 5.3. Let E/F be a quadratic extension with Galois group T . Let R ≥ 0 be
the number of real places in F that becomes complex in E. Then we have

Q(T,UE)= 2R−1. �

We use this result in the following way. Assume that R ≥ 1. Write ŪF and ŪE

for the group of units of F and E respectively modulo {±1}. Then we have

Ĥ 0(T,UE)=
UF

NE/F (UE)
= {±1}×

ŪF

NE/F (ŪE)
,
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since −1 cannot be a norm in E/F . It follows from the lemma that |Ĥ 0(T,UE)| is
divisible by 2R−1 and therefore

(5.10) 2R−2
| (ŪF : NE/F (ŪF )).

In some cases we will not be able to get non trivial lower bounds with that
method, but still be able to deduce that Ĥ 1(T,UE) is trivial. In this situation, we
have the following lemma.

Lemma 5.4. Let E/F be a quadratic extension with Galois group T . Assume that
Ĥ 1(T,UE) is trivial. Then either E/F is unramified at finite places or there exists
an element of order 2 in the kernel of the norm map from ClE to ClF .

Proof. Consider the submodules of elements fixed by T in the short exact sequence

1 // UE // E× // PE // 1.

We get

1 // UF // F× // PT
E

// Ĥ 1(T,UE) // · · · .

Since Ĥ 1(T,UE) = 1 by hypothesis, it follows that the groups PF and PT
E are

isomorphic. The isomorphism is the natural map that sends a ∈ PF to aZE ∈ PT
E ,

where ZE is the ring of integers of E . Assume that there is a prime ideal p of F
that ramifies in E/F . Let P be the unique prime ideal of E above p and let h ≥ 1
be the order of P in ClE . Since Ph

∈ PT
E , there exists a principal ideal a ∈ PF such

that Ph
= aZE . Clearly a is a power of p. Looking at valuations at P, it follows

that h is even. We set C := Ph/2. Its class is an element of order 2 in ClE . But
NE/F (C)= ph/2

= a is a principal ideal. This concludes the proof. �

To conclude this section we prove the conjecture in our settings when K/k
is a quadratic extension. This result is proved in full generality in [Tate 1984,
Theorem IV.5.4].

Theorem 5.5. Let K/k be a quadratic extension and S ⊃ S(K/k) be a finite set
of places of k satisfying (A1), (A2) and (A3). Then the abelian rank-one Stark
conjecture is satisfied for the extension K/k and the set S with the Stark unit being
the unique solution, up to trivial units, of (P1) and (P2). Moreover the Stark unit is
a square in K if and only if e+ tS+ c ≥ 1, where c is the 2-valuation of the order of
Cl−K . In particular, if d ≥ 4 then it always a square and, in fact, it is a 2d−3-th power.
It is also a square if d = 3 and the extension K/k is ramified at some finite prime.

Proof. The only non trivial element of G is τ . Let χ be the character that sends τ
to −1. It is the only non trivial character of G and also the only odd character. We
have Z[G]− = O−G = e−Z ' Z. In particular, using Proposition 4.2, it is direct to
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see that there exists θ̄ ∈U−K such that U−K = Z · θ̄ . Define

η̄ := 2e+tS |Cl−K | · θ̄ .

From its construction, it is clear that η̄ satisfies (P1) and (P2). It follows from
Proposition 4.1, and replacing η by η−1 if necessary, that

1
2

∑
g∈G

χ(g) log |ηg
| = L ′K/k(0, χ).

This proves part (1) of the conjecture. Part (3) is direct by construction. It remains
to prove part (2). But (τ − 1) · η̄ =−2 · η̄ so part (2) follows and the conjecture is
proved in this case. Finally, from its definition, it is clear that η is a 2r -th power
in K× if and only if e + tS + c ≥ r . Now, by (5.10), we have e ≥ d − 3 and
therefore the Stark unit is always a square if d ≥ 4. Assume that d = 3 and that
η is not a square. Then e = 0 and |Ĥ 0(G,UK )| = 2. From Lemma 5.3, we get
Ĥ 1(G,UK ) = 1 and therefore, since c = 0, the extension K/k is unramified at
finite places by Lemma 5.4 �

When d = 2, there exist extensions for which the Stark unit is a square and
extensions for which it is not a square. Using the PARI/GP system [PARI 2011],
we find the following examples.9 Let k := Q(

√
5) and let v1, v2 denote the two

infinite places of k with v1(
√

5) < 0 and v2(
√

5) > 0. Let K be the ray class
field modulo p11v2, where p11 := (1/2+ 3

√
5/2) is one of the two prime ideals

above 11. Then K/k is a quadratic extension that satisfies (A1), (A2) and (A3)
with S := S(K/k), and one can prove that the corresponding Stark unit is not a
square. Now, on the other hand, let K be the ray class field modulo

√
5q11v1, where

q11 := (1/2− 3
√

5/2) is the other prime ideal above 11. Then K/k is a quadratic
extension that satisfies (A1), (A2) and (A3) with S := S(K/k) and, in this case, the
Stark unit is a square. When d = 3 and K/k is unramified both cases are possible.
Indeed, let k :=Q(α), where α3

−α2
−13α+1=0. It is a totally real cubic field. Let

v1, v2, v3 be the three infinite places of k with v1(α)≈−3.1829, v2(α)≈0.0765 and
v3(α)≈ 4.1064. Let K be the ray class field of k of conductor Zkv2v3. Then K/k is
a quadratic extension that satisfies (A1), (A2) and (A3) with S := S(K/k), and that
is unramified at finite places. One can prove in this setting that the Stark unit is not a
square. On the other hand, let k :=Q(β) with β3

−β2
−24β−35= 0. It is a totally

real cubic field. Let v1, v2, v3 be the three infinite places of k with v1(α)≈−3.0999,
v2(α)≈−1.8861, and v3(α)≈ 5.9860. Let K be the unique quadratic extension of
k of conductor Zkv2v3. Then K/k satisfies (A1), (A2) and (A3) with S := S(K/k)
and is unramified at finite places. One can prove that k is principal and the class
number of K is 2. Therefore the Stark unit in this case is a square.

