
Pacific
Journal of
Mathematics

Volume 267 No. 2 February 2014



PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2014 is US $410/year for the electronic version, and $535/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:pacific@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS
Vol. 267, No. 2, 2014

dx.doi.org/10.2140/pjm.2014.267.257

SUMS OF SQUARES
IN ALGEBRAIC FUNCTION FIELDS

OVER A COMPLETE DISCRETELY VALUED FIELD

KARIM JOHANNES BECHER, DAVID GRIMM AND JAN VAN GEEL

A recently found local-global principle for quadratic forms over function
fields of curves over a complete discretely valued field is applied to the study
of quadratic forms, sums of squares, and related field invariants.

1. Introduction

Let K be a field of characteristic different from 2 and F/K an algebraic function
field (i.e., a finitely generated extension of transcendence degree one). The study of
quadratic forms over F is generally difficult, even in such cases where the quadratic
form theory over all finite extensions of K is well understood. It can be considered
complete in the cases where K is algebraically closed, real closed, or finite, but it
is wide open for example when K is a number field.

A breakthrough was obtained recently in the situation where the base field K is
a nondyadic local field. Parimala and Suresh [2010] proved that in this case any
quadratic form of dimension greater than eight over F is isotropic. Harbater, Hart-
mann, and Krashen [Harbater et al. 2009] obtained the same result as a consequence
of a new local–global principle for isotropy of quadratic forms over F . The local
conditions are in geometric terms, relative to an arithmetic model for F . A less
geometric version of the local–global principle, in terms of the discrete rank one
valuations of F , was obtained by Colliot-Thélène, Parimala, and Suresh [Colliot-
Thélène et al. 2012]; see Theorem 6.1 below. Both versions of the local–global
principle hold more generally when K is complete with respect to a nondyadic
discrete valuation.

In this article we apply the local–global principle to study sums of squares in F
and to obtain further results on quadratic forms over F . This is of particular interest
in the case where K is the field of Laurent series k((t)) over a (formally) real field k.

We outline the structure of this article and the main results. Section 2 provides
some necessary basic results on valuations. In Section 3 we discuss discrete

MSC2010: primary 11E04, 11E10, 11E25, 12J10, 14H05; secondary 12D15, 12F20.
Keywords: isotropy, local-global principle, real field, sums of squares, u-invariant, Pythagoras

number, valuation, algebraic function fields.
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valuations on an algebraic function field over a complete discretely valued field and
characterize their residue fields. In Section 4 we move on to the study of sums of
squares in fields and corresponding field invariants, in the context of valuations. In
Section 5 we do an analogous discussion of the u-invariant in the context of valua-
tions. According to [Elman and Lam 1973], the u-invariant of a field is the supremum
on the dimension of anisotropic torsion forms over that field. In Section 6 we finally
apply the local-global principle to obtain new results for algebraic function fields
and in particular the rational function field. Let us describe some of these results.

In Theorem 6.4 we show that the upper bound on the dimension of anisotropic
torsion forms over algebraic function fields over K is the double of the corresponding
upper bound for algebraic function fields over k, the residue field of the discrete
valuation on K . We thus obtain an upper bound on the u-invariant of an algebraic
function field over K . We obtain in Theorem 6.6 a refinement for the case of
the rational function field, saying that the u-invariant of K (X) is equal to the
supremum of the u-invariant of all `(X) where `/k is a finite algebraic extension.
In Corollary 6.9 we prove that the Pythagoras number of the rational function
field K (X) is equal to the supremum of the Pythagoras numbers of `(X) for all
finite field extensions `/k. We conjecture in Conjecture 4.16 that this is equal
to the Pythagoras number of k(X). This is motivated by the observation — made
previously in [Scheiderer 2001] — that both Pythagoras numbers are bounded by
the same power of two. In the case where k is real closed we show in Theorem 6.12
that any sum of squares in F can be expressed as a sum of three squares and further
prove the finiteness of

∑
F2/DF (2), the quotient of the group of nonzero sums of

squares modulo the subgroup of sums of two squares in F .
Our methods are based on valuation theory and quadratic form theory, for which

[Engler and Prestel 2005] and [Lam 2005] are our standard references. We also use
some algebraic geometry, namely desingularization of arithmetic surfaces and the
properties of blowing-ups in regular points. Our reference on this topic is [Liu 2002].

This article grew out of results obtained in the Ph.D. thesis of D. Grimm under
the supervision of K. J. Becher at Universität Konstanz.

2. Valuations

For a ring R we denote by R× its group of invertible elements.
Let K be a field. Given a valuation on K , we denote by Ov the valuation ring

of v, by mv its maximal ideal, by κv the residue field, by K v the completion of K
with respect to v, and we further call v dyadic if κv has characteristic 2, nondyadic
otherwise. Given a local ring R contained in K , we say that a valuation v of K
dominates R if mv ∩ R is the maximal ideal of R. Given a field extension L/K , we
say that a valuation v of L is unramified over K if v(L×)= v(K×).
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A valuation with value group Z is called a Z-valuation. Any discrete valuation
of rank one can be identified (via a unique isomorphism of the value groups) with
a Z-valuation. A commutative ring is the valuation ring of a Z-valuation if and
only if it is a regular local ring of dimension one (see [Matsumura 1986, Theorem
11.2]); such rings are called discrete valuation rings.

Lemma 2.1. Let w1 and w2 be two valuations on K such that mw1 ⊆ Ow2 . Then
Ow1 ⊆ Ow2 or Ow2 ⊆ Ow1 .

Proof. If mw1 ⊆ mw2 , then Ow1 ⊇ Ow2 , otherwise for any choice of t ∈ mw1\mw2

we have t−1
∈ Ow2 and Ow1 = t−1(tOw1)⊆ t−1mw1 ⊆ Ow2 . �

The property for a valuation to be henselian is characterized by a list of equivalent
conditions, including the statement of Hensel’s Lemma, hence satisfied in particular
by complete Z-valuations; see [Engler and Prestel 2005, Section 4.1].

Proposition 2.2. Let v be a henselian Z-valuation on K . Then v is the unique
Z-valuation on K .

Proof. By [Engler and Prestel 2005, Corollary 2.3.2] for distinct Z-valuations w1

and w2 on K one has Ow1 6⊆ Ow2 and Ow2 6⊆ Ow1 . Consider now a Z-valuation
w on K . Since v is henselian we have 1 + mv ⊆ K×n for all n ∈ N prime to
the characteristic of κv. As w(K×) = Z, this implies that 1+mv ⊆ O×w and thus
mv ⊆ Ow. Now Lemma 2.1 yields that Ow = Ov. �

Let X always denote a variable over a given ring or field.

Proposition 2.3. Let R be a local domain with maximal ideal m and residue field k.
Let p ∈ R[X ] be monic and such that p ∈ k[X ], the reduction of p modulo m, is
irreducible. Then R[X ]/(p) is a local domain with maximal ideal (m[X ]+(p))/(p)
and residue field k[X ]/(p). The ring R[X ]/(p) has the same dimension as R.
Moreover, if R is regular, then R[X ]/(p) is regular.

Proof. Note that m[X ] + (p) is a maximal ideal of R[X ]. Consider a maximal
ideal M of R[X ] containing p and set p= M ∩ R. Since R[X ]/(p) is an integral
extension of R, it follows using [Matsumura 1986, Theorems 9.3 and 9.4] that both
rings have the same dimension. Moreover, the field R[X ]/M is an integral extension
of R/p, whereby R/p is a field. It follows that p= m and thus M = m[X ] + (p).
This shows that m[X ] + (p) is the unique maximal ideal of R[X ] containing p.
Hence, R[X ]/(p) is a local domain with maximal ideal (m[X ] + (p))/(p) and
residue field k[X ]/(p). Any set of generators of m in R yields a set of generators of
(m[X ] + (p))/(p) in R[X ]/(p). In particular, if R is regular, so is R[X ]/(p). �

Corollary 2.4. Let T be a discrete valuation ring of K with residue field k. Let
p∈T [X ] be monic with p∈k[X ] irreducible. Then T [X ]/(p) is a discrete valuation
ring with field of fractions K [X ]/(p) and residue field k-isomorphic to k[X ]/(p).
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Proof. Since a discrete valuation ring is the same as a regular local ring of dimension
one, the statement follows from Proposition 2.3. �

We want to mention the following partial generalization of Corollary 2.4.

Proposition 2.5. Let T be a valuation ring of K with residue field k and let `/k be
a finite field extension. There exists a finite field extension L/K with [L : K ]= [` : k]
and a valuation v on L dominating T and unramified over K whose residue field is
k-isomorphic to `.

Proof. It suffices to consider the case where `= k[x] for some x ∈ `. Let m denote
the maximal ideal of T . Let p ∈ T [X ] be a monic polynomial whose residue p
in k[X ] is the minimal polynomial of x over k. Then p is irreducible in K [X ],
so L = K [X ]/(p) is a field. We obtain from Proposition 2.3 that R = T [X ]/(p)
is a local domain with maximal ideal M = (m[X ] + (p))/(p) and residue field
k[X ]/(p). Let v be a valuation on L dominating T . Then T ⊆ R ⊆ Ov, and as
M is generated by m, it follows that v dominates R. Hence, k[X ]/(p) embeds
naturally into κv. In particular [κv : k] ≥ deg(p) = deg(p) = [L : K ]. Using the
Fundamental Inequality [Engler and Prestel 2005, Theorem 3.3.4] we conclude that
v is unramified over K and [κv : k] = deg(p)= [L : K ], whereby κv is k-isomorphic
to k[X ]/(p) and therefore to `. �

3. Valuations on algebraic function fields

In this section we want to relate algebraic function fields over a valued field to
algebraic function fields over the corresponding residue field. In particular we
show in Proposition 3.4 that an algebraic function field over the residue field of a
valuation on K can be realized as the residue field of an unramified extension to
some algebraic function field over K , and we refine this statement in Theorem 3.5
for rational function fields.

In the sequel let T denote a valuation ring, K its field of fractions, and k the
residue field of T . (That is, we have T = Ov for a valuation v on K and k = κv .) We
consider the residue fields of valuations dominating T . (The reader may observe
that we avoid to speak of extensions of valuations, as this can lead to confusion
about the corresponding value groups.) For a field extension F/K and a valuation
v on F dominating T , the field k is naturally embedded in the residue field κv . We
often identify residue fields of valuations dominating T up to k-isomorphism, in
order to simplify the language.

A finitely generated field extension F/K of transcendence degree one is called
an algebraic function field. We say that F/K is an algebrorational function field
if F = L(x) for a finite extension L/K with L ⊆ F and some element x ∈ F that
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is transcendental over L; if this holds already with L = K , then F/K is called a
rational function field.

Proposition 3.1. Let F/K be an algebraic function field and v a valuation on F
dominating T . The extension κv/k is either algebraic or an algebraic function field.

Proof. This is a special case of the Dimension Inequality [Engler and Prestel 2005,
Theorem 3.4.3]. �

The following is a refinement of Proposition 3.1 for rational function fields.

Theorem 3.2 (Ohm and Nagata). Let F/K be a rational function field and v be a
valuation on F dominating T . Then κv/k is either algebraic or algebrorational.

Proof. This is shown in [Ohm 1983, Theorem], as a generalization of [Nagata 1967,
Theorem 1]. �

We recall a construction to extend a valuation to a rational function field; in
[Engler and Prestel 2005, Section 2.2] this is called the Gauss extension.

Proposition 3.3. Let F/K be a rational function field. Let x ∈ F be such that
F = K (x). Let T ′ be the localization of T [x] with respect to the prime ideal
m[x] where m is the maximal ideal of T . Then T ′ is a valuation ring with field of
fractions F. The residue field of T ′ is k(x̄) where x̄ is the class of x modulo m[x],
which is transcendental over k. The corresponding valuation v on F with Ov = T ′,
uniquely determined up to equivalence, is unramified over K .

Proof. This follows from [Engler and Prestel 2005, Corollary 2.2.2]. �

Proposition 3.4. Let E/k be an algebraic function field. There exists an algebraic
function field F/K and a valuation v on F dominating T and unramified over K
whose residue field is E.

Proof. Let F ′/K be a rational function field. Let x ∈ F ′ be such that F ′= K (x) and
let T ′ denote the valuation ring described in Proposition 3.3. We identify x̄ with
some element of E transcendental over k. Then E/k(x̄) is a finite extension. By
Proposition 2.5 there exists a finite field extension F/F ′ with [F : F ′] = [E : k(x̄)]
and a valuation v on F dominating T ′ and unramified over F ′ with residue field E .
Using Proposition 3.3 it follows that v is also unramified over K . �

Theorem 3.5. Assume that T 6= K and let F/K be a rational function field. Let
`/k be a finite separable field extension. There exists a valuation v on F dominating
T and unramified over K for which κv/k is an algebrorational function field with
field of constants `.

Proof. Let y ∈ F and α ∈ ` be such that F = K (y) and `= k(α). Let q ∈ T [Y ] be
monic and such that the residue q̄ in k[Y ] is the minimal polynomial of α. Let m
be the maximal ideal of T . We choose m ∈m\ {0} and set x =m−1q(y) ∈ F . Note
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that x is transcendental over K , and thus F/K (x) is a finite extension. Let T ′ be the
localization of T [x] with respect to m[x], the ideal consisting of the polynomials
in x with coefficients in m. Let m′ be the maximal ideal of T ′. By Proposition 3.3
T ′ is a valuation ring with field of fractions K (x) and residue field k(x̄), and x̄ is
transcendental over k. Note that q̄ remains irreducible in k(x̄)[Y ].

Consider p = q − q(y) ∈ T ′[Y ]. As q(y)= mx , taking residues modulo m′[Y ]
we have p = q̄ in k(x̄)[Y ]. It follows by Proposition 2.3 that R = T ′[Y ]/(p) is a
local ring with maximal ideal lying over m′, with field of fractions K (x)[Y ]/(p),
and residue field k(x̄)[Y ]/(p). Note that K (x)[Y ]/(p) is K (x)-isomorphic to F .
Using Chevalley’s theorem [Engler and Prestel 2005, Theorem 3.1.1], we obtain a
valuation v on F that dominates T ′. Then v also dominates T . As p(y)= 0, we
have that y is integral over T ′. Since p = q̄ is irreducible in k(x̄)[Y ], we have that
p(0) 6= 0, whereby p(0) ∈ T ′×. As v dominates T ′ and p(y)= 0, we obtain that
v(y) = 0. Hence, x̄, ȳ ∈ κv, and ȳ is algebraic over k, because q̄(ȳ) = p(ȳ) = 0.
As q̄ is irreducible in k(x̄)[Y ] we obtain that

[κv : k(x̄)] ≥ [k(x̄)[ȳ] : k(x̄)] = deg(p)= deg(p)= [F : K (x)].

By the Fundamental Inequality [Engler and Prestel 2005, Theorem 3.3.4], it follows
that v is unramified over K (x) and κv = k(x̄)[ȳ] = k[ȳ](x̄). Using Proposition 3.3
we obtain that v is unramified over K . Since q(ȳ)= 0= q̄(α) and since we consider
residue fields up to k-isomorphism, we can identify `= k[α] with k[ȳ]. �

Remark 3.6. In Theorem 3.5, the hypothesis on the finite extension `/k to be sep-
arable is not necessary. Given a finite extension `/k we can obtain a regular model
(see below for the definition) for F/T whose special fiber contains a component
isomorphic to P1

` in the following way: We choose α ∈ ` and `′= k(α). Blowing up
P1

T in a point on the special fiber P1
k with residue field `′, we obtain a new regular

model whose special fiber has a component given by the exceptional fiber of this
blowing-up and thus isomorphic to P1

`′ . Iterating this process we eventually obtain
a regular model for F/T whose special fiber has a component isomorphic to P1

`,
and its generic point corresponds to a Z-valuation whose residue field is a rational
function field over `.

Assume that the valuation ring T is discrete and consider an algebraic function
field F/K . By a regular model for F/T we mean a 2-dimensional integral regular
projective flat T -scheme X whose function field is K -isomorphic to F . Given a
regular model X for F/K we denote by Xk its special fiber; by [Liu 2002, Chapter
8, Lemma 3.3] Xk is a curve.

Given an integral scheme X, a point P ∈ X, and a valuation v on the function
field of X, we say that v is centered at P if v dominates OX,P , the local ring at P .
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Proposition 3.7. Assume that T is a discrete valuation ring. Let F/K be an
algebraic function field. Let X be a regular model for F/T . Let v be a Z-valuation
on F dominating T . Then v is centered at a point P of X lying in Xk . Moreover, if
the extension κv/k is neither algebraic nor algebrorational, then Ov = OX,P where
P is the generic point of an irreducible component of Xk .

Proof. By [Liu 2002, Chapter 8, Definition 3.17] v is centered at a point P of the
special fiber Xk . Since Xk is a curve, P is either a closed point or the generic point
of an irreducible component Xk . In either case OX,P is a regular local ring.

If P is a closed point of Xk , then by [Abhyankar 1956, Proposition 3] the
extension κv/k is either algebraic or algebrorational. Assume now that P is a
generic point of Xk . Then P has codimension one in X, so OX,P is a regular local
ring of dimension one and thus a discrete valuation ring. As OX,P is dominated by
Ov and both are discrete valuation rings with the same field of fractions, it follows
by [Engler and Prestel 2005, Corollary 2.3.2] that Ov = OX,P . �

Proposition 3.8. Assume that T is a complete discrete valuation ring. Let F/K be
an algebraic function field. Then there exists a regular model for F/T .

Proof. There exists a regular projective curve C over K whose function field is
K -isomorphic to F . If the curve C is smooth, then by [Liu 2002, Chapter 10,
Proposition 1.8)] there exists a regular model for F/T . Note that this applies in
particular when char(K )= 0. Without assuming that C is smooth, we can follow the
first steps in the proof of the proposition cited to obtain a 2-dimensional projective
T -scheme X with function field F . Since the structure morphism X→ Spec(T )
is surjective, it is flat (see [Liu 2002, Chapter 8, Definition 3.1]). Then T is an
excellent ring (see [ibid., Corollary 2.40]), and X, being locally of finite type over T ,
is excellent (see [ibid., Theorem 2.39]).

Let X′→ X be the normalization of X. Since X is excellent and projective over
T , the normalization X′→ X is a finite projective birational morphism (see [ibid.,
Theorem 8.2.39 and Lemma 3.47]). The singular locus of X′ is closed in X′ (see
[ibid., Corollary 2.38]). We consider the blowing-up X′′→ X′ along the singular
locus of X′; this is a birational projective morphism (see [ibid., Propositions 1.12
and 1.22]).

We may alternate normalization and blowing-up until we reach a scheme that is
regular. At each step we obtain a flat projective 2-dimensional T -scheme whose
function field is F . By Lipman’s desingularization theorem (see [ibid., Theorem
3.44]), after finitely many steps we come to a situation where the T -scheme is
regular. �

Corollary 3.9. Assume that T is a complete discrete valuation ring. Let F/K be
an algebraic function field. Then there exist only finitely many Z-valuations v on F
dominating T for which the extension κv/k is neither algebraic nor algebrorational.
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Proof. By Proposition 3.8 there exists a regular model for F/T . The statement
follows by applying Proposition 3.7 to any such model. �

The result Corollary 3.9 can be extended to the situation where T is an arbitrary
discrete valuation ring. Moreover, one may ask to characterize the Z-valuations
on an algebraic function field that dominate a given discrete valuation ring of
the base field and for which the residue field extension is neither algebraic nor
algebrorational. We intend to develop these topics in a forthcoming article.

4. Sums of squares and valuations

From now on let K be a field of characteristic different from 2. We denote by∑
K 2 the subgroup of nonzero sums of squares in K and, for n ∈N, by DK (n) the

set of nonzero elements that can be written as sums of n squares in K . One calls

s(K ) = inf {n ∈ N | −1 ∈ DK (n)} ∈ N ∪ {∞}

the level of K . Recall that K is real if s(K )=∞ and nonreal otherwise, and in the
latter case s(K ) is a power of two (see [Lam 2005, Chapter XI, Section 2]).

The Pythagoras number of K is defined as

p(K ) = inf
{
n ∈ N | DK (n)=

∑
K 2
}
∈ N∪ {∞}.

We further define

p′(K )=
{

p(K ) if K is real,
s(K )+ 1 if K is nonreal.

This field invariant has no independent interest, but it allows us to avoid case
distinctions in statements about valuations and Pythagoras numbers, by formulating
them for p′(K ) rather than for p(K ). As for nonreal field K we always have
s(K ) ≤ p(K ) ≤ s(K )+ 1 = p′(K ). Hence, p′(K ) is always equal to p(K ) or to
p(K )+ 1.

We now consider valuations in the context of sums of squares. We say that a
valuation v on K is real or nonreal, respectively, if the residue field κv has the
corresponding property.

Lemma 4.1. Let v be a valuation on K and n ∈ N. Then s(κv) ≥ n if and only if
v(a2

1 + · · ·+ a2
n)= 2 min{v(a1), . . . , v(an)} holds for all a1, . . . , an ∈ K .

Proof. Both conditions are easily seen to be equivalent to having that any sum of n
squares of elements in O×v lies in O×v . �

Let �(K ) denote the set of nondyadic Z-valuations on K .

Proposition 4.2. Let v ∈�(K ). If v is real, then v
(∑

K 2
)
= 2Z. If v is nonreal,

then for s = s(κv) we have v(DK (s))= 2Z and v(DK (s+ 1))= v
(∑

K 2
)
= Z.
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Proof. If v is real, then it follows from Lemma 4.1 that v
(∑

K 2
)
= 2Z. Assume

now that v is nonreal and let s = s(κv). Then it follows from Lemma 4.1 that
v(DK (s)) = 2Z and that there exist x0, . . . , xs ∈ K such that v(x2

0 + · · · + x2
s ) 6=

2 min{v(x0), . . . , v(xs)}. Dividing by one of the elements x0, . . . , xs with minimal
value, we can assume that min{v(x0), . . . , v(xs)} = 0. Hence v(x2

0 + · · ·+ x2
s )≥ 1.

If v(x2
0 + · · · + x2

s ) > 1, then we choose t ∈ K with v(t) = 1, and we conclude
that v((x0+ t)2+ x2

1 · · · + x2
s )= 1, as v is nondyadic. We may therefore assume

that v(x2
0 + · · ·+ x2

s )= 1. Since K×2
· DK (s+ 1)= DK (s+ 1), we conclude that

v(DK (s+ 1))= Z, and thus in particular that v
(∑

K 2
)
= Z. �

Proposition 4.3. Let v ∈ �(K ). Then p′(K ) ≥ p(K ) ≥ p′(κv). Moreover, if v is
henselian, then p′(K )= p(K )= p′(κv).

Proof. Note that p(K )≥ p(κv). If v is real, then κv and K are real, and we obtain
that p′(K )= p(K )≥ p(κv)= p′(κv). If v is nonreal, then for s= s(κv)we conclude
that DK (s)( DK (s+1) by Proposition 4.2, and therefore p′(K )≥ p(K )≥ s+1=
p′(κv).

Assume finally that v is henselian. Then s(K )= s(κv), and further p(K )= p(κv)
in case v is real. This yields that p′(K )= p′(κv). �

Recall that the completion of K with respect to a valuation v is denoted by K v .

Corollary 4.4. For v ∈�(K ) we have p(K )≥ p(K v)= p′(κv).

Proof. Since v extends to a Z-valuation on K v with the same residue field κv, we
obtain using both statements in Proposition 4.3 that p(K )≥ p′(κv)= p(K v). �

Corollary 4.5. We have p′(K (t))= p(K (t))≥ p′(K ((t)))= p(K ((t)))= p′(K ).

Proof. We have p(K (t))≥ p(K ((t))) by Corollary 4.4 and p′(K ((t)))= p(K ((t)))=
p′(K ) by Proposition 4.3. If K is real, then K (t) is real, thus p′(K (t))= p(K (t)) by
the definition. If K is nonreal, then p(K (t))= s(K )+1= s(K (t))+1= p′(K (t)).

�

Corollary 4.6. Let F/K be an algebrorational function field. Then p′(F)= p(F).

Proof. Replacing K by its relative algebraic closure in F , we have F = K (t) for
some t ∈ F transcendental over K . We conclude using Corollary 4.5. �

This does not generalize to arbitrary algebraic function fields:

Example 4.7. Consider the function field F of the curve Y 2
=−(X2

+1)(X2
+1+t)

over R((t)). By [Becher and Van Geel 2009, Example 5.13] we have p(F)= s(F)=
2, and therefore p′(F)= 3> p(F). In particular −1 /∈ F×2 whereas −1 is a square
in Fv for any v ∈�(F) by Corollary 4.4.

We apply Proposition 4.3 to give a short argument for a well-known fact:
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Corollary 4.8. Assume that K is a finitely generated nonalgebraic extension of a
subfield. Then p(K )≥ 2.

Proof. It follows from the hypotheses that there exists v ∈ �(K ) such that κv is
nonreal. From Proposition 4.3 we obtain that p(K )≥ p′(κv)= s(κv)+ 1≥ 2. �

Remark 4.9. If K = k(t) for a subfield k and t ∈ K transcendental over k, then
1+ t2 /∈ K×2 and thus p(K )≥ 2. An alternative proof of Corollary 4.8 is therefore
obtained by reduction to the case of a rational function field via the Diller–Dress
Theorem [Lam 2005, Chapter VIII, Theorem 5.7], which says that if p(K ) ≥ 2
then p(L)≥ 2 for every finite field extension L/K .

For S ⊆�(K ) we define a homomorphism

8S : K×→ ZS, x 7→ (v(x))v∈S.

If S ⊆�(K ) is a finite subset, then it follows from the Approximation Theorem
(see [Engler and Prestel 2005, Theorem 2.4.1] or [Liu 2002, Chapter 9, Lemma
1.9]) that 8S is surjective.

The following statement extends Proposition 4.2 from a single Z-valuation to
finitely many Z-valuations on K .

Proposition 4.10. Let S be a finite subset of �(K ) and n ∈ N. Then

8S(DK (n))= {(ev)v∈S ∈ ZS
| ev ∈ 2Z for v ∈ S with s(κv)≥ n}.

Proof. For v ∈�(K ) with s(κv)≥ n we have v(DK (n))⊆ 2Z by Lemma 4.1. This
shows that

8S(DK (n))⊆ {(ev)v∈S ∈ ZS
| ev ∈ 2Z for v ∈ S with s(κv)≥ n}.

It remains to show the other inclusion. Consider a tuple (ev)v∈S ∈ ZS such that
ev ∈ 2Z for all v ∈ S with s(κv) ≥ n. The aim is to find an element x ∈ DK (n)
with 8S(x) = (ev)v∈S . We explain how to obtain such an element, using the
Approximation Theorem (see above) several times.

For v ∈ S with ev /∈ 2Z, as s(κv) < n we may choose xv,2, . . . , xv,n ∈ Ov such
that v(1+x2

v,2+· · ·+x2
v,n) > 0. For v ∈ S with ev ∈ 2Z we set xv,2= · · · = xv,n = 0.

For i = 2, . . . , n we choose xi ∈ K× such that v(xi − xv,i ) > 0 for all v ∈ S. We
set y = x2

2 +· · ·+ x2
n . For v ∈ S we have v(1+ y)= 0 if ev ∈ 2Z and v(1+ y) > 0

otherwise. We choose t ∈ K× such that, for all v ∈ S, we have v(t) = 1 if
v(1+ y) > 1, and v(t) > 1 otherwise. Note that (1+ t)2+ y ∈ DK (n). For any v ∈ S
the value v((1+ t)2+ y) is either 0 or 1 and such that v((1+ t)2+ y)≡ ev mod 2Z.
Now choose z ∈ K× such that 2v(z) = ev − v((1+ t)2+ y) for all v ∈ S and set
x = z2((1+ t)2+ y). Then x ∈ DK (n) and 8S(x)= (v(x))v∈S = (ev)v∈S . �
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Corollary 4.11. Let n ∈ N and S a finite subset of �(K ) such that s(κv)= 2n for
all v ∈ S. Then 8S induces a surjective homomorphism

DK (2n+1)/DK (2n)→ (Z/2Z)S.

In particular, |DK (2n+1)/DK (2n)| ≥ 2|S|.

Proof. By the hypotheses on S and by Proposition 4.10, we have 8S(DK (2n+1))=

ZS and 8S(DK (2n))= (2Z)S . From this the statement follows. �

Theorem 4.12. Let K be a real field. For n ∈ N the following are equivalent:

(i) p(K (X))≤ 2n .

(ii) p(L) < 2n for all finite real extensions L/K .

(iii) s(L)≤ 2n−1 for all finite nonreal extensions L/K .

(iv) p′(L) < 2n for all finite extensions L/K with −1 /∈ L×2.

Proof. See [Becher and Van Geel 2009, Theorem 3.3] for the equivalence of (i)–(iii);
the equivalence of these conditions with (iv) is obvious. �

Corollary 4.13. Let n ∈ N be such that p(K (X)) ≤ 2n . Then p(L(X)) ≤ 2n for
any finite field extension L/K .

Proof. If K is nonreal, then p(L(X))= s(L)+1≤ s(K )+1= p(K (X))≤ 2n . If K
is real and L is nonreal, then s(L)≤ 2n−1 by Theorem 4.12 and thus p(L(X))≤ 2n .
If L is real, then since any finite real extension of L is a finite real extension
of K , the equivalence of (i) and (ii) in Theorem 4.12 allows us to conclude that
p(L(X))≤ 2n . �

Theorem 4.14. Let K be endowed with a Z-valuation with residue field k. Then
p(K (X)) ≥ p(k(X)). Moreover, if the valuation is henselian and n ∈ N is such
that p(k(X))≤ 2n , then p(K (X))≤ 2n .

Proof. Using Proposition 3.3 the given Z-valuation on K extends to a Z-valuation
on K (X) with residue field k(X). Hence, p(K (X)) ≥ p′(k(X)) = p(k(X)) by
Proposition 4.3 and Corollary 4.5.

Assume now that the Z-valuation on K is henselian. If K is nonreal, then
p(K (X))= s(K )+ 1= s(k)+ 1= p(k(X)). Assume that K is real. Then k and
k(X) are real. Let n ∈N be such that p(k(X))≤ 2n . By Theorem 4.12, to prove that
p(K (X))≤ 2n it suffices to show that p′(L) < 2n for all finite extensions L/K with
−1 /∈ L×2. Consider such an extension L/K . Then L is endowed with a henselian
Z-valuation whose residue field ` is a finite extension of k. Then −1 /∈ `×2 and
thus p′(L)= p′(`) < 2n by Proposition 4.3 and Theorem 4.12. �

The last two statements motivate us to formulate the following two conjectures.

Conjecture 4.15. For any finite field extension L/K , one has p(L(X))≤ p(K (X)).
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Conjecture 4.16. If K is complete with respect to a nondyadic Z-valuation with
residue field k, then p(K (X))= p(k(X)).

Note that both conjectures hold trivially if K is a nonreal field. In the case where
K is real, Conjecture 4.16 was raised originally by C. Scheiderer [2001, Remark
5.18.2] as a question. We shall prove in Corollary 6.9 that the two conjectures are
equivalent.

5. The u-invariant for algebraic function fields

We refer to [Lam 2005] for basic facts and terminology from the theory of quadratic
forms over fields of characteristic different from two. The u-invariant of K was
defined in [Elman and Lam 1973] as

u(K ) = sup {dimϕ | ϕ anisotropic torsion form over K } ∈ N∪ {∞},

where a torsion form is a regular quadratic form that corresponds to a torsion
element in the Witt ring.

Proposition 5.1. Let v ∈�(K ). Let ψ be a torsion form over κv . There exist n ∈N,
a1, . . . , an ∈ O×v , and t ∈ K× with v(t) = 1 such that 〈1,−t〉 ⊗ 〈a1, . . . , an〉 is a
torsion form over K and such that ψ is Witt equivalent to 〈ā1, . . . , ān〉.

Proof. Assume first that v is nonreal. Then by Proposition 4.2 there exists t ∈
∑

K 2

with v(t) = 1. For n = dimψ and a1, . . . , an ∈ O×v such that ψ is isometric to
〈ā1, . . . , ān〉, we obtain that 〈1,−t〉⊗ 〈a1, . . . , an〉 is a torsion form over K .

Assume now that v is real. Then ψ is Witt equivalent to a sum of binary torsion
forms over κv (see [Pfister 1966, Satz 22]). Every binary torsion form over κv
is of the shape 〈ā1, ā2〉 with a1, a2 ∈ O×v such that −a1a2 ∈

∑
K 2. Hence, there

exist r ∈ N and a1, . . . , a2r ∈ O×v such that ψ is Witt equivalent to 〈ā1, . . . , ā2r 〉

and −a2i−1a2i ∈
∑

K 2 for i = 1, . . . , r . Then 〈a1, . . . , a2r 〉 is torsion form over
K . We choose any t ∈ K× with v(t) = 1. Then also 〈1,−t〉 ⊗ 〈a1, . . . , a2r 〉 is a
torsion form over K . �

The following statement was independently obtained in [Scheiderer 2009, Propo-
sition 5] using different arguments, based on the theory of spaces of orderings.

Proposition 5.2. For v ∈�(K ) we have u(K )≥ u(K v)= 2u(κv).

Proof. Let v ∈ �(K ). Let ψ be an anisotropic torsion form over κv. Using
Proposition 5.1 we choose n ∈ N, a1, . . . , an ∈ O×v , and t ∈ K× with v(t) = 1
such that ψ is Witt equivalent to 〈ā1, . . . , ān〉 and such that 〈1,−t〉⊗ 〈a1, . . . , an〉

is a torsion form over K . Let ϕ denote its anisotropic part. Then ϕ is a tor-
sion form and isometric to 〈b1, . . . , bs〉 ⊥ −t〈c1, . . . , cr 〉 for certain r, s ∈ N and
c1, . . . , cr , b1, . . . , bs ∈ O×v . Applying residue homomorphisms (see [Lam 2005,
Chapter VI, §1]), it follows that the forms 〈b̄1, . . . , b̄s〉 and 〈c̄1, . . . , c̄r 〉 over κv are
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Witt equivalent to ψ . As ψ is anisotropic we conclude that dimϕ= r+s ≥ 2 dimψ .
This shows that u(K ) ≥ 2u(κv). Using Springer’s Theorem for complete dis-
cretely valued fields (see [Lam 2005, Chapter VI, §1]), we further obtain that
u(K v)= 2u(κv). �

A generalization of Proposition 5.2 for arbitrary nondyadic valuations is given
in [Becher and Leep 2013, Theorem 5.2].