9PARI/GP was also used to find the examples given in the next two sections.
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6. Cyclic quartic extensions

Theorem 6.1. Let K/k be a cyclic quartic extension and S ⊃ S(K/k) be a finite
set of places of k satisfying (A1), (A2) and (A3). Then there exists η̄∈U−K satisfying
(P1) and (P2). Furthermore, η̄ is unique up to the action of ±G, it satisfies

∣∣L ′K/k,S(0, χ)
∣∣= 1

2

∣∣∣∣∑
g∈G

χ(g) log |ηg
|

∣∣∣∣ for all χ ∈ Ĝ,

and the extension K (
√
η)/k is abelian.

Proof. Denote by γ a generator of G, therefore τ = γ 2. Let χ be the character of
G such that χ(γ )= i and let ξ := χ +χ3 be the only element in Xodd. From the
results of Section 4, we have

Q[G]− = e−Q[G] 'Q(i),

where the ring isomorphism sends any element of x ∈Q[G]−, written uniquely as
x = e−(a+ bγ ) for a, b ∈ Q, to χ(x) = a+ bi . In particular, we have Z[G]− =
O−G ' Z[i] and Z[G]− is a principal ring. By Proposition 4.2, this implies that there
exists θ̄ ∈U−K such that U−K = Z[G]− · θ̄ .

We now prove the uniqueness of the solution. Assume that η̄ and η̄′ are two
solutions to (P1) and (P2). By Corollary 4.5, there exists a unique 2-unit u in
Q[G]− such that η̄′ = u · η̄. Let p2 := (i + 1)Z[i] be the unique prime ideal above
2 in Z[i]. Let n := vp2(χ(u)). Assume, without loss of generality, that n ≥ 0
(otherwise, exchange η̄ and η̄′ and replace u by u−1) and therefore η̄′ ∈ Z[G]− · η̄.
Let x ∈ Z[G]− be such that η̄ = x · θ̄ . We have

(Z[G]− · η̄ : Z[G]− · η̄′)= (xZ[G]− : uxZ[G]−)

= (χ(x)Z[i] : χ(u)χ(x)Z[i])

= |χ(u)| = 2n.

Therefore n = 0 and u is a unit. Since the only units of Z[i] are ±1 and ±i , it
follows that u =±e−g with g ∈ G. This proves the uniqueness statement.

Next we prove that there exist solutions to (P1) and (P2). Let F :=FittZ[G]−(Cl−K )
be the Fitting ideal of Cl−K as a Z[G]−-module. Let f be a generator of F. We set
η̄ := f (γ + 1)e+tS · θ̄ . We have by Lemma 5.1

(U−K : Z[G] · η̄)= 2e+tS (Z[G]− : F)= 2e+tS |Cl−K |.

Thus η̄ is a solution to (P1). In the same way it follows directly from Lemma 5.2
that it is a solution to (P2).
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Now, since η̄ ∈U−K , we have for ν = χ0, the trivial character, or ν = χ2 that

1
2

∑
g∈G

ν(g) log |ηg
| = 0.

On the other hand, L ′K/k,S(ν, 0) = 0 follows directly from [Tate 1984, Proposi-
tion I.3.4]. From Proposition 4.1, using the fact that χ3

= χ̄ , we get10∣∣L ′K/k,S(0, χ)
∣∣2 = L ′K/k,S(0, χ)L

′

K/k,S(0, χ
3)

=

(
1
2

∑
g∈G

χ(g) log |ηg
|

)(
1
2

∑
g∈G

χ3(g) log |ηg
|

)

=

∣∣∣∣12 ∑
g∈G

χ(g) log |ηg
|

∣∣∣∣2,
and the equality to be proved follows by taking square roots.

Finally, to prove that K (
√
η)/k is abelian, we need to prove that (γ−1)·η̄∈2·U−K

by [Tate 1984, Proposition IV.1.2]. This is equivalent to proving that

(i − 1)(i + 1)e+tSχ( f )⊂ 2Z[i],

that is one of the following assertions is satisfied: e ≥ 1, tS ≥ 1 or 2 divides |Cl−K |.
We have e ≥ 2d − 4 by (5.10) and therefore the result is proved if d ≥ 3. Assume
that d = 2 and e = 0. Then it follows by Lemma 5.3 that Ĥ 1(T,UK )= 1, where
T := 〈τ 〉. By Lemma 5.4 this implies that either 2 divides |Cl−K | and the result is
proved, or K/K+ is unramified at finite places. Assume the latter. At least one
prime ideal of k ramifies in K by the proof of [Roblot 2000, Lemma 2.8] since k
is a quadratic field. By (A3) this prime ideal is inert in K/K+, thus tS ≥ 1. This
concludes the proof. �

A consequence of this result is that we can say quite precisely when the Stark
unit, it exists, is a square in that case. The result is very similar to the situation in
the quadratic case (see Theorem 5.5).

Corollary 6.2. Under the hypothesis of the theorem and assuming that the Stark
unit exists, then it is a square in K if and only if e + tS + c ≥ 2, where c is the
2-valuation of |Cl−K |. In particular, if d ≥ 3 then it is always a square and, in fact,
it is a 2d−2-th power.