Corollary 5.3. Let k be the residue field of a nondyadic Z-valuation on K . For
every algebraic function field F/K there exists an algebraic function field E/k such
that u(F)≥ 2u(E).

Proof. Let T denote the discrete valuation ring with field of fractions K and residue
field k. Let F/K be an algebraic function field. Choose x ∈ F transcendental over
K . Consider the valuation ring T ′ in K (x) described in Proposition 3.3. Note that
T ′ is a discrete valuation ring. Since F/K (x) is a finite extension, there exists a
Z-valuation v on F dominating T ′. The residue field E of v is a finite extension of
k(x̄), hence an algebraic function field over k. By Proposition 5.2 we obtain that
u(F)≥ 2u(E). �

We define

û(K ) = 1
2 sup{u(F) | F/K algebraic function field}.

For nonreal fields û coincides with the strong u-invariant defined in [Harbater et al.
2009, Definition 1.2], by the following result.

Corollary 5.4. For any algebraic extension L/K we have

u(L)≤ 1
2 u(K (X))≤ û(K ).

Proof. If L is a field of odd characteristic p, then the Frobenius homomorphism
given by x 7−→ x p shows that any quadratic form over L is obtained by scalar
extension from a quadratic form defined over L p. Therefore every torsion form
defined over an algebraic extension of K comes from a torsion form defined over a
finite separable extension of K . Since any finite separable extension of K is the
residue field of a Z-valuation v on K (X), the first inequality now follows from
Proposition 5.2. The second inequality is obvious. �

6. Function fields over complete discretely valued fields

In this section we assume that K is the field of fractions of a complete discrete
valuation ring T with residue field k of characteristic different from 2. We want to
apply the following reformulation of the local-global principle in [Colliot-Thélène
et al. 2012, Theorem 3.1] to the study of the u-invariant and the Pythagoras number
of algebraic function fields over K .
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Theorem 6.1 (Colliot-Thélène, Parimala, Suresh). Let F be an algebraic function
field over K . A regular quadratic form over F of dimension at least 3 is isotropic if
and only if it is isotropic over Fv for every v ∈�(F).

Proof. This slightly more general version of the result cited follows from [Harbater
et al. 2013, Proposition 9.10]. �

We will apply Theorem 6.1 to obtain upper bounds for the two mentioned field
invariants. We have to distinguish two types of Z-valuations on algebraic function
fields over K .

Proposition 6.2. Let F/K be an algebraic function field and v ∈ �(F). Then
either v is trivial on K or it dominates T .

Proof. This follows from Proposition 2.2. �

The lower bounds that we will obtain are based on more elementary arguments:

Lemma 6.3. Let F/K be an algebraic function field and v a Z-valuation on F that
is trivial on K . Then p(Fv)= p′(κv)≤ p(k(X)) and u(Fv)= 2u(κv)≤ u(k(X)).

Proof. By Corollary 4.4 and Proposition 5.2 we have p(Fv)= p′(κv) and u(Fv)=
2u(κv). As κv is a finite extension of K and T is a complete discrete valuation
ring of K , there is a unique Z-valuation w on κv with Ow ∩ K = T . Then κw
is a finite extension of k, and κv is complete with respect to w, in particular
henselian. By Corollary 5.4 and Proposition 4.3 we obtain that p′(κv) = p′(κw)
and u(κv)= 2u(κw). We choose α ∈ κw such that κw/k(α) is purely inseparable.
Since k is of characteristic different from 2, it follows that every element of κw is a
product of a square and an element from k(α). This yields that p′(κw)≤ p′(k(α))
and u(κw) ≤ u(k(α)). Since k(α) is the residue field of a Z-valuation on k(X),
we obtain from Proposition 4.3 and Corollary 5.4 that p′(k(α)) ≤ p(k(X)) and
2u(k(α))≤ u(k(X)). �

We can now extend Theorem 4.10 of [Harbater et al. 2009] to the current setting,
thus covering real function fields. C. Scheiderer [2009, Theorem 3] independently
gave a more geometric proof.

Theorem 6.4. We have û(K )= 2û(k).

Proof. For any algebraic function field E/k, by Proposition 3.4 there exists an
algebraic function field F/K and a Z-valuation on F with residue field E , and
using Proposition 5.2 we obtain that u(E) ≤ 1

2 u(F) ≤ û(K ). This yields that
2û(k)≤ û(K ).

To prove the converse inequality, we need to show for an arbitrary algebraic
function field F/K that u(F) ≤ 4û(k) holds. Fix F/K . By Theorem 6.1, any
anisotropic form over F remains anisotropic over Fv for some v ∈�(F). It thus
suffices to show that u(Fv) ≤ 4û(k) for every v ∈ �(F). Fix v ∈ �(F). As
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u(Fv) = 2u(κv), it suffices to show that u(κv) ≤ 2û(k). If v is trivial on K , we
obtain by Lemma 6.3 that 2u(κv)≤ u(k(X))≤ 2û(k). Assume that v is nontrivial
on K . Then Ov ∩ K = T by Proposition 6.2. If κv/k is an algebraic function
field then u(κv)≤ 2û(k) by the definition of û(k). Otherwise κv/k is an algebraic
extension and then u(κv)≤ û(k) by Corollary 5.4. �

Corollary 6.5. Let m ∈ N. If u(E) = m for every algebraic function field E/k,
then u(F)= 2m for every algebraic function field F/K .

Proof. Let F/K be an algebraic function field over K . Using Theorem 6.4 we
obtain that u(F) ≤ 2û(K ) = 4û(k). By Corollary 5.3 there exists an algebraic
function field E/k with u(F) ≥ 2u(E). If we assume that u(E) = m holds for
every algebraic function field E/k, we obtain that 2û(k) = m and conclude that
u(F)= 2m. �

Theorem 6.6. We have that

u(K (X))= 2 · sup {u(`(X)) | `/k finite separable field extension}.

Proof. Let F = K (X). As u(F)≥ 2, it follows from Theorem 6.1 that

u(F)≤ sup {u(Fv) | v ∈�(F)}.

Consider v ∈�(F). If v is trivial on K then u(Fv)≤ 2u(k(X)) by Lemma 6.3. If
v is nontrivial on K , then by Proposition 2.2 and Theorem 3.2 κv/k is either an
algebraic extension or algebrorational. In any case we obtain that u(κv)≤ u(`(X))
and thus u(Fv) = 2u(κv) ≤ 2u(`(X)) for a finite extension `/k. Let `′/k be the
separable subextension of `/k such that `/`′ is purely inseparable. Then `(X)/`′(X)
is purely inseparable and of odd degree, so every element of `(X) is a product of
a square in `(X) with an element of `′(X), whereby u(`(X)) ≤ u(`′(X)). This
together shows that

u(F)≤ 2 · sup {u(`(X)) | `/k finite separable field extension}.

On the other hand, given a finite separable field extension `/k, it follows from
Theorem 3.5 that there exists a Z-valuation on F with residue field `(X), which by
Proposition 5.2 implies that u(F)≥ 2u(`(X)). This shows the claimed equality. �

We turn to the study of sums of squares and the Pythagoras number.

Theorem 6.7. Let F/K be an algebraic function field. For any m ≥ 2 we have that
DF (m)= F× ∩ (

⋂
v∈�(F) DFv (m)). Moreover, p(F)= sup{p′(κv) | v ∈�(F)}.

Proof. Applying Theorem 6.1 to the quadratic forms m×〈1〉 ⊥ 〈−a〉 for a ∈ F×

shows for any m ≥ 2 the claimed equality of sets. Note that �(F) contains a
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nonreal valuation v, and we have that p(Fv)= s(κv)+ 1≥ 2. Since p(F)≥ 2 by
Corollary 4.8, we obtain that

p(F)= inf{m ≥ 2 | DF (m)= DF (m+ 1)}

≤ inf{m ≥ 2 | DFv (m)= DFv (m+ 1) for all v ∈�(F)}

= sup{p(Fv) | v ∈�(F)}.

Moreover, by Proposition 4.3 we have p(Fv)= p′(κv) for every v ∈�(F). �

Theorem 6.8. Let F/K be an algebraic function field. There exists an algebraic
function field E/k such that p′(E)≥ p′(F). Moreover, if F/K is algebrorational,
then one may choose E/k to be algebrorational.

Proof. If p(F)=∞, then as F is a finite extension of a rational function field, we
conclude with [Pfister 1995, Chapter 7, Proposition 1.13] that p(K (X))=∞ and
then with Theorem 4.14 we obtain that p(k(X)) =∞, so that for E = k(X) we
have p′(E)=∞= p′(F).

We now suppose that p(F) <∞. By Theorem 6.7 there exists v ∈�(F) such
that p(F)= p′(κv).

Assume first that p′(F) 6= p(F). Then F is nonreal with p(F)= s(F), and by
Corollary 4.6 F is not algebrorational. It follows that κv is nonreal with s(κv)=
p′(κv)− 1= p(F)− 1= s(F)− 1, and as s(κv) and s(F) are both powers of two,
we conclude that s(F) = 2. Then s(k) ≥ 2 and for E = k(X)(

√
−(1+ X2)) we

have that s(E)= 2 and thus p′(E)= 3= p′(F).
Suppose now that p′(F) = p(F) = p′(κv). If v|K is trivial, then we have

p(k(X))≥ p′(κv)= p(F) by Lemma 6.3 and further s(k(X))= s(k)= s(K )≥ s(F),
so we may choose E = k(X) to have p′(E)≥ p′(F). Suppose that v|K is nontrivial.
By Proposition 6.2 then v dominates T , and the residue extension κv/k is either
algebraic or it is an algebraic function field. If κv/k is an algebraic function field,
we may choose E = κv and have that p′(E)≥ p′(F). Moreover, by Theorem 3.2,
if F/K is algebrorational, then so is E/k. If κv/k is algebraic, then as p′(κv) =
p′(F)<∞ there exists a finite extension `/k contained in κv/k with p′(`)≥ p′(κv),
and we may thus choose E = `(X) to have p′(E)≥ p′(`)≥ p′(κv)= p′(F). �

Corollary 6.9. We have p(K (X))= sup {p(`(X)) | `/k finite field extension}.

Proof. The statement is trivial if k is nonreal. Assume that k is real. Given an
arbitrary finite extension `/k, by Theorem 3.5 there is a Z-valuation on K (X) with
residue field `(X), whereby Proposition 4.3 yields that p′(`(X))≤ p′ (K (X)). On
the other hand, by Theorem 6.8, there exists a finite extension `/k with p′ (K (X))≤
p′(`(X)). Since p′(K (X)) = p(K (X)) and p′(k(X)) = p(k(X)) the statement
follows. �

Note that Corollary 6.9 shows the equivalence of Conjectures 4.15 and 4.16.
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Theorem 6.10. Let n ∈N. Assume that p(k(X))≤ 2n and that
∑

E2/DE(2n) is fi-
nite for every algebraic function field E/k. Then p(K (X))≤ 2n and

∑
F2/DF (2n)

is finite for every algebraic function field F/K .

Proof. By Theorem 4.14 we have p(K (X))≤ 2n . Consider an algebraic function
field F/K . By Theorem 6.7 the natural homomorphism∑

F2/DF (2n)−→
∏

v∈�(F)

∑
(Fv)2/DFv (2n)

is injective. To prove that
∑

F2/DF (2n) is finite, it thus suffices to show that the
set

S = {v ∈�(F) | p(Fv) > 2n
}

is finite and that
∑
(Fv)2/DFv (2n) is finite for each v ∈ S. Consider v ∈ �(F).

If v is trivial on K , then p(Fv) ≤ p(k(X)) ≤ 2n by Lemma 6.3. Otherwise
Ov ∩ K = T by Proposition 6.2 and κv is an extension of k. If the extension
κv/k is algebraic, then p(Fv) = p′(κv) ≤ p(k(X)) ≤ 2n . If κv/k is an algebraic
function field which is algebrorational, then using Corollary 6.9 we obtain that
p(Fv) = p′(κv) ≤ p(K (X)) ≤ 2n . This proves that, for any v ∈ S, we have
Ov ∩ K = T and κv/k is an algebraic function field that is not algebrorational.
The finiteness of S thus follows from Corollary 3.9, and for any v ∈ S we have∣∣∑ (Fv)2/DFv (2n)

∣∣≤ 2 ·
∣∣∑ (κv)

2/Dκv (2
n)
∣∣, which is finite by the hypothesis. �

Theorem 6.11. Assume that n∈N is such that p(E)≤2n for any algebraic function
field E/k. Let F/K be an algebraic function field. Then p(F) ≤ 2n

+ 1 and the
set S = {v ∈ �(F) | s(κv) = 2n

} is finite with
∣∣∑ F2/DF (2n)

∣∣ = 2|S|. Moreover,
8S : F×→ ZS induces an isomorphism

∑
F2/DF (2n)→ (Z/2Z)S .

Proof. Consider v ∈ �(F). If v|K is trivial, then p′(κv) ≤ p(k(X)) ≤ 2n by
Lemma 6.3 and the hypothesis. Suppose now that v|K is nontrivial. By Proposition
6.2 then Ov ∩ K = T and the residue field extension κv/k is either algebraic or it
is an algebraic function field. If κv/k is algebraic, then p′(κv)≤ 2n . Suppose that
κv/k is an algebraic function field. Then p(κv)≤ 2n by the hypothesis. Moreover,
if κv/k is algebrorational, then Corollary 4.6 yields that p′(κv)= p(κv)≤ 2n .

Hence, in any case we have that p(κv)≤ 2n , and thus p(Fv)= p′(κv)≤ 2n
+ 1

by Corollary 4.4. Furthermore, we conclude that p(Fv) = 2n
+ 1 if and only if

v ∈ S, and in this case the residue field extension κv/k is an algebraic function field
but not algebrorational.

By Theorem 6.7 we conclude that p(F)≤ p′(F)≤ 2n
+ 1 and furthermore∑

F2
=

(⋂
v∈S

DFv (2n
+1)

)
∩

( ⋂
v∈Sc

DFv (2n)
)
∩ F×,
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where Sc
= �(F) \ S. Moreover, using Corollary 3.9 we obtain that S is fi-

nite. By Corollary 4.11 then 8S : F×→ ZS induces a surjective homomorphism∑
F2/DF (2n)→ (Z/2Z)S . It remains to show that this homomorphism is also

injective. In view of Theorem 6.7 and the above equality for
∑

F2, it suffices
to verify that 8−1

S ((2Z)S) ⊆
⋂
v∈S DFv (2n). Consider x ∈

∑
F2 and v ∈ S with

v(x)∈2Z. Then x= t2 y with t ∈ F× and y∈O×v ∩
(∑

F2
)
, whereby y+mv ∈

∑
κv

2.
Since Fv is complete and p(κv) ≤ 2n , it follows that x = t2 y ∈ DFv (2n). This
shows the claim. �

Recall that the field K is said to be hereditarily quadratically closed if L×= L×2

for every finite field extension L/K . The following result applies in particular to
the situation where R is a real closed field.

Theorem 6.12. Let n ∈N and K = R((t1)) . . . ((tn)) for a field R such that R(
√
−1)

is hereditarily quadratically closed. Let F/K be an algebraic function field. Then
u(F)= 2n+1, 2≤ p(F)≤ 3, and the group

∑
F2/DF (2) is finite.

Proof. We prove this by induction on n. For n = 0 we obtain from [Elman
and Wadsworth 1987, Theorem] that u(F)= 2, and we conclude by [Lam 2005,
Chapter XI, Corollary 6.26] and Corollary 4.8 that p(F) = 2, whereby

∑
F2
=

DF (2) and 2 ≤ p(F) ≤ p′(F) ≤ 3. Assume that n > 0. Applying the induction
hypothesis to all algebraic function fields over k = R((t1)) . . . ((tn−1)), we obtain by
Corollary 6.5 that u(F)= 2n+1, by Corollary 4.8 and Theorem 6.8 that 2≤ p(F)≤
p′(F)≤ 3, and by Theorem 6.10 that

∑
F2/DF (2) is finite. �

For certain real function fields over R((t)), it was asked in [Becher and Van Geel
2009, Question 5.15] whether their Pythagoras number is three or four. We can
now answer this question:

Corollary 6.13. Let h ∈ R[X ] be a nonconstant square-free polynomial with no
roots in R. Let F be the function field of the curve Y 2

= (t X−1)h over R((t)). Then
p(F)= 3.

Proof. We have p(F)≥3 by [Becher and Van Geel 2009, Theorem 5.3 and Corollary
4.2] and p(F)≤ 3 by Theorem 6.12. �
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ON THE EQUIVALENCE PROBLEM FOR TORIC
CONTACT STRUCTURES ON S3-BUNDLES OVER S2

CHARLES P. BOYER AND JUSTIN PATI

We study the contact equivalence problem for toric contact structures on S3-
bundles over S2. That is, given two toric contact structures, one can ask the
question: when are they equivalent as contact structures while inequivalent
as toric contact structures? In general this appears to be a difficult problem.
To show that two toric contact structures with the same first Chern class are
contact inequivalent, we use Morse–Bott contact homology. To find inequiv-
alent toric contact structures that are contact equivalent, we show that the
corresponding 3-tori belong to distinct conjugacy classes in the contacto-
morphism group. We treat a subclass of contact structures which includes
the Sasaki–Einstein contact structures Y p,q studied by physicists with the
anti-de Sitter/conformal field theory conjecture. In this case we give a com-
plete solution to the contact equivalence problem by showing that Y p,q and
Y p′,q′ are inequivalent as contact structures if and only if p 6= p′.
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Introduction

It is well known that contact structures have only discrete invariants; that is, Gray’s
theorem says that the deformation theory is trivial. Apparently, the crudest such
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invariant is the first Chern class of the contact bundle D. Indeed, the mod 2 reduction
of D is a topological invariant, namely the second Stiefel–Whitney class. A much
more subtle and powerful invariant is contact homology, a small part of the more
general symplectic field theory (SFT) of Eliashberg, Givental, and Hofer [Eliashberg
et al. 2000] — which can be used to distinguish contact structures belonging to the
same isomorphism class of oriented 2n-plane bundle.

On the other hand, given two contact structures with the same invariants, when
can one show that they are equivalent? In full generality this appears to be a very
difficult problem. However, if we restrict ourselves to toric contact structures in
dimension five, we can begin to get a handle on things. The problem is of particular
interest when applied to toric contact manifolds since they have been classified
[Lerman 2003a]. Thus, one is interested in when two inequivalent toric contact
structures are equivalent as contact structures. Specializing further we consider all
toric contact structures on S3-bundles over S2. It is well known that such manifolds
are classified by π1(SO(4))= Z2, so there are exactly two such bundles, the trivial
bundle S2

× S3 and one nontrivial bundle X∞ (in the notation of [Barden 1965]).
They are distinguished by their second Stiefel–Whitney class w2 ∈ H 2(M,Z2). The
problem of determining when two such toric contact structures belong to equivalent
contact structures is now somewhat tractable owing to the work of Karshon [2003]
and Lerman [2003b].

The general toric contact structures on S2
× S3 or X∞ depend on four integers

(p1, p2, p3, p4) that satisfy gcd(pi , pj ) = 1 for i = 1, 2 and j = 3, 4. We write
the contact structures as D p, using vector notation p for the quadruple. However,
this general situation appears somewhat intractable, so we consider the special
case when p1 = p2 or p3 = p4, which is more tractable because then a certain
quotient is a Hirzebruch surface with branch divisors. We may as well assume
that p3 = p4. It is often convenient to further divide this case into two subcases,
as follows. We set p = ( j, 2k− j, l, l) for S2

× S3 and p = ( j, 2k− j+1, l, l)
for X∞ with 1 ≤ j ≤ k. We denote either one of these contact structures by
Dp1,p2,l,l,Dj,2k− j,l,l,Dj,2k− j+1,l,l or simply as Dj,k,l , depending on which notation
is more convenient. The first Chern class c1(D) of the contact bundle is a classical
algebraic invariant of the contact structure. For the contact structure D p we will
give an explicit formula for c1(D p) which for Dj,2k− j,l,l and Dj,2k− j+1,l,l equals
2(k − l) and 2(k − l)+ 1, respectively. Using contact homology we show that
even if Dj,k,l and Dj ′,k′,l ′ are not distinguished by the first Chern class, they are
inequivalent if k 6= k ′.

Our main result about inequivalence is this:

Theorem 1. The two toric contact structures Dp1,p2,l,l and Dp′1,p
′

2,l
′,l ′ on S2

× S3

or X∞ are inequivalent contact structures if p′1+ p′2 6= (p1+ p2).
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For our main result about equivalence, we need to specialize a bit further. In this
case we require that gcd(p2− p1, l) be constant. We have

Theorem 2. The two contact structures Dp1,p2,l,l and Dp′1,p
′

2,l,l satisfying p′1+ p′2=
p1+ p2 are equivalent if gcd(l, p2− p1)= gcd(l, p′2− p′1).

Recently there has been a great deal of focus on certain toric contact structures
Y p,q with vanishing first Chern class on S2

× S3 discovered by Gauntlett, Martelli,
Sparks, and Waldram [2004a], and used in their study of the anti-de Sitter/conformal
field theory conjecture [Gauntlett et al. 2004b; 2005] (see Chapter 11 of [Boyer
and Galicki 2008] and [Sparks 2011] and references therein). In our notation the
contact structures Y p,q correspond to Dp−q,p+q,p,p. Remarkably our results give a
complete answer to the contact equivalence problem for these structures.

Theorem 3. Let φ denote the Euler φ-function. The toric contact structures Y p,q

and Y p′,q ′ on S2
× S3 belong to equivalent contact structures if and only if p′ = p,

and for each fixed integer p> 1 there are exactly φ(p) toric contact structures Y p,q

on S2
× S3 that are equivalent as contact structures, denoted by Dp. Moreover, the

contactomorphism group of Dp has at least φ(p) conjugacy classes of maximal
tori of dimension three.

A partial result, namely that Y p′,1 and Y p,1 are inequivalent contact structures if
p′ 6= p, was recently given by Abreu and Macarini [2012], and an outline of the
proof of Theorem 3 was recently given by one of us [Boyer 2011a].

As a bonus we also obtain the following results concerning extremal Sasakian
structures:

Corollary 4. For each such contact structure Dp there are φ(p) compatible Sasaki–
Einstein metrics that are inequivalent as Riemannian metrics.

Corollary 5. For both S2
× S3 and X∞ the moduli space of extremal Sasakian

structures has a countably infinite number of components. Moreover, each com-
ponent has extremal Sasakian metrics of positive Ricci curvature whose isometry
group contains T 3.

This corollary follows already from the results of [Pati 2009; 2010; Boyer 2011b],
but Theorem 1 actually gives a much larger class in the sense that there are countably
many new components. As shown in [Boyer 2011b], many of these components
are themselves non-Hausdorff.

Corollary 6. The moduli space of Sasaki–Einstein metrics on S2
× S3 has a count-

ably infinite number of components. Moreover, each such component has Sasaki–
Einstein metrics whose isometry group contains T 3.

This corollary also follows from [Abreu and Macarini 2012].
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1. Contact structures and cones

It is well known that contact geometry is equivalent to the geometry of certain
symplectic cones. However, for certain contact structures there are several cones
that become important, and as we shall see they are all related.

A warning about notation. In contact topology the contact bundle is usually denoted
by ξ , whereas in Sasakian geometry ξ is almost always a Reeb vector field. To
avoid confusion we eschew the use of ξ completely, and use D for the contact
bundle and R for a Reeb vector field.

Contact structures. Recall that a contact structure1 on a connected oriented mani-
fold M is an equivalence class of 1-forms η satisfying η∧ (dη)n 6= 0 everywhere on
M where two 1-forms η and η′ are equivalent if there exists a nowhere-vanishing
function f such that η′ = f η. We shall also assume that our contact structure
has an orientation, or equivalently, the function f is everywhere positive. More
conveniently the contact structure can be thought of as the oriented 2n-plane bundle
defined by D = ker η, and we denote by C+(D) the set of all contact 1-forms
representing the oriented bundle D.

Recall that an almost-complex structure J on D is compatible with the contact
structure if these two conditions hold for any smooth sections X and Y of D:

dη(J X, JY )= dη(X, Y ), dη(J X, Y ) > 0.

It is easy to see that these conditions are independent of the choice of 1-form η

representing D. The space of almost-complex structures that are compatible with
D is contractible which implies that the Chern classes are invariants of the contact
bundle D. In particular, the first Chern class c1(D) will play an important role for us.
Notice also that the pair (D, J ) defines a strictly pseudoconvex almost-CR structure
on M , and a choice of contact form η gives a choice of Levi form — essentially dη.

Also for every choice of contact 1-form η there exists a unique vector field R,
called the Reeb vector field, that satisfies η(R)=1 and R dη=0. Such vector fields
and the orbits of their flows will play a crucial role for us. We can now extend J to
an endomorphism 8 of TM by defining 8|D= J and 8R= 0. The triple (R, η,8)
canonically defines a Riemannian metric on M by setting g = dη◦ (8⊗1l)+η⊗η,
and the quadruple (R, η,8, g) is known as a contact metric structure on M .

Notice that R defines a one-dimensional foliation FR on M , often called the
characteristic foliation. We say that the foliation FR is quasiregular if there is a
positive integer k such that each point has a foliated coordinate chart (U, x) such
that each leaf of FR passes through U at most k times. If k = 1 then the foliation is

1This is not the most general definition of a contact structure, but it suffices in most situations
(compare [Boyer and Galicki 2008, Chapter 6]), and certainly for us here.
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called regular. We also say that the corresponding contact 1-form η is quasiregular
(regular), and more generally that a contact structure D is quasiregular (regular) if
it has a quasiregular (regular) contact 1-form. A contact 1-form (or characteristic
foliation) that is not quasiregular is called irregular. On a compact manifold any
quasiregular contact form is necessarily K-contact, and then the foliation FR is
equivalent to a locally free circle action (compare [Boyer and Galicki 2008, §7.1])
preserving the quadruple (R, η,8, g). This is the case that we are interested in. The
quotient space Z=M/FR is a compact orbifold with a naturally defined symplectic
structure ω and compatible almost-complex structure Ĵ satisfying π∗ω= dη and J
is the horizontal lift of Ĵ , that is, (ω, Ĵ ) defines an almost-Kähler structure on the
orbifold Z. Moreover, η can be interpreted as a connection 1-form in the principal
S1 orbibundle π : M→ Z with curvature 2-form π∗ω.

In this paper we are interested in the case when both J and Ĵ are integrable.
Then the quadruple (R, η,8, g) is a Sasakian structure on M , and (ω, Ĵ ) defines
a is projective algebraic orbifold structure on Z with an orbifold Kähler metric.
This construction has a converse, that is, beginning with a compact almost-Kähler
orbifold one can construct a K-contact structure on the total space of a certain
S1 orbibundle over Z. This is often referred to as the orbifold Boothby–Wang
construction.2 It lies at the heart of the proof of Theorem 2. Indeed, we shall show
the equivalence of certain contact structures by exhibiting a symplectomorphism
between their corresponding quotient orbifolds.

Orbifolds. As just described, orbifolds will play an important role for us in this
paper. We refer to [Boyer and Galicki 2008, Chapter 4] for the basic definitions and
results. Here we want to emphasize several aspects. First, many cohomology classes
that are integral classes on manifolds are only rational classes on the underlying
topological space of an orbifold, in particular, the orbifold first Chern class of a com-
plex line orbibundle or circle orbibundle is generally a rational class. However, not
all rational classes occur as such. To determine which rational classes can be used to
classify line orbibundles, it is convenient to pass to Haefliger’s classifying space BX
(see [Haefliger 1984] and/or [Boyer and Galicki 2008, Chapter 4]) of an orbifold X

where, as with smooth manifolds, all complex line orbibundles correspond to integral
cohomology classes. Let X be a complex orbifold with underlying topological space
X . Then Haefliger’s orbifold cohomology H∗orb(X,Z) equals H∗(BX,Z), which is
generally different than H∗(X,Z), but satisfies H∗orb(X,Z)⊗Q= H∗(X,Z)⊗Q.
So, for example, we obtain an integral cohomology class p∗corb

1 (X)∈ H 2
orb(X,Z) for

complex line orbibundles from the rational class corb
1 (X)∈ H 2(X,Q). This amounts

to clearing the order of the orbifold in the denominator. Here p : BX→ X is the

2In [Eliashberg et al. 2000] a contact manifold constructed in this way is called a prequantization
space.
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natural projection. We warn the reader that the orbifold cohomology H∗orb(X,Z) is
not the Chen–Ruan cohomology.

The orbifolds that occur in this paper are of a special type. They are all complex
orbifolds whose underlying space is a smooth projective algebraic variety with an
added orbifold structure. In such cases it is convenient to view an orbifold X as
a pair (X,1) where X is a smooth algebraic variety and 1 is a certain Q-divisor,
called a branch divisor [Boyer et al. 2005; Ghigi and Kollár 2007; Boyer and
Galicki 2008, Chapter 4]. We write (X,∅) to denote the algebraic variety X with
the trivial orbifold structure, that is, the charts are just the standard manifold charts.
In this situation, as emphasized in [Ghigi and Kollár 2007], we consider the map
1lX : (X,1)→ (X,∅), which is the identity as a set map, and a Galois cover with
trivial Galois group.

Symplectic cones. Given a contact structure D on M we recall the symplectic
cone C(M)= M ×R+ with its natural symplectic structure (the symplectization of
(M,D)) �= d(r2η), where r is a coordinate on R+. Recall the Liouville vector
field 9 = r∂/∂r on the cone C(M).

Now for each choice of contact form η ∈ C+(D) there is a natural extension of
the almost-complex structure J on D to an almost-complex structure I on the cone
C(M) defined uniquely by

(1) I =8+9⊗ η, I9 =−R,

where 8 is the extension of J to TM defined by 8R = 0. We can also check
that there is a one-to-one correspondence between the compatible almost-complex
structures I on C(M) and elements of C+(D), and that (1) hold, so we recover
the full-contact metric structure for each η ∈ C+(D). Given an almost-complex
manifold, W , with complex structure j , a C∞ map, u, from W into the almost-
complex manifold (N , J ) is called J-holomorphic if du+ J (u)d(u ◦ j)= 0. We
are specifically interested in pseudoholomorphic maps into the cone, that is, maps
which are pseudoholomorphic with respect to the almost-complex structure given
by (1). Such maps from a Riemann surface into C(M) are of particular interest and
are known as pseudoholomorphic curves.

Summarizing, we have these correspondences:

(1) symplectic cone (C(M),�)↔ contact structure (M,D),

(2) almost-Kähler cone (C(M),�, I )↔ contact metric structure (M, R, η,8, g),

(3) almost-Kähler cone (C(M),�, I )with9−iR pseudoholomorphic↔K-contact
structure (M, R, η,8, g), and

(4) Kähler cone (C(M),�, I ) with 9 − i R holomorphic↔ Sasakian structure
(M, R, η,8, g).
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Remark 1.1. In the sequel when we study pseudoholomorphic curves, it is cus-
tomary to parametrize the cone by R so that the singularity, which appears at 0
in the parametrization above, appears at −∞ instead. This amounts to choosing
�= d(erη) for the symplectic form on C(M).

Sasakian structures. The contact structures considered in this paper are all of
Sasaki type, that is, there is a contact form η and compatible metric g such that
S = (R, η,8, g) is a Sasakian structure on M . In this case not only is the cone
C(M) discussed above Kähler, but the geometry transverse to the characteristic
foliation FR is also Kähler. This gives rise to a basic cohomology ring H∗B(FR)

(see [Boyer and Galicki 2008, §7.2]), and a transverse Hodge theory. This gives
basic Chern classes ck(FR) which, if (R, η,8, g) is quasiregular, are the pullbacks
of the orbifold Chern classes corb

k (Z) on the base orbifold Z. In particular we are
interested in the basic first Chern class c1(FR) ∈ H 1,1

B (FR). A Sasakian structure
S = (R, η,8, g) is said to be positive (negative) if its basic first Chern class
c1(FR) can be represented by a positive (negative)-definite (1, 1)-form. It is null if
c1(FR)= 0, and indefinite otherwise. It follows from [Boyer 2011b, Lemma 5.1]
that all Sasakian structures occurring in toric contact structures of Reeb type are
either positive or indefinite. We mention that these types occur in rays, that is,
performing a transverse homothety (see [Boyer and Galicki 2008, p. 228]), preserves
the type.

The Sasaki cone. Let CR(D, J ) denote the group of almost-CR transformations
of (D, J ) on M . If M is compact, it is a Lie group which is compact except when
(D, J ) is the standard CR structure on the sphere S2n+1 by, in various stages, a
theorem of Frances, Lee, and Schoen (see [Boyer 2013]). We let cr(D, J ) denote
the Lie algebra of CR(D, J ). Recall [Boyer et al. 2008] that the subset

cr+(D, J )= {X ∈ cr(D, J ) | η(X) > 0}

is independent of the choice of η ∈ C+(D) and is an open convex cone (without the
cone point) in cr(D, J ). Now the adjoint action of the group CR(D, J ) on its Lie
algebra leaves cr+(D, J ) invariant, and the quotient space

κ(D, J )= cr+(D, J )/CR(D, J )

is known as the (reduced) Sasaki cone of (D, J ). One should think of κ(D, J ) as
the moduli space of K-contact structures associated to the strictly pseudoconvex
almost-CR structure (D, J ). In the case that the almost-CR structure is integrable,
κ(D, J ) is the moduli space of Sasakian structures associated to (D, J ). It is often
convenient to work with the unreduced Sasaki cone given by choosing a maximal
torus T of CR(D, J ). Then the unreduced Sasaki cone is t+(D, J )= t∩cr+(D, J )
where t is the Lie algebra of T .
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Of course, many contact structures do not have a Sasaki cone. In fact, a contact
structure has a nonempty Sasaki cone if and only if it is of K-contact type. It
is important to realize that the Sasaki cone depends on the choice of transverse
almost-complex structure J . Indeed by changing J in a given K-contact structure,
we can have more than one Sasaki cone. These occur in bouquets related to the
conjugacy classes of maximal tori in the contactomorphism Con(M,D) of (M,D)
[Boyer 2011b; 2013].