Proof. We prove the equivalence. The inequality is satisfied when the Stark unit
ε is a square by Corollary 2.4. Now assume that the inequality is satisfied. By
the uniqueness statement of the theorem, we have ε̄ = η̄ (replacing η by one of its
conjugate if necessary). From the proof of the theorem, we see that η̄ belongs to

10Note that is easy to see that both sides of (4.5) are positive in this case.
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2r
·U−K if and only if (i + 1)e+tSχ( f ) ∈ 2r Z[i]. Taking valuation at p2, the only

prime ideal above 2, we see that it is equivalent to e+ tS + c ≥ 2r . This proves the
first assertion. Now, to prove the second assertion, we see that e≥ 2d−4 by (5.10).
Therefore η̄ lies in 2d−2

·U−K . This proves the result. �

When d = 2 it is possible to find examples for which the Stark unit, if it exists,
is a square and examples for which it is not a square. For example, let k :=Q(

√
5)

and let v1, v2 denote the two infinite places of k with v1(
√

5) < 0 and v2(
√

5) > 0.
Let K be the ray class field modulo p29v1, where p29 := (11/2−

√
5/2) is one of

the two prime ideals above 29. Then K/k is a cyclic quartic extension that satisfies
(A1), (A2) and (A3) with S := S(K/k) and one can prove that, if it exists, the
Stark unit is not a square. Now, on the other hand, let K be the ray class field
modulo

√
5p41v1, where p41 := (13/2−

√
5/2) is one of the two prime ideals above

41. Then K/k is a cyclic quartic extension that satisfies (A1), (A2) and (A3) with
S := S(K/k), but one can prove that, in this case, the Stark unit, if it exists, is a
square.

7. Cyclic sextic extensions

In this final section we study the case when K/k is a cyclic sextic extension. We
will need some additional assumptions to be able to prove that there exists solutions
to (P1) and (P2).

Theorem 7.1. Let K/k be a cyclic sextic extension such that (A1), (A2) and (A3)
are satisfied with S := S(K/k) . Assume also that 3 does not divide the order
of ClK and that no prime ideal above 3 is wildly ramified in K/k. Let F be the
quadratic extension of k contained in K . Then there exists η̄ ∈U−K satisfying (P1)
and (P2) and such that NK/F (η) is the Stark unit for the extension F/k and the set
of places S. Furthermore, η̄ is unique up to the action of an element of Gal(K/F),
satisfies for all χ ∈ Ĝ

∣∣L ′K/k,S(0, χ)
∣∣= 1

2

∣∣∣∣∑
g∈G

χ(g) log |ηg
|

∣∣∣∣,
and the extension K (

√
η)/k is abelian.

Proof. Let γ be a generator of the Galois group G, thus τ = γ 3. Let χ be the
character that sends γ to −ω, where ω is a fixed primitive third root of unity. It is a
generator of the group of characters of G. We have Xodd = {ξ2, ξ6}, where ξ2 := χ

3

and ξ6 := χ +χ
5. The corresponding idempotents are

eξ2 =
1
6(1− γ

3)(1+ γ 2
+ γ 4) and eξ6 =

1
6(1− γ

3)(2− γ 2
− γ 4).
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We have the ring isomorphism

(7.11) Q[G]− = eξ2Q[G] + eξ6Q[G] ∼=Q⊕Q(ω).

Let σ := γ 2 and let H be the subgroup of order 3 generated by σ . Any element
g ∈Q[G]− can be written uniquely as g = e−h, where h is an element of Q[H ].
The map g 7→ h is a ring isomorphism between Q[G]− and Q[H ], that restricts to
an isomorphism between Z[G]− and Z[H ]. From now on, we will identify Q[G]−

and Q[H ]. Note that, with that identification, both act in the same way on U−K ,
U−K ⊗Q, Cl−K , etc. Let e0 and e1 be the image by the projection map of eξ2 and
eξ6 . Then e0 =

1
3(1+ σ + σ

2) is the idempotent of the trivial character of H and
e1 =

1
3(2− σ − σ

2) is the sum of the idempotents of the two non trivial characters
of H . The main difference between this case and the quartic case is the fact that
the isomorphism between Q[H ] and Q⊕Q(ω) does not restrict to an isomorphism
between Z[G]− and Z⊕Z[ω]. In particular, Z[G]− is not a principal ring. Because
of that the proof is somewhat more intricate than in the quartic case. We will
therefore proceed by proving a series of different claims. First, we define

(7.12) O := e0Z[H ] + e1Z[H ] ' Z⊕Z[ω].

Note that, by the above identification, we have O−G
∼= O.

Claim 1. The ring O is principal and contains Z[H ] with index 3.

Let I be an ideal of O. Then e0I is an ideal of e0Z' Z. Thus there exists a ∈ Z

such that e0I= ae0Z[H ]. In the same way, e1I is an ideal of e1Z' Z[ω]. Since
Z[ω] is a principal ring, there exists b, c ∈ Z such that e1I= e1(b+cσ)Z[H ]. One
verify readily that e0a+ e1(b+ cσ) is a generator of I. To conclude the proof of
Claim 1, we note that O/Z[H ] = 〈e0+Z[H ]〉 = 〈e1+Z[H ]〉 clearly has order 3.

Claim 2. Let A be an ideal of Z[H ] of finite index. Then there exists g ∈A such
that

(7.13) O/AO' Z[H ]/gZ[H ].

Furthermore, A= gZ[H ] if A is a principal ideal. Otherwise (A : gZ[H ])= 3.

We prove this claim by considering the two cases: AO 6=A and AO=A.

Claim 2.1. Assume that AO 6=A. Then A is a principal ideal.

Let g′ = e0a + e1(b + cσ) be a generator of the principal ideal AO of O. If
e1(b+ cσ) ∈ A, then e1A = e1(b+ cσ)Z[H ] ⊂ A and it follows that A = AO,
a contradiction. Therefore AO/A = 〈e1(b + cσ) + A〉 has order 3. Thus one
of the three elements: e0a + e1(b+ cσ), e0a − e1(b+ cσ) or e0a belongs to A.
It cannot be e0a since that would imply, as above, that A = AO. Denote by g
the one element between e0a ± e1(b+ cσ) that lies in A. Clearly we still have
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gO = AO. Now, g is not a zero divisor since A has finite index in Z[H ], so we
have (gO : gZ[H ])= (O : Z[H ])= 3. Therefore we get

(A : gZ[H ])=
(gO : gZ[H ])
(AO :A)

= 1

and A= gZ[H ]. Equation (7.13) follows in that case from the equality

(7.14) (O :AO)(AO :A)= (O : Z[H ])(Z[H ] :A)

and the fact that (AO :A)= (O : Z[H ]) by the above.