The moment cone. Now let T be a torus subgroup of Con(M,D), and let t be its
Lie algebra. Consider the annihilator Do of D which is a trivial real line bundle
over M . The orientation on D allows us to write Do

\ {0} =Do
+
∪Do

−
, and we can

identify Do
+
≈ M ×R+ = C(M). Then the contact moment map ϒ :Do

+
→ t∗ is

defined by

(2) 〈ϒ(x, p), τ 〉 = 〈p, τx 〉,

where τ ∈ t and τx denotes the fundamental vector field associated to τ at the point
x . The moment cone C(ϒ) is defined [Lerman 2003a] as the union of the image
set with the cone point, that is,

(3) C(ϒ)= ϒ(Do
+
)∪ {0}.

By averaging over T we can choose a T-invariant contact form η which gives an
equivariant moment map µη : M→ t∗ satisfying

(4) µη = ϒ ◦ η.

Again by averaging we can choose an almost-complex structure J that is T-invariant,
so t is an Abelian subalgebra of cr(D, J ). Furthermore, the contact form η is
K-contact (with respect to J ) if and only if its Reeb vector field Rη lies in the Lie
algebra t. In this case we also say that the torus action is of Reeb type [Boyer and
Galicki 2000a]. It is easy to see that this is equivalent to the existence of an element
τ ∈ t such that η(τ) is strictly positive on M . When the contact structure D is of
Reeb type C(ϒ) is a convex rational polyhedral cone, and we have the following
result of Lerman [2003a].

Lemma 1.2. A T-invariant contact form η is K-contact if and only if the image
µη(M) lies in the intersection of a hyperplane Hη with the moment cone C(ϒ).
Moreover, in the K-contact case the intersection Pη= Hη∩C(ϒ) is a simple convex
polytope which is rational if and only if η is quasiregular.

The hyperplane Hη is called the characteristic hyperplane.



EQUIVALENCE PROBLEM FOR CONTACT STRUCTURES ON S3-BUNDLES OVER S2 285

2. Toric contact structures of Reeb type

Toric contact structures on manifolds of dimension greater than three come in two
types, those where the action of the torus is free, and those where it is not [Banyaga
and Molino 1993; Lerman 2003a]. The latter contain an important special subclass
known as toric contact structures of Reeb type [Boyer and Galicki 2000a]. These are
precisely the toric contact where the torus action is not free and the moment cone
contains no nonzero linear subspace. When the moment cone contains a nontrivial
linear subspace, the toric contact manifold will have infinite fundamental group.
Thus, any toric contact structure on an S3-bundle over S2 must be of Reeb type, and
these correspond precisely to convex polyhedral cones in the dual of the Lie algebra
of the torus that are cones over a polytope [Boyer and Galicki 2000a; Lerman 2003a].

Definition 2.1. A toric contact manifold (M,D,A) is a contact manifold of di-
mension 2n+ 1 together with an effective action of a torus T of dimension n+ 1
that leaves the contact structure invariant, that is, if A : T ×M→ M denotes the
action map then A∗D=D.

By averaging over T we can always find a contact 1-form η representing D such
that A∗η= η. In this case we also have A∗R = R for the Reeb vector field. A toric
contact manifold is said to be of Reeb type if there is a contact form η ∈ C+(D)

whose Reeb vector field lies in the Lie algebra t of T .
Two toric contact manifolds (M,D,A) and (M ′,D′,A′) are said to be equivari-

antly equivalent (or equivalent toric contact manifolds) if there exists a contacto-
morphism between them that conjugates the torus actions A and A′. Toric contact
manifolds were classified in [Lerman 2003a]. In this paper we are interested in
inequivalent toric contact manifolds that are equivalent as contact manifolds. In
this case the tori generated by the actions A and A′ belong to distinct conjugacy
classes in the contactomorphism group Con(M,D). Furthermore, to each such
conjugacy class there is an associated toric CR structure (D, J ) which by [Boyer
2013, Theorem 7.6] is unique up to biholomorphism.

Contact reduction. It is well known (see [Boyer and Galicki 2000a; Lerman
2003a]) that every contact toric structure of Reeb type can be obtained by symmetry
reduction of the standard sphere by a compact Abelian group A, and that this
is equivalent to the symplectic reduction of the standard symplectic structure on
CN
\ {0} by a compact Abelian group which commutes with the action of dilations

of the cone. For this one must choose the zero level set of the toral moment map.
This equivalence can be described by the commutative diagram

(5)
S2N−1
w

//

��

CN
\ {0}oo

��
M2n−1 // C(M2n−1),oo
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with dim A = N − n. See [Boyer and Galicki 2008, p. 293].

Lemma 2.2. Let M be an S3-bundle over S2. Every toric contact structure on M
can be obtained by contact circle reduction of the standard contact structure on S7.

Proof. As stated above, every compact toric contact manifold of Reeb type can be
obtained by symmetry reduction of the standard sphere S2N−1 by a compact Abelian
group A [Boyer and Galicki 2000a; Lerman 2003a]. Now by the homotopy exact
sequence M is simply connected and π2(M) = Z. By a result of Lerman [2004]
π1(M) = π0(A) and π2(M) = π1(A) = Zdim T . Thus, A is a torus of dimension
one, that is, a circle. Since n = 3, N = n+ dim A= 4, so M is obtained by contact
reduction from S7. �

Remark 2.3. It is well known that there are exactly two S3-bundles over S2, dis-
tinguished by their second Stiefel–Whitney class, the trivial bundle S3

× S2 and the
nontrivial bundle denoted by X∞ in the Barden–Smale classification [Barden 1965]
of simply connected 5-manifolds. We will show their relation with the reduction
parameters in Theorem 2.6.

We now describe this reduction. First, the standard T 4 action on C4 is z j 7→ eiθj z j ,
and its moment map ϒ4 : C

4
\ {0} → t∗4 = R4 is given by

(6) ϒ4(z)= (|z1|
2, |z2|

2, |z3|
2, |z4|

2).

Now we consider the circle group T ( p) acting on C4
\ {0} by

(7) (z1, z2, z3, z4) 7→ (ei p1θ z1, ei p2θ z2, e−i p3θ z3, e−i p4θ z4),

where p denotes the quadruple (p1, p2, p3, p4) with pi ∈ Z+ and we assume
gcd(p1, p2, p3, p4)= 1. We have an exact sequence of commutative Lie algebras

(8) 0→ t1( p)→ R4 $̃
→ t3( p)→ 0,

where t1( p) is the Lie algebra of T ( p) generated by the vector field L p = p1 H1+

p2 H2− p3 H3− p4 H4.
Dualizing (8) gives

(9) 0→ t∗3( p) $̃
∗

→ (R4)∗→ t∗1( p)→ 0.

The moment map ϒ1 : C
4
\ {0} → t∗1 = R for this action is given by

(10) ϒ1(z)= p1|z1|
2
+ p2|z2|

2
− p3|z3|

2
− p4|z4|

2.

Now consider the 1-form

(11) η0 =−
i
2

n∑
j=0

(z j dz̄ j − z̄ j dz j )
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on C4
\ {0} together with the vector field

(12) R p =
∑

j

pj Hj

where Hj =−i(z j ∂/∂z j − z̄ j ∂/∂ z̄ j ). Imposing the constraint η0(R p)= 1 gives S7

represented as
∑

j pj |z j |
2
= 1. Then η0 pulls back to a contact form on S7, also

denoted by η0, with Reeb vector field R p = p1 H1 + p2 H2 + p3 H3 + p4 H4. By
a change of coordinates one easily sees that this represents the standard contact
structure on S7.

So the zero level set ϒ−1
1 (0) is diffeomorphic to a cone over S3

× S3, or equiva-
lently restricting to S7, the zero level set of µη0 is S3

× S3, represented by

(13) p1|z1|
2
+ p2|z2|

2
=

1
2 , p3|z3|

2
+ p4|z4|

2
=

1
2 .

The action of T ( p) is free on this zero set if and only if gcd(pi , pj ) = 1 for
i = 1, 2 and j = 3, 4. So assuming these gcd conditions our reduced contact
manifold is the M p = (S3

× S3)/T ( p) whose contact form is the unique 1-form
η p satisfying ι∗η0 = ρ

∗η p, where ι : µ−1
η0
(0)→ S7 and ρ : µ−1

η0
(0)→ M p are the

natural inclusion and projection, respectively. In order to identify M p we consider
the T 2( p) action on µ−1

η0
(0) ≈ S3

× S3 generated by the S1 action (7) together
with the S1 action generated by the Reeb vector field R p. To guarantee a smooth
quotient we have:

Definition 2.4. We say that the quadruple p= (p1, p2, p3, p4) of positive integers
is admissible if gcd(pi , pj ) = 1 for i = 1, 2 and j = 3, 4. We denote the set of
admissible quadruples by A.

Let us describe some obvious equivalences. We can interchange the coordinates
z1↔ z2, likewise z3↔ z4. Thus, without loss of generality we can assume that
p1 ≤ p2 and p3 ≤ p4. We can also interchange the pairs (z1, z2) and (z3, z4). It is
also convenient to set k = gcd(p1, p2) and l = gcd(p3, p4) and define (p1, p2)=

k( p̄1, p̄2) and (p3, p4)= l( p̄3, p̄4) with gcd( p̄1, p̄2)= gcd( p̄3, p̄4)= 1. Note that
p ∈ A implies gcd(k, l) = 1. We will need the “standard” Kähler forms on the
weighted projective spaces for which we take the Bochner-flat Kähler forms of
area 2 described in [Bryant 2001; David and Gauduchon 2006; Gauduchon 2009].
We denote the corresponding Kähler forms by ω p̄1, p̄2 and ω p̄3, p̄4 . We note that these
Kähler forms are just those obtained by quotienting from the weighted Sasakian
3-sphere.

Lemma 2.5. Let p be admissible. Then quotient space of µ−1
η0
(0)≈ S3

× S3 by the
T 2( p) action is the orbifold CP( p̄1, p̄2)×CP( p̄3, p̄4). Moreover, the cohomology
class in H 2

orb(CP( p̄1, p̄2)× CP( p̄3, p̄4),Z) of this orbibundle is the class of the
Kähler form ω p = lω p̄1, p̄2 + kω p̄3, p̄4 .
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Proof. The T 2( p) action on S3
× S3 splits as a weighted S1 action on each factor.

Setting k = gcd(p1, p2) and l = gcd(p3, p4), we see after reparametrizing that the
quotient of the first factor is CP( p̄1, p̄2), and similarly for the second factor.

We have an exact sequence of groups

0→ T ( p)→ T 2( p)→ S1(R p)→ 0,

where S1(R p) is the circle generated by the Reeb vector field R p. Thus, we have
the commutative diagram

(14)

S3
× S3

π1×π2

��

ρ

**
M p.

πtt
CP( p̄1, p̄2)×CP( p̄3, p̄4)

We want to determine the integral orbifold first Chern class (Euler class) of the S1

orbibundle given by π . That is, we look for the class aα+bβ ∈ H 2
orb(CP( p̄1, p̄2)×

CP( p̄3, p̄4),Z) which transcends to the zero class on M p, where α and β are
primitive classes in each factor. (See [Boyer and Galicki 2008, Chapter 4] for a
discussion of these orbifold classes.) For this we take α=[ω p̄1, p̄2], and β=[ω p̄3, p̄4].
Now according to the action (7) the circle wraps around k times on the first factor
and l times with the reverse orientation on the second. So if we take the Kähler
form to be

(15) ω p = lω p̄1, p̄2 + kω p̄3, p̄4,

its class pulls back to zero under π , since π∗[ω p̄1, p̄2] = kγ and π∗[ω p̄3, p̄4] = −lγ ,
where γ is a generator of H2(M p,Z)≈ Z. �

The first Chern class and diffeomorphism types. In this subsection we relate the
diffeomorphism type of our manifolds M to the reduction parameters p. We do this
by giving a formula for the first Chern class of the contact bundle in terms of p.

Theorem 2.6. M p is diffeomorphic to S2
× S3 if p1+ p2− p3− p4 is even, and

diffeomorphic to X∞, the nontrivial S3-bundle over S2, if p1+ p2− p3− p4 is odd.

Proof. We know from the reduction procedure and Lemma 2.2 that M p is simply
connected and π2(M p) = Z. So by the Barden–Smale classification of simply
connected 5-manifolds M p is determined by its second Stiefel–Whitney class
w2(M). Moreover, since TM p splits as D p plus a trivial line bundle, w2(M) is
the mod 2 reduction of c1(D). So the theorem will follow immediately from the
following lemma. �
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Lemma 2.7. The first Chern class of the contact bundle D p = ker η p on M p is
given by

c1(D p)= (p1+ p2− p3− p4)γ,

where γ is the positive generator of H 2(M p,Z)≈ Z.

Proof. We begin by computing the orbifold first Chern class of

CP( p̄1, p̄2)×CP( p̄3, p̄4).

From [Boyer and Galicki 2008, Chapter 4] we see that p∗corb
1 is given by

(16) ( p̄1+ p̄2)[ω p̄1, p̄2]+( p̄3+ p̄4)[ω p̄3, p̄4] ∈ H 2
orb(CP( p̄1, p̄2)×CP( p̄3, p̄4),Z),

which pulls back to the basic first Chern class c1(FR p) in the basic cohomology
group H 2

B(FR p) under the natural projection π : M p→ CP( p̄1, p̄2)×CP( p̄3, p̄4)

by the circle action of R p. Now we have an exact sequence

0

��

H 2(M p,Z)

��

0 // H 0
B(FR p)

δ
// H 2

B(FR p)
ι∗
// H 2(M p,R) // · · ·

(see [Boyer and Galicki 2008, p. 245]), with ι∗c1(FR p)=c1(D p)R and δa=a[dη p]B .
So c1(D p)R is c1(FR p)mod [dη p]B , where η p is the contact form on M p. Now
since π∗ω p = dη p, we know from the proof of Lemma 2.5 that π∗[ω p̄1, p̄2] = kγ
and π∗[ω p̄3, p̄4] = −lγ holds over Z. Thus, since π1(M p)= {1l} we have over Z

c1(D p)= ( p̄1+ p̄2)π
∗
[ω p̄1, p̄2] + ( p̄3+ p̄4)π

∗
[ω p̄3, p̄4]

= k( p̄1+ p̄2)γ − l( p̄3+ p̄4)γ = (p1+ p2− p3− p4)γ. �

It is easy to see that the argument in [Lerman 2003b] for S2
×S3 can be generalized

to the nontrivial bundle X∞ to give the following.

Proposition 2.8. As a complex vector bundle, D p is determined uniquely by
p1+ p2− p3− p4.

3. Contact homology

Here we apply pseudoholomorphic curve theory as briefly described on page 282 to
the Morse–Bott formulation of contact homology. The study of pseudoholomorphic
curves in symplectic manifolds was initiated in the seminal paper by Gromov [1985].
Since then, these objects have become a basic tool in understanding symplectic
geometry and topology, perhaps most notably in the work of Floer, which is the main
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motivation behind symplectic field theory (SFT) and contact homology. The latter
is a small part of the larger SFT of Eliashberg, Givental, and Hofer [Eliashberg et al.
2000]. The original idea, inspired by Floer homology, was to create a homology
theory from the chain complex generated by closed orbits of the Reeb vector
field.

Given a contact manifold (M,D), we choose a contact form η for D, and an
almost-complex structure J on the symplectization of M which extends the almost-
complex structure on D such that the Reeb vector field is the purely imaginary
direction. For the moment, assume that periodic orbits of the Reeb vector field
are isolated. This is a generic property of contact forms, and one can always find
such a Reeb field for any contact structure. We consider the set of all closed Reeb
orbits. We consider two orbits as different if they have different periods, even if they
geometrically trace out the same set. Orbits with period one are often called simple
orbits. We will consider the chain complex whose generators are periodic orbits of
the Reeb vector field. The grading is given by the Robbin–Salamon index, which
in the case of isolated orbits is the same as the well-known Conley–Zehnder index
[Robbin and Salamon 1993]. The differential is given by an algebraic count of rigid
J-holomorphic curves from a twice-punctured two-sphere into the symplectization
which are asymptotically cylindrical over closed Reeb orbits, that is, they are curves
for which there exist polar coordinates about each puncture, such that for sufficiently
small radius the curve behaves like a cylinder over a closed Reeb orbit. If we look at
such a curve in standard coordinates in the symplectization, we call punctures which
correspond to limits as the real coordinate approaches positive infinity positive
punctures; the others are called negative punctures [Hofer et al. 1996; Eliashberg
et al. 2000].

Both the Robbin–Salamon indices arise from the Maslov index for a path of
symplectic matrices. We compute the index of a closed Reeb orbit as follows: first,
let us assume that H1(M,Z)= 0 and consider a closed Reeb orbit γ together with
an embedded Riemann surface 6 ⊂ M such that ∂6 = γ . To find the relevant
path of symplectic matrices with which to compute the Maslov index, one then
pulls back the contact bundle D to 6, which then admits a trivialization, since it
is a symplectic vector bundle over a Riemann surface with boundary. Then one
considers the linearized Reeb flow about a Reeb orbit. This linearized flow gives the
desired path of symplectic matrices. It is important to understand that in a contact
manifold, these indices depend on the choice of capping disk used to trivialize D. In
particular, if the closed Reeb orbit γ is contractible (which is always the case in this
article), one trivializes D by choosing a capping disk6 of γ . If we consider another
capping surface of the form 6′ = 6#SA where SA represents a two-dimensional
homology class A in M , then the Conley–Zehnder (and Robbin–Salamon) index of
the orbit computed with 6′ will differ from that computed using 6 by twice the



EQUIVALENCE PROBLEM FOR CONTACT STRUCTURES ON S3-BUNDLES OVER S2 291

first Chern class of D evaluated on A, namely

(17) µCZ(γ ;6γ #SA)= µCZ(γ ;6γ )+ 2〈c1(D), A〉.

Thus, the grading depends on the choice of capping surface.
In order to address this dependence one considers the coefficients for contact

homology to be elements in a Novikov ring as follows. Give H2(M,Z) a grading
| · | by setting |A| = −2〈c1(D), A〉 for any A ∈ H2(M,Z). Let R be a submodule
of H2(M,Z) with zero grading. Then the Novikov ring is the graded group ring
Q[H2(M,Z)/R] whose elements are formal power series of the form

∑
i qi eAi ,

where qi ∈ Q and Ai ∈ H2(M,Z)/R. Here as usual the notation eA is used to
encode the multiplicative structure of a commutative ring with unit (see [McDuff
and Salamon 2004, Chapter 11]).

There are some Reeb orbits for which the moduli space of holomorphic curves
in C(M) cannot be given a coherent orientation [Bourgeois and Mohnke 2004] —
these “bad” Reeb orbits must be discarded. Let γ be a Reeb orbit with minimal
period T , and γm be a Reeb orbit that covers γ with multiplicity m, so the period
of γm is mT . The bad orbits are those for which the parity of the even multiples
|γ2m | disagrees with the parity for the odd multiples |γ2m−1|. A Reeb orbit that is
not bad is said to be good.

Now that we have a grading, under favorable circumstances we can define a
graded chain complex C∗ generated by certain closed Reeb orbits with coefficients
in the ring Q[H2(M,Z)/R].

Definition 3.1. We define C∗ to be the graded chain complex freely generated by
all good closed Reeb orbits with coefficients in the Novikov ring Q[H2(M,Z)/R].
By convention, we shift all degrees by n− 2, where 2n+ 1 is the dimension of the
contact manifold. The contact homology, denoted HC(D), is the homology of the
differential graded algebra C∗ with differential given by (18).

The differential ∂ of this chain complex is given by an algebraic count of
pseudoholomorphic curves in the symplectization C(M) of M which come in
one-dimensional families. Explicitly, for γ a good closed orbit of the Reeb vector
field, M simply connected, and A a two-dimensional homology class, the differential
is given by the formula

(18) ∂γ =
∑

A∈H2(M,Z)

∑
γ ′

1
κγ

nγ,γ ′,AeAγ ′,

where A denotes the image in H2(M,Z)/R of the homology class A, κγ is the
multiplicity of the Reeb orbit γ , and nγ,γ ′ is the algebraic count of elements in the
moduli space MA(γ, γ ′) of J-holomorphic curves into the symplectization of M
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which are asymptotically cylindrical over the closed Reeb orbits γ , γ ′ representing
the homology class A.

Note that nγ,γ ′,A is nonzero only if the dimension of this moduli space is 1.
This indeed gives a reasonable homology. The proofs that ∂2

= 0 and that the
homology does not depend on choices of a contact form or an almost-complex
structure come from analysis of the boundary of moduli spaces of rigid curves
and are discussed in [Eliashberg et al. 2000]. These results, in general, depend
on abstract transversality results for the ∂̄J operator. We will make the standing
assumption that such transversality can be achieved, either by abstract perturbations
or by the amenable geometry of the situation at hand. The signs which appear in the
algebraic count depend on coherent orientations of the moduli space are explained
in [Bourgeois and Mohnke 2004].

Remark 3.2. Due to the lack of compactness of moduli spaces of pseudoholomor-
phic cylinders, ∂2 is not always zero. If it is, then the homology is often called
cylindrical contact homology. Indeed, the boundary of the compactification of this
space can, in general, contain curves with more than two punctures. However, we
can instead consider the supercommutative algebra generated by periodic orbits.
This means that instead of counting only cylinders, we now count curves with an
arbitrary number of negative punctures. In this paper, it suffices to count cylinders.

Morse–Bott contact homology. In the above constructions we needed to make
an assumption that the closed Reeb orbits are isolated in order to get a good
index, that is, we have to assume that the Poincaré return map constructed about
any periodic Reeb orbit has no eigenvalue equal to 1. This condition is generic;
however, many natural contact forms, especially those which arise from circle
orbibundles, are as far from generic as possible. In order to calculate contact
homology for such manifolds one must make some sort of perturbation. It is only
in very nice situations that this is not extremely difficult. The Morse–Bott version
[Eliashberg et al. 2000; Bourgeois 2002; 2003] allows us to use the symmetries
of nice contact structures and symmetric almost-complex structures, by exploiting
rather than excluding nonisolated orbits. This is accomplished by considering Morse
theory on the quotient space, and relating critical points and gradient trajectories
of a Morse function to pseudoholomorphic curves in the symplectization of the
contact manifold. Since toric contact manifolds of Reeb type are always total spaces
of circle orbibundles admitting Hamiltonian actions of tori and they admit nice
Morse functions, the Morse–Bott formalism works quite well for us. We follow
a combination of [Eliashberg et al. 2000] and [Bourgeois 2002] in what follows,
applying the Morse–Bott setup to our special case.

Let (M,D) be a contact manifold with contact form η, and consider the action
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functional A : C∞(S1
;M)→ R, defined by

(19) A(γ )=

∫
γ

η.

The critical points of A are the closed orbits of the Reeb vector field of η. The
action spectrum is defined to be

σ(η)= {r ∈ R | r = A(γ )}

for γ a periodic orbit of the Reeb vector field. Given T ∈ σ(η), define

NT = {p ∈ M | φT
p = p}, ST = NT /S1,

where S1 acts on M via the Reeb flow. Then ST is called the orbit space for
period T .

When M is the total space of an S1-orbibundle the orbit spaces are precisely the
orbifold strata. This is a special case of a contact form being of Morse–Bott type:

Definition 3.3. A contact form, η is said to be of Morse–Bott type if

(i) The action spectrum σ(η) is discrete.

(ii) The sets NT are closed submanifolds of M, such that the rank of dη|NT is
locally constant and

Tp(NT )= ker(dφT − I ).

Remark 3.4. These conditions are the Morse–Bott analogues for the functional on
the loop space of M .

Rather than set up Morse–Bott contact homology in full generality, let us do
this for the special case of an S1-orbibundle. In this case the contact form is of
Morse–Bott type [Bourgeois 2002]. Let T1, . . . , Tm be all possible simple periods
for closed Reeb orbits. Let φt

x denote the flow of the Reeb vector field. Let

NTj = {x ∈ M | φTj
x = x}, STj = NTj /S1.

For each j , we choose a Morse function f j on STj and, using appropriate bump
functions, build a Morse function f on all of M which descends under the quotient
by the Reeb action to each orbit space. Now, we perturb η by

(20) η f = (1+ ε f )η.

For almost all ε, the closed Reeb orbits of η f are isolated, and, for bounded action,
they correspond to critical points of f . Note that the Reeb orbits of η within each
stratum all have the same Robbin–Salamon index. The following formula [Cieliebak
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et al. 1996; Bourgeois 2002] computes the Conley–Zehnder index of η f in terms
of the Robbin–Salamon index of any Reeb orbit in a particular orbit space:

(21) |γ | = µCZ(γ )= µRS(γT )−
1
2 dim(STj )+ indp( f j ).

We now have a contact form with isolated closed Reeb orbits. Since these orbits
correspond to critical points of a Morse function, we may think of the generators of
contact homology either as isolated orbits, or as critical points of a Morse function
on each orbit space. This gives the generators and their gradings for the chain
complex (or differential graded algebra) of Morse–Bott contact homology when
we add, by convention, the degree shift n− 2, which is 0 in the five-dimensional
case. We now describe the differential ∂; however, we shall be very brief, as the
differential vanishes identically in our case, as proven in Theorem 3.9.

Consider orbit spaces ST1 and ST2 , for T1, T2 ∈ σ(η). Now define the moduli
space MJ (ST1, ST2) to be the space of pseudoholomorphic curves (with respect to
J ) into C(M) with one positive and one negative puncture which are asymptotically
cylindrical over a closed Reeb orbit in ST1 near the positive puncture, and to ST2

near the negative puncture. We require, moreover, that these curves have finite,
nonzero area.

In the case at hand the differential splits into two pieces:

(22) ∂p = ∂MSW p+ dCHS,

where ∂MSW is the differential on the Morse–Smale–Witten complex determined
by our choice of Morse function on the orbit space S containing p, and roughly
speaking dCHS gives a count of rigid pseudoholomorphic curves in MJ (S, S′). Here
S′ is some orbit space with action less than that of S. The count is over all S′ such
that the dimension of MJ (S, S′) is equal to 1. We refer to [Bourgeois 2002; Pati
2009] for more details. The following proposition shows the vanishing of dCH for
orbibundles.

Proposition 3.5. When M is the total space of an orbibundle of a symplectic
orbifold, then there are no rigid holomorphic curves into the symplectization of M.

Proof. There is an effective R-action, as well as that of a circle on the moduli spaces;
hence, these spaces have dimension at least two. So they can never be rigid. �

Remark 3.6 (on transversality). Though in some special cases we can use the nice
properties of toric manifolds to determine regularity of the moduli spaces of curves
defined above, the proof of invariance of contact homology as well as the proof
that the Morse-Bott complex actually computes the homology of the perturbed
complex requires the use of abstract perturbations of the ∂̄J operator. We believe
that the results of Hofer, Wysocki, and Zehnder’s polyfold theory will provide a
good framework for this problem; however, we make it a standing assumption that
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there exists an abstract perturbation of the ∂̄J operator which makes its linearization
surjective. Proposition 3.5 requires no transversality result for the ∂̄J operator since
we can get at least these two dimensions without any appeal to abstract Fredholm
theory. This does not make the transversality problem go away, however, since it is
still needed in proofs of invariance, and independence of choices. Moreover, when
one wishes to analyze higher-dimensional moduli spaces by adding marked points,
one needs the relevant dimension formulae to hold, although this can be handled
in many cases using the fact that J can be chosen to be integrable in these toric
situations. We should also mention that, even without the transversality assumption
mentioned here, we can obtain a weaker version of invariance, as we shall see later.

Contact homology for toric contact 5-manifolds. Let us consider the differential
graded algebra discussed above. We start with the set of critical points of a Morse
function as picked earlier. Since we are working with toric manifolds of Reeb type
in dimension 5 we actually know that the fixed points of the T 3-action are isolated,
hence the norm squared of the symplectic moment map on Z is a perfect Morse
function.

We are interested in the orbit structure of the T 3( p) action on M p.

Lemma 3.7. Consider the toric contact structure D p on M p, an S3-bundle over
S2. There are exactly four one-dimensional simple closed orbits under the action of
T 3( p). Moreover, these four orbits are Reeb orbits for all Reeb fields in the Sasaki
cone t+3 ( p), as well as for a Reeb vector field in con(M p, η p) that is arbitrarily
close to one in the Sasaki cone. Moreover, for a generic such Reeb vector field these
are the only closed orbits.

Proof. We have an exact sequence of groups,

{0} → T ( p)→ T 4
→ T 3( p)→ {0},

and we consider the action of T 3( p) on the level set given by (13) thought of as
T 4/T ( p). If z1 6= 0, then we can choose θ = θ1 of the standard T 4 angles. The
remaining T 3 orbit will be one-dimensional only if z2 = 0 and one of z3 or z4 is
zero. This gives two closed S1-orbits. On the other hand if z1 = 0, then we must
have z2 6= 0, so we choose θ = θ2, and as above this gives exactly the two close
orbits with either z3 or z4 vanishing. Clearly, any Reeb vector field in t+3 leaves
these Reeb orbits invariant, and since every Reeb vector field in the Sasaki cone is
arbitrarily close to a quasiregular one, the last statement follows from a result of
Bourgeois [2002]. �

Let t2( p) denote the Lie algebra of T 2( p). It is generated by the two vector
fields L p and R p. We have an exact sequence of Lie algebras

(23) {0} → t2( p)→ t4
ρ
→ g2( p)→ {0},
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where g2( p) is generated by the vector fields H 1 = ρ(H1) and H 3 = ρ(H3). We
have a toric symplectic orbifold

(24) (CP( p̄1, p̄2)×CP( p̄3, p̄4), ω p),

where the symplectic form is given by (15), and the torus G2( p) is generated by
the Lie algebra g2( p). The moment map

µ2 : CP( p̄1, p̄2)×CP( p̄3, p̄4)→ g2( p)∗

is given by µ2(z)= (|z1|
2, |z3|

2).

Proposition 3.8. The function f = |µ2|
2 is a perfect Morse function on the quotient

M p/S1
≈ CP( p̄1, p̄2)× CP( p̄3, p̄4) whose critical points are precisely the four

Reeb orbits of Lemma 3.7.

Proof. Since the critical points are isolated f is a Morse function, and Morse–Bott
functions that are the norm squared of a moment map are perfect [Lerman and
Tolman 1997]. It is easy to check directly (see also [Kirwan 1984, Lemma 3.1]),
using the relations

H1 ≡ aH2 mod g2( p), H3 ≡ bH4 mod g2( p),

for some a, b ∈ R, that f has precisely the four critical points

[1, 0]× [1, 0], [1, 0]× [0, 1], [0, 1]× [1, 0], [0, 1]× [0, 1],

and these correspond to the four Reeb orbits of Lemma 3.7. �

Theorem 3.9. In the case of circle reductions in dimension five, which have four
Reeb orbits fixed by the T 3-action, the differential in Morse–Bott contact homology
vanishes. Moreover, the elements of contact homology HC(D) are given by the
good Reeb orbits including multiplicity. More precisely, it is given by the homology
groups of each stratum of its orbit space. The degree of each generator is given
by (21).

Proof. By Proposition 3.5 there are no rigid holomorphic curves. So dCH vanishes.
But also by Proposition 3.8 |µ|22 is a perfect S1-invariant Morse function, and the
Morse–Smale–Witten differential ∂MSW vanishes as well. Thus, the full differential
(22) vanishes. It then follows that the elements of HC(D) are simply the chains
of the complex C∗, that is, good closed Reeb orbits including multiplicity. For
each period of the Reeb flow we get a different Reeb orbit, corresponding to some
critical point of f . Since f is perfect, these critical points correspond not just to
chains but to actual homology classes. The statement about the grading follows
from (21). �
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The next proposition, though not a general proof of invariance of contact homol-
ogy, does tell us that we do get an invariant in the world of S1-orbibundles, whose
bases admit a perfect Morse function.

Proposition 3.10. Let M be a quasiregular contact manifold, such that its quotient
by the Reeb vector field is a symplectic orbifold which admits a perfect Morse
function. Then if M ′ is contactomorphic to M , is quasiregular, and the quotient
by its Reeb vector field is also a symplectic orbifold which admits a perfect Morse
function, then the two contact homology algebras are isomorphic.

Proof. The conditions on M , M ′, and their bases ensure that all parts of the
differential vanish. Therefore we may construct a map between these two algebras
as in [Eliashberg et al. 2000] counting rigid curves in a symplectic cobordism
between M and M ′. The main difficulty is in seeing that this map is a chain map.
However, since the differentials vanish on both ends, the map is trivially a chain
map, hence the two contact homology algebras are isomorphic. �

The next proposition gives an nonequivalence statement about toric contact
manifolds of type (p1, p2, l, l).

Proposition 3.11. Let (p1, p2, l, l) and (p′1, p′2, l
′, l ′) be two admissible 4-tuples.

If p1+ p2 6= p′1+ p′2, then the corresponding contact manifolds cannot be contacto-
morphic.

The proof of Proposition 3.11 is essentially an index calculation in light of
Theorem 3.9. Let us first collect some information about the contact structures in
question in convenient coordinates. To compute the grading on contact homology
it is useful to consider a special case of the join construction [Boyer et al. 2007].
Since we can view our toric sphere bundles as quotients of S3

× S3 we have a
convenient way to compute indices. This is of particular interest for strata of positive
codimension, since the orbits in the codimension-zero stratum behave exactly as
in the regular case. To define the join construction we start with two quasiregular
contact manifolds, M1 and M2, with contact forms η1 and η2, and bases Z1 and Z2

with symplectic forms ω1 and ω2. Then the product M1×M2 is a T 2-bundle over
Z1×Z2. We take the quotient of M1×M2 by the action of the circle obtained by
gluing together Reeb orbits on each piece, that is,

(25) (z, w) 7→ (eik1θ z, e−ik2θw).

The admissibility conditions of Definition 2.4 are precisely the conditions that
guarantee that the quotient by this action is smooth in which case it yields a new
quasiregular contact manifold with base Z1 × Z2, contact form η1 + η2, contact
distribution given by D1 ⊕D2, and Reeb vector field Rη1 + Rη2 . This contact
structure is exactly the one coming from the principal circle bundle obtained by
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requiring that its curvature form is the pullback of the sum of the two symplectic
forms on each base space. We obtain new Reeb orbits as equivalence classes of
pairs of Reeb orbits, one from each of M1 and M2. When k1 and k2 are different
from 1, we have a similar contact manifold, except the curvature is given by pulling
back k1 and k2 multiples of the symplectic forms, namely dα=π∗(k2ω1+k1ω2). In
this case Reeb orbits in the new total space will correspond to pairs, one wrapping
k1 and the other wrapping k2 times (in addition to the multiplicity of the orbit
as a Reeb orbit in one of the three-spheres). In the following, M1 and M2 are
both standard three-spheres. Index calculations on three-dimensional spheres are
standard; however, we present the details in Lemma 3.12 for completeness and also
to illustrate the inherent role of the orbifold structure.

Let us consider the contact structure on the quotient of the product of two
standard weighted three-spheres with weights p1, p2, p3, and p4. As before we take
k1 = gcd(p1, p2), k2 = gcd(p3, p4), and p̄i = pi/k1 for i = 1, 2, and p̄j = pj/k2

for j = 3, 4. We view this as a product of hypersurfaces in C4 with coordinates
(z1, z2, z3, z4), z j = x j + iyj , subject to the action (25). This manifold is the total
space of an orbibundle over an orbifold S2

× S2 with orbifold singularities at the
products of the north and south poles, and for the products of the north and south
poles with copies of S2. These singularities correspond to setting one or two of the
z j to 0. The Reeb vector field is given by

p1 y1∂x1 − x1 p1∂y1 + p2 y2∂x2 − p2x2∂y4 + p3 y3∂x3 − x3 p3∂y3 + p4 y4∂x4 − p4x4∂y4

and the contact distribution is given by the span of the vectors

−
1
p1

x2∂x1 +
1
p1

y2∂y1 +
1
p2

x1∂x2 −
1
p2

y1∂y2,(26)

−
1
p1

y2∂x1 −
1
p1

x2∂y1 +
1
p2

y1∂x2 +
1
p2

x1∂y2,(27)

−
1
p3

x4∂x3 +
1
p3

y4∂y3 +
1
p4

x3∂x4 −
1
p4

y3∂y4,(28)

−
1
p3

y4∂x3 −
1
p3

x4∂y3 +
1
p4

y3∂x4 +
1
p4

x3∂y4 .(29)

In the following we restrict ourselves to the case where p3 = p4 = k2. To get our
hands on an orbit in the quotient, we must, for each time around the fiber, pick
an appropriate circle out of the fiber of the torus bundle. It is easy to see that the
equivalence relation gives us a circle obtained by wrapping around the first circle
k2 times and around the second circle k1 times. Let us now parametrize the fiber.
We may choose a coordinate for a Reeb orbit by

γ (t)= (0, cos(k2 p̄2t)+ i sin(k2 p̄2t), 0, cos(p2t)+ i sin(p2t)).
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Now when t = 1/ p̄2 we have wrapped around the first orbit k2-times and the second
k1 times. Here the action is 1/p2. This is the smallest action since we have assumed
that p2 > p1. What about when the first orbit wraps around more than once in S3?
Let us see how to look at such an orbit. This corresponds to taking

(30) γ (t)=
(

cos(k2 p̄1t)+ i sin(k2 p̄1t), 0, 0, cos
(

p1

m
t
)
+ i sin

(
p1

m
t
))
,

where m is the multiplicity. Now when t = m/p1, we wrap around the first orbit
mk2 times and the second k1 times. As long as m <min{k2, p1} we do not enter a
higher-dimensional orbit space. Similar considerations remain true for z1 = 0. Let
us compute the Robbin–Salamon index of the orbits (30).

Lemma 3.12. The Robbin–Salamon indices of the orbits in (30) of multiplicity m
are given by

(31) 2k1m+ 2
⌊

mp2/p1
⌋
− 1, 2k1m+ 2

⌊
mp1/p2

⌋
− 1.

Proof. To do this we must choose a disk D with boundary γ . Such a disk can be
written explicitly. We begin by producing a disk in S3

× S3:

(32) (cos(θ), sin(θ)e2π ik2 p̄2t , cos(θ), sin(θ)e2π i p2t/m).

The above disk clearly has boundary γ (the boundary occurs when θ = π/2) and
we have θ ∈ [0, π/2]. To pull back the contact distribution we plug the coordinates
into (26)–(29):

−
1
p1

sin(θ) cos(2π ik2 p̄2t)∂x1+
1
p1

sin(θ) sin(2π ik2 p̄2t)∂y1+
1
p2

cos(θ)∂x2,(33)

−
1
p1

sin(θ) sin(2π ik2 p̄2t)∂x1−
1
p1

sin(θ) cos(2π ik2 p̄2t)∂y1+
1
p2

cos(θ)∂y2,(34)

−
1
p3

sin(θ) cos
(

2π i
p̄2t
m

)
∂x3+

1
p3

sin(θ) sin
(

2π i
p̄2t
m

)
∂y3+

1
p4

cos(θ)∂x4,(35)

−
1
p3

sin(θ) sin
(

2π i
p̄2t
m

)
∂x3−

1
p3

sin(θ) cos
(

2π i
p̄2t
m

)
∂y3+

1
p4

cos(θ)∂y4 .(36)

When θ = π/2, these four vectors become

1
p1
(− cos(2π ik2 p̄2t)∂x1 + sin(2π ik2 p̄2t)∂y1),

1
p1
(− sin(2π ik2 p̄2t)∂x1 − cos(2π ik2 p̄2t)∂y1),

1
p3

(
− cos

(
2π i

p2t
m

)
∂x3 + sin

(
2π i

p2t
m

)
∂y3

)
,

1
p3

(
− sin

(
2π i

p2t
m

)
∂x3 − cos

(
2π i

p2t
m

)
∂y3

)
.
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Disks for the other orbits mapping into branch divisors have a similar expression.
The key point is that we only see vectors corresponding to the coordinates which
have been set to zero. Now we can easily compute the Robbin–Salamon index of
these orbits. Recall that given a path of symplectic matrices, 8(t), a number t is
called a crossing if 8(t) has an eigenvalue equal to 1. To compute the Robbin–
Salamon index of a path of symplectic matrices on [0, T ] one computes

1
2 signature(0(0))+

∑
crossings t

t 6=0,T

signature(0(t))+ 1
2 signature(0(T )).

Here the crossing form is
ø(8̇(t)v, v)

restricted to the subspace on which 8 has eigenvalues equal to 1. In this case
at each crossing the crossing form is just ø(v, J0v), so this gives signature 2 on
each two-dimensional subspace consisting of eigenvectors with eigenvalue 1. At
crossings the vectors above spanning D above become −(1/p1)∂x1, −(1/p1)∂y1,
−(1/ l)∂x3, and −(1/ l)∂y3.

Recall that the linearized Reeb flow is of the form
e2π i p1t 0 0 0

0 e2π i p2t 0 0
0 0 e2π ik2t 0
0 0 0 e2π ik2t

 ,
and each complex block of the matrix looks like[

cos(2πpj t) − sin(2πpj t)
sin(2πpj t) cos(2πpj t)

]
.

The time derivative of each block looks like[
−2πpj sin(2πpj t) −2πpj cos(2πpj t)
2πpj cos(2πpj t) −2πpj sin(2πpj t)

]
.

At crossings these blocks become[
0 −2πpj

2πpj 0

]
.

The crossings which have the first two vectors as 1-eigenvectors occur at integers
multiples of 1/(k2 p1), and those for the second two occur at integer multiples of
k1m/k2. As we saw above the flow splits into two parts, that corresponding to the
first two coordinates and that corresponding to the second two. This means the
second part, for multiplicity m, is 2mk1. Now we add the normal part. For orbits



EQUIVALENCE PROBLEM FOR CONTACT STRUCTURES ON S3-BUNDLES OVER S2 301

of multiplicity m we get contribution 1+ 2bm/p1c. Therefore for multiplicity m
these orbits have Robbin–Salamon index

2k1m+ 2
⌊

mp2/p1
⌋
− 1,

and similarly, setting p2 to zero, we obtain

2k1m+ 2
⌊

mp1/p2
⌋
− 1. �

We shall label these orbits γm,i . With this information we can now prove
Proposition 3.11.

Proof of Proposition 3.11. The goal here is to distinguish contact structures. We
will show that given two 4-tuples as in Proposition 3.11 that the contact homology
algebras cannot be isomorphic. We know that (p2− 1)/p2 > (p1− 1)/p1; hence
the index of γ is 2(p1− 1). This tells us that we have p1− 1+ p2− 1 orbits of
index less than 2(p2− 1).

Theorem 3.9 gives us a complete picture of the contact homology of the manifolds
given by admissible 4-tuples up to knowing the Robbin–Salamon indices. Let us
spell this out in the case (p1, p2, k2, k2). In this case there are essentially two
different kinds of orbit spaces. We have two-dimensional orbit spaces which
project to two-spheres in the base, and we have copies of the whole manifold. The
two-dimensional orbits spaces consist of orbits having action k2m/pi for pi - m.
The four-dimensional orbit spaces consist of orbits of integer action. For each
two-dimensional orbit space, Sk2m/pi , we obtain exactly two orbits contributing to
contact homology with grading difference two. We denote these orbits γ̂m,i , and
γ̌mi corresponding to the maximum and minimum of the Morse function on Sk2m/pi .
For such orbits with action less than 1 we have grading

(37)
|γ̂m,i | = µRS(γm,i )+ 1

|γ̌m,i | = µRS(γm,i )− 1.

For each four-dimensional orbit space we have four generators for contact homology,
again corresponding to critical points. We label these

γ̂m, γ̌m, γ
s1
m , γ

s2
m

for the maximum, minimum, and two saddle points, respectively. With a choice of
disk D projecting to the spherical homology class 6 ∈ H2(Z,Q) we have

(38)
|γ̂m | = µRS(γm, D)+ 2, |γ̌m | = µRS(γm, D)− 2,

|γ s1
m | = µRS(γm, D), |γ s2

m | = µRS(γm, D).

In (38) µRS(γm, D) = 2k2m〈corb
1 (Z), (6)〉. Moreover, for two-dimensional orbit

spaces with action greater than 1, by the catenation property of the Robbin–Salamon
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index, we may decompose the orbit into a part with biggest possible integer action
and a part with action smaller than 1. We then add the indices of these two orbits to
get the Robbin–Salamon index. Note that for these two-dimensional orbit spaces,
the tangential part of the flow is a loop, but the normal does not complete a loop;
this explains the appearance of the summand 1 in the above formulae. Note that,
here, the Robbin–Salamon index is nondecreasing with respect to action. Thus we
may count the number of orbits with index less than 1. This will give a count of
generators of contact homology of index less than 2(p1+ p2+2)−2. From the above
discussion there are p1− 1+ p2− 1 such orbits coming from lower-dimensional
orbit spaces, and then one coming from ǧ1. This gives exactly p1+ p2−1 orbits in
degree less than 2(p1+ p2+ 1). This proves Proposition 3.11. �

Proposition 3.11 applies directly to the Y p,q manifolds. In this case the invariant
is 2p− 1; note that it does not depend on q .

As an application let us use the preceding discussion to distinguish contact
structures on the toric contact 5-manifolds corresponding to the 4-tuple (1, 2k− 1,
l, l) for positive integers k and l such that the tuple (1, 2k− 1, l, l) is admissible.
Then we see that c1(D) = 2k − 2l. Let us fix the first Chern class of the contact
distribution and see what happens. We see then that we must have

k =
c1(D)+ 2l

2
.

Now using Proposition 3.11 we see that there are 2k − 1 generators in contact
homology of degree less than 4k+ 2.

A remark on the regular case. In the regular case the situation is somewhat simpler,
but, on the other hand, there is less information available at first glance. In this
case there is geometrically only one orbit space, Z itself. To get a handle on the
contact homology let us look at the case (k, k, k− c, k− c). This gives a regular
contact manifold with c1(D)= 2c times a generator. We choose a basis L1, L2 of
H2(Z,Z) so that L1 = x S1+ yS2, and L2 lifts to a class which evaluates to 0 under
π∗ø. Both x and y are chosen so that they give action 1 for a disk that projects to
L1. We define x and y as follows. Let m be the smallest number so that mk ≡−1
mod c. Then we define x = (km+ 1)/c and y = x −m. It is easy to see that x and
y satisfy the above properties. With these choices the grading for contact homology
for orbits of action N is given by

|γ̂ | = N (2x + 2y)+ 2, |γ̌ | = N (2x + 2y)− 2, |γ sj
N | = N (2x + 2y).

In this picture, for N = 1, γ̌ gives the smallest possible grading. By varying k,
we obtain infinitely many distinct contact structures whose contact distribution has
the same Chern class.
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Another way to distinguish contact structures. As described in [Eliashberg et al.
2000, §2.9.2], there is another situation where symplectic field theory can be used
to distinguish toric contact structures. The following theorem is a generalization to
smooth orbifolds of [Eliashberg et al. 2000, Proposition 2.9.4]:

Theorem 3.13. Suppose we have two simply connected quasiregular toric contact
manifolds of Reeb type in dimension five, such that each orbifold stratum is nonsin-
gular in the sense that its underlying space is a smooth submanifold. Suppose that
under the quotient of the Reeb action one of the base manifolds has an exceptional
sphere while the other does not, then these two manifolds are not contactomorphic.

Proof. We show that there is an odd element in the contact homology algebra of
one manifold specialized at a class which is not in the other for any specialization.
We assume here that all of the weights of the torus action are greater than 1 for
the manifold containing no exceptional spheres. As in [Eliashberg et al. 2000] the
potential specialized to the Poincaré dual of an exceptional divisor will give the
potential for a standard S3; but then for a chain which lifts to the volume form for
this 3-form there is always a holomorphic curve to kill it as a generator for homology
specialized at this three-class. Hence this homology contains no odd elements. Let
us consider first the case where the base is a manifold. We look at the manifold
containing no exceptional sphere. We must compute the Gromov–Witten potential
(see the Appendix for a brief description). Unfortunately it does not vanish, but for
any 2-classes the potential always vanishes. This is because the Gromov–Witten
invariant, GW0

A,k(α, . . . , α), is not equal to 0 for a two-dimensional class α only if

2k = 4+ 2c1(A)+ 2k− 6, i.e., c1(A)= 1.

But the weights make this impossible. Thus all coefficients for such curves vanish,
and the potential vanishes on Z, hence on M . So for a three-class in the contact man-
ifold obtained from integration over the fiber of a two-class, there is no holomorphic
curve to kill it. Hence specialized at such a three-class we have an odd generator
which does not exist in the presence of exceptional spheres. The orbifold case is
similar. The computation for the Gromov–Witten potential on the manifold with
the exceptional sphere follows from the divisor axiom. To see that the coefficients
for the Gromov–Witten potential vanish in the case where there is no exceptional
sphere we note the Gromov–Witten invariant is nonzero only if the first Chern class
evaluated on A is equal to one minus the degree shifting number of x, which in the
absence of exceptional spheres in the stratum in question is impossible. �

Remark 3.14. Since the base is four dimensional the results of [Hofer et al. 1997]
tell us that we can indeed use the dimension formula above for computation of the
Gromov–Witten invariants for the manifold case. To adjust for orbifold structure we
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use extra point conditions since all strata in this case are actually smooth manifolds
additionally endowed with orbifold structure.

4. The contact equivalence problem

It is the purpose of this section to prove the contact equivalence of certain toric
contact structures that are inequivalent as toric contact structures. To clarify this we
say that two toric contact structures D p and D p′ are equivalent as contact structures,
but inequivalent as toric contact structures, if there is a contactomorphism ϕ :

M p→M p′ such that ϕ∗D p=D p′ , but there is no T 3-equivariant contactomorphism.
Then their 3-tori correspond to distinct conjugacy classes of maximal tori in the
contactomorphism group [Lerman 2003b; Boyer 2013]. We remark that Theorems 1
and 2 are direct consequences of Theorem 4.11.

A complete answer to the equivalence problem appears to be quite difficult so
we restrict ourselves to certain special cases of contact structures that are Seifert
S1-bundles (orbibundles) over Hirzebruch surfaces which generally have a nontrivial
orbifold structure. In this case we show that certain T 3 equivariantly inequivalent
contact structures are actually T 2 equivariantly equivalent for some subgroup
T 2
⊂ T 3.

Orbifold Hirzebruch surfaces. In this section we study a special class of toric
contact structures on S3 bundles over S2 that can be realized as circle orbibundles
over orbifold Hirzebruch surfaces. Since the reduction method gives all examples
of such toric contact structures, it is important to make contact (no pun intended)
with examples that are known in the literature. Here we shall always assume that
the quadruple p is admissible.

When working with Hirzebruch surfaces, we often follow [Griffiths and Harris
1978] (but with slightly different notation) and represent Sn as the projectivized
bundle Sn = P(O(n)+ O)→ CP1 with fibers L = CP1 and sections E and F
with self-intersection numbers n and −n, respectively. The sections, which satisfy
E · E = n, E · L = 1, and L · L = 0, define divisors in Sn and determine a basis
for the Picard group Pic(Sn) ≈ H 2(Sn,Z) ≈ Z2. However, when working with
symplectic forms it is convenient to use a basis which appears for all admissible
complex structures. Thus, it is convenient to treat the even and odd Hirzebruch
surfaces separately. The even Hirzebruch surfaces S2n are diffeomorphic to S2

× S2,
so we define E0 = E − nL . Then we have

E0 · E0 = (E − nL) · (E − nL)= E · E − 2nE · L + L · L = 2n− 2n = 0.

In this case the Poincaré duals αL and αE0 are the standard area forms for the
two copies of S2. Similarly, the odd Hirzebruch surfaces S2n+1 are diffeomorphic
to CP2 blown up at a point which we denote by C̃P2. In this case we define
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E−1= E−(n+1)L which gives E−1 ·E−1=−1. So E−1 is an exceptional divisor.
Again the Poincaré duals αL and αE−1 represent the standard area forms on a fiber
and exceptional divisor, respectively.

As mentioned previously the orbifolds that we encounter are of the form (X,1),
where X is a smooth algebraic variety and 1 is a branch divisor. Specifically we
are interested in the orbifolds (Sn,1), where 1 =

∑
i (1− 1/m j )Dj and Di are

Weil divisors on Sn . We refer to the pair (Sn,1) as an orbifold Hirzebruch surface.
We now wish to compute the orbifold canonical divisor in this situation. Since we
are working with Q-divisors, we can express the result in terms of E0 even though
it is an honest divisor only on even Hirzebruch surfaces.

Lemma 4.1. Let (Sn,1) be an orbifold Hirzebruch surface such that E and F are
branch divisors, both with ramification index m. Then the orbifold canonical divisor
of (Sn,1m) is

K orb
(Sn,1m)

=−
2
m

E − 2m−n
m

L =− 2
m

E0− 2L .

Hence (Sn,1m) is a log del Pezzo surface (Fano) if and only if 2m > n.

Proof. We know [Griffiths and Harris 1978, p. 519] that the canonical divisor KSn

of Sn is given by KSn =−2E+ (n−2)L =−2E0−2L , and the orbifold canonical
divisor K orb

Sn,1m
satisfies (see [Boyer and Galicki 2008, p. 127])

K orb
Sn,1m

= KSn +

(
1− 1

m

)
(E + F).

Now the divisor E has self-intersection n, and the divisor F has self-intersection
−n, and since they both have intersection 1 with the fiber L , we have (E+F)= 2E0.
Putting this together gives the formula.

The orbifold (Sn,1m) is log del Pezzo if and only if the orbifold anticanonical
divisor −K orb

(Sn,1m)
is ample, and this happens if and only if 2m > n by Nakai’s

criterion since E and L are effective. �

Toric contact structures on S2× S3. The toric contact structures we describe here
are not the most general, but are obtained by setting p= ( j, 2k− j, l, l). That is, we
consider contact structures of the form Dj,2k− j,l,l where the pair (k, l) is fixed with
k≥ l, and j=1, . . . , k. Now since p∈A we also have gcd( j, l)=gcd(2k− j, l)=1.
We denote the set of j =1, . . . , k such that p= ( j, 2k− j, l, l) is admissible by JA=

JA(k, l). The first Chern class of this contact structure is c1(Dj,2k− j,l,l)= 2(k− l)γ
where γ is a generator of H 2(M p,Z) ≈ Z. So in this case M p is S2

× S3. The
infinitesimal generator of the circle action is L p = j H1+ (2k− j)H2− l H3− l H4.
Note that this case includes the Y p,q as a special case, namely, p = k = l and
q = k− j . So Y p,q is Dp−q,p+q,p,p with p > q and gcd(p, q)= 1.
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We want to find a suitable Reeb vector field in the Sasaki cone, so we try
Rj,k,l = (2k− j)H1+ j H2+l H3+l H4 which clearly satisfies the positivity condition
η0(R) > 0. The T 2 action generated by L p and Rj,k,l is

z 7→ (ei((2k− j)φ+ jθ)z1, ei( jφ+(2k− j)θ)z2, eil(φ−θ)z3, eil(φ−θ)z4).

Making the substitutions ψ = φ− θ and χ = jψ + 2kθ gives the action

(39) z 7→ (ei(2(k− j)ψ+χ)z1, eiχ z2, eilψ z3, eilψ z4).

We define gj = gcd(l, 2(k − j)) and write 2(k − j) = n j gj and l = m j gj . Then
gcd(m j , n j )= 1.

Theorem 4.2. Consider the contact manifold (S2
×S3,Dj,2k− j,l,l) where 1≤ j ≤ k

satisfies gcd( j, l)= gcd(2k− j, l)= 1. Then we have

(1) The quotient space by the circle action generated by the Reeb vector field
R = (2k − j)H1 + j H2 + l H3 + l H4 is the Kähler orbifold (Sn j ,1;ωk,l, j )

where Sn j is a Hirzebruch surface, 1 is the branch divisor,

(40) 1=
(

1− 1
m j

)
(E + F),

and ωk,l, j is an orbifold symplectic form satisfying π∗ωk,l, j = dηk,l, j , where
ηk,l, j is the contact 1-form representing Dj,2k− j,l,l whose Reeb vector field
is R.

(2) The orbifold structure is trivial (1=∅) if and only if l divides 2(k− j).

Proof. For (1) the idea, in the spirit of GIT quotient equals symplectic quotient
[Kirwan 1984; Ness 1984], is to identify the symplectic quotient µ−1(0)/T 2 with
a Hirzebruch surface as an analytic subspace of CP1

×CP2.
After shifting by a constant vector a= (a1, a2) the moment map of the T 2 action

(39) is

(41) µ(z)= (2(k− j)|z1|
2
+ l|z3|

2
+ l|z4|

2
− a1, |z1|

2
+ |z2|

2
− a2).

We need to choose the constant vector a so that 0 is a regular value of µ for all
integers j and l such that 0< j ≤ k and 0< l ≤ k. Alternatively, it suffices to show
that the T 2 action on µ−1(0) defined by (39) is locally free. This will be true if we
choose a1, a2 > 0 and a1 > 2(k− j)a2. Following [Audin 1994] it is convenient to
work with the corresponding C∗×C∗ action on C2

\ {0}×C2
\ {0} given by

(42) z 7→ (τ n j ζ z1, ζ z2, τ
m j z3, τ

m j z4),

where τ, ζ ∈ C∗. From this we see that the action is free if z1z2 6= 0 and locally
free with isotropy group Zm j on the two divisors obtained by setting z1 = 0 and
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z2 = 0, respectively. It is not difficult to see [Lafontaine 1981] that (z1 = 0)= E
and (z2 = 0)= F .

We have a commutative diagram

(43)

C2
\ {0}×C2

\ {0}

π ′′

!!

µ−1(0)? _oo

π ′

��

ρ

%%
Mk,l, j ,

πyy
Zk,l, j

and we want to identify the quotient space Zk,l, j . We know from the general
theory (see [Boyer and Galicki 2008, Chapter 7]) that Zk,l, j is a projective alge-
braic orbifold with an orbifold Kähler structure. Viewing Zk,l, j as the C∗ × C∗

quotient by the map π ′′ of diagram (43), we can identify Zk,l, j with a subvariety
of CP1

× CP2 as in [Hirzebruch 1951; Lafontaine 1981] as follows. If we de-
fine homogeneous coordinates in CP1

×CP2 by setting (w1, w2) = (z3, z4) and
(y1, y2, y3)= (z

m j
2 zn j

3 , zm j
2 zn j

4 , zm j
1 ), we see that Zk,l, j is represented by the equation

(44) w
n j
1 y2 = w

n j
2 y1.

As an algebraic variety this identifies Zk,l, j with the hypersurface in CP1
×CP2

defined by (44) which is the original definition of the Hirzebruch surface Sn j .
However, the two divisors in Sn j defined by E = (y3 = zm j

1 = 0) and F = (z2 =

0(y1 = y2 = 0)) are both m j -fold branch covers with isotropy group Zm j . Thus, we
have an orbifold structure on Sn j given by (40) which is trivial if and only if m j = 1
which happens if and only if l divides 2(k− j).

Furthermore, it follows from the orbifold Boothby–Wang theorem [Boyer and
Galicki 2000b] that Zk,l, j has an orbifold Kähler form ωk,l, j that satisfies π∗ωk,l, j =

dηk,l, j . This proves (1). For (2) we note that the orbifold structure is trivial if and
only if m j = 1 which happens if and only if gj = l divides 2(k− j). �

Notice that on subsets of JA(k, l) where gj is independent of j , the ramification
index m j is also independent of j , so the underlying orbifolds are the same. Thus,
it is convenient to view gj as a map g : JA(k, l)→{1, . . . , l}, and we are interested
in the level sets of this map. So we decompose JA(k, l) into the level sets of g and
then further decompose the level sets according to whether n j is odd or even, that
is, we define

g−1(i)even = { j ∈ JA(k, l) | gj = i, n j is even},

g−1(i)odd = { j ∈ JA(k, l) | gj = i, n j is odd}.
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We can then decompose the admissible set as a disjoint union

(45) JA(k, l)=
l⊔

i=1

g−1(i)even t g−1(i)odd.

We wish to compute the symplectic form on the base orbifold.

Lemma 4.3. Let j ∈ g−1(i)even ⊂ JA(k, l) for a fixed i ∈ {1, . . . , l} with g−1(i)even

6=∅. Then the symplectic form ωk,l,i on the quotient (Sn j ,1i ) is independent of j
and satisfies

[ωk,l,i ] = iαE0 + kαL .

Proof. We know that corb
1 (Sn j ) = (2/mi )αE0 + 2αL and this must pull back to

2(k − l)γ . So π∗αE0 = mi kγ and π∗αL = −lγ . Now the class [ωk,l,i ] must
transcend to 0 on S2

× S3. So writing [ω] = aαE0 +bαL and using imi = l, we see
that

0= aπ∗αE + bπ∗αL = (ami k− bl)γ = mi (ak− bi)γ.

So taking a = i and b = k gives the result. �

Lemma 4.4. Let j ∈ g−1(i)odd ⊂ JA(k, l) for a fixed i ∈ {1, . . . , l} with g−1(i)odd

6= ∅. Then i is even and the symplectic form ωk,l,i on the quotient (Sn j ,1i ) is
independent of j and satisfies

[ωk,l,i ] = iαE−1 +

(
k+ i

2

)
αL .

Proof. First i must be even since i = gj = gcd(l, 2(k − j)) and n j = 2(k − j)/ i
is odd. The remainder of the proof is the same as that of Lemma 4.3, except for
odd Hirzebruch surfaces we express the symplectic class in term of the exceptional
divisor E−1 = E0−

1
2 L . �

Whenever possible we would like to determine the cardinalities #g−1(i)even and
#g−1(i)odd. First, as seen above, g−1(i)odd is empty when i is odd. Moreover, if
g−1(l) is not empty, then 1l =∅, so the orbifold structure is trivial.

The following lemma is taken from [Karshon 2003].

Lemma 4.5. (1) #g−1(l)even =

⌈k
l

⌉
. (2) #g−1(l)odd =

⌈2k−l
2l

⌉
.

Example 4.6. One obtains the Y p,q of [Gauntlett et al. 2004a] as a special case of
Theorem 4.2 by putting k = l = p and defining q = k− j . The contact structures
are then Dp−q,p+q,p,p, and the admissibility conditions boil down to gcd(q, p)= 1.
Clearly, we have c1(Dp−q,p+q,p,p)= 0. When p is odd we have gj = 1, m j = p,
and Sn j = S2q , whereas if p is even we have gj = 2, m j = p/2 and Sn j = Sq with q
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odd. So here we have only two nonempty level sets of the map g, namely,

(46) JA(p, p)=

{
g−1(1)even, if p is odd,

g−1(2)odd if p is even.

Since the only admissibility condition is gcd(q, p)= 1 and p > q , we see that the
cardinality #JA(p, p)= φ(p), where φ is the well-known Euler phi function. For
the orbifold canonical divisor Lemma 4.1 gives

K orb
(S2q ,1)

=−
2
p

E −
2(p− q)

p
L =− 2

p
E0− 2L ,(47)

K orb
(Sq ,1)

=−
4
p

E −
2(p− q)

p
L =− 4

p
E−1− 2 p+1

p
L ,(48)

so these are all log del Pezzo surfaces. The cohomology class of the corresponding
symplectic forms is

[ωp,p,1] = αE0 + pαL

on the even orbifold Hirzebruch surface (S2q ,1) with ramification index m1 = p
when p is odd. For even p we have

[ωp,p,2] = 2αE−1 + (p+ 1)αL

on the odd orbifold Hirzebruch surface (Sq ,1) with ramification index m2 = p/2.
Note that in both cases there are precisely φ(p) values taken on by q . Note also that
p= 2 implies q = 1 only, and that m2= 1, so we have a trivial orbifold structure on
(S1,∅)= C̃P2. A relation between the Y p,q toric contact structures and Hirzebruch
surfaces was noted by Abreu [2010].

Except for the Y p,q case of Example 4.6, we do not have a general formula for
the cardinalities #g−1(i) for i 6= l. Specific cases, of course, are easy to work out.

Example 4.7. Consider the case (k, l)= (9, 8). We compute JA(9, 8). The possible
values of j are all odd with j ≤ 9, and these all satisfy gcd(8, 18− j)= 1. Next,
we determine gj = gcd(8, 2(9− j)) and n j = 2(9− j)/g. So we have g−1(8)even =

{ j = 1, 9} with a trivial orbifold (m8 = 1) on the Hirzebruch surfaces S2 and S0,
respectively. We also have g−1(8)odd = { j = 5} with a trivial orbifold on S1, and
g−1(4)odd = { j = 3, 7} with m4 = 2 on the odd Hirzebruch surfaces S3 and S1,
respectively. Notice that the cardinalities of g−1(8)even and g−1(8)odd agree with
Lemma 4.5. In total we have #JA(9, 8)= 5.

Toric contact structures on X∞. For X∞ we consider p= ( j, 2k− j+1, l, l) with
0< j ≤ k. Here we have c1(Dj,2k− j+1,l,l)=

(
2(k− l)+1

)
γ . We consider the Reeb

vector field R∞j,k,l = (2k− j+1)H1+ j H2+l H3+l H4, which is clearly positive. The
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T 2 action generated by this vector field and L p= j H1+(2k− j+1)H2−l H3−l H4 is

z 7→ (ei((2k− j+1)φ+ jθ)z1, ei( jφ+(2k− j+1)θ)z2, eil(φ−θ)z3, eil(φ−θ)z4).

Making the substitutions ψ = φ− θ and χ = jψ + (2k+ 1)θ gives the action

(49) z 7→ (e(i(2k−2 j+1)ψ+χ)z1, eiχ z2, eilψ z3, eilψ z4).

Similarly to the previous section, we define gj = gcd(l, 2k− 2 j + 1) and write
2k− 2 j + 1= n j gj and l = m j gj . Then gcd(m j , n j )= 1.

Theorem 4.8. Consider the contact manifold (X∞,Dj,2k− j+1,l,l) where 1≤ j ≤ k
satisfies gcd( j, l)= gcd(2k− j + 1, l)= 1. Then we have

(1) The quotient space by the circle action generated by the Reeb vector field
R = (2k− j +1)H1+ j H2+ l H3+ l H4 is the Kähler orbifold (Sn j ,1;ωk,l, j )

where Sn j is an odd Hirzebruch surface, 1 is the branch divisor, with

(50) 1=
(

1− 1
m j

)
(z1 = 0)+

(
1− 1

m j

)
(z2 = 0),

and ωk,l, j is an orbifold symplectic form satisfying π∗ωk,l, j = dηk,l, j , where
ηk,l, j is the contact 1-form representing Dj,2k− j+1,l,l whose Reeb vector field
is R. Here the integers l, gj , n j , and m j are all odd.

(2) The orbifold structure is trivial (1=∅) if and only if l divides 2k− j + 1.

Proof. The proof is essentially the same as that of Theorem 4.2. The details are left
to the reader. �

We denote the set of j = 1, . . . , k such that p= ( j, 2k− j+1, l, l) is admissible
by J∞A = J∞A (k, l). Since the integers gj and n j are both odd for all j ∈ JA(k, l),
the map g maps the set JA(k, l) to the set of positive odd integers less than or equal
to l. Thus, we have

(51) J∞A (k, l)=
l⊔

odd i=1

g−1(i).