Claim 2.2. Assume that AO=A. Then A is not a principal ideal, but there exists
g ∈A such that (A : gZ[H ])= 3.

Let g be a generator of the principal ideal AO of O. Since AO=A, g lies in A

and we compute as above

(A : gZ[H ])= (AO : gO)(gO : gZ[H ])= 3.

Since (O :Z[H ])(Z[H ] :A)= 3(Z[H ] :A)= (A : gZ[H ])(Z[H ] :A)= (Z[H ] :
gZ[H ]) and (AO :A)= 1, Equation (7.13) follows from (7.14). It remains to prove
that A cannot be principal in that case. In order to prove this, we need another
result. Let x ∈ O. By the isomorphism in (7.12), it corresponds to a pair (x0, x1) in
Z⊕Z[ω]. We define the norm of x as the following quantity

Norm(x) := |x0| NQ(ω)/Q(x1).

Note that we recover the usual definition of the norm of Q[H ] as a Q-algebra. The
proof of the following claim is straightforward and is left to the reader.

Claim 3. Let x ∈ O with Norm(x) 6= 0. Then (O : xO)= Norm(x). If furthermore
x ∈ Z[H ] then (Z[H ] : xZ[H ])= Norm(x).

We now finish the proof of Claim 2.2. Assume that A is principal, say A=hZ[H ].
Then there exists z ∈ Z[H ] such that g = hz and we have (O : zO) = 3. Thanks
to the above claim, we can explicitly compute all the elements z ∈ O such that
(O : zO)= 3. There are the elements z= e0a+e1(b+cσ) with a=±1 and b+cσ ∈
{±(1+ 2σ),±(2+ σ),±(1− σ)}, or a = ±3 and b+ cσ ∈ {±1,±σ,±(1+ σ)}.
One can compute all possibilities and check that none of those belong to Z[H ].
This gives a contradiction and concludes the proof of Claim 2.2 and of Claim 2.

We now turn to the Z[H ]-structure of U−K . The principal result is the following
claim that we will prove in several steps.

Claim 4. There exists θ̄ ∈U−K such that U−K = Z[H ] · θ̄ .
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Let θ̄ ′ ∈ U−K be such that U−K ⊗Q = Q[H ] · θ̄ ′. Note that the existence of θ̄ ′

follows from Proposition 4.2. We define

3 :=
{

x ∈Q[H ] : x · θ̄ ′ ∈U−K
}
.

It is a fractional ideal of Z[H ]. The above claim is satisfied if and only if it is a
principal ideal. Assume that this is not the case. Then, by the above, we have11

3O = 3. Recall that F denotes the subfield of K fixed by H . It is a quadratic
extension of k and Gal(F/k) = 〈τ 〉. We define U−F as the kernel of the norm
map from UF/〈±1〉 to Uk/〈±1〉. We have also U−F = U−K ∩ (F

×/〈±1〉). Let
NH := 1+ σ + σ 2. It is the group ring element corresponding to the norm of the
extensions K/F and K+/k.

Claim 4.1. 3O=3 if and only if NH ·U−K = 3·U−F . If3O 6=3, then NH ·U−K =U−F .

We have 3O=3 if and only if e03⊂3, that is NH ·U−K ⊂ 3 ·U−K . Assume that
it is the case. Let δ̄ ∈U−K and set κ := NK/F (δ) ∈UF . Then the polynomial X3

−κ

has a root, say ν, in UK . If ν does not belong to F then all the roots of X3
− κ

belongs to K since K/F is a Galois extension. It follows that K contains the third
roots of unity, a contradiction. Therefore ν̄ ∈ U−F and NH ·U−K ⊂ 3 ·U−F . The
other inclusion is trivial and the first assertion of the claim is proved. If 3O 6=3

then 3 ·U−F  NH ·U−K ⊂U−F . Since U−F is a Z-module of rank 1, it follows that
NH ·U−K =U−F . The claim is proved.

Let S be the set of prime ideals of K that are totally split in K/k. Denote by
IK ,S the subgroup of IK , the group of ideals of K , generated by the prime ideals in
S. Then, by Chebotarev’s theorem, the following short sequence is exact

1 // PK ∩ I 1−τ
K ,S

// I 1−τ
K ,S

// Cl1−τK
// 1

where PK is the group of principal ideals of K . We take the Tate cohomology of
this sequence for the action of H . Since 3 does not divide the order of ClK , it
does not divide the order of Cl1−τK and Ĥ 0(Cl1−τK ) = Ĥ 1(Cl1−τK ) = 1. Note that
here and in what follows, to simplify the presentation, we drop the group H in
the notation of the cohomology groups and write Ĥ i (M) instead of Ĥ i (H,M) for
M a Z[H ]-module. It follows from the exact hexagon (5.9) for the above exact
sequence that Ĥ i (PK ∩ I 1−τ

K ,S )' Ĥ i (I 1−τ
K ,S ) for i = 0, 1. Let A ∈ PK ∩ I 1−τ

K ,S . There
exist α ∈ K×S , the subgroup of elements of K× supported only by prime ideals in
S, and B ∈ IK ,S such that

A= (α)=B1−τ .

11Strictly speaking, the claims above are only for integral ideals of Z[H ] but they admit obvious
and direct generalizations to fractional ideals.
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We apply 1− τ to this equation

A1−τ
= (α)1−τ =B(1−τ)2

= (B1−τ )2 = A2.

Therefore we have (PK ∩ I 1−τ
K ,S )

2
⊂ P1−τ

K ,S , where PK ,S is the subgroup of princi-
pal ideals generated by the elements of K×S . It follows that the quotient (PK ∩

I 1−τ
K ,S )/P1−τ

K ,S is killed by 2 and therefore Ĥ i (PK ∩ I 1−τ
K ,S )= Ĥ i (P1−τ

K ,S ) for i = 0 or
1. We have proved the following claim.

Claim 4.2. Ĥ 0(P1−τ
K ,S )' Ĥ 0(I 1−τ

K ,S ) and Ĥ 1(P1−τ
K ,S )' Ĥ 1(I 1−τ

K ,S ).

Let u ∈UK ∩ (K×S )
1−τ . There exists α ∈ K×S such that u = α1−τ . Therefore

u1−τ
= α(1−τ)

2
= (α1−τ )2 = u2.

Reasoning as above, this implies that Ĥ i (UK ∩ (K×S )
1−τ )= Ĥ i (U 1−τ

K )= Ĥ i (U−K )
for i = 0, 1. We now consider the short exact sequence

1 // UK ∩ (K×S )
1−τ // (K×S )

1−τ // P1−τ
K ,S

// 1.

Taking the Tate cohomology and using the above equalities, we extract the following
exact sequence from the exact hexagon (5.9) corresponding to this exact sequence

(7.15) · · · // Ĥ 1(P1−τ
K ,S )

// Ĥ 0(U−K ) // Ĥ 0((K×S )
1−τ ) // · · ·

The next claim is just a reformulation of the first part of Claim 4.1.

Claim 4.3. 3O=3 if and only if Ĥ 0(U−K )' Z/3Z.

Assume the two followings claims for the moment.

Claim 4.4. Ĥ 1(P1−τ
K ,S ) is trivial.

Claim 4.5. Ĥ 0((K×S )
1−τ ) is trivial.

By (7.15) we get that Ĥ 0(U−K )= 1. Thus 3O 6= O by Claim 4.3 and therefore 3
is principal by Claim 2.1, and Claim 4 follows. It remains to prove Claims 4.4 and
4.5. We start with the proof of Claim 4.4. By Claim 4.2, this is equivalent to prove
that Ĥ 1(I 1−τ

K ,S ) is trivial. We have as Z[H ]-modules

I 1−τ
K ,S =

∏
p0∈S0

′

( ∏
P|p0

PZ

)1−τ

'

∏
p0∈S0

′

(1− τ)Z[G],

where S0 is the set of prime ideals of k that splits completely in K/k, P runs
through a set of representative of the prime ideals of K dividing p0 under the action
of τ and the ′ indicates that it is a restricted product, that is the exponent of P is
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zero for all but finitely many prime ideals. The isomorphism comes from fixing a
prime ideal above p0 and the fact that p0 is totally split in K/k. Therefore we have

Ĥ 1(I 1−τ
K ,S )=

∏
p0∈S0

′

Ĥ 1((1− τ)Z[G])'
∏
p0∈S0

′

Ĥ 1(Z[H ]).

It is well-known that Ĥ 1(Z[H ])= 1, thus Claim 4.4 is proved.
To prove Claim 4.5, we prove that the norm from (K×S )

1−τ to (F×S )
1−τ is surjec-

tive. Let α1−τ
∈ (F×S )

1−τ . By the Hasse Norm Principle, α1−τ is a norm in K/F
if and only if it is a norm in KP/Fp for all prime ideals P of K , where p denotes
the prime ideal of F below P. If p splits in K/F , then α1−τ is trivially a norm in
KP/Fp. Assume now that p is inert. It follows from the theory of local fields; see
[Lang 1994, §XI.4], that the norm of KP/Fp is surjective on the group of units of
Fp. But α1−τ is a unit at P since P 6∈S, and therefore it is a norm also in this case.
Finally we assume that P is ramified in K/F . Let p be the rational prime below P.
By hypothesis, p 6= 3 since 3 is not wildly ramified in K/k. Write µP, UP, µp and
Up for the group of roots of unity of order prime to p and the group of principal units
of KP and Fp respectively. We have µP = µp and therefore NKP/Fp(µP) = µ

3
p.

On the other hand NKP/Fp(Up)= U3
p = Up and the norm is surjective on principal

units. Since P 6∈ S, vp(α) = 0 and α = ζu with ζ ∈ µp and u ∈ Up. It follows
from the above discussion that α1−τ is a norm in KP/Fp if and only if ζ 1−τ

∈ µ3
p.

Let p0 be the prime ideal of k below p. Assume first that p0 is ramified in F/k.
Then µp ⊂ kp0 and ζ 1−τ

= 1, thus α1−τ is a norm in KP/Fp. Assume now that p0

is inert12 in F/k. Denote by f the residual degree of p0. The group µp0 of roots
of unity in kp0 of order prime to p has order p f

− 1. Let P+ := P ∩ K+. The
extension K+P+/kp0 is a tamely ramified cyclic cubic extension. Therefore it is a
Kummer extension by [Lang 1994, Proposition II.5.12] and kp0 contains the third
roots of unity, that is 3 divides p f

−1. Since τ is the Frobenius element at p0 of the
extension F/k, we have ζ 1−τ

= ζ 1−p f
= (ζ (1−p f )/3)3 ∈µ3

p and therefore α1−τ is a
norm in KP/Fp. We have proved that α1−τ is a norm everywhere locally. It follows
by the Hasse Norm Principle that there exists β ∈ K× such that NK/F (β)= α

1−τ .
Let P be a prime ideal of K not in S and, as above, let p be the prime ideal of F
below P. Assume first that P is ramified or inert in K/F , then vP(β)= vp(α1−τ )

or 1
3vp(α

1−τ ) respectively. In both cases we get vP(β)= 0 since α ∈ K×S . If P is
split in K/F then it must be inert or ramified in K/K+ by (A3). It follows that
vP(β

1−τ )= 0. Therefore δ := β1−τ
∈ K×S . We now compute

NK/F (δ
1−τ )= NK/F (β)

(1−τ)2
= (α1−τ )2(1−τ) = (α1−τ )4.