Similarly to Lemmas 4.3, 4.4, and 4.5 we find the following.

Lemma 4.9. Let j ∈ g−1(i) ⊂ J∞A (k, l). Then the symplectic form ωk,l,i on the
quotient Sn j is independent of j and satisfies

[ωk,l,i ] = iαE−1 +

(
k+ i+1

2

)
αL .

Furthermore, #g−1(l)= d(2k− l + 1)/2le.
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Example 4.10. We consider the analogue on X∞ of Example 4.6, so (k, l) =
(p, p) with p odd and j = p− q. The contact structure is Dp−q,p+q+1,p,p with
c1(Dp−q,p+q+1,p,p)= 1. The admissibility conditions are gcd(q, p)= 1= gcd(q+
1, p). The function g satisfies gj = gcd(2q + 1, p). If p is prime then the set of
admissible q is {1, . . . , p−2}, and g= 1 except when q = (p−1)/2 in which case
g = p. The latter is smooth and corresponds to the trivial orbifold (S0,∅). This
has symplectic class

[ωp,p] = pαE−1 +
3p+1

2
αL ,

whereas the p− 3 elements in g−1(1) have symplectic class

[ωp,p] = αE−1 + (p+ 1)αL .

For a case when p is not prime consider p = 9. Then J∞A (9, 9) = {2, 5, 8}
which corresponds to q = 7, 4, 1. We see that g−1(9)= {5} giving the smooth first
Hirzebruch surface (S1,∅) with symplectic class [ω9,9,9] = 9αE−1 + 14αL , while
g−1(3)= {2, 8} giving the orbifold Hirzebruch surfaces (S5,1) with m2 = 3, and
(S1,1) with m8 = 3, respectively, with symplectic class [ω9,9,3] = 3αE−1 + 11αL .

Equivalent contact structures. Here we show that certain inequivalent toric contact
structures are equivalent as contact structures. The proof uses the fact that the
identity map (Sn,1m)→ (Sn,∅) is a Galois cover, and combines this with the
work of Karshon [1999; 2003] for the smooth case.

Theorem 4.11. Consider the toric contact structures (S2
× S3,Dj,2k− j,l,l) and

(X∞,Dj,2k− j+1,l,l) of Theorems 4.2 and 4.8, respectively.

(1) For each fixed 1≤ i ≤ l, the contact structures Dj,2k− j,l,l are T 2-equivariantly
isomorphic for all j ∈ g−1(i)even, and the contactomorphism group

Con(Dj,2k− j,l,l)

has at least #g−1(i)even conjugacy classes of maximal tori of dimension three.

(2) For each fixed 1≤ i ≤ l, the contact structures Dj,2k− j,l,l are T 2-equivariantly
isomorphic for all j ∈ g−1(i)odd, and the contactomorphism group

Con(Dj,2k− j,l,l)

has at least #g−1(i)odd conjugacy classes of maximal tori of dimension three.

(3) For each fixed 1≤ i≤ l, the contact structures Dj,2k− j+1,l,l are T 2-equivariantly
isomorphic for all j ∈ g−1(i) ⊂ J∞A (k, l), and the contactomorphism group
Con(Dj,2k− j+1,l,l) has at least #g−1(i) conjugacy classes of maximal tori of
dimension three.



312 CHARLES P. BOYER AND JUSTIN PATI

(4) The T 2-equivariantly isomorphic contact structures given in (1)–(3) are not
T 3-equivariantly isomorphic.

Proof. The proofs of (1)–(3) are quite analogous, so we give the details for (1) only.
By Theorem 4.2 the contact structure is the orbifold Boothby–Wang construction
over the symplectic orbifold (Sn j , ωk,l, j ) and by Lemma 4.3 the form ωk,l, j only
depends on gj = i . Then for each j ∈ g−1(i)even we consider the Galois cover
1ln j : (Sn j ,1mi )→ (Sn j ,∅) with n j even, and both spaces having the same Kähler
form, namely ωk,l,i of Lemma 4.3. Now Karshon [2003] shows that (Sn j ,∅) and
(Snj ′

,∅) are S1-equivariantly symplectomorphic with the same symplectic form
ωk,l,i (but not the same Kähler structure) as long as 0 ≤ j ′ = j − 2r for some
nonnegative integer r . We denote such a symplectomorphism by K . Now we have
a commutative diagram,

(52)

(Sn j ,1mi )
Ki
//

1lnj
��

(Snj ′
,1mi )

(Sn j ,∅)
K
// (Snj ′

,∅),

1l−1
nj ′

OO

which defines the upper horizontal arrow Ki and shows that it too is an S1-equivariant
symplectomorphism. We claim that Ki is also an orbifold diffeomorphism. This
follows from Lemma 4.12. But then, as shown in [Lerman 2003b; Boyer 2013],
this symplectomorphism lifts to a T 2-equivariant contactomorphism.

Here, and hereafter, by g−1(i)we mean any of the three sets g−1(i)even, g−1(i)odd,
or g−1(i)⊂ J∞A (k, l). Since our contact structures are independent of j ∈ g−1(i)
up to isomorphism, we now denote the contact structures of items (1), (2), and (3)
by Dk,l,i,e, Dk,l,i,o, and Dk,l,i,∞, respectively. To prove (4) we first notice that as
in [Karshon 2003] the orbifold symplectomorphism Ki is only S1-equivariant, not
T 2-equivariant. So the corresponding 2-tori belong to different conjugacy classes
in the group Ham((B,1mi ), ωk,l,i ) of Hamiltonian symplectomorphisms, where B

is the symplectic orbifold ((S2
× S2,1mi )ωk,l,i ) or ((X∞,1mi )ωk,l,i ) as the case

may be. But then by [Boyer 2013, Theorem 6.4] these lift to nonconjugate 3-tori in
Con(Dk,l,i,e). Hence, the contact structures Dj,2k− j,l,l for different j ∈ g−1(i) are
inequivalent as toric contact structures. The same holds for Dj,2k− j+1,l,l . �

Lemma 4.12. The Karshon symplectomorphism K of diagram (52) leaves the
divisors (z1 = 0) and (z2 = 0) invariant.

Proof. The T 2 action on any orbifold Hirzebruch surface (Sn,1m) can be taken as

(53) ([w1, w2]× [y1, y2, y3]) 7→ ([τw1, w2]× [τ
n y1, y2, ρy3]),

where, as in the proof of Theorem 4.2, the coordinates are (w1, w2) = (z3, z4)

and (y1, y2, y3) = (zm
2 zn

3, zm
2 zn

4, zm
1 ). By Proposition 4.1 of [Karshon 1999] K is
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an S1-equivariant symplectomorphism, where the S1 is that generated by ρ, and
the fixed point set of this action is the disjoint union (z1 = 0) t (z2 = 0). By
Proposition 4.3 of the same work, K also intertwines the two S1 moment maps.
But in both cases these are represented by µS(z)= |z1|

2. So the divisors (z1 = 0)
and (z2 = 0) are left invariant separately by K . �

Remark 4.13. Using the Delzant theorem for symplectic orbifolds in [Lerman and
Tolman 1997], it is straightforward to construct the labeled polytope corresponding
to the symplectic orbifold ((Sn,1m), ωk,l,i ). It is the labeled Hirzebruch trapezoid
shown here (with label m on the two vertical axes):

(0, k+ 1
2 ni)

B
B
B
B
B
BB

slope −n

(0, 0) (i, 0)

(i, k− 1
2 ni)

◦

◦ ◦

◦

m

m

The Galois cover 1lSn : (Sn,1m)→ (Sn,∅) induces a map on this Hirzebruch
trapezoid that simply removes the labels on the vertical edges. This implies that
the corresponding Karshon graphs [1999] are the same. Hence, Theorem 4.1 of
[Karshon 1999] easily generalizes to the types of orbifolds considered here, and
the symplectomorphism Ki in diagram (52) can be constructed directly from this.

Inequivalence of contact structures. As discussed previously the inequivalence
of contact structures is detected first by the first Chern class c1(D) and then by
contact homology. The contact structures Dj,2k− j,l,l and Dj,2k− j+1,l,l are clearly
inequivalent since they live on different manifolds, so adopting Proposition 3.11 to
our current notation we have

Theorem 4.14. The contact structuresDj,2k− j,l,l andDj ′,2k′− j ′,l ′,l ′ , andDj,2k− j+1,l,l

and Dj ′,2k′− j ′+1,l ′,l ′ are inequivalent if k ′ 6= k.

Remark 4.15. Unfortunately, combining Theorems 4.11 and 4.14 does not answer
our equivalence problem completely even in our restrictive cases. For example,
it would be nice to know that the Dj,2k− j,l,l are all contact equivalent as j runs
through all admissible values from 1 to k. However, our equivalence statement in
Theorem 4.11 only assures equivalence on the level sets of the map g, that is, if we
fix i ∈ {1, . . . , l}, then Dj,2k− j,l,l are equivalent for all j ∈ g−1(i). Nevertheless,
this is enough to give a complete answer to the equivalence problem for the Y p,q of
[Gauntlett et al. 2004a] which in our notation is Dp−q,p+q,p,p. See Corollary 5.5.
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The general case with vanishing first Chern class c1(D) was studied in [Cvetič
et al. 2005; Martelli and Sparks 2005] where it was shown that all the toric contact
structures admit a compatible Sasaki–Einstein metric. These depend on three param-
eters a, b, and c with values in Z+ which in our notation is given by Da,b,c,a+b−c.
Except for the subclass Y p,q these fall outside of the scope of our analysis.

Another statement of contact inequivalence is obtained as an immediate conse-
quence of Theorem 3.13, namely:

Corollary 4.16. The contact structures on S2
× S3 described by items (1) and (2)

of Theorem 4.11 are inequivalent.

5. Applications to Sasakian geometry

In this final section we give some pertinent applications of our results to Sasakian
geometry. Recall the contact Delzant-type result [Boyer and Galicki 2000a] that
every toric contact structure of Reeb type admits a compatible Sasakian structure.

Sasaki cones and the Sasaki bouquet. Since we are dealing with toric geometry,
the Sasaki cones in this paper all have dimension three. So it follows from [Boyer
and Galicki 2008, Theorem 8.1.14] that all our Sasakian structures must be either
positive or indefinite. Our first result says that all our Sasaki cones have a positive
Sasakian structure.

Corollary 5.1. Every toric contact structure on an S3-bundle over S2 can be real-
ized as an orbifold fibration over CP( p̄1, p̄2)×CP( p̄3, p̄4) for some quadruple of
positive integers (p1, p2, p3, p4) satisfying gcd(pi , pj )= 1 for i = 1, 2 and j = 3, 4
and (p1, p2, p3, p4)= (k p̄1, k p̄2, l p̄3, l p̄4). Thus, every toric contact structure on
an S3-bundle over S2 admits a ray of positive Sasakian structures in its Sasaki cone.
Moreover, the subspace of positive Sasakian structures is open in the Sasaki cone.

Proof. The first statement follows from Lemmas 2.2 and 2.5, while the second
statement follows from the fact that the base orbifold CP( p̄1, p̄2)×CP( p̄3, p̄4)

is log del Pezzo. The last statement follows from the fact that having a positive
representative of the basic first Chern class c1(FR) is an open condition. �

Proposition 5.2. Consider the toric contact structure Dj,2k− j,l,l on S2
× S3 and the

toric contact structure Dj,2k− j+1,l,l on X∞. Choose the Reeb vector field R =
(2k− j)H1+ j H2+l H3+l H4 on (S2

×S3,Dj,2k− j+1,l,l) and R= (2k− j+1)H1+

j H2+l H3+l H4 on (X∞,Dj,2k− j+1,l,l). Then the corresponding Sasakian structure
is positive if and only if l > k− j in the former case, and 2l > 2(k− j)+ 1 in the
latter case. In particular, if l ≤ k− j (or 2l > 2(k− j)+ 1), then the toric contact
structure Dj,2k− j,l,l (or Dj,2k− j+1,l,l) has both a positive and indefinite Sasakian
structure in its Sasaki cone.
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Proof. First we note as mentioned above that any Sasakian structure in a Sasaki
cone of dimension greater than one is either positive or indefinite. By Corollary 5.1
any toric contact structure on an S3-bundle over S2 has a positive Sasakian structure,
and we see that Lemma 4.1 states that (Sn j ,1m j ) is log del Pezzo if and only if
2m > n. For Dj,2k− j,l,l this becomes 2l = 2m j gj > n j gj = 2(k− j), whereas for
Dj,2k− j+1,l,l it is 2l = 2m j gj > ngj = 2k−2 j+1. The last result then follows from
the fact that a quasiregular Sasakian structure is positive if and only if its orbifold
quotient is log Fano [Boyer and Galicki 2008, Chapter 7]. �

Concerning Sasaki bouquets we note that actually more is true than is proven
in Theorem 4.11. Since the base orbifolds (Sn j ,1mi ) have the same symplectic
form ωk,l,i for all j ∈ g−1(i), this lifts to a contactomorphism ϕ : Dj,2k− j,l,l →

Dj ′,2k− j ′,l,l such that ϕ∗ηj ′,2k− j ′,l,l = ηj,2k− j,l,l . Since the reduction process carries
a preferred complex structure J along with it, the different indices j represent
different transverse complex structures J . So by using the contactomorphisms ϕ
for each admissible j , we have the following.

Corollary 5.3. The contact structures Dk,l,i,e and Dk,l,i,o on S2
× S3 and Dk,l,i,∞

on X∞ each admit a Sasaki bouquet BN of toric Sasakian structures with N =
#g−1(i). Furthermore, the intersection

⋂
j κ(D, Jj ) of all the Sasaki cones is an

open subset of the Lie algebra t2 of a two-dimensional torus.

Example 5.4. Consider the contact structure D12,8,2,o on S2
× S3. The admissible

j ’s are j = 1, 3, 5, 7 and gj = 2 for all j . So Theorem 4.11(ii) gives a T 2-equivariant
contact equivalence of the T 3-equivariantly inequivalent toric contact structures

D1,23,8,8 ≈D3,21,8,8 ≈D5,19,8,8 ≈D7,17,8,8.

This implies that the number of conjugacy classes n(D12,8,2,o, 3) of 3-tori in
Con(D12,8,2,o) is at least 4. Furthermore, by Theorem 4.2(3) the induced Sasakian
metrics are positive for D5,19,8,8 and D7,17,8,8, whereas they are indefinite for the
remaining two.

Another contact structure with the same first Chern class as D12,8,2,o, namely
c1 = 8γ , is D14,10,2,o. This consists of the two T 3-equivariantly inequivalent toric
contact structures D1,27,10,10 and D7,21,10,10, but only for the latter is the induced
Sasakian structure positive. In this case we have n(D14,10,2,o, 3)≥ 2. Moreover, it
follows from Theorem 4.14 that the contact structures D12,8,2,o and D14,10,2,o are
inequivalent.

As mentioned previously there is one subclass of contact structures on S2
× S3

where a complete solution to the equivalence problem can be obtained, and they
are all known to admit extremal (actually Sasaki–Einstein) metrics.
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Corollary 5.5. The contact structures Y p,q and Y p′,q ′ on S2
× S3 are inequivalent

if and only if p′ 6= p. Furthermore, the isotopy class of the contact structures
defined by Y p,1 admits a φ(p)-bouquet Bφ(p)(Y p,q) such that each of the φ(p)
Sasaki cones admits a unique Sasaki–Einstein metric. Moreover, these Einstein
metrics are nonisometric as Riemannian metrics.

Proof. Applying Theorem 4.11 to Example 4.6 shows that Y p,q is contactomorphic
to Y p,1 for all admissible q . But Abreu and Macarini [2012] show that the underlying
contact structures of Y p,1 and Y p′,1 are inequivalent if p′ 6= p. (This also follows
from Proposition 3.11.) By Corollary 5.3 there are precisely φ(p) Sasaki cones in
the bouquet. The fact that there is a Sasaki–Einstein metric in the Sasaki cone for
each Y p,q was first shown in [Gauntlett et al. 2004a] while its uniqueness in the
Sasaki cone is proved in [Cho et al. 2008].

To prove the last statement, suppose to the contrary that the Sasaki–Einstein
metrics gq and gq ′ are isometric, that is, there is a diffeomorphism ψ of S2

× S3

such that ψ∗gq ′ = gq . Then by a theorem of Tanno [1970] (see also [Boyer and
Galicki 2008, Lemma 8.1.17]) the transformed Sasakian structure Sψ is either Sq

itself or its conjugate Sasakian structure Sc
q = (−Rq ,−ηq ,−8q , gq). In either case

ψ is a contactomorphism from Y p,q to Y p,q ′ satisfying

ψ−1
◦8q ′ ◦ψ =±8q .

But this implies that the corresponding 3-tori are conjugate, which contradicts
Theorem 4.11(4). �

Example 5.6. The analogues of the Y p,q’s on the nontrivial bundle X∞ are de-
scribed in Example 4.10. For simplicity we consider only the case when p is
an odd prime, in which case there are p − 3 admissible values for q, namely
1, . . . , (p− 1)/2− 1, (p− 1)/2+ 1, . . . , p− 2. These inequivalent toric structures
are T 2-equivariantly equivalent contact structures by Theorem 4.11(3) and their
induced Sasakian structures are all positive by Theorem 4.8(3). Moreover, the
contactomorphism group of this contact structure has at least p− 3 maximal tori of
dimension three.

Some remarks concerning extremal Sasakian structures. As with Kähler geome-
try it is of interest to determine the most preferred Sasakian metrics, and as in Kähler
geometry it seems reasonable to study the critical points of the (now transverse)
Calabi functional [Boyer et al. 2008; 2009]. In [Boyer 2011b] the first author
described bouquets of extremal Sasakian structures on S3-bundles over S2, and the
existence of extremal Sasakian metrics on X∞ was proven. It is not our intention
here to delve much further into the existence of such extremal Sasakian structures,
but rather to discuss briefly their relation to our current work.

Corollary 5.3 gives a partial generalization of Theorems 4.1 and 4.2 of [Boyer
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2011b]. In this reference it was shown that when the quotient by the Reeb vector
field is a smooth manifold, each Sasaki cone in a bouquet admits an extremal
Sasakian metric. This follows from well-known work of Calabi. It would be
interesting to generalize this to the orbifold case by generalizing the method of
[Ghigi and Kollár 2007] to extremal metrics.

As with toric symplectic structures, all toric contact structures of Reeb type
admit a compatible Sasakian metric [Boyer and Galicki 2000a]. Furthermore, in
our present situation we have:

Corollary 5.7. Every toric contact structure on an S3 bundle over S2 admits ex-
tremal Sasakian metrics with positive Ricci curvature.

Proof. By Corollary 5.1 every toric contact structure on an S3 bundle over S2 can
be realized as an orbifold fibration over a product of weighted projective spaces
CP( p̄1, p̄2)× CP( p̄3, p̄4) and have positive Sasakian structures. By a result of
Bryant [2001] all weighted projective spaces admit Bochner-flat metrics and these
are extremal [David and Gauduchon 2006], and the product of extremal Kähler
metrics is extremal. So these extremal Kähler orbifold metrics lift to extremal
Sasakian metrics [Boyer et al. 2008] which, since CP( p̄1, p̄2)× CP( p̄3, p̄4) is
log del Pezzo, will have a deformation to a Sasakian metric with positive Ricci
curvature by [Boyer and Galicki 2008, Theorem 7.5.31]. Moreover, it follows from
a theorem of Calabi [1985] that the toric symmetry is retained by these metrics. �

Corollary 5.7 implies that each Sasaki cone in every Sasaki bouquet BN of toric
contact structures on an S3 bundle over S2 admits extremal Sasakian metrics of
positive Ricci curvature. Since the moment cone of any S3 bundle over S2 has
exactly four facets, recent results of Legendre [2011a; 2011b] show that every toric
contact structure on an S3 bundle over S2 admits at least one and at most seven
distinct rays in the Sasaki cone consisting of Sasakian structures whose metrics
have constant scalar curvature. Moreover, she shows that for the Wang–Ziller
manifolds M1,1

k,l with k > 5l there exist two distinct rays in the Sasaki cone whose
Sasakian metrics have constant scalar curvature. This corresponds to the case
( p̄1, p̄2)= 1= ( p̄3, p̄4) of Lemma 2.5.

An interesting question which appears to be unanswered at this time is whether
any Sasaki cones on these toric contact structures are exhausted by extremal Sasaki
metrics. There are only a few known cases where this occurs, namely, the standard
CR structure on the spheres S2n+1 [Boyer et al. 2008], the Heisenberg group
[Boyer 2009], and T 2-invariant contact structures of Reeb type on S3-bundles
over Riemann surfaces [Boyer and Tønnesen-Friedman 2014; 2013] with genus
1≤ g≤4. However, when g=0 we suspect that by using the admissible construction
method of [Boyer and Tønnesen-Friedman 2014] the subclass of Sasaki structures
considered here will each have an extremal representative.
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Appendix: Orbifold Gromov–Witten invariants

In this appendix, for the convenience of the reader, we lay out some framework and
definitions for Gromov–Witten invariants and the so-called Gromov–Witten potential
for compact symplectic manifolds and orbifolds. In this paper we only consider the
genus-0 invariants. The Gromov–Witten invariants that we are interested in occur
in the base orbifold Z of an orbibundle π : M→ Z with dim(M)= 5. Hence we
are in the semipositive case and we can define the Gromov–Witten invariants as in
[McDuff and Salamon 2004]. Our version of Gromov–Witten theory for symplectic
orbifolds comes from [Chen and Ruan 2002]. The main difference here is that
our marked points, and hence our cohomology classes taken as arguments for the
invariant, have constraints determining in which orbifold stratum the curves in
question lie. This is an issue since generally some homology classes may live in
several strata.

Roughly speaking a Gromov–Witten invariant is a count of rigid J-holomorphic
curves representing a homology class A ∈ H2(M,Z)/(torsion) in general position
with marked points in a symplectic manifold M for which the marked points are
mapped into the Poincaré duals of certain cohomology classes. For example we
may ask how many spheres (or lines) intersect two generic points in CPn . In this
case we have two marked points, a top cohomology class, and for A the class of a
line, [L].

To make this precise let (M, ω) be a compact symplectic manifold, and let J be
an ω-compatible almost-complex structure. Consider the moduli space

MA
0,k(M, J )

of genus-0 stable J-holomorphic curves into M representing the class A and assume
here that we have regularity of the relevant linearized Cauchy–Riemann operator for
the class A, either via some circumstances or by some sort of abstract perturbation
argument. Note also that when we discuss Gromov–Witten theory for compact
symplectic manifolds we will consider only somewhere injective curves. We define
maps

evj :M
A
0,k(M, J )→ M and ev :MA

0,k(M, J )→ M×k

by evaluation at the marked points.
By semipositivity the evaluation map represents a submanifold of M×k of di-

mension
2n+〈2c1(M), A〉+ 2k+ 6.

Now we define the Gromov–Witten invariant as a homomorphism

GWM
A,k : H

∗(M)⊗k
⊗ H∗(MA

0,k(M.J ))→Q
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encoded formally as the integral

GWM
A,k(α1, . . . , αk) :=

∫
MA

0,k(M.J )
ev∗1α1 ∪ · · · ∪ ev∗kαk ∪π

∗
[MA

0,k(M.J )].

This is the definition for manifolds. This definition can be used without the
semipositivity condition as long as there is a construction of an appropriate object
on which to integrate. Since we will be working in dimension four this will not be
an issue.

To extend this definition to orbifolds, there are issues with the definitions of
J-holomorphic curves, since the idea of a map between orbifolds can be a rather
sticky issue. We content ourselves here with knowing that we have a notion of
a good map, and we will defer to [Chen and Ruan 2002; 2004] for the analytic
setup. With that said, we still must extend the definition above so that it makes
sense in a stratified space. We should also note that the orbifold cohomology of
Chen and Ruan is not the same as the orbifold cohomology mentioned earlier.
This cohomology is simply a way to organize how various classes interact with
the stratification of the orbifold. As in the manifold case we start with a compact
symplectic orbifold, Z, and pick a compatible almost-complex structure, J . We then
consider moduli spaces of (genus-0) J-holomorphic orbicurves into M representing
a homology class A ∈ H2(Z,Q). But we now need to consider a new piece of data
which organizes the intersection data so that it is compatible with the stratification.
The extra data will be defined by a k-tuple x, of orbifold strata, (Z1, . . . ,Zk). The
length k of x should coincide with the number of marked points. We will write
such a moduli space as

MA
0,k(Z, J, x),

and require that the evaluation takes the j -th marked point into Zj . The compactifi-
cation is similar to the manifold case, and consists of stable maps with the obvious
adjustments, the caveat being that we must choose our lift to an orbicurve. After
an appropriate construction of cycles as in the manifold case, Chen and Ruan use
a virtual cycle construction, so we can define this invariant as in the smooth case
above, but we integrate over (the compactification of) MA

0,k(Z, J, x). We will write
these invariants

GWZ
A,k,x(α1, . . . , αk).

Another key difference is that this moduli space differs from the predicted
dimension in the smooth case by a factor of −2ι(x), the so-called degree shifting
number. (Again, for the definition see [Chen and Ruan 2002].) The Gromov–Witten
invariants satisfy a list of axioms developed by Kontsevich and Manin [1994; 1997].
We will not list all of the axioms, but will mention only some which are used in the
text. We use the orbifold notation; for a manifold we would just delete x from the
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notation, setting ι(x)= 0.

(i) Effective: GWZ
A,k,x(α1, . . . , αn)= 0 as long as ω(A) < 0.

(ii) Grading: GWZ
A,k,x(α1, . . . , αn) 6= 0 only if∑

j

deg(αj )= dim(Z)+ 2c1(A)+ 2k− 6− 2ι(x).

(iii) Divisor: Let x j
= x with the j-th component removed. Suppose that for each

component xi of x, if xi is mapped into the orbifold singular locus, that stratum
is nonsingular as a variety. If deg(αn)= 2 then

GWZ
A,k,x(α1, . . . , αn)=

(∫
A
αn

)
GWZ

A,k−1,xn (α1, . . . , αn−1).

Now we are in a position to define the Gromov–Witten potential. This is a
generating function which gives a formal power series whose coefficients give
Gromov–Witten invariants. It is a way to organize all the information from these
invariants into one big package. We give the definition here for the manifold case.
Pick a basis of H 2(M), a1, . . . , an , for a vector t and a cohomology class a, and
write a := at =

∑
i ti ai .

Definition A.8. Let (M, ω) and J be as above. Define the genus-0 Gromov–Witten
Potential as

f (at)=
∑

A

∑
k

1
k!

GWM
A,k(at , . . . , at)zc1(A).

The corresponding formula for orbifolds is obtained by accounting for the vector x.
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AN ALMOST-SCHUR TYPE LEMMA FOR SYMMETRIC
(2,0) TENSORS AND APPLICATIONS

XU CHENG

In a previous paper, we generalized the almost-Schur lemma of De Lellis
and Topping for closed manifolds with nonnegative Ricci curvature to any
closed manifolds. In this paper, we generalize the above results to symmetric
(2, 0)-tensors and give the applications for r-th mean curvatures of closed
hypersurfaces in space forms and k scalar curvatures for closed locally con-
formally flat manifolds.

1. Introduction

Recall that an n-dimensional Riemannian manifold (M, g) is said to be Einstein if
its traceless Ricci tensor R̊ic= Ric−(R/n)g is identically zero. Here Ric and R
denote Ricci curvature and scalar curvature respectively. Schur’s lemma states that
the scalar curvature of an Einstein manifold of dimension n ≥ 3 must be constant.
De Lellis and Topping [2012] discussed the quantitative version, or the stability
of Schur’s lemma for closed manifolds, and proved the following almost-Schur
lemma, as they called it.

Theorem 1.1 [De Lellis and Topping 2012]. If (M, g) is a closed Riemannian
manifold of dimension n with nonnegative Ricci curvature n ≥ 3,

(1-1)
∫

M
(R− R)2 ≤ 4n(n−1)

(n−2)2

∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2

and, equivalently,

(1-2)
∫

M

∣∣∣∣Ric− R
n

g
∣∣∣∣2 ≤ n2

(n−2)2

∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2,

where R = (1/Vol M)
∫

M R dv is the average of R over M. Equality holds in (1-1)
or (1-2) if and only if M is Einstein.

The author is partially supported by CNPq and Faperj of Brazil.
MSC2010: 53C21.
Keywords: traceless tensor, Ricci curvature, mean curvature.
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B. Andrews also obtained the above inequalities in an unpublished paper under
the assumption that the Ricci curvature is positive. De Lellis and Topping also
proved their estimates are sharp. First, the constants are optimal in (1-1) and (1-2)
[De Lellis and Topping 2012, Section 2]. Second, the curvature condition Ric≥ 0
cannot simply be dropped (see the examples in the proof of Propositions 2.1 and 2.2
in their paper). Without the condition of nonnegativity of the Ricci curvature, the
same type of inequalities as (1-1) and (1-2) cannot hold if the constants in these
inequalities only depend on the lower bound of the Ricci curvature.

In the case of closed manifolds without the hypothesis of nonnegativity of Ricci
curvature, we have:

Theorem 1.2 [Cheng 2013]. If (M, g) is a closed Riemannian manifold of dimen-
sion n ≥ 3, then

(1-3)
∫

M
(R− R)2 ≤ 4n(n−1)

(n−2)2

(
1+ nK

λ1

)∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2;

equivalently,

(1-4)
∫

M

∣∣∣∣Ric− R
n

g
∣∣∣∣2 ≤ n2

(n−2)2

[
1+ 4(n−1)K

nλ1

] ∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2,

where λ1 denotes the first nonzero eigenvalue of the Laplace operator on (M, g)
and K is a nonnegative constant such that the Ricci curvature of (M, g) satisfies
Ric≥−(n− 1)K .

Equality holds in (1-3) or (1-4) if and only if M is an Einstein manifold.

Observe that Theorem 1.1 is a particular case of Theorem 1.2 (K = 0). After
the work of De Lellis and Topping, in the case of dimension n = 3, 4, Y. Ge and
G. Wang [2012; 2011] proved that Theorem 1.1 holds under the weaker condition
of nonnegative scalar curvature. However, as pointed out in [De Lellis and Topping
2012], this is surely not possible for n ≥ 5; this can be shown using constructions
similar to the one in [De Lellis and Topping 2012, Section 3]. Also, Ge, Wang, and
Xia [Ge et al. 2013] proved the case of equalities in (1-1) and (1-2) by a different
method and generalized De Lellis and Topping’s inequalities for k-Einstein tensors
and Lovelock curvature.

On the other hand, there is a similar phenomenon in submanifold theory. In
differential geometry, a classical theorem states that a closed totally umbilical
surface in the Euclidean space R3 must be a round sphere S2 and thus its second
fundamental form A is a constant multiple of its metric. This theorem is also true
for hypersurfaces in Rn+1. It is interesting to discuss the stability of this theorem.
De Lellis and Müller [2005] obtained some L2 inequalities for closed surfaces in
R3 with universal constants. For convex hypersurfaces in Rn+1 we have:
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Theorem 1.3 [Perez 2011]. Let 6 be a smooth, closed and connected hypersurface
in Rn+1, n ≥ 2, with induced Riemannian metric g and nonnegative Ricci curvature.
Then

(1-5)
∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2 ≤ n

n−1

∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2

and, equivalently,

(1-6)
∫
6

(H − H)2 ≤ n
n−1

∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2,

where A and H = tr A denote the second fundamental form and the mean curvature
of 6, respectively, and H = (1/Voln 6)

∫
6

H. In particular, the above estimate
holds for smooth, closed hypersurfaces which are the boundary of a convex set in
Rn+1.

As pointed out in [De Lellis and Topping 2012], Perez’s theorem holds even
for closed hypersufaces with nonnegative Ricci curvature when the ambient space
is Einstein. Indeed, a slight modification of the proof of Theorem 1.3 gives the
following.

Theorem 1.4. Inequalities (1-5) and (1-6) hold under the same assumptions as in
Theorem 1.3 except that the ambient space (N n+1, g̃), n ≥ 2, is supposed to be an
Einstein manifold.

Regarding the conditions for equality in (1-5) and (1-6), we have:

Theorem 1.5 [Cheng and Zhou 2012]. Under the assumptions of Theorem 1.3,
equality holds in (1-5) or (1-6) if and only if 6 is a totally umbilical hypersurface,
that is, 6 is a distance sphere Sn in Rn+1.

We also studied the general case for hypersurfaces without a convexity hypothesis
(that is, A ≥ 0, which is equivalent to Ric≥ 0 when 6 is a closed hypersurface in
Rn+1). We mention the following result (more details in the reference given):

Theorem 1.6 [Cheng and Zhou 2012]. Let (N n+1, g̃) be an Einstein manifold,
n ≥ 2. Let 6 be a smooth, connected, oriented and closed hypersurface immersed
in N with induced metric g. Then

(1-7)
∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2 ≤ n

n−1

(
1+ K

λ1

)∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2

and, equivalently,

(1-8)
∫
6

(H − H)2 ≤ n
n−1

(
1+ nK

λ1

)∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2,
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where λ1 is the first nonzero eigenvalue of the Laplacian operator on 6, K ≥ 0 is a
nonnegative constant so that the Ricci curvature of 6 satisfies Ric≥−K .

When N n+1 is the Euclidean space Rn+1, the hyperbolic space Hn+1(−1), or the
closed hemisphere Sn+1

+ (1), equality holds in (1-7) and (1-8) if and only if 6 is a
totally umbilical hypersurface, that is, 6 is a distance sphere Sn in N n+1.

From [De Lellis and Topping 2012; Ge and Wang 2012; 2011; Ge et al. 2013;
Cheng 2013; Perez 2011; Cheng and Zhou 2012], we observe that the inequalities
mentioned above may be generalized to symmetric (2, 0) tensor fields. Applying
such unified inequalities for symmetric (2, 0) tensors, we may obtain inequalities
besides those in the papers mentioned above. For this purpose, we prove the
following.