12By (A3), it cannot be split in F/k.
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Thus α1−τ is the norm of (δ/α)1−τ ∈ (K×S )
1−τ . This concludes the proof of

Claim 4.5 and therefore also the proof of Claim 4. The next claim follows from
Claim 4.1 and the fact, seen in the proof of Claim 4, that 3O 6=3.

Claim 5. NH ·U−K =U−F .

Let F := FittZ[H ](Cl−K ) be the Fitting ideal of Cl−K as a Z[H ]-module. Apply
Claim 2 to the ideal F and call f the element of F such that O/FO'Z[H ]/ f Z[H ].
Set η̄′ := f · θ̄ . Thanks to Claim 4, we find that

(7.16) (U−K : Z[H ] · η̄
′)= (Z[H ] : f Z[H ])= (O : FO)= |Cl−K |.

For this last equality, we first use the fact that, since 3 does not divide the order of
Cl−K , we can make e0 and e1 act on it and see it therefore as an O-module. By the
properties of the Fitting ideal, FO is the Fitting ideal of Cl−K as an O-module and
the equality follows from Lemma 5.1.

Claim 6. Let n,m ≥ 0 be two integers. Then there exists κn,m ∈ Z[H ], unique up
to a trivial unit, such that

(7.17) Norm(κn,m)= 2n+2m and e0κn,m = e02n.

We define
κn,m := 2ne0+ (−1)n+m2me1.

It is clear from its construction that κn,m satisfies (7.17). One can see also directly
that κn,m ∈ Z[H ] since 2 ≡ −1 (mod 3). It remains to prove the uniqueness
statement. Clearly e0κn,m is fixed by construction. On the other hand e1κn,m is an
element of norm 22m in e1Z[H ] ' Z[ω]. Since 2 is inert in Z[ω], there exists only
one element in Z[ω] of norm 22m up to units. This concludes the proof of the claim.

Let e′ ∈ N be such that 2e′
= (Ūk : N(ŪF )).

Claim 7. The integer e− e′ is nonnegative and even.

We consider the natural map Ūk→ ŪK+/N(ŪK ) that comes from the inclusion
Uk ⊂UK+ . Let ū ∈ Ūk be in the kernel of this map. Thus there exists x̄ ∈ ŪK such
that ū = N(x̄). Set ȳ := NH · x̄ − ū ∈ ŪF . We have

N(ȳ)= NH ·N(x̄)−N(ū)= 3 · ū− 2 · ū = ū.

Therefore the kernel of the above map is N(ŪF ) and there is a well-defined injective
group homomorphism from Ūk/N(ŪF ) to ŪK+/N(ŪK ). This proves that13 e ≥ e′.
The cokernel of this map is

(7.18)
ŪK+/N(ŪK )

Ūk/N(ŪF )
' ŪK+/(Ūk +N(ŪK )).

13This inequality follows also from Claim 10 below.
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It is a finite Z[H ]-module of order 2e−e′ . In particular, the idempotents e0 and
e1 act on it. We have e0 · ŪK+/(Ūk +N(ŪK )) = NH · ŪK+/(Ūk +N(ŪF )) = 1.
It follows that ŪK+/(Ūk +N(ŪK )) = e1 · ŪK+/(Ūk +N(ŪK )) is a Z[ω]-module.
Since 2 is inert in Z[ω], the order of ŪK+/(Ūk +N(ŪK )) is an even power of 2.
This concludes the proof of the claim.

Let κ := κe′+tS,(e−e′)/2. We define

(7.19) η̄ := ±κ · η̄′.

The sign will be chosen in the proof of the next claim. We have

(U−K : Z[H ] · η̄)= (U
−

K : Z[H ] · η̄
′)(Z[H ] · η̄′ : Z[H ]κ · η̄′)

= |Cl−K | Norm(κ)= 2e+tS |Cl−K |

using (7.16), Claim 3 and the definition and properties of κ . Therefore, η̄ satisfies
(P1). Let p be a prime not dividing [K : k] and let ψ be an odd irreducible Zp-
character. By the construction of η′ and the fact that p is odd and κ is a 2-unit, we
find that ∣∣(U−K /Z[H ] · η̄)ψ ∣∣= ∣∣(U−K /Z[H ] · η̄′)ψ ∣∣= ∣∣(O/F)ψ ∣∣= ∣∣(Cl−K )

ψ
∣∣

(the last equality comes from Lemma 5.2). Hence η̄ is also a solution to (P2).

Claim 8. Up to the right choice of sign in (7.19), we have

1
2

∑
g∈G

χ3(g) log |ηg
|w = L ′K/k,S(0, χ

3).

The Z[H ]-module U−K /(Z[H ] · η̄) has order not divisible by 3 since η̄ satisfies
(P1). Thus it is a O-module and we can split it into two parts corresponding to the
two idempotents e0 and e1. On the one hand, using Claim 5, we have

e0 ·
(
U−K /Z[H ] · η̄

)
= NH ·

(
U−K /Z[H ] · η̄

)
'U−F /Z · η̄F ,

where η̄F := NH · η̄ ∈U−F . On the other hand, we compute

e1 ·
(
U−K /Z[H ] · η̄

)
' e1

(
Z[H ]/κ f Z[H ]

)
' Z[ω]/2(e−e′)/2F1,

where F1 is the Fitting ideal of (Cl−K )
e1 viewed as an Z[ω]-module. Indeed, by

construction, e1 f Z[H ]= e1FO'FittZ[ω]((Cl−K )
e1). Since Cl−K = (Cl−K )

e0⊕(Cl−K )
e1

and (Cl−K )
e0 ' NK/F (Cl−K ), we have

(Z[ω] : F1)= |(Cl−K )
e1 | =

|Cl−K |
|NK/F (Cl−K )|

.

Claim 8.1. NK/F (Cl−K )= Cl−F .
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Consider the composition of maps Cl−F→Cl−K →Cl−F , where the first map is the
map induced by the lifting of ideals from F to K and the second map is the norm
NK/F . This is the map of multiplication by 3 and therefore, if the order of Cl−F is
not divisible by 3, it is a bijection and the claim is proved. Assume that 3 | |Cl−F |.
Let hE denote the class number of a number field E . Thus h−K := |Cl−K | = hK /hK+

and h−F := |Cl−F | = hF/hk . If K/F is ramified at some finite prime then hF divides
hK . As h−F divides hF , it follows that 3 | hK , a contradiction. Assume now that
K/F is unramified at finite primes. Therefore 3 divides hF and hF/3 divides hK .
In the same way, K+/k is unramified and therefore 3 divides hk . Since 3 | h−F , this
implies that 9 divides hF and therefore 3 divides hK , a contradiction. It follows
that 3 does not divide |Cl−F | and the claim is proved.

Putting together the claim and the computation that precedes it, we find that

(7.20) (U−F : Z · η̄F )=
(U−K : Z · η̄)

2e−e′
|Cl−F |
|Cl−K |

= 2e′+tS |Cl−F |.

Let P+ ∈ SK+ and denote by p0 the prime ideal of k below P+. Then P+ is
inert in K/K+ if and only if p0 is inert in F/k. Furthermore, if P+ is inert in
K/K+, then it is ramified14 in K+/k and it is the only prime ideal in SK+ above
p0. It follows that the number tS of prime ideals in SK+ that are inert in K/K+ is
equal to the number of prime ideals in S that are inert in F/k. Therefore η̄F satisfy
the properties (P1) and (P2) for the extension F/k and the set of primes S. As a
consequence of Theorem 5.5, we see that either ηF or η−1

F is the Stark unit for the
extension K/F and the set of places S. By choosing the right sign in (7.19), we
can assume that ηF is the Stark unit. Therefore we have

1
2(log |ηF |w + ν(τ) log |ητF |w)= L ′F/k,S(0, ν),

where ν is the non trivial character of F/k. It follows from the functorial properties
of L-functions that L F/k,S(s, ν) = L K/k,S(s, χ3), and from the definition of ηF

that
log |ηF |w + ν(τ) log |ητF |w =

∑
g∈G

χ3(g) log |ηg
|w.

This completes the proof of the claim.

Now, by Proposition 4.1, we know that(
1
2

∑
g∈G

χ(g) log |ηg
|

)(
1
2

∑
g∈G

χ3(g) log |ηg
|

)(
1
2

∑
g∈G

χ5(g) log |ηg
|

)
=±L ′K/k,S(0, χ)L

′

K/k,S(0, χ
3)L ′K/k,S(0, χ

5).

14Recall that S = S(K/k).
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We cancel the non zero terms corresponding to χ3 using Claim 8 and, since χ and
χ5 are conjugate, we get∣∣∣∣12 ∑

g∈G

χ(g) log |ηg
|

∣∣∣∣2 = (1
2

∑
g∈G

χ(g) log |ηg
|

)(
1
2

∑
g∈G

χ5(g) log |ηg
|

)
= L ′K/k,S(0, χ)L

′

K/k,S(0, χ
5)= |L ′K/k,S(0, χ)|

2.

Taking square roots, we get∣∣∣∣12 ∑
g∈G

χ(g) log |ηg
|

∣∣∣∣= ∣∣∣∣12 ∑
g∈G

χ5(g) log |ηg
|

∣∣∣∣= |L ′K/k,S(0, χ)| = |L
′

K/k,S(0, χ
5)|.

Note that we have directly using [Tate 1984, Proposition I.3.4]

1
2

∑
g∈G

χ0(g) log |ηg
| =

1
2

∑
g∈G

χ2(g) log |ηg
| =

1
2

∑
g∈G

χ4(g) log |ηg
|

= L ′K/k,S(0, χ0)= L ′K/k,S(0, χ
2)= L ′K/k,S(0, χ

4)= 0.

We now prove that η̄ is unique up to multiplication by an element of H . Assume
that η̄′ is another element of U−K satisfying (P1), (P2) and such that NH · η̄

′ is
the Stark unit for the extension F/k and the set of places S. Let u ∈ Q[H ]
be such that η̄′ = u · η̄. By Corollary 4.5, u is a 2-unit. Now, by hypothesis,
η̄F = NH · (u · η̄)= u · (NH · η̄)= u · η̄F and thus e0u = e0. Write u1 for the element
of Q(ω) such that (1, u1) corresponds to u by the isomorphism in (7.11). Since
both η̄ and η̄′ satisfy (P1), we have Norm(u)= 1 and thus NQ(ω)/Q(u1)= 1. But
u1 is a 2-unit in Q(ω) and there is only prime ideal above 2 in Q(ω). Therefore u1

is in fact a unit and u ∈ H .

Finally, it remains to prove that K (
√
η)/k is an abelian extension. As noted

before, this is equivalent to proving that (γ − 1) · η̄ ∈ 2 · Ū−K by [Tate 1984,
Proposition IV.1.2]. Now γ acts on U−K as −σ 2. Thus, by the definition of η̄ and
the isomorphism between U−K and Z[H ], this is equivalent to proving that

(7.21) (σ 2
+ 1)κ f ∈ 2Z[H ].

Claim 9. Let x ∈ Z[H ]. Then x ∈ 2Z[H ] if and only if xe0 ∈ 2e0Z[H ] and
xe1 ∈ 2e1Z[H ].

If x ∈ 2Z[H ] then clearly xe0 ∈ 2e0Z[H ] and xe1 ∈ 2e1Z[H ]. Reciprocally,
assume that xe0= 2e0a0 and xe1= 2e1a1 with a0, a1 ∈Z[H ]. Let a := e0a0+e1a1.
We have by construction 2a = x ∈ Z[H ] and 3a = (3e0)a0 + (3e1)a1 ∈ Z[H ].
Therefore a belongs to Z[H ] and the claim is proved.
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We prove (7.21) using the claim. On one hand, we have

e0(σ
2
+ 1)κ f = 2e′+tS+1e0 f ∈ 2e0Z[H ].