Theorem 1.7. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2.
Let T be a symmetric (2, 0)-tensor field on M. If the divergence div T and the trace
B = tr T satisfy div T = c∇B, where c is a constant, then

(1-9) (nc− 1)2
∫

M
(B− B)2 ≤ n(n− 1)

(
1+ nK

λ1

)∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2

and, equivalently,

(1-10) (nc−1)2
∫

M

∣∣∣∣T− B
n

g
∣∣∣∣2≤[(nc−1)2+(n−1)

(
1+

nK
λ1

)]∫
M

∣∣∣∣T− B
n

g
∣∣∣∣2,

where B = (1/Vol M)
∫

M B dv denotes the average of B over M and λ1 and the
constant K ≥ 0 are as in Theorem 1.2.

Assume the Ricci curvature Ric of M is positive. If c 6= 1/n, statements (i), (ii)
and (iii) below are equivalent. If c = 1/n, then (i) and (ii) are equivalent.

(i) Equality holds in (1-9) and in (1-10).

(ii) T = (B/n)g on M.

(iii) T = (B/n)g on M.

Take K = 0 in Theorem 1.7. We obtain corresponding inequalities with universal
constants.

Theorem 1.8. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2
with nonnegative Ricci curvature. With the same notation as in Theorem 1.7, we
have

(1-11) (nc− 1)2
∫

M
(B− B)2 ≤ n(n− 1)

∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2
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and, equivalently,

(1-12) (nc− 1)2
∫

M

∣∣∣∣T − B
n

g
∣∣∣∣2 ≤ [(nc− 1)2+ 1]

∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2.

Assume the Ricci curvature Ric of M is positive. If c 6= 1/n, statements (i), (ii) and
(iii) below are equivalent. If c = 1/n, then (i) and (ii) are equivalent.

(i) Equality holds in (1-11) and (1-12).

(ii) T = (B/n)g on M.

(iii) T = (B/n)g on M.

It is a known fact that, for (Mn, g), n ≥ 2, if T = (B/n)g and div T = c∇B
with constant c 6= 1/n, then B is constant on M and thus T is a constant multiple
of its metric g (see Proposition 2.1). Theorems 1.7 and 1.8 discuss the stability
and rigidity of this fact for closed manifolds. Especially, take T = Ric, A, etc. in
Theorems 1.7 and 1.8. We obtain the corresponding inequalities mentioned before
1.7. In this paper, we obtain two other applications as follows.

First we deal with r -th mean curvatures of closed hypersurfaces in space forms.
Assume (6, g) is a connected oriented closed hypersurface immersed in a space
form with induced metric g. Associated with the second fundamental form A
of 6, we have r-th mean curvatures Hr of 6 and the Newton transformations
Pr , 0 ≤ r ≤ n, (see their definition and related notation in Section 4). Since
Reilly [1973] introduced them, there has been much work in studying high-order
r -mean curvatures (see, for instance, [Rosenberg 1993; Barbosa and Colares 1997;
Cheng and Rosenberg 2005; Alías et al. 2006]). It can be verified that if the
Newton transformations Pr satisfy Pr = (tr Pr/n)g on 6, 6 has constant r -th mean
curvature and thus Pr is a constant multiple of its metric g (see Proposition 2.1 and
Section 4). In this paper, we discuss the stability of this fact.

In addition, although it is true that a closed immersed totally umbilical hypersur-
face 6 (that is, 6 satisfies P1 = (tr P1/n)g) in Rn+1 must be a round sphere Sn ,
it is unknown, to the best of our knowledge, if it is true that a closed immersed
hypersurface 6 satisfying Pr = (tr Pr/n)g in Rn+1 must be a round sphere Sn for
r ≥ 2. When 6 is embedded, Ros [1988; 1987] showed that the round spheres
are the only closed embedded hypersurfaces with constant r-th mean curvature
in Rn+1, 2≤ r ≤ n (recall that the Alexandrov theorem says [Aleksandrov 1958]
that the round spheres are the only closed embedded hypersurfaces in Rn+1 with
constant mean curvature). Hence the round spheres are the only closed embedded
hypersurfaces in Rn+1 with Pr = (tr Pr/n)g, 2≤ r ≤ n.

In Section 4, we prove the following.
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Theorem 1.9. Let (N n+1
a , g̃) be a space form with constant sectional curvature a,

n≥ 2. Assume that6 is a smooth connected oriented closed hypersurface immersed
in N with induced metric g. Then, for 2≤ r ≤ n,

(1-13) (n− r)2
∫
6

(sr − s̄r )
2
≤ n(n− 1)

(
1+ nK

λ1

)∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2

and, equivalently,

(1-14)
∫
6

∣∣∣∣Pr −
(n−r)s̄r

n
g
∣∣∣∣2 ≤ n

[
1+ (n−1)K

λ1

] ∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2,

where sr = tr Pr = (
n
r )Hr , s̄r = (1/Vol6)

∫
6

sr dv, and λ1 and the constant K ≥ 0
are as in Theorem 1.6. Moreover:

(1) If the Ricci curvature Ric of6 is positive, these three statements are equivalent:

(i) Equality holds in (1-13) and (1-14).
(ii) Pr = ((n− r)sr/n)g holds on 6.

(iii) Pr = ((n− r)s̄r/n)g holds on 6.

(2) If 6 is embedded in the Euclidean space Rn+1 and the Ricci curvature Ric of
6 is positive, equality holds in (1-13) and (1-14) if and only if 6 is a round
sphere Sn+1 in Rn+1.

Taking K = 0 in Theorem 1.9, we obtain the following inequalities.

Theorem 1.10. Besides the same assumptions as in Theorem 1.9, assume that 6
has nonnegative Ricci curvature. Then, for 2≤ r ≤ n,

(1-15) (n− r)2
∫
6

(sr − s̄r )
2
≤ n(n− 1)

∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2

and, equivalently,

(1-16)
∫
6

∣∣∣∣Pr −
(n−r)s̄r

n
g
∣∣∣∣2 ≤ n

∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2.

Second, we consider the k-scalar curvatures of locally conformally flat closed
manifolds (see their definition in Section 5). Since they were first introduced in
[Viaclovsky 2000], k-scalar curvatures have been much studied; see, for instance,
[Guan 2002; Viaclovsky 2006]. When M is locally conformally flat, we obtain an
almost-Schur type lemma for k-scalar curvatures, k ≥ 2, as follows.

Theorem 1.11. Let (Mn, g) be an n-dimensional closed locally conformally flat
manifold, n ≥ 3. Then, for 2≤ k ≤ n, the k-scalar curvature σk(Sg) and the Newton
transformation Tk associated with the Schouten tensor Sg satisfy
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(1-17) (n− k)2
∫

M
(σk(Sg)− σ k(Sg))

2

≤ n(n− 1)
(

1+ nK
λ1

)∫
M

∣∣∣∣Tk −
(n−k)σk(Sg)

n
g
∣∣∣∣2

and, equivalently,

(1-18)
∫

M

∣∣∣∣Tk−
(n− k)σ k(Sg)

n
g
∣∣∣∣2≤ n

[
1+ (n−1)K

λ1

] ∫
M

∣∣∣∣Tk−
(n− k)σk(g)

n
g
∣∣∣∣2,

where σ k(Sg)= (1/Vol M)
∫

M σk(Sg) dv and λ1 and the constant K ≥ 0 are as in
Theorem 1.2.

If the Ricci curvature Ric of M is positive, these three statements are equivalent:

(i) Equality holds in (1-17) and (1-18).

(ii) Tk = ((n− k)σk(Sg)/n)g on M.

(iii) Tk = ((n− k)σ k(Sg)/n)g on M.

As for Theorem 1.10, taking K = 0 in Theorem 1.11, one obtains the correspond-
ing inequalities with the universal constants.

The rest of this paper is organized as follows. In Section 2, we prove Theorems
1.7 and 1.8. In Section 3, we recall the definitions of the Newton transformation
and the r-th symmetric function associated with a symmetric endomorphism of
an n-dimensional vector space. In Section 4, we prove Theorem 1.9 by applying
Theorem 1.7. In Section 5, we prove Theorem 1.11 by applying Theorem 1.7.

2. Proof of theorems on symmetric (2, 0)-tensors

First we give some notation. Assume (M, g) is an n-dimensional closed, that is,
compact and without boundary, Riemannian manifold. Let ∇ denote the Levi-Civita
connection on (M, g) and also the induced connections on tensor bundles on M .
Let T denote a symmetric (2, 0)-tensor field on M . Let tr denote the trace of
a tensor. B = tr T = T i

i = gi j Ti j denotes the trace of T . Hereafter we use the
Einstein summation convention. Denote by B = (1/Vol M)

∫
M B the average of B

over M and set T̊ = T − (B/n)g. Denote by div the divergence of a tensor field.
For T , div T = tr∇T is a (1, 0)-tensor. Under the local coordinates {xi } on M ,
div T = gi j (∇i T jk) dxk , where ∇i T jk = (∇∂i T )(∂ j , ∂k).

The following fact, already mentioned in the introduction, can be proved directly
by noting that T = (B/n)g implies div T =∇B/n.

Proposition 2.1. Assume (Mn, g), n ≥ 2, is a connected Riemannian manifold of
dimension n. If T = (B/n)g and div T = c∇B, where c 6= 1/n is a constant, then
B = const on M and T is a constant multiple of its metric g.
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The argument of Theorem 1.7 is similar to that of Theorem 1.2 (that is, [Cheng
2013, Theorem 1.2]) and, in the case of K = 0, that of Theorem 1.1 (that is,
[De Lellis and Topping 2012, Theorem 0.1]).

Proof of Theorem 1.7. Obviously, it suffices to prove the case c 6= 1/n. By the
assumption div T = c∇B,

(2-1) div T̊ = div T − div
( B

n
g
)
= div T − ∇B

n
=

nc−1
n
∇B.

Let f be the unique solution of the following Poisson equation on M :

(2-2) 1 f = B− B,
∫

M
f = 0.

By (2-1), (2-2), and Stokes’ formula,

(2-3)
∫

M
(B− B)2 =

∫
M
(B− B)1 f =−

∫
M
〈∇B,∇ f 〉

= −
n

nc− 1

∫
M
〈div T̊ ,∇ f 〉

=
n

nc− 1

∫
M
〈T̊ ,∇2 f 〉

=
n

nc− 1

∫
M
〈T̊ ,∇2 f −

1
n
(1 f )g〉

≤
n

|nc− 1|

(∫
M
|T̊|2

)1/2[∫
M
|∇

2 f −
1
n
(1 f )g|2

]1/2

=
n

|nc− 1|

(∫
M
|T̊|2

)1/2[∫
M
|∇

2 f |2−
1
n

∫
M
(1 f )2

]1/2

.

Recall the Bochner formula

1
21|∇ f |2 = |∇2 f |2+Ric(∇ f,∇ f )+〈∇ f,∇(1 f )〉,

and integrate it. By Stokes’ formula, we have

(2-4)
∫

M
|∇

2 f |2 =
∫

M
(1 f )2−

∫
M

Ric(∇ f,∇ f ).

By (2-3) and (2-4),

(2-5)
∫

M
(B−B)2≤

n
|nc−1|

(∫
M
|T̊|2

)1/2[n−1
n

∫
M
(1 f )2−

∫
M

Ric(∇ f,∇ f )
]1/2

.

By (2-2), f ≡ 0 if and only if B − B ≡ 0 on M . In this case, (1-9) and (1-10)
obviously hold. In the following we only consider that f is not identically zero.
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Since the Ricci curvature has Ric≥−(n− 1)K on M ,

(2-6)
∫

M
Ric(∇ f,∇ f )≥−(n− 1)K

∫
M
|∇ f |2.

By (2-6), (2-5) turns into

(2-7)
∫

M
(B−B)2≤ n

|nc−1|

(∫
M
|T̊ |2

)1/2[
n−1

n

∫
M
(1 f )2+(n−1)K

∫
M
|∇ f |2

]1/2

.

Since the first nonzero eigenvalue λ1 of the Laplace operator on M satisfies

λ1 = inf
{∫

M |∇ϕ|
2∫

M ϕ
2 : ϕ ∈ C∞(M) is not identically zero and

∫
M
ϕ = 0

}
and ∫

M
|∇ f |2 =−

∫
M

f1 f =−
∫

M
f (B− B)

≤

(∫
M

f 2
)1/2[∫

M
(B− B)2

]1/2

≤

(∫
M |∇ f |2

λ1

)1/2[∫
M
(B− B)2

]1/2

,

we have

(2-8)
∫

M
|∇ f |2 ≤

1
λ1

∫
M
(B− B)2.

Substitute (2-8) into (2-7) and note that K ≥ 0. We have

(2-9)
∫

M
(B− B)2

≤
n

|nc− 1|

(∫
M
|T̊|2

)1/2[n− 1
n

∫
M
(B− B)2+

(
(n− 1)K
λ1

)∫
M
(B− B)2

]1/2

=
n1/2(n− 1)1/2

|nc− 1|

(
1+

nK
λ1

)1/2[∫
M
|T̊ |2

]1/2[∫
M
(B− B)2

]1/2

,

which implies that

(2-10)
∫

M
(B− B)2 ≤ n(n−1)

(nc−1)2
(

1+ nK
λ1

) ∫
M
|T̊ |2.

Thus we have inequality (1-9):

(nc− 1)2
∫

M
(B− B)2 ≤ n(n− 1)

(
1+ nK

λ1

)∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2.
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From the identity

|T − (B/n)g|2 = |T − (B/n)g|2+ (1/n)(B− B)2,

we obtain (1-10):

(nc− 1)2
∫

M

∣∣∣∣T − B
n

g
∣∣∣∣2 ≤ [(nc− 1)2+ (n− 1)

(
1+ nK

λ1

)]∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2.

Now, assuming positivity of the Ricci curvature Ric of M , we may prove the case
of equalities in (1-9) and (1-10). Obviously, if T = (B/n)g on M , the equalities
in (1-9) and (1-10) hold. On the other hand, suppose the equality in (1-9) (or,
equivalently, (1-10)) holds. If c = 1/n, it is obvious that T = (B/n)g on M . If
c 6= 1/n, we may take K = 0. By the proof of (1-9), the equality in (1-9) holds if
and only if

(1) Ric(∇ f,∇ f )= 0 on M and

(2) T − B/ng and ∇2 f − 1/n(1 f )g are linearly dependent.

Note that Ric > 0 and (1) holds. ∇ f ≡ 0 on M must hold. Then f ≡ 0. Thus
B = B on M . By (1-9), we obtain that T = (B/n)g on M . Hence conclusions (i)
and (ii) are equivalent. Obviously (iii) implies (ii). When c 6= 1/n, if (ii) holds, by
the above argument, (ii) implies B = B on M . Thus (iii) also holds. �

Corollary 2.2. Besides the assumptions and notation of Theorem 1.7, suppose the
constant c satisfies c 6= 1/n. Then

(2-11)
∫

M
(B− B)2 ≤ C(K d2)

∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2

and

(2-12)
∫

M

∣∣∣∣T − B
n

g
∣∣∣∣2 ≤ C (K d2)

∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2,

where d denotes the diameter of M and C(K d2) and C (K d2) are constants only
depending on K d2.

Proof. When Ric ≥ −(n − 1)K , where the constant K > 0, Li and Yau [1980]
proved that the first nonzero eigenvalue λ1 has the lower bound

λ1 ≥ α =
1

(n− 1)d2 exp[1+
√

1+ 4(n− 1)2K d2]
,

where d denotes the diameter of M . So
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K
λ1
≤

K
α
= (n− 1)K d2 exp[1+

√
1+ 4(n− 1)2K d2 ].

By Theorem 1.7, we obtain inequality (2-11) with the constant

C(K d2) =
n(n− 1)
(nc− 1)2

(
1+ n(n− 1)K d2 exp[1+

√
1+ 4(n− 1)2K d2 ]

)
.

Inequality (2-11) implies (2-12). �

Remark 2.3. There are other lower estimates α of λ1 using the diameter d and
negative lower bound −(n− 1)K of the Ricci curvature (see, for example, [Kalka
et al. 1997]). Hence we may have other values of constants C(K d2) and C (K d2).

3. Newton transformations and the r-th elementary symmetric function

Let σr : R
r
→ R denote the elementary symmetric function in Rn given by

σr (x1, . . . , xn)=
∑

i1<···<ir

xi1 · · · xir , 1≤ r ≤ n.

Let V be an n-dimensional vector space and A : V→ V be a symmetric linear trans-
formation. If η1, . . . , ηn are the eigenvalues of A corresponding to the orthonormal
eigenvectors {ei }, i = 1, . . . , n, respectively, define the r-th symmetric functions
σr (A) associated with A by

(3-1)
σ0(A)= 1,

σr (A)= σr (η1, . . . , ηn), 1≤ r ≤ n.

For convenience of notation, we simply denote σr (A) by σr if there is no confusion.
The Newton transformations Pr :V→V associated with A, 0≤ r ≤n are defined by

P0 = I,

Pr =

r∑
j=0

(−1) jσr− j A j
= σr I − σr−1 A+ · · ·+ (−1)r Ar , r = 1, . . . , n.

By definition, Pr = σr I − APr−1, Pn = 0. It was proved in [Reilly 1973] that Pr

has the following basic properties:

(i) Pr (ei )=
∂σr+1

∂ηi
ei .

(ii) tr(Pr )= (n− r)σr .

(iii) tr(APr )= (r + 1)σr+1.

Clearly, each Pr corresponds to a symmetric (2, 0)-tensor on V , still denoted by Pr .
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4. High-order mean curvatures of hypersurfaces in space forms

Assume (N , g̃) is an (n+ 1)-dimensional Riemannian manifold, n ≥ 2. Suppose
(6, g) is a smooth connected oriented closed hypersurface immersed in (N , g̃) with
induced metric g. Let ν denote the outward unit normal to 6, and A = (hi j ), the
second fundamental form A : Tp6⊗s Tp6→R, defined by A(X, Y )=−〈∇̃X Y, ν〉,
where X, Y ∈ Tp6, p ∈6, and ∇̃ denotes the Levi-Civita connection of (N , g̃). A
determines an equivalent (1, 1)-tensor, called the shape operator A of

6 : Tp6→ Tp6,

given by AX = ∇̃Xν. 6 is called totally umbilical if A is a multiple of its metric
g at every point of 6, that is, A = (tr A/n)g on 6. Now we recall the definition
of r -th mean curvatures of a hypersurface, which was introduced in [Reilly 1973];
compare [Rosenberg 1993].

Let ηi , i = 1, . . . , n denote the principle curvatures of 6 at p, which are the
eigenvalues of A at p corresponding to the orthonormal eigenvectors {ei }, i =
1. . . . , n, respectively. By Section 3, we have the r -th symmetric functions σr (A)
associated with A, denoted by sr = σr (A), and the Newton transformations Pr

associated with A at p, 0≤ r ≤ n.

Definition 4.1. The r-th mean curvature Hr of 6 at p is defined by sr = (
n
r )Hr ,

0≤ r ≤ n.

For instance, H1 = s1/n = H/n (in this paper, we also call H = tr A the mean
curvature of 6, consistent with earlier papers [Perez 2011; Cheng and Zhou 2012],
among others). Hn is the Gauss–Kronecker curvature. When the ambient space N
is a space form N n+1

a with constant sectional curvature a,

Ric= (n− 1)aI + H A− A2,

R = tr Ric= n(n− 1)c+ H 2
− |A|2 = n(n− 1)a+ 2s2.

Hence H2 is, modulo a constant, the scalar curvature of 6.

Lemma 4.2 ([Reilly 1973]; cf. [Rosenberg 1993; Alías et al. 2006]). When the
ambient space is a space form N n+1

a , we have div Pr = 0, for 0≤ r ≤ n.

Proof of Theorem 1.9. By Section 3, tr Pr = (n−r)sr . Denote s̄r = (1/Vol6)
∫
6

sr .
By Lemma 4.2, div Pr = 0. Take T = Pr and B = (n− r)sr in Theorem 1.7. Then

(n− r)2
∫
6

(sr − s̄r )
2
≤ n(n− 1)

(
1+ nK

λ1

)∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2;

equivalently,∫
6

∣∣∣∣Pr −
(n−r)s̄r

n
g
∣∣∣∣2 ≤ n

(
1+ (n−1)K

λ1

)∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2,
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which are (1-13) and (1-14), respectively.
Now we prove conclusions (1) and (2) in Theorem 1.9. If the Ricci curvature

of 6 is positive, by Theorem 1.7, conclusion (1) holds and sr = s̄r is constant
on 6. If 6 is also embedded in Rn+1, by a theorem of Ros [1987] stating that a
closed embedded hypersurface in Rn+1 with constant r -th mean curvature must be
a distance sphere Sn+1, 2≤ r ≤ n, we obtain conclusion (2). �

Remark 4.3. If r = 1, P1 = s1 I − A= H I − A. P1 is equivalent to the symmetric
(2, 0)-tensor P1 = Hg− A. So (1-13) turns into

(4-1)
∫
6

(H − H)2 ≤ n
n−1

(
1+ nK

λ1

)∫
6

∣∣∣∣Hg− A− (n−1)H
n

g
∣∣∣∣2

=
n

n−1

(
1+ nK

λ1

)∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2.

In particular, if K = 0,

(4-2)
∫
6

(H − H)2 ≤ n
n−1

∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2.

Equations (4-1) and (4-2) are (1-8) and (1-6), respectively, which were proved in
[Cheng and Zhou 2012] and [Perez 2011], respectively, if6 is a closed hypersurface
immersed in an Einstein manifold. This is because div P1 = 0 even if the ambient
space is Einstein.

When r = 2, we have 2s2 = R− n(n− 1)a,

P2 = s2 I − s1 A+ s0 A2
=

R− (n− 2)(n− 1)a
2

I −Ric,

and, by direct computation,

P2−
(n− 2)s2

n
g =

R
n

I −Ric .

As a symmetric (2, 0)-tensor, P2 = (R/n)g−Ric. Hence (1-13) turns into∫
6

(s2− s̄2)
2
≤

n(n−1)
(n−2)2

(
1+ nK

λ1

)∫
6

∣∣∣∣P2−
(n−2)s2

n
g
∣∣∣∣2,

which is

(4-3)
∫
6

(R− R)2 ≤ 4n(n−1)
(n−2)2

(
1+ nK

λ1

)∫
6

∣∣∣∣Ric− R
n

g
∣∣∣∣2.

Equation (4-3) was proved in [Cheng 2013], and, in the case of K = 0, in [De Lellis
and Topping 2012].

If r = n, (1-13) is trivial.
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5. k-scalar curvature of locally conformal flat manifolds

We first recall the definition of the k-scalar curvatures of a Riemannian manifold,
introduced in [Viaclovsky 2000]. If (Mn, g) is an n-dimensional Riemannian
manifold, n ≥ 3, the Schouten tensor of M is

Sg =
1

n−2

(
Ric− 1

2(n−1)
Rg
)
.

By definition, Sg : T M→ T M is a symmetric (1, 1)-tensor field. By Section 3, we
have the symmetric k-th function σk(Sg) and the Newton transformations Tk(Sg)=

Tk associated with Sg, 1≤ k ≤ n. We call σk(Sg) the k-scalar curvatures of M

Lemma 5.1 [Viaclovsky 2000]. If (M, g) is locally conformally flat, then, for
1≤ k ≤ n, div Tk(Sg)= 0.

Because of Lemma 5.1, we can applying Theorem 1.7 to Tk(Sg) to obtain
Theorem 1.11.

Remark 5.2. When k = 1, σ1(Sg)= tr Sg = R/(2(n− 1)) and T1 = σ1(Sg)I − Sg.
As a symmetric (2, 0)-tensor, T1 =−(1/(n− 2))(Ric−Rg/2). Hence (1-17) turns
into (1-3), ∫

M
(R− R)2 ≤ 4n(n−1)

(n−2)2

(
1+ nK

λ1

)∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2,

and, in particular, if K = 0, (1-17) turns into (1-1),∫
M
(R− R)2 ≤ 4n(n−1)

(n−2)2

∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2.

Equations (1-3) and (1-1) were proved in [Cheng 2013] and [De Lellis and Topping
2012], respectively, without the hypothesis that M is locally conformally flat. The
reason is that div T1 = 0 (the contracted second Bianchi identity) holds on any
Riemannian manifold.
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ALGEBRAIC INVARIANTS, MUTATION, AND
COMMENSURABILITY OF LINK COMPLEMENTS

ERIC CHESEBRO AND JASON DEBLOIS

We construct a family of hyperbolic link complements by gluing tangles
along totally geodesic four-punctured spheres, then investigate the commen-
surability relation among its members. Those with different volume are
incommensurable, distinguished by their scissors congruence classes. Mu-
tation produces arbitrarily large finite subfamilies of nonisometric mani-
folds with the same volume and scissors congruence class. Depending on
the choice of mutation, these manifolds may be commensurable or incom-
mensurable, distinguished in the latter case by cusp parameters. All have
trace field Q(i,

√
2); some have integral traces while others do not.

1. Introduction

Manifolds are commensurable if they have a common cover, of finite degree over
each. W. P. Thurston first studied the commensurability relation among hyperbolic
knot and link complements in S3, describing commensurable and incommensurable
examples in his notes [Thurston 1979, Chapter 6]. The families of chain link
complements [Neumann and Reid 1992], two-bridge knot complements [Reid and
Walsh 2008], and certain pretzel knot complements [Macasieb and Mattman 2008]
have since been further explored. Here we construct another infinite family of
hyperbolic link complements and explore the commensurability relation among its
members.

We compute the following invariants on members of our family. For 0<PSL2(C)

the trace field of M = H3/0 is the smallest field containing the traces of elements
of 0. If each such trace is an algebraic integer we say M has integral traces. The
cusp parameters of M , used in [Thurston 1979; Neumann and Reid 1992], are
algebraic invariants of the Euclidean structures on horospherical cross sections of
the cusps of M . The Bloch invariant [Neumann and Yang 1999] is determined by a
polyhedral decomposition.
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Theorem 1. For each n ∈ N, there is a link Ln ⊂ S3 such that Mn = S3
− Ln is

hyperbolic with trace field Q(i,
√

2) and integral traces. If m 6= n then Mm and Mn

are incommensurable, distinguished by their Bloch invariants and cusp parameters.

Having integral traces is commensurability-invariant [Maclachlan and Reid 2003,
§5.2], and the trace field is a commensurability invariant of link complements
[Maclachlan and Reid 2003, Corollary 4.2.2]. Commensurable manifolds have
Q-dependent Bloch invariants and PGL2(Q)-dependent cusp parameters, but the
Mn have neither (see Proposition 4.7 and Lemma 4.18).

Figure 1 depicts L2. The gray lines there indicate the presence of 2-spheres
that each meet L2 in four points, separating it left-to-right into a tangle S in the
three-ball B3, two copies of a tangle T ⊂ S2

× I , and the mirror image S of S. For
arbitrary n ∈ N, the link Ln is constructed analogously, using S, S, and n copies of
T . We number the corresponding 2-spheres for Ln as S(i) for 0≤ i ≤ n, so that S(0)

bounds S, S(n) bounds S, and S(i) bounds a copy of T with S(i−1) for 0< i ≤ n.
We also describe the commensurability relation among the complements of

links related to the Ln by mutation along the S(i): cutting along S(i) and regluing
by an order-two mapping class that preserves S(i) ∩ Ln and acts on it as an even
permutation. With Ln projected as in Figure 1, for each i we mark the points
of S(i) ∩ Ln by 2, 3, 4, and 1, reading top to bottom, and refer to a mutation
homeomorphism of S(i) by its permutation representation.

Below, for n ∈N and I ∈ {0, 1, 2}n+1 let L I be the link obtained from Ln by the
mutation (13)(24) (respectively, (12)(34)) along S(i), for each i such that the i-th
entry of I is 1 (respectively, 2). Write MI = S3

− L I for each such I .

Theorem 2. For n ∈ N and I = (a0, . . . , an) ∈ {0, 1}n+1, MI is commensurable to
Mn . For J = (b0, . . . , bn) ∈ {0, 1}n+1, MJ is isometric to MI if and only if either
bi = ai for each i ∈ {1, . . . , n− 1} or bi = an−i for each such i .

We will show in a future paper that Theorem 2 reflects the fact that Mn has a
hidden symmetry (see, for example, [Neumann and Reid 1992]) arising from a
hidden extension of the mutation (13)(24), an extension of a lift of (13)(24) over a
finite cover of (S2

× I )− T .

T1

T2

Figure 1. The link L2.
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Here we prove Theorem 2 more directly, identifying an orbifold On jointly
covered by Mn and the MI ; see Proposition 6.4. The key advantage of this approach
is that we can also prove the isometry classification above (see Proposition 6.6) using
the fact that On is minimal in the commensurability class of Mn (Corollary 6.5).

Corollary 6.5 is proved following an idea of Goodman, Heard, and Hodgson
[Goodman et al. 2008]. The key step, for each n, is to construct a tiling Tn of H3

by convex polyhedra that is canonical in the sense of [Goodman et al. 2008, §2].
See Theorem 4. This is of independent interest, as there are few infinite families
for which canonical tilings have been identified.

The mutation (12)(34) has a very different effect than (13)(24).

Theorem 3. For n ∈ N, let Ln = {L I | I ∈ {0, 2}n+1
}. Then:

(1) For each I ∈{0, 2}n+1
−{(0, . . . , 0)}, MI has the same volume, Bloch invariant,

and trace field as Mn , but has a nonintegral trace.

(2) There is a subfamily of Ln with at least n/2 mutually incommensurable mem-
bers, distinguished by their cusp parameters.

(3) There is a subfamily of Ln with n members which all share cusp parameters.

Remarks. 1. Mutation along 4-punctured spheres preserves hyperbolic volume
[Ruberman 1987], the trace field [Neumann and Reid 1991], and the Bloch in-
variant [Neumann 2011, Theorem 2.13]. While unaware of the Bloch invariant
reference we proved our case directly; see Proposition 7.2.

2. Ln = L(0,...,0), which accounts for the gap in statement (1) of the theorem.

3. Corollaries 7.4 and 7.5 describe the subfamilies from (2) and (3) above. We
do not know the commensurability relation among members of the latter
subfamily.

Theorems 2 and 3 comprise the first study (to our knowledge) of commensurabil-
ity among an infinite family of link complements related by mutation. Mutants have
a longstanding reputation for being difficult to distinguish, although the algorithm
of [Goodman et al. 2008] can now be used to check particular examples. (For
instance, the complement of the Kinoshita–Terasaka knot, 11n42 in the knot tables,
is incommensurable with that of its mutant, the Conway knot, 11n34.)

Theorem 2 further gives some evidence counter to the following conjecture of
Reid and Walsh [2008]: the commensurability class of a hyperbolic knot comple-
ment in S3 contains at most two others. This implies in particular that any hyperbolic
knot complement is incommensurable with all but two of its (nonisometric) mutants.

We now outline the remainder of the paper. We name the tangle complements
MS

.
= B3

− S and MT
.
= S2

× I − T , and note that MT is the double of MT0

.
=

MT ∩ (S2
× [0, 1/2]) across a single boundary component. Section 2 describes

hyperbolic structures with totally geodesic boundary on MS and MT0 as identification
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spaces of the regular ideal octahedron and the right-angled ideal cuboctahedron,
respectively.

The totally geodesic boundary ∂MS is isometric to the component of ∂MT0

contained in ∂MT , and the reflective symmetry of MT ensures that its totally
geodesic boundary components are orientation-reversing isometric. In forming Mn

we glue ∂B3
− S to S2

× {0} − T by a map isotopic to an isometry, so that the
separating four-punctured spheres F (i) = S(i)− T are totally geodesic in Mn for
0≤ i ≤ n. Section 3 describes this assembly.

Because the F (i) are totally geodesic, each copy of MS and MT in Mn inherits its
structure with totally geodesic boundary from the ambient hyperbolic structure. This
in turn makes it possible to compute the commensurability invariants of Theorem 1
on the Mn . We carry this out in Section 4. Few other link complements are known to
contain a surface that is totally geodesic without some topological constraint forcing
it so; see, for example, [Maclachlan and Reid 1991; Aitchison and Rubinstein
1997]. For related results see [Menasco and Reid 1992; Adams and Schoenfeld
2005; Leininger 2006; Adams et al. 2008].

Our method of construction owes a debt to one that Adams [1985] and Neumann
and Reid used to produce families of hyperbolic 3-manifolds, gluing together
manifolds with 3-punctured sphere boundary. (However unlike the 4-punctured
sphere, a 3-punctured sphere is totally geodesic in any hyperbolic 3-manifold that
contains it [Adams 1985, Theorem 3.1].) The work of Neumann and Reid (see
[Maclachlan and Reid 2003, §5.6]) can be can be combined with an argument like
the one in Proposition 4.2 to show that for each imaginary biquadratic extension k
of Q, there are infinitely many commensurability classes of hyperbolic 3-manifolds
with trace field k.

In every hyperbolic 4-punctured sphere, each mutation determines a homeo-
morphism properly isotopic to an isometry [Ruberman 1987]. In Section 5 we
describe the isometries determined by (13)(24) and (12)(34) and the hyperbolic
structures on mutants of the Mn . We prove Theorem 2 in Section 6 and Theorem 3
in Section 7.

2. A pair of tangles

This section is devoted to describing hyperbolic structures with totally geodesic
boundary on the complements of the tangles S, in B3, and T0, in S2

× I , depicted
in Figure 2. For a manifold M with boundary, we refer by a tangle in M to a pair
(M, T ), where T is the image of a disjoint union of circles and closed intervals,
embedded in M by a map taking each circle into the interior of M and restricting
on each interval to a proper embedding.
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Figure 2. Tangles S and T0, labeled with Wirtinger generators.

We will prove there is a homeomorphism taking B3
− S to a hyperbolic manifold

with totally geodesic boundary which is an identification space of an ideal octahedron
by pairing certain faces. This was previously known, and it follows from results in
[Paoluzzi and Zimmermann 1996] upon taking a geometric limit, but we do not
know a reference for a direct proof. We also prove there is a homeomorphism taking
S2
× I −T0 to a certain identification space of the right-angled ideal cuboctahedron.

As far as we are aware, this description was not previously known.
We prove existence of homeomorphisms using faithful representations, from the

fundamental groups of tangle complements onto Kleinian groups generated by face
pairings. Our main tools drawing connections between the geometric, algebraic, and
topological objects involved are Lemma 2.1, which relates a hyperbolic 3-manifold
with totally geodesic boundary produced by pairing some faces of a right-angled
polyhedron to the Kleinian group generated by the face-pairing isometries, and
Lemma 2.6, which describes a homeomorphism from a pared manifold M and the
convex core of H3/0, where 0 is a Kleinian group isomorphic to π1(M).

In the remainder of the paper, we will let H3
= {(z, t) | z ∈ C, t ∈ (0,∞)},

the upper half-space model of hyperbolic space, equipped with the complete Rie-
mannian metric of constant sectional curvature −1. In this model, the group of
orientation-preserving isometries, PSL2(C), acts by extending its action by Möbius
transformations on the ideal boundary or sphere at infinity C∪ {∞}.

The horosphere of height t centered at ∞ is C× {t} ⊂ H3. This inherits the
Euclidean metric, scaled by 1/t , from the ambient hyperbolic metric. For v∈C×{0},
a horosphere centered at v is a Euclidean sphere in C×R centered at a point in
H3 and tangent to C×{0} at (v, 0). It is a standard fact that isometries of H3 take
horospheres to horospheres.

A hyperplane of H3 is a totally geodesic subspace of the form `×R+ for a line
`⊂C, or the intersection with H3 of a Euclidean sphere centered at a point in C×{0}.
A half-space is the closure of a component of the complement in H3 of a hyperplane,
and a polyhedron is the nonempty intersection of a collection of half-spaces with
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the property that the corresponding collection of defining hyperplanes is locally
finite. A face of a polyhedron is its intersection with one of its defining hyperplanes.
A polyhedron is right angled if its defining hyperplanes meet at right angles (if at
all) and ideal if any point at which more than two of its defining hyperplanes meet
is on the sphere at infinity. Such points are ideal vertices.

We say a polyhedron P⊂H3 is checkered if its set of faces is partitioned into
sets Si and Se of internal and external faces, respectively, so that each f ∈ Si

intersects only faces in Se and vice versa. For a face f of a checkered, right-angled
ideal polyhedron P, let H f be the geodesic hyperplane in H3 containing f and let
U f be the half-space bounded by H f that contains P. Let the expansion of P be

E(P)=
⋂
f ∈Si

U f .

The expansion E(P) is a polyhedron of infinite volume that contains P, and the
components of the frontier of P in E(P) are the external faces of P.

An internal face pairing for a checkered polyhedron P ⊂ H3 is a collection
{φ f | f ∈ Si } of isometries, such that for each f ∈ Si there exists f ′ ∈ Si with
φ f ( f )= f ′, φ f (P)∩ P= f ′, and φ f ′ = φ

−1
f . It is proper if f ′ 6= f for all f ∈ Si .

A proper internal face pairing determines a proper Isom(H3)-side-pairing of the
expansion E(P), in the sense of [Ratcliffe 1994, §10.1]. (In [Ratcliffe 1994], faces
are called sides.)

Given a proper internal face pairing {φ f } of a checkered polyhedron P, [Ratcliffe
1994, Theorem 10.1.2] implies the identification space E(P)/{φ f }, determined by
setting x ∼ φ f (x) for all f ∈Si and x ∈ f , is a hyperbolic manifold. The inclusion
P ↪→ E(P) induces an inclusion from MP

.
=P/{φ f } to E(P)/{φ f }. For each edge

e of each g ∈ Se, there is a unique f ∈ Si such that e ⊂ f ∩ g. Since f ′ = φ f ( f )
intersects a unique g′ ∈ Si along φ f (e), the internal face pairing for P determines
an edge pairing for the disjoint union of external faces of P. Thus MP

.
=P/{φ f } is

an isometrically embedded submanifold of E(P)/{φ f }, where ∂MP is the quotient
of the disjoint union of the external faces by the edge pairing induced by {φ f }.

Given an edge pair {e, e′} for ∂MP, the total angle around this edge in MP is the
sum of the dihedral angles for e and e′ in P. Therefore, if P is right angled, ∂MP

is totally geodesic.
If 0 is a Kleinian group, we refer to the convex core of H3/0 as C(0). This

is the convex submanifold of H3/0, minimal with respect to inclusion, with the
property that the inclusion-induced homomorphism π1C(0)→H3/0 is surjective.
(See [Morgan 1984] for background on Kleinian groups. The beginning of §6
therein covers convex cores.)

Lemma 2.1. Let P⊂H3 be a finite-sided, checkered right-angled ideal polyhedron,
with a proper internal face pairing {φ f | f ∈ Si }. Then 0 .

= 〈φ f | f ∈ Si 〉 is a free
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Kleinian group, and the inclusion P ↪→ H3 induces an isometry p : MP→ C(0).
If H is the hyperplane containing g ∈ Se then H → H3 induces an isometric
embedding of H/Stab0(H) to the component of ∂C(0) containing p(g).

Proof. We will continue to use some terminology and results from [Ratcliffe 1994].
With these hypotheses the inclusion P→ E(P) induces an isometric embedding
MP→ E(P)/{φ f }, and ∂MP is totally geodesic. If E(P)/{φ f } is complete as a
hyperbolic 3-manifold, then by Poincaré’s polyhedron theorem (see, for example,
[Ratcliffe 1994, Theorem 11.2.2]), 0 = 〈φ f | f ∈ Si 〉 is discrete and E(P) is a
fundamental domain for 0.

By [Ratcliffe 1994, Theorem 11.1.6], to show completeness it suffices to check
that the link of any cusp is a complete Euclidean surface. Let bvc={v0, v1, . . . , vn−1}

be an equivalence class of ideal vertices of P under the relation generated by
x ∼ φ f (x), f ∈ Si , enumerated so that for each j there exists f j ∈ Si with
φ f j (v j )= v j+1 (taken modulo n). In particular, v j is an ideal vertex of f j and also
of f ′j

.
= φ j−1( f j−1).

For each j , let B j be a horosphere centered at v j , chosen small enough that
B j∩B j ′ =∅ for j 6= j ′. Since P is right angled, B j∩P is a Euclidean rectangle for
each j . We may assume, by renumbering if necessary, that B0∩ f0 has the shortest
length of all the arcs B j ∩ f j . Then since φ0(B0)∩ f ′1 is parallel to φ0(B0)∩ f1 in
φ0(B0)∩ P, they have the same length: that of B0 ∩ f0. Since this is less than the
length of B1 ∩ f1, we have φ0(B0)⊂B1.

We may replace B1 by φ0(B0), then replace B2 with φ1(B1), and so on, yielding
a new collection of horospheres which are pairwise disjoint and have the additional
property that they are interchanged by the face pairings of P. Equivalence classes
of ideal vertices of E(P) are the same as those of P; thus this collection satisfies
the hypotheses of [Ratcliffe 1994, Theorem 11.1.4], and the link of bvc is complete.
It follows that E(P)/{φ f } is a complete hyperbolic 3-manifold.

Now by the polyhedron theorem, 0 is discrete and E(P) is a fundamental domain
for 0. It follows from a ping-pong argument that 0 is free, since the fact that P is
right angled implies that the hyperplanes containing its internal faces are mutually
disjoint. The inclusion E(P)→ H3 induces an isometry E(P)/{φ f } → H3/0, so
the inclusion P→ H3 induces an isometric embedding p : MP→ H3/0.

That p(MP)⊆ C(0) will follow from the fact that P is contained in the convex
hull of the limit set Hull(0) of 0, since this is well known to be the universal cover
of C(0). Fixed points of parabolic elements of 0 lie in Hull(0), so since P is the
convex hull of its ideal vertices we show that it is in Hull(0) by observing that
each such vertex is a parabolic fixed point of 0. Indeed, if {v0, v1, . . . , vn−1} is an
equivalence class of ideal vertices enumerated as we described above, then v0 is
fixed by φ fn−1 ◦ · · · ◦φ f1 ◦φ f0 ∈ 0.
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Since p(MP) has totally geodesic boundary it is convex (see [Canary et al. 2006,
Corollary I.1.3.7]). Thus if p(MP) carries π1(H

3/0) then C(0)⊆ p(MP). To show
this we use the nearest-point retraction r : E(P)→P to produce a homeomorphism
MP ∪∂MP (∂MP × [0,∞))→ H3/0 that restricts to p on MP. The closure of
each component of E(P) − P intersects P in a unique g ∈ Se, and the map
x 7→ (r(x), d(x, r(x))) determines a homeomorphism to g×[0,∞). The inverses
of these homeomorphisms, taken over the disjoint union of all g ∈ Se, combine to
induce the map in question.

The two paragraphs above combine to prove that C(0)= p(MP). In particular,
C(0) has totally geodesic boundary, so its preimage in H3 under the universal
cover is a disjoint union of geodesic planes. Since p takes g ∈ Se to ∂C(0), the
hyperplane H containing g is a component of the preimage of ∂C(0). The final
claim of the lemma follows. �

Corollary 2.2. Let P1 be the regular ideal octahedron in H3, embedded as indicated
in Figure 3, and checkered by declaring the face A to be external. The collection
{s±1, t±1

} is an internal face pairing for P1, where

s=

(
1 0
−1 1

)
and t=

(
2i 2− i
i 1− i

)
.

Let MS =P1/{s
±1, t±1

}, and let 0S = 〈s, t〉. Then the inclusion P1→H3 induces
an isometry pS : MS→ C(0S).

Proof. With the indicated embedding, P1 is a tile of the PSL2(O1)-invariant tessella-
tion T1 constructed in [Hatcher 1983]. Here O1 = Z[i] is the ring of integers of the

BX4
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��	
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Figure 3. The regular ideal octahedron P1, and its expansion E(P1).
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Figure 4. The right-angled ideal cuboctahedron P2, and E(P2).

field Q(i). In particular, the face A shown on the left in Figure 3 has ideal vertices
0, 1, and∞, and all other ideal vertices of P1 have positive imaginary part.

Since A is external, the faces X1, X2, X3, and X4 of P1 indicated on the left in
Figure 3 are internal. Direct computation reveals that s takes X1 to X2, fixing the
ideal vertex they share, and t takes X3 to X4 so that the vertex they share goes to
the vertex shared by X4 and X2. Hence {s±1, t±1

} is an internal face pairing for P1.
The corollary now follows from Lemma 2.1. �

The external faces of P1 triangulate ∂MS , and their images under pS determine
a triangulation of ∂C(0S), which we will denote by 1S .

Corollary 2.3. Let P2 be the right-angled ideal cuboctahedron in H3, embedded
as indicated in Figure 4, and checkered by declaring triangular faces external. The
collection {f±1, g±1, h±1

} is an internal face pairing for P2, where

f =

(
1 0
−1 1

)
, g =

(
−1+i

√
2 1−2i

√
2

−2 3−i
√

2

)
, h=

(
2i
√

2 −3−i
√

2
−3+i

√
2 −3i

√
2

)
.

Let MT0 = P2/{f
±1, g±1, h±1

}, and let 0T0 = 〈f, g, h〉. The inclusion P2 → H3

induces an isometry pT0 : MT0 → C(0T0).

Proof. With the indicated embedding, P2 is a tile of the PSL2(O2)-invariant tes-
sellation T2 of H3 defined in [Hatcher 1983], where O2 = Z[i

√
2] is the ring of

integers of Q(i
√

2). In particular, the face C labeled in the figure has ideal vertices
0, 1, and∞.

Label the internal faces Yi as indicated on the left in Figure 4, and label the
square face opposite Yi as Y ′i . Direct computation reveals that f takes Y2 to Y1,
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fixing the ideal vertex they share, g takes Y3 to Y ′1, fixing the ideal vertex they
share, and h takes Y ′2 to Y ′3, taking the vertex they share to the opposite vertex on Y ′3.
Hence {f±1, g±1, h±1

} is an internal face pairing for P2. The corollary now follows
from Lemma 2.1. �

The external faces of P2 triangulate ∂MT0 . This has two components that we
will call ∂+MT0 and ∂−MT0 , with the latter triangulated by the letter-labeled faces
of Figure 4. Let ∂±C(0T0)= pT0(∂±MT0) and let 1±T0

refer to the triangulation for
∂±C(0T0) determined by the images under pT0 of the external faces of P2.

In the remainder of the paper, if g and h are elements of a group and G is a
subgroup, we let gh denote the conjugate of g by h, hgh−1, and Gh

= hGh−1. We
describe parabolic isometries p1, p2, and p3 which lie in 0S ∩0T0 :

p1 = s−1
= f−1

=

(
1 0
1 1

)
,

p2 = stst−2
= fg−1f−1h−1g =

(
−1 5

0 −1

)
,

p3 = (s
−1)tst = (g−1)g

−1f−1h
=

(
−14 25
−9 16

)
.

Since these are in PSL2(R), they stabilize the hyperplane H with boundary R∪{∞}.

Lemma 2.4. The polygon F of Figure 5 is a fundamental domain for the action of
3
.
= 〈p1, p2, p3〉< PSL2(R) on H, and F (0) =H/3 is a 4-punctured sphere. Also:

(1) 3= Stab0S (H)= Stab0T0
(H),

(2) the inclusion H ↪→ H3 induces an isometry ι(0)− : F (0) → ∂C(0S) and an
isometry ι(0)+ : F (0)→ ∂−C(0T0), and

(3) the triangulation of F pictured in Figure 5 projects to a triangulation 1F of
F (0) taken by ι(0)− and ι(0)+ , respectively, to 1S and 1−T0

.

Proof. With P1 and P2 embedded as prescribed in Figures 3 and 4, respectively,
their faces A and C coincide and lie in H as described in Figure 5. As noted in
the proofs of Corollaries 2.2 and 2.3, 0S-translates of P1 lie in the tessellation
T1 described in [Hatcher 1983], and 0T0-translates of P2 lie in T2. The Farey
tessellation is T1 ∩H = T2 ∩H, so this contains any 0S-translate of any face of
P1 and any 0T0-translate of any face of P2.

Let A′ be the external face of P1 which shares the ideal vertex 0 with A, and let
B ′ be the external face which shares the vertex∞ with A and 1+ i with B. Since t

takes X3 to X4, with the edge X3 ∩ B ′ taken to X4 ∩ A, it follows that t(B ′) lies in
H, abutting A along the geodesic between 1 and∞. Since t(B ′) is a Farey triangle
it has its other ideal vertex at 2. It follows similarly that g−1(E)= t(B ′) (where E
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(fg)−1(D)

A = C

s= f

= tst−2
g−1f−1h−1g

ts(B)=

(s−1)tst = (g−1)g
−1f−1h

Figure 5. A triangulated fundamental domain F for the action of
3 on H, and side pairings.

is as labeled in Figure 4), that ts(B)= (fg)−1(D), as indicated in Figure 5, and that
tst(A′)= g−1f−1h(F) has vertices at 3/2, 2, and 5/3.

Combinatorial considerations or direct calculation establish that s= f, tst−2
=

g−1f−1h−1g, and (s−1)tst = (g−1)g
−1f−1h, and that each stabilizes H and pairs edges

of F as indicated in Figure 5. By inspection the quotient is a 4-punctured sphere
F (0). By the polyhedron theorem F is a fundamental domain for the group that
they generate, which acts on H with quotient F (0). Since p1, p2, and p3 are easily
obtained from the edge pairings above and vice versa, it follows that

3= 〈s, tst−2, (s−1)tst〉 = 〈f, g−1f−1h−1g, (g−1)g
−1f−1h
〉.

Therefore F is a fundamental domain for 3, and H/3= F (0).
It is easy to see from its combinatorics that ∂MS is a four-punctured sphere,

as is the component of ∂MT0 containing C . Thus by Corollaries 2.2 and 2.3 the
same holds true for ∂C(0S) and the component of ∂C(0T0) containing the image
of C . Lemma 2.1 implies that ∂C(0S) is the image of H/Stab0S (H) under the
inclusion-induced map. Since it is clear from the above that 3< Stab0S (H), and
since H/3 is itself a four-punctured sphere, the conclusions of assertions (1) and (2)
above follow for 0S . A similar argument implies the same for 0T0 . The conclusions
of (3) follow from the description above of the triangulation of F. �

Remarks. 1. The parabolic elements of 3 fixing the ideal points 0,∞, and 5/3
of H are p1, p2, and p3. The final conjugacy class of parabolic elements in 3
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is represented by

p4 = p1p2p
−1
3 = (stst

−2)tst
−1
=

(
29 −45
20 −31

)
.

Evidently p1 and p3 are conjugate in 0S , as are p2 and p4. The combinatorial
considerations of Lemma 4.13 will show that C(0S) has exactly two cusps,
each of rank one, so every parabolic element of 0S is conjugate to one of p1

or p2.

2. There exists k ∈ PSL2(C), with order 2, which normalizes 0T0 :

(1) k=

(
i i−
√

2
0 −i

)
.

The action of k on the generators f, g, and h is given by

fk = gfg
−1
, gk = ffg

−1
, and hk = (h−1)fg

−1
.

If 0 is a Kleinian group and u ∈ Isom(H3), we write φu : C(0)→ C(0u) for
the restriction to C(0) of the isometry H3/0→ H3/0u induced by u. Since k

normalizes 0T0 , φk : C(0T0)→ C(0T0) is an orientation-preserving involution. The
elements pki , i ∈ {1, 2, 3}, all preserve the geodesic hyperplane k(H), which lies
over the line R− i

√
2 and contains an external face of P2 projecting to ∂+C(0T0).

The lemma below follows and, together with Lemma 2.4, completely describes
∂C(0T0).

Lemma 2.5. 3k
=Stab0T (k(H)), and the inclusion k(H)→H3 induces an isometry

from F ′ .= k(H)/3k to ∂+C(0T0).

It is easy to see that pk1 is conjugate in 0T0 to p3 and that pk2 = p−1
2 . The

combinatorial considerations of Lemma 4.14 will imply that MT0 has four cusps.
Hence, by Lemma 2.5, each of the cusps of C(0T0) joins ∂−C(0T0) to ∂+C(0T0),
and each parabolic in 0T0 is conjugate to exactly one pi , i ∈ {1, 2, 3, 4}.

Our second main tool in this section is Lemma 2.6. We refer to [Morgan 1984,
Definition 4.8] for the definition of a pared manifold.

Lemma 2.6. Let (M, P) be a pared manifold, and suppose that ρ : π1 M→ 0 <

PSL2(C) is a faithful representation onto a non-Fuchsian geometrically finite
Kleinian group 0, where C(0) has totally geodesic boundary. If ρ determines
a one-to-one correspondence between conjugacy classes of subgroups of π1(M)
corresponding to components of P and conjugacy classes of maximal parabolic
subgroups of 0, then ρ is induced by a homeomorphism of M − P to C(0).

This is well known to experts in Kleinian groups, but we do not know of a
reference for a written proof. It seems worth writing down as it may fail if C(0)
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does not have totally geodesic boundary (see [Canary and McCullough 2004] for a
thorough exploration of this phenomenon). The proof follows easily from results
in [Canary and McCullough 2004], for example, but requires introduction of the
characteristic submanifold machinery. Since this falls outside the scope of the rest
of the paper, we defer the proof to the Appendix.

Let (B3, S) be the tangle pictured on the left in Figure 2. Take a base point for
π1(B3

− S) on ∂(B3
− S) high above the projection plane, and let its Wirtinger

generators correspond in the usual way to labeled arcs of the diagram.

Proposition 2.7. There is a homeomorphism fS : B3
− S→ C(0S), such that

fS∗ : π1(B3
− S)→ 0S

is given by fS∗(a)= p−1
1 , fS∗(e)= p2, and fS∗(v)= p−1

3 .

Proof. Reducing a standard Wirtinger presentation for π1(B3
− S), we obtain

〈a, w, e | ewe−1a = awaw−1
〉 = 〈a, w, e | w(e−1aw)= (e−1aw)a〉.

Thus, taking b = e−1aw, one finds that π1(B3
− S) is freely generated by a and b.

By Lemma 2.1 and Corollary 2.2, 0S is free on the generators s and t. Hence,
the map fS∗ : π1(B3

− S) −→ 0S given by a 7→ s and b 7→ t is an isomorphism.
Notice that the subgroup of π1(B3

− S) corresponding to the 4-punctured sphere
∂B3
− ∂S is freely generated by a, v, and e. It is easily checked that

fS∗(v)=

(
16 −25

9 −14

)
= p−1

3 and fS∗(e) =
(
−1 5

0 −1

)
= p2.

The map fS∗ takes π1(∂B3
− S) isomorphically to 3. Since a, v, and e generate

π1(∂B3
−S) and their images in 0S generate3, Since any meridian of S is conjugate

in π1(B3
−S) to either a or e, and these are taken to p1 and p2, respectively, meridians

are taken to parabolic elements of 0S .
Now let N (S) be a small open tubular neighborhood of S in B3. Then B3

−N (S)
is a compact manifold with genus-2 boundary, and the pair (B3

− N (S), ∂N (S))
is a pared manifold. The proposition follows from Lemma 2.6, after noting that
(B3
− N (S))− ∂N (S) is homeomorphic to B3

− S. �

Let (S2
× I, T0) be the tangle pictured on the right side of Figure 2, where I is

oriented so that ∂−T0
.
= T0 ∩ S2

× {0} contains the endpoints labeled a, u, and v.
Take a base point for π1(S2

× I − T0) on S2
×{0} high above the projection plane

and let Wirtinger generators correspond to the labeled arcs of Figure 2.
The next proposition is the analog of Proposition 2.7 for T0.

Proposition 2.8. There is a homeomorphism fT0 : S2
× I − T0 −→ C(0T0) such

that
fT0∗ : π1(S2

× I − T0)−→ 0T0
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is given by fT0∗(a)= p−1
1 , fT0∗(e)= p2, and fT0∗(v)= p−1

3 .

Proof. (S2
× I − N (T0)) may be isotoped in S3 to a standard embedding of

a genus-3 handlebody. Thus π1(S2
× I − T0) is free on three generators. We

claim that the group is generated by a, e, and t . This follows after noticing that
v= y−1xy, where y = (ta)−1a(ta) and x = (azq)−1t (azq)= (ate)−1t (ate). (The
relation zq = te used in the last equality comes from the relationship between four
peripheral elements in a 4-punctured sphere group.) So far, we have established
that v, y ∈ 〈a, e, t〉. Now using the other punctured sphere relation, we have
u = a−1ev ∈ 〈a, e, t〉. Finally, z = yuy−1 and q = z−1te. Therefore a, e, and t
generate the group as claimed.

By Lemma 2.1 and Corollary 2.3, 0T0 is freely generated by f, g, and h. For
our purposes, a more convenient free generating set for 0T0 is {f, fgf−1, p2}. Note
that all of these generators are parabolic and peripheral, and conjugation by k

interchanges the first two and takes the third to its inverse. The representation of
π1(S2

×[0, 1/2] − T0) given by

a 7→ f, t 7→ fgf−1, e 7→ p2

is clearly faithful, and it is easily checked that v maps to p−1
3 . Because u = a−1ev

is mapped to p1p2p
−1
3 = p4, we conclude that meridians are mapped to parabolic

elements and that π1(S2
×{0}− ∂−T0) is taken to 3. The result now follows from

Lemma 2.6 as previously. �

There is a visible involution of S2
× I − T0 which is a rotation by π around a

circle in S2
×{1/2}. This involution exchanges the two boundary components. With

a proper choice of path between our basepoint and its image under this involution,
the corresponding action on π1(S2

× I − T0) is given by

a↔ t, e↔ e−1.

This commutes with the action of the element k defined in (1) on 0T0 , under the
representation fT0∗. Hence this involution is isotopic to the pullback of φk by fT0 .

Recall from Lemma 2.4 that 3= Stab0T0
(H), and from Lemma 2.5 that 3k

=

Stab0T0
(k(H)). By its definition in Proposition 2.8, it is clear that fT0∗ maps

π1(S2
×{0}− ∂−T0) isomorphically to 3. Since H projects to ∂−C(0T0), using the

involution equivariance of fT0 we obtain the corollary below.

Corollary 2.9. Let ∂+T0 = T0∩ S2
×{1}. Then fT0(S

2
×{0}− ∂−T0)= ∂−C(0T0),

and fT0(S
2
×{1}− ∂+T0)= ∂+C(0T0).

3. Combination

In this section, we will describe how to join copies of the tangles S and T0 to
construct links in S3 whose complements are uniformized by combinations of
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0S and 0T0 . The main tool in this section is a corollary of Maskit’s combination
theorem for free products with amalgamation [Maskit 1971]. Denote the convex
hull of the limit set for a Kleinian group 0 by Hull(0).

Definition 3.1. Kleinian groups 00 and 01 meet cute along a hyperplane K⊂ H3

if K= Hull(00)∩Hull(01) and Stab00(K)= Stab01(K).

The fact below follows easily from this definition, and accounts for its utility.

Fact. If 00 and 01 meet cute along K then Stab00(K) = 00 ∩ 01 = Stab01(K).
Furthermore, K divides H3 into B0 and B1 such that for i ∈ {0, 1}, if gi ∈ 0i

satisfies gi (B1−i )∩B1−i 6=∅, then gi ∈ 00 ∩01.

In general, if 2 is a subgroup of 0, the limit set of 2 is contained in that of 0,
and so the covering map H3/2→H3/0 maps C(2) into C(0)— we will call this
restriction the natural map C(2)→C(0). When 00 and 01 meet cute along K then
the natural map C(00 ∩01)→ C(0i ) restricts to an embedding of the 2-orbifold
K/(00 ∩01).

The lemma below is a geometric combination theorem for Kleinian groups which
meet cute along a hyperplane. It follows from Maskit’s combination theorem and
observations on the geometry of Kleinian groups that go back at least to J. Morgan’s
[1984] account of geometrization for Haken manifolds.

Lemma 3.2. Suppose 00 and 01 meet cute along a plane K. Let E = K/2,
where 2= 00 ∩01, and for i = 0, 1 let ιi : E→ C(0i ) be the natural embedding.
Then 〈00, 01〉 is a Kleinian group, and the inclusions 0i → 〈00, 01〉 determine an
isomorphism 00 ∗2 01→ 〈00, 01〉 as abstract groups. The natural maps C(0i )→

C(〈00, 01〉) determine an isometry C(00)∪ι1ι−1
0

C(01)→ C(〈00, 01〉).

In using Lemma 3.2, we often write C(00)∪E C(01) when the maps ιi are clear.

Proof. We will use Theorem 8.2 of [Morgan 1984], a version of Maskit’s combina-
tion theorem. Its hypotheses are satisfied by any 00 and 01 that meet cute along a
hyperplane K, as a consequence of the Fact above; the group-theoretic conclusions
follow. That the desired isometry exists follows from the remarks given below
Theorem 8.2 of [Morgan 1984], which have since been considerably fleshed out in
[Anderson and Canary 2001].

The function f̃ : H3
→ [0, 1] described in [Morgan 1984] is the harmonic

extension of the characteristic function of B0: f̃ (y) is the visual measure of the set
of vectors pointing from y toward B0. See [Anderson and Canary 2001, §2] for a
precise analytic definition. It is not hard to see that here K= f̃ −1

( 1
2

)
(see [Anderson

and Canary 2001, Proposition 2.2]), whence our E is Morgan’s X = f −1
( 1

2

)
.

Our ιi is Morgan’s pi , mapping to Ni = H3/0i for i ∈ {0, 1}. For each i , ιi (E)
is a convex core boundary component of Ni , so p0(N−) ∩ C(N0) = p0(E) and
p1(N+)∩C(N1)= p1(E), and the result follows from the equation at the bottom
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of [Morgan 1984, p. 76]. See [Anderson and Canary 2001, Proposition 5.2 and
remarks after 5.3] for related results. �

We first apply Lemma 3.2 to join C(0T0) to a copy of itself across ∂+C(0T0).
Recall from the discussion above Lemma 2.4 that we have defined H to be the
geodesic hyperplane of H3 with ideal boundary R ∪ {∞}. Let r ∈ Isom(H3) be
the reflection through H. This acts on C∪ {∞} by complex conjugation; thus if
q ∈ 0 < PSL2(C), then qr = q̄, where q̄ ∈ PSL2(C) is the element whose entries are
the conjugates of the entries of q. Hence, we let 0 denote 0r.

Lemma 3.3. Define

c=

(
1 i
√

2
0 1

)
.

Then 0T
.
=〈0T0, 0

c−2

T0
〉 is a Kleinian group, and there is an inclusion-induced isomor-

phism 0T0∗3k0c−2

T0
→0T and an isometry C(0T0)∪F ′C(0c−2

T0
)→C(0T ) determined

by the natural maps. Furthermore, c−2r normalizes 0T , and φc−2r : C(0T )→C(0T )

is an orientation-reversing involution fixing F ′ and exchanging its complementary
components.

Proof. Recall from Lemmas 2.4 and 2.5 that 3 and 3k are the stabilizers in 0T0

of the geodesic planes H and k(H), respectively, and that these planes project to
the components of ∂C(0T0). It follows that H and k(H) are components of the
boundary of Hull(0T0), so Hull(0T0) is contained in the region between them.

With c as defined in the statement of the lemma, note that c(H)= (R+i
√

2)×R+

and that ck(H)=H. Since Hull(0c
T0
) has boundary components c(H) and ck(H)=H,

and 3ck
= Stab0c

T0
(H) is invariant under conjugation by r, 0c

T0
and 0c

T0
meet cute

along H. Applying Lemma 3.2, we obtain an isomorphism 0c
T0
∗3ck0c

T0
→〈0c

T0
, 0c

T0
〉

and an isometry

C(0c
T0
)∪φc(F ′) C(0c

T0
)→ C(〈0c

T0
, 0c

T0
〉)

induced by the natural maps. It is clear that r normalizes 〈0c
T0
, 0c

T0
〉, exchanging

amalgamands, hence φr acts as an orientation-reversing involution of C(〈0c
T0
, 0c

T0
〉),

fixing F ′ and exchanging C(0c
T0
) with C(0c

T0
).

Observe that c̄= c−1. It follows that 0c
T0
= 0c−1

T0
, and hence 0T = 〈0

c
T0
, 0c

T0
〉
c−1

.
Conjugating the groups of the paragraph above by c−1, we obtain an inclusion-
induced isomorphism 0T0 ∗3k 0c−2

T0
→ 0T , and an isometry

C(0T0)∪F ′ C(0c−2

T0
)→ C(0T )

induced by the natural maps. Furthermore, c−1rc= c−2r normalizes 0T and induces
an orientation-reversing involution φc−2r, fixing F ′ and exchanging its sides. �
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If M is an oriented manifold with a boundary component F , the double of M
across F is M ∪F M , where M is a copy of M with orientation reversed, and the
gluing map F→ F ⊂ M is the identity map.

Corollary 3.4. There is an isometry pT : MT → C(0T ), where MT is the double
of MT0 across F ′, that is the natural map following pT0 from Corollary 2.3 on MT0 .

The advantage that 0T has over 0T0 for our purposes is that the components
of ∂C(0T ) are naturally orientation-reversing isometric, since they are exchanged
by φc−2r. Recall from Lemma 2.4 that 3 = Stab0T0

(H); thus by Lemma 3.3,
3 = Stab0T (H). We will again refer by i (0)+ to the natural map F (0) → C(0T ).
Then the lemma below follows from Lemma 3.3.

Lemma 3.5. Let F (1) = c−2H/3c−2
, and let φc−2 : F (0)→ F (1) and ι(1)− : F (1)→

C(0T ) be the natural maps. Then ∂C(0T )= ∂−C(0T )t∂+C(0T ), where ∂−C(0T )
.
= ι

(0)
+ (F

(0)) and ∂+C(0T )
.
= ι

(1)
− (F

(1)), and ι(1)− φc−2 = φc−2rι
(0)
+ .

C(0T ) is a geometric model for the double of (S2
× I, T0) across (S2

×{1}, ∂+T0).
Note that the double of S2

× I across S2
×{1} is again homeomorphic to S2

× I ,
by a map taking (p, t) ∈ S2

× I to (p, t/2) and (p, t) ∈ S2× I to (p, 1− t/2).

Definition 3.6. Let (S2
× I, T ) be the double of (S2

× I, T0) across (S2
×{1}, ∂+T0).

We will identify (S2
× I, T0)⊂ (S2

× I, T ) with its image under the map discussed
above, so that T0 = T ∩ S2

× [0, 1/2]. In particular, we have ∂−T = ∂−T0 =

T ∩ S2
×{0} and ∂+T0 = T ∩ S2

×{1/2}, and we will take ∂+T = T ∩ S2
×{1}.

The tangle (S2
× I, T ) is pictured in Figure 6, with T0 ⊂ T visible to the left

of the gray vertical line representing S2
× {1/2}. There is a mirror symmetry of

(S2
× I, T ), visible in the figure as reflection through the gray vertical line:

rT : (S2
× I, T )→ (S2

× I, T )

given by rT (p, x)= (p, 1− x), hence fixing (S2
×{1/2}, ∂+T0).

e

y

t

q

z

a

v

u

Figure 6. The tangle T ⊂ S2
× I with labeled Wirtinger generators

for T0.
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Proposition 3.7. There is a homeomorphism fT : S2
× I − T → C(0T ), which

restricts on S2
× [0, 1/2] − T0 to fT0 followed by the natural map, such that the

following diagram commutes:

S2
× I − T
rT
��

fT // C(0T )

φ
c−2r��

S2
× I − T

fT // C(0T ).

Furthermore, fT takes S2
×{0}−∂−T to ∂−C(0T ) and S2

×{1}−∂+T to ∂+C(0T ).

Proof. We define fT using the properties described in the statement of the proposi-
tion. Namely, we first require fT to restrict on S2

×[0, 1/2]− T0 to the homeomor-
phism fT0 defined in Proposition 2.8, followed by the natural map C(0T0)→C(0T ).
For x ∈ S2

×[1/2, 1]−T , we define fT (x)=φc−2r fT rT (x). The resulting map is well
defined, since rT fixes S2

×{1/2}−∂+T0 and φc−2r fixes F ′. It is a homeomorphism,
since rT , fT0 , and φc−2r are. By Corollary 2.9, fT0 takes S2

×{0}−∂−T0 to ∂−C(0T 0);
it therefore follows from the definitions and Lemma 3.5 that fT (S2

×{0}−∂−T )=
∂−C(0T ). The conclusion thus follows from the reflection equivariance of fT . �

Definitions 3.8. (1) Let j : (∂B3, ∂S)→ (S2
×{0}, ∂−T ) be the homeomorphism

such that (B3, S)∪ j (S2
× I, T ) is the tangle pictured in Figure 7.

(2) Define h : S2
×R→ S2

×R by h(p, x)= (p, x + 1), and with T ⊂ S2
× I ⊂

S2
×R, let T (i)

= hi−1(T ) (so T (1)
= T in particular). For n ∈ N, define

(S3, Ln)= (B3, S)∪ j

(
S2
×[0, n],

n⋃
i=1

T (i)
)
∪ jn (B

3, S).

For i ∈ {0, 1, . . . , n}, let S(i) be the image in (S3, Ln) of S2
×{i} ⊂ S2

×[0, n].
Above, (B3, S)= rS(B3, S), where rS is the reflective involution of S3 fixing
the boundary of an embedding of B3 and exchanging its sides, and jn =
rS j−1rT h−n+1

: (S(n), ∂+T (n))−→ (∂B3, ∂S).

(3) Using Figure 6 and taking T ⊂ S2
× I ⊂ S2

×R, label the points of S(0)∩Ln =

S2
× {0} ∩ T by 2, 3, 4, and 1 top-to-bottom, so that, for example, 2 is the

terminal point of the tangle string labeled e and 1 is the initial point of the
string labeled a. Label each point of S(i) ∩ Ln by its image under h−i .

Remark. With Wirtinger generators for π1(B3
− S) and π1(S2

× I −T ) as labeled
in Figures 2 and 6, we have j∗(a)= a, j∗(u)= u, and j∗(v)= v.

We now construct a geometric model of S3
− Ln .

Definitions 3.9. (1) For i ≥ 0, let 3(i) =3c−2i
and F (i) = c−2i (H)/3(i).

(2) For i ≥ 1, let 0(i)T = 0
c−2(i−1)

T , and define φi = φc−2(i−1) : C(0T )→ C(0(i)T ).
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Figure 7. S ∪ T .

The definitions above of F (0) and F (1) above agree with our previous definitions.
Also, 0(1)T = 0T , and since 0(i)T = c−2(i−1)0T c

2(i−1), Lemma 3.5 implies that

3(i−1)
= Stab

0
(i)
T
(c−2(i−1)(H)) and 3(i) = Stab

0
(i)
T
(c−2i (H)),

and the resulting natural maps ι(i−1)
+ : F (i−1)

→ C(0(i)T ) and ι(i)− : F (i)→ C(0(i)T )

map to the components of its totally geodesic boundary.

Proposition 3.10. For n ∈N, define Mn=C(0S)∪C(0(1)T )∪· · ·∪C(0(n)T )∪C(0S),
using gluing maps defined as follows:

ι
(0)
+ (ι

(0)
− )
−1
: ∂C(0S)→ ∂−C(0(1)T ),

ι
(i)
+ (ι

(i)
− )
−1
: ∂+C(0(i)T )→ ∂−C(0(i+1)

T ) for 1≤ i < n,

φrι
(0)
− φ
−1
n+1(ι

(n)
− )
−1
: ∂+C(0(n)T )→ ∂C(0S).

There is a homeomorphism fn : S3
− Ln→ Mn which restricts on B3

− S to fS , on
S2
×[i − 1, i] − T (i) to φi fT h−i+1 for 1≤ i ≤ n, and on B3

− S to φr fSrS .

Proof. We will use the description of fn above as its definition. Then, by Proposi-
tion 2.7 and the definitions, fn restricts on B3

− S and B3
− S to homeomorphisms

to C(0S) and C(0S), respectively. By Proposition 3.7 and definitions, for each
i between 1 and n it restricts on S2

× [i − 1, i] − T (i) to a homeomorphism to
C(0(i)T ). Thus in order to show that fn is a homeomorphism, we must only show
that it is well defined on the spheres S(i) − {1, 2, 3, 4} that separate these tangle
complements.

We first check the case i = 1, showing that fn is well defined on S(0)−{1, 2, 3, 4}.
Since T (1)

= T and 0(1)T = 0T , and h0 and φ1 are each the identity map, in this
case we must only show that on ∂B3

− ∂S, fT ◦ j = ι(0)+ (ι
(0)
− )
−1
◦ fS .

By their definitions above, fS and fT ◦ j induce the same isomorphism from
π1(∂B3

− ∂S) to 3 = 0S ∩ 0T . Recall from Lemma 2.4 and the remarks above
Lemma 3.5 that the ι(0)± are induced by the inclusions of3 into 0S and 0T . Therefore
at the level of fundamental group, (ι(0)+ (ι

(0)
− )
−1
◦ fS)∗ = ( fT ◦ j)∗. Since any

two homeomorphisms between 4-punctured spheres that induce the same map on
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fundamental groups are properly isotopic, we may isotope j so that fS and fT j
agree on S(0). The conclusion thus follows in this case.

For 1≤ i < n, we may use the fact that 0(i)T and 0(i+1)
T are conjugates of 0T to

obtain the following model descriptions for ι(i)
+

and ι(i)
−

:

(2) ι
(i)
+ = φi+1ι

(0)
+ φ
−1
i+1, ι

(i)
− = φi ι

(1)
− φ
−1
i .

Here ι(0)+ : F (0) → ∂−C(0T ) and ι(1)− : F (1) → ∂+C(0T ) are the natural maps of
Lemma 3.5. Using the reflection-invariance property described there, we thus obtain

(3) ι
(i)
+ (ι

(i)
− )
−1
= φi+1ι

(0)
+ (ι

(1)
− φ2)

−1φ−1
i = φi+1φ

−1
c−2r
φ−1

i .

Then, by the reflection-equivariance property of fT from Proposition 3.7, we have

ι
(i)
+ (ι

(i)
− )
−1
◦φi fT h−i+1

= φi+1φ
−1
c−2r

fT h−i+1
= φi+1 fT rT h−i+1.

It follows directly from the definitions that rT h−i+1
= h−i on S(i), whence fn is

well defined on S(i)−{1, 2, 3, 4} for 1≤ i < n.
To show fn is well defined on S(n) requires another definition chase, this time to

check
φr fSrS ◦ jn = φrι

(0)
− φ
−1
n+1(ι

(n)
− )
−1
◦φn fT h−n+1.

By Definitions 3.8(2), jn = rS j−1rT h−n+1; therefore, simplifying the left-hand side
above yields φr fS j−1rT h−n+1. On the other hand, using the model description
of ι(n)− from (2), the right-hand side above simplifies to φrι

(0)
− φ
−1
2 (ι

(1)
− )
−1 fT h−n+1.

The reflection-invariance property of Lemma 3.5 and an appeal to the case i = 0
establish the desired equation. �

Corollary 3.11. For 0 ≤ i < n, refer again by F (i) to the image of ι(i)+ (F
(i)) ⊂

C(0(i)T ) under its inclusion into Mn , and refer by F (n) to the image of ι(n)− (F
(n)).

For each i , F (i) is totally geodesic in Mn and fn(S(i)−{1, 2, 3, 4})= F (i).

This follows immediately from Proposition 3.10, since the maps ι(i)± are isometric
embeddings. The following proposition describes an algebraic model for Mn .

Proposition 3.12. For n ∈ N, define 0n = 〈0S, 0
(1)
T , . . . , 0

(n)
T , 0c−2n

S 〉. There is an
isometry Mn→H3/0n which restricts on C(0S) and each C(0(i)T ) to the natural
map, and on C(0S) to φn+1 followed by the natural map.

Proof. We first recall from Lemma 2.4 that the plane H with ideal boundary R∪{∞}

projects to ∂C(0S) under the quotient map H3
→ H3/0S , so it is a component of

∂ Hull(0S). Because the octahedron P1 is contained in Hull(0S) and all its ideal
vertices have nonnegative imaginary part, it follows that

Hull(0S)⊂ {z ∈ C | =z ≥ 0} ∪ {∞}.
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Similarly, from Lemma 3.5 and the positioning of P2 we find that

Hull(0T )⊂ {z ∈ C | 0≥ =z ≥−2
√

2} ∪ {∞}.

Then, inspecting the action of c on C∪ {∞}, we find that for each i ∈ N, any point
of Hull(0(i)T ) has imaginary part between −2(i − 1)

√
2 and −2i

√
2 for i ∈ N.

The following claim builds an inductive picture of a family of isometrically
embedded, codimension-0 submanifolds of Mn with totally geodesic boundary.

Claim. For 1 ≤ i ≤ n, define 0(i)− = 〈0S, 0
(1)
T , . . . , 0

(i)
T 〉. There is an isometry

C(0S)∪C(0(1)T )∪ · · · ∪C(0(i)T )→ C(0(i)− ), where the gluing maps for the domain
are as in Proposition 3.10, which restricts on C(0S) and each C(0( j)), j < i , to
the natural map. Furthermore:

(1) 3(i) = Stab0(i)− (c
−2n(H)), and the resulting natural map F (i) → ∂C(0(i)− )

factors as ι(i)− followed by the natural map C(0(i)T )→ C(0(i)− ).

(2) Hull(0(i)− )⊂ {z ∈ C | =z ≥−i
√

2} ∪ {∞}.

Proof of claim. We will prove the claim by induction. If it holds for some i < n,
then (1) and (2) above, together with the observations above the claim, imply that
0
(i)
− and 0(i+1)

T meet cute along c−2i (H). Then, by Lemma 3.2, the natural maps
determine an isometry C(0(i)− )∪C(0(i+1)

T )→ C(0(i+1)
− ), where by the inductive

hypothesis and the observation above Proposition 3.10, the gluing map for the
domain is ι(i)+ (ι

(i)
− )
−1 following the inverse of the natural map.

Furthermore, since C(0(i)− ) has a unique totally geodesic boundary component,
which is isometrically identified with ∂−C(0(i+1)

T ) in the isometry to C(0(i+1)
− )

described above, the unique totally geodesic boundary component of C(0(i+1)
− ) is the

isometric image of ∂+C(0(i+1)
T ). Therefore the observations above Proposition 3.10

imply that this boundary component is the image of ι(i+1)
− (F (i+1)) under the natural

map. Assertion (1) of the claim thus follows for 0(i+1)
− . It follows that Hull(0(i+1)

− )

is entirely on one side or the other of the boundary at infinity of c−2(i+1)(H). Since
0
(i+1)
T < 0

(i+1)
− , assertion (2) now follows.

By our definition of “natural map” above Lemma 3.2, the composition of the
natural map C(0( j)

T )→C(0(i)− ) with the natural map C(0(i)− )→C(0(i+1)
− ) is itself

natural, for j ≤ i . Hence if the claim holds for 0(i)− , i < n, it holds for 0(i+1)
− . The

claim will therefore hold by induction if it is true in the base case i = 1. But this
follows from the fact that 0S and 0(1)T meet cute along H. This follows in turn from
Lemmas 2.4 and 3.5, which establish that 3(0) = Stab0S (H)= Stab0T (H), and the
first paragraph of the proof. �

Using the claim, it now follows that 0(n)− and 0c−2n

S meet cute along c−2n(H);
hence a final application of Lemma 3.2 implies that the natural maps determine an
isometry C(0(n)− )∪C(0c−2n

S )→ C(0n). Since each of C(0(n)− ) and C(0c−2n

S ) has
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a unique boundary component, C(0n) is boundaryless and hence equal to H3/0n .
The conclusion of the proposition follows. �

The result below follows from Proposition 3.12, or, really, its proof.

Corollary 3.13. For fixed n and 0≤ i ≤ n, define

0
(i)
− =

〈
0S, 0

(1)
T , . . . , 0

(i)
T

〉
, 0

(i)
+ =

〈
0
(i+1)
T , . . . , 0

(n)
T , 0c−2n

S
〉
.

Then 0(i)+ and 0(i)− meet cute along c−2i (H) and the natural maps determine an
isometry C(0(i)− ) ∪C(0(i)+ )→ H3/0n . The isometry of Proposition 3.12 factors
through this map, so that the component of Mn − F (i) containing C(0S) is taken
isometrically to its image in C(0(i)− ).

In the remainder of the paper, we will frequently take the isometry above for
granted and refer to the components obtained by splitting Mn along F (i) by C(0(i)± ).

4. Invariants

4.1. Traces. If0⊂PSL2(C) is a discrete group, its trace field Q(tr0) is obtained by
adjoining to Q the traces of elements of 0. If the hyperbolic 3-manifold M =H3/0

has finite volume, Mostow rigidity implies that this is a topological invariant of
M . It follows from the local rigidity theorems of Garland and Prasad that in this
case the trace field is a number field; that is, a finite extension of Q. The trace field
is not generally an invariant of the commensurability class of M , however, and to
obtain one we pass to the invariant trace field k0. This is obtained by adjoining
to Q the traces of squares of elements of 0. When M is the complement of a
link in a Z2-homology sphere, its trace field and invariant trace field coincide (see
[Maclachlan and Reid 2003]).

Proposition 4.1. We have k(0S)=Q(i), k(0T )=Q(i
√

2), and k(Mn)=Q(i, i
√

2)
for all n ∈ N. In particular, Mn is not arithmetic for any n ∈ N.

Proof. Its definition in Corollary 2.2 immediately implies 0S < PSL2(Q(i)). The
description in Corollary 2.3, of0T0 , and Lemma 3.3 imply that 0T <PSL2(Q(i

√
2)).

Thus k0S ⊆ Q(i), and k0T ⊆ Q(i
√

2). That equality holds is clear upon noting
that Tr(h) = ±i

√
2 and Tr(t) = ±(1+ i). Since 0S and 0T are in 0n we have

Q(i, i
√

2)⊆ k(0n). For the other containment we note that c from Lemma 3.3 lies
in PSL2(Q(i

√
2)), and 0n is contained in the group generated by 0S , 0T , and c.

It is well known that any noncompact arithmetic manifold M has k(M)⊂Q(i
√

d )
for some d ∈N (see, for example, [Maclachlan and Reid 2003, Theorem 8.2.3]), so
Mn is not arithmetic. �

We say M = H3/0 has integral traces if for each γ ∈ 0, tr γ is an algebraic
integer. Otherwise we say Mn has a nonintegral trace. M has integral traces if and
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only if all manifolds commensurable to M do as well (see [Maclachlan and Reid
2003]).

Proposition 4.2. For each n, Mn has integral traces.

Proof. As in the proposition above, this follows from the fact that each 0n is
contained in the group generated by 0S , 0T , and c. It is easy to see that the entries
of the generators for 0S and 0T0 are algebraic integers. Since c has integral entries
as well, all elements of 0n have integral entries, and hence integral traces. �

Remark. Bass [1984] showed that if M = H3/0 where 0 has an element with a
nonintegral trace, there are closed essential surfaces in M associated to this trace.
We say that such surfaces are detected by the trace ring. For fixed n and 1≤ i ≤ n,
closed essential surfaces in Mn can be obtained by “tubing” S(i) through B3

− L(i)− .
More precisely, let Ni be a regular neighborhood of L(i)− in (B3, L(i)− )⊂ (S

3, Ln),
let Ai = Ni ∩ B3−Ni , and let

Ŝi = S(i)− (S(i) ∩Ni )∪ Ai .

Then Ŝi is a closed surface of genus 2 which is incompressible in Mn . We will show
below that certain mutants have nonintegral traces, and one easily finds surfaces
analogous to Ŝi in the mutants. It is interesting to note that although these surfaces
are present in all of these link complements, the trace ring does not detect any
closed surfaces in the Mn .

4.2. Scissors congruence and the Bloch invariant. In Proposition 4.7 we will
prove that the Bloch invariant distinguishes the commensurability class of Mm

from that of Mn for m 6= n. This is an invariant of a polyhedral decomposition
which by construction is invariant under scissors congruence: cutting the constituent
polyhedra apart and reassembling them in new ways. Its deep connection to algebraic
k-theory is what makes the Bloch invariant useful, though. For background and an
account of the connection to scissors congruence we refer the reader to [Dupont
2001] and [Neumann 1998], our main source for the expository material here.

Definition 4.3. For a field k⊂C, define the pre-Bloch group P(k) to be the quotient
of the free Z-module on k−{0, 1} by all instances of the following relations:

[x] − [y] +
[ y

x

]
−

[1−x−1

1−y−1

]
+

[1−x
1−y

]
= 0, x 6= y ∈ k−{0, 1},(4)

[z] =
[
1− 1

z

]
=

[ 1
1−z

]
=−

[1
z

]
=−

[ z
z−1

]
=−[1−z], z ∈ k−{0, 1}.(5)

There is a map δ : P(k)→ k∗ ∧ k∗ given by [z] 7→ 2(z ∧ (1− z)). (Here k∗ is
considered a Z-module with multiplication as the group operation and Z-action
given by a.x = xa , a ∈ Z.) The Bloch group is B(k)= ker δ.
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Remark. If k is algebraically closed, relation (4) above, called the five term relation,
implies (5). For instance, taking

√
z and

√
z−1 as x and y, respectively, in (4), then

interchanging their roles and summing the results yields [z] + [1/z] = 0.

For any ideal tetrahedron T in H3, there is an orientation-preserving isometry of
H3 taking its ideal vertices to 0, 1,∞, and a complex number z with nonnegative
imaginary part. Let the cross ratio parameter of T be [z] ∈ P(C). This is well
defined because any other isometry answering the description above fixes z or
replaces it by one of 1− 1/z or 1/(1− z).

For k ′⊂ k, inclusion induces a map P(k ′)→P(k). Although this is not injective
in general, a theorem of Borel that we record below implies that if k ′ is a number
field then B(k ′) does inject, modulo torsion. We offer this observation to excuse
occasional imprecision about the precise location of our invariants.

Definition 4.4. Let M = T1 ∪ · · · ∪ Tn be a triangulated complete, orientable
hyperbolic 3-manifold of finite volume (with or without boundary); that is, with
each Ti isometric to an ideal hyperbolic tetrahedron and Ti ∩ T j either empty, an
edge of each, or a face of each for i 6= j . Define the Bloch invariant of M as

β(M)= [z1] + [z2] + · · · + [zn] ∈ P(C),

where [zi ] is the cross ratio parameter of Ti for each i in {1, . . . , n}.

Remark. If ∂M = ∅ then β(M) ∈ B(C) by a geometric interpretation of the
Bloch invariant, and by work of Neumann and Yang [1999] it does not vary with
triangulation.

We will obtain a triangulation of Mn by subdividing the decomposition below.

Lemma 4.5. The members of S={P1,P2, c
−1P2, . . . , c

−2n+1P2, c
−2nrP1} project

under H3
→ H3/0n to the cells of an ideal polyhedral decomposition of Mn .

Proof. By Corollary 2.2, P1 projects under H3
→ H3/0S to an ideal polyhedral

decomposition of C(0S): it maps onto C(0S) with internal faces identified in pairs.
Corollary 2.3 implies the same for P2→ C(0T0) under H3

→ H3/0T0 , and hence
also for c−2rP2→ C(0c−2

T0
) (see the paragraph above Lemma 3.3).

It is easy to see that rP2 = cP2, for instance, by comparing sets of ideal vertices,
so c−2rP2 = c−1P2. Therefore Lemma 3.3 implies that P2 ∪ c

−1P2 projects to an
ideal polyhedral decomposition of C(0T ) under H3

→ H3/0T . In particular, this
projection identifies the external faces of P2 that map to F ′ with external faces of
c−1P2 pairwise, since their images are fixed by the doubling involution φc−2r.

It follows from the above that c−2(i−1)P2∪c
−2i+1P2 projects to a decomposition

of C(0(i)T ) for any i ∈N (recall Definitions 3.9), and from the first paragraph that the
same holds for c−2nrP1→ C(0c−2n

S ). By Proposition 3.12, it remains only to show
that the gluings producing Mn preserve induced triangulations of boundaries. These
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are defined in Proposition 3.10. Lemma 2.4(3) implies that ι(0)+ (ι
(0)
− )
−1 preserves

triangulations, and (3) does the same for ι(i)+ (ι
(i)
− )
−1 for 1≤ i ≤ n. They combine to

imply that the final map does as well. �

Lemma 4.6. Mn has Bloch invariant β1 − β̄1 + nβ2 ∈ B(Q(i, i
√

2)) for any n,
where β1 = 4[(1+ i)/2] ∈ P(Q(i)), β̄1 = 4[(1− i)/2], and β2 ∈ P(Q(i

√
2)).

Proof. We will produce a triangulation of Mn by subdividing the polyhedral
decomposition from Lemma 4.5. P1 divides into a collection of 4 tetrahedra by the
addition of a single edge γ joining the ideal vertices (1+ i)/2 and∞, and four
ideal triangular faces that share γ . One has ideal vertices 0, 1,∞, and (1+ i)/2 and
thus a parameter of [(1+ i)/2]. Since the others are its image under rotation about
γ they have identical cross ratio parameters. Their union projects to a triangulation
of C(0S) with Bloch invariant β1 = 4[(1+ i)/2].

Any ideal tetrahedron with its vertex set contained in that of P2 has cross ratio
parameter in P(Q(i

√
2)), since P2 has ideal vertices in Q(i

√
2)∪ {∞}. We leave

it to the reader to divide P2 into ideal tetrahedra in such a way that the resulting
division of square faces, each into two ideal triangles, is preserved by the face-
pairings that produce MT0 . Such a triangulation projects to one of C(0T0), and its
image under c−2r projects to one of C(0T0).

Above it is important to use c−2r and not c−1, since the face pairings of c−1P2

project it to C(0c−2

T0
). Recall that r is a reflection, extending to C as complex

conjugation. One checks using (5) that if a tetrahedron has cross ratio parameter [z]
then its mirror image has parameter −[z̄]. Since Q(i

√
2) is preserved by complex

conjugation, using the triangulations from the paragraph above gives C(0T ) a Bloch
invariant β2 ∈ P(Q(i

√
2)).

For each i with 1≤ i ≤ n, C(0(i)T ) inherits a triangulation with Bloch invariant
β2 from c−2(i−1)P2 ∪ c

−2i+1P2 = c−2(i−1)(P2 ∪ c
−1P2), and C(0S) inherits one

with invariant β̄1 from r(P1). Lemma 4.5 implies that these combine to triangulate
Mn , so its Bloch invariant is as described above. �

Below we record a standard formula for the Bloch–Wigner dilogarithm function
D2 : C−{0, 1}→R in terms of the dilogarithm, ψ(z)=

∑
∞

i=1(z
n/n2) (for |z|< 1):

D2(z)= =ψ(z)+ log|z| arg(1− z).

For z in the upper half plane, the ideal tetrahedron with ideal vertices 0, 1,∞, and
z has volume D2(z); note also that D2(z̄)=−D2(z). D2 determines a well-defined
functional on P(C), and this in turn produces the Borel regulator, Bk .

Theorem [Borel 1977]. For a number field k fix embeddings σ1, . . . , σr2 to C, one
representing each complex-conjugate pair. The map Bk : P(k)→ Rr2 extending
[z] 7→ (D2(σ1(z)), . . . , D2(σr2(z))) takes B(k) onto a lattice in Rr2 , with kernel
consisting entirely of torsion elements.
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We use the Borel regulator Bk to show that Bloch invariants distinguish the
commensurability class of Mm from that of Mn for m 6= n.

Proposition 4.7. For m 6= n, Mm is not commensurable with Mn .

Remark. We thank the referee on an earlier version of this paper for describing
the argument below. (Our original proof used cusp parameters; see Lemma 4.18.)

Proof. It is clear that k=Q(i, i
√

2) has two pairs of complex conjugate embeddings,
each determined by its action on i and i

√
2. We will take σ1 = idk , and σ2(i)= i ,

σ2(i
√

2)=−i
√

2, in defining the Borel regulator Bk on k. Since each σi restricts
on Q(i) to the identity, Bk takes each of β1 and −β̄1 to (v1, v1) ∈ R2, where v1 is
the volume of P1. On the other hand, Bk(β2)= 2(v2,−v2), where v2 = vol(P2).

For any n, a covering space M̃ → Mn of degree k has β(M̃) = kβ(Mn). This
is because the preimage in M̃ of each tetrahedron T from the triangulation of Mn

described in Lemma 4.6 is a nonoverlapping union of k isometric copies of T . Thus
if M̃→ Mm with degree p and M̃→ Mn with degree q it would follow that

p[β1− β̄1+mβ2] = q[β1− β̄1+ nβ2].

Applying Bk to each side of the equation above, we find that since (v1, v1) and
(v2,−v2) are linearly independent in R2 we must have p = q and m = n. �

4.3. Cusp parameters. Following Neumann and Reid [1992, §2.3], for a cusp of a
complete hyperbolic 3-manifold M we will call the cusp parameter the complex
modulus (or the conformal parameter) of a horospherical cusp cross section, a
Euclidean torus. Thurston [1979, Chapter 6] also used this invariant to distinguish
hyperbolic manifolds.

Definition 4.8. Let T =C/3 be a Euclidean torus, where3⊂C is a lattice. Define
the complex modulus of T as m(T )= α/β, where 3= 〈α, β〉.

Remark. The complex modulus is not really an invariant of a Euclidean torus;
rather, it is an invariant of a particular basis for π1. However, we have:

Lemma 4.9. The PGL2(Z)-orbit of the complex modulus is a similarity invariant
of Euclidean tori. The PGL2(Q)-orbit is a commensurability invariant.

Here we say T and T ′ are commensurable if T has a finite cover which is similar
to a cover of T ′.

Proof. The complex modulus is clearly scale-invariant.
Let T =C/3 be a Euclidean torus, where 3= 〈α, β〉. For a different generating

pair γ = pα+ qβ, δ = rα+ sβ the change-of-basis matrix

m=

(
p r
q s

)
∈ PSL2(Z)
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has an inverse there as well, since α and β are linear combinations of γ and δ.
Computing the modulus with γ and δ yields

pα+ qβ
rα+ sβ

=
p(α/β)+ q
r(α/β)+ s

=mT(m(T )).

If γ and λ generate a finite-index sublattice then, since they are linearly indepen-
dent, m has a nonzero determinant. This implies the commensurability-invariance
assertion. �

It will prove useful here to understand the complex modulus of a torus by
decomposing it into annuli using a family of parallel geodesics.

Definition 4.10. For a Euclidean annulus A with core of length ` and distance d
between geodesic boundary components, let the real modulus of A be m(A)= d/`.

If T = C/3, and 3= 〈α, β〉, then α and β determine isotopy classes of simple
closed geodesics on T with representatives which intersect once. These are the
projections to T of the line segments in C joining 0 to α and β, respectively. Below
let Aβ denote the Euclidean annulus with geodesic boundary obtained as the path
completion of the metric on T −β inherited from T .

Lemma 4.11. Let T =C/3 be a Euclidean torus, and suppose α, β is a generating
pair for 3. Decompose m(T ) into real and imaginary parts:

m(T )= τβ + i ·µβ,

where τβ = <(α/β) and µβ = =(α/β) ∈ R. Then τβ = (‖α‖/‖β‖) cos θ , where θ
is the angle between the geodesics α and β on T , and |µβ | = m(Aβ).

Proof. Write α = ‖α‖eiθ1 and β = ‖β‖eiθ2 . Then θ = θ1− θ2 is the angle between
the geodesics corresponding to α and β, and α/β = (‖α‖/‖β‖)eiθ . Writing eiθ

=

cos θ + i sin θ yields the first assertion immediately.
To establish the second, consider the strip Ãβ in C bounded by the line containing

0 and β and its translate by α, containing α and α+β. The quotient of Ãβ induced
by the action of β is the universal covering Ãβ → Aβ . The distance between
boundary components of Ãβ is ‖α‖|sin θ |, and the length of the core of Aβ is the
translation length of β, which is ‖β‖. �

Lemma 4.11 provides a convenient means for understanding the modulus of a
Euclidean torus in terms of “Fenchel–Nielsen” coordinates (µβ, τβ) associated to a
simple closed geodesic β. We regard µβ as a length parameter for the annulus Aβ ,
and τβ as a twist parameter.

Lemma 4.12. Suppose T is a Euclidean torus decomposed into annuli A1, . . . , An

by simple closed geodesics parallel to β. Then

|µβ | = m(A1)+m(A2)+ · · ·+m(An).
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Proof. By isotoping β if necessary, we may assume that it is one of the geodesics
determining the Ai ; hence Aβ= A1∪A2∪· · ·∪An . Then if α0 is an arc perpendicular
to ∂Aβ , joining one component to the other, for each i , α0∩Ai is an arc perpendicular
to ∂Ai joining one component to the other. This is because ∂Ai is parallel to β.
Since `(α0) =

∑
i `(α0 ∩ Ai ) and the core of each Ai has length `(β), the result

follows. �

The annuli we are concerned with arise as horospherical cross sections of the
cusps of MS and MT . Recall from Lemma 2.4 that Stab0S (H) is a group3 generated
by parabolic isometries p1, p2, and p3. Furthermore, as pointed out in Remark 1 on
page 351, p1 and p3 are conjugate in 0S , as are p2 and p4 = p1p2p

−1
3 . We asserted

there that C(0S) has two cusps, one corresponding to p1 and one to p2. This follows
from the lemma below.

In what follows, we let V1= {∞, 0, 1, i, 1+ i, (1+ i)/2}, the set of ideal vertices
of the ideal octahedron P1. Let {hv | v ∈V1} be a collection of horospheres invariant
under the action of the symmetry group of P1, such that hv is centered at v for
each v ∈ V1 and h∞ is at height 2.

Lemma 4.13. The projection to MS of
⋃
(hv∩P1) is a disjoint union of Euclidean

annuli A1 and A2 with geodesic boundary, such that pS(A1) is a horospherical
cross section of the cusp of C(0S) corresponding to p1, pS(A2) is a cross section of
the cusp corresponding to p2, and m(A1)= 1, m(A2)= 1/5.

Proof. Since h∞ is at height 2 and our embedding of P1 is as in Figure 3, h∞∩P1 is
a square with sides of length 1/2. Since the symmetry group of P1 acts transitively
on vertices, this holds for all hv∩P1, v ∈V1. We will call a side of hv∩P1 internal
if it is contained in an internal face of P1 and external otherwise. The face-pairing
s has the property that if v and v′ are ideal vertices of P1 and s(v) = v′, then
s(hv)= hv′ , and s(hv ∩ P1) abuts hv′ ∩ P1 along an internal side. The analogous
property holds for t.

Each of s and t identifies a pair of internal faces of P1, yielding MS . The isometry
pS of Corollary 2.2 is induced by the inclusion P1→ H3. Since p1 = s−1 fixes the
ideal vertex of P1 at 0, it identifies the opposite internal sides of h0 ∩ P1. This
square thus projects to a cusp cross section A1 of MS , mapped by pS to one of the
cusp of C(0S) corresponding to p1. This is depicted on the left side of Figure 8.

The other cusp cross section of MS , the annulus A2, is the identification space
of the collection

{hv ∩ P1 | v ∈ V1−{0}},

shown on the right side of Figure 8. In this figure, each square is the projection to
MS of hv ∩ P1 for the ideal vertex v, by which it is labeled. The combinatorics can
be verified by considering the action of s and t on V1.
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1

A2A1

0 ∞ 1+ i 1+i
2 i

Figure 8. Cross sections of the cusps of MS .

By assumption each square in Figure 8 has side length 1/2, and so the cores
of A1 and A2 have lengths 1/2 and 5/2, respectively. For any square in Figure 8,
a vertical side projects to an arc joining the distinct boundary components of the
corresponding Ai , hence the distance between them is 1/2. Thus it follows directly
from the definition that m(A1)= 1 and m(A2)= 1/5. �

The following lemma describes the moduli of the cusps of C(0T0). We asserted
below Lemma 2.5 that C(0T0) has four cusps, one corresponding to each pi , i ∈
{1, 2, 3, 4}, and each joining ∂−C(0T0) to ∂+C(0T0). This follows from Lemma 4.14.
Let V2 be the set of ideal vertices of P2, and consider a collection of horospheres
{hv | v ∈ V2}, invariant under the symmetry group of P2, such that hv is centered
at v for each v ∈ V and h∞ is at height 2.

Lemma 4.14. The projection of
⋃
(hv ∩ P2) to MT0 is a collection of disjoint

Euclidean annuli B j with geodesic boundary, j ∈ {1, 2, 3, 4}, such that pT0(B j )

is a cross section of the cusp of C(0T0) corresponding to p j ∈ 3, and m(B1) =

m(B3)=
√

2 and m(B2)= m(B4)=
√

2/5.

Proof. For v ∈ V2, we again call a side of hv ∩ P2 external if it is contained in an
external face of P2 and internal otherwise. Each cusp cross section of MT0 is the
projection of a subcollection of the hv ∩ P2, identified along their internal faces.
From Figure 4, we find that h∞ ∩ P2 is a Euclidean rectangle with two opposite
internal sides and two external. Since the symmetry group of P2 is transitive on its
set of ideal vertices, this holds for the other hv as well. It follows that each cusp
cross section of MT0 is a Euclidean annulus with geodesic boundary.

In Figure 9, the lower rectangles of each annulus DB j are labeled by vertices v
such that hv ∩ P2 projects to a subrectangle of the cross section of the cusp of MT0

whose image under pT0 corresponds p j . Then B j is the lower half of DB j . The
reasons for this picture will become clear after the current proof.

The isometries f, g, and h defined in Corollary 2.3 identify the internal sides
of P2 in pairs, yielding the manifold MT0 with totally geodesic boundary. The