On the other hand, we have

e1(σ
2
+ 1)κ f = 2(e−e′)/2e1(σ

2
+ 1) f.

The proof will be complete if we prove that e−e′> 0. For that we use the following
claim.

Claim 10. |Ĥ 0(T,UK /UF )| = 2e−e′ .

Let U ◦K be the subgroup of elements u ∈UK such that u1−τ
∈UF . We have

Ĥ 0(T,UK /UF )=
(UK /UF )

T

N(UK /UF )
=

U ◦K /UF

(N(UK )UF )/UF

'
U ◦K

N(UK )UF
'

Ū ◦K
N(ŪK )+ ŪF

.

By (7.18), it is enough to prove the following group isomorphism

(7.22) ŪK+/(N(ŪK )+ Ūk)' Ū ◦K /(N(ŪK )+ ŪF ).

Since ŪK+ ∩ (N(ŪK )+ ŪF )= N(ŪK )+ Ūk , there is a natural injection of the left
side of (7.22) in the right side, induced by the inclusion ŪK+ ⊂ Ū ◦K . We prove
now that this map is surjective. Let ū ∈ Ū ◦K . Thus x̄ := (1− τ) · ū ∈ ŪF . Note that
(1− τ) · x̄ = 2 · x̄ . Define ȳ := NH · ū− x̄ ∈ ŪF and z̄ := ū− ȳ. We have

(1− τ) · z̄ = (1− τ) · ū− (1− τ)NH · ū+ (1− τ) · x̄ = x̄ − NH · x̄ + 2 · x̄ = 0.

Thus z̄ ∈ ŪK+ . This proves that ū = z̄+ ȳ ∈ ŪK+ + ŪF . Equation (7.22) follows
and the proof of the claim is finished.

Now by the multiplicativity of the Herbrand quotient and Lemma 5.3, we find
that

(7.23) Q(T,UK /UF )=
Q(T,UK )

Q(T,UF )
= 22d−2.

Therefore e−e′ ≥ 2d−2≥ 2. This concludes the proof that K (
√
η) is abelian over

k and the proof of the theorem. �

Corollary 7.2. Under the hypothesis of the theorem and assuming that the Stark
unit exists, then it is a square in K if and only if the Stark unit for the extension F/k
and the set S is a square and (e− e′)/2+ c− c′ ≥ 1, where c is the 2-valuation of
|Cl−K |, c′ is the 2-valuation of |Cl−F | and (Ūk :N(ŪF ))= 2e′ . In particular, if d ≥ 4
then it is always a square and, in fact, it is a 2d−3-th power. It is also a square if
d = 3 and the extension K/k is ramified at some finite prime.
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Proof. We use the notations and results of the proof of the theorem. By the
uniqueness statement, the Stark unit, if it exists, is equal to η or one of this conjugate
over F . In particular, the Stark unit is a 2r -th power in K if and only if η̄ ∈ 2r

·U−K .
By Claim 9 and the construction of η̄, this is equivalent to 2e′+tS e0 f ∈ 2r e0Z and
2(e−e′)/2e1 f ∈ 2r e1Z[H ].

Now e0 f Z = e0|Cl−F |Z by the definition of f , Claim 8.1 and the discussion
that precedes it. Thus the first condition is equivalent to e′ + tS + c′ ≥ r . For
r = 1, this is equivalent to the fact that the Stark unit for F/k and the set S is a
square by Theorem 5.5 and the discussion that follows (7.20) on the number of
primes in S that are inert in F/k. For the second condition, recall that e1 f Z[H ] '
FittZ[ω]((Cl−K )

e1) and therefore e1 f ∈ 2vZ[H ], where v is the 2-valuation of the
index (Z[ω] : FittZ[ω]((Cl−K )

e1)). By Claim 8.1 and the computation before it, this
index is equal to |Cl−K |/|Cl−F |. Therefore the second condition is equivalent to
(e− e′)/2+ c− c′ ≥ r . This proves the first assertion: the Stark unit for K/k and
S = S(K/k) is a square if and only if the Stark unit for the extension F/k and
the set S is a square and (e − e′)/2+ c − c′ ≥ 1. For the second assertion, we
have e′ ≥ d − 3 by (5.10) and (e− e′)/2 ≥ d − 1 by Claim 10 and (7.23). Thus
η̄ ∈ 2d−3

·U−K for d ≥ 4 and we have that the Stark unit is a 2d−3-th power if d ≥ 4.
Finally, for d = 3, the condition 2(e−e′)/2e1 f ∈ 2e1Z[H ] is always satisfied. Assume
that the extension K/k is ramified at some finite prime. If F/k is also ramified
at some finite prime then the Stark unit for the extension F/k and the set S is a
square by Theorem 5.5. If F/k is unramified at finite primes then any prime ideal
that ramifies in K/k is inert in F/k by (A3). Therefore tS ≥ 1 and the Stark unit
for the extension F/k and the set S is a also square by Theorem 5.5. It follows that
the Stark unit for K/k is a square by the first part. This concludes the proof. �

Note that the condition in the case d = 3 is sharp. Indeed let k :=Q(α), where
α3
+α2
−9α−8= 0, be the smallest totally real cubic field of class number 3. Let

v1, v2, v3 be the three infinite places of k with v1(α)≈−3.0791, v2(α)≈−0.8785
and v3(α) ≈ 2.9576. Let K be the ray class field of k of modulus Zkv2v3. The
extension K/k is cyclic of order 6, satisfies (A1), (A2) and (A3) with S := (S/k),
and is unramified at finite places. One can check that, if it exists, the corresponding
Stark unit is not a square in K .
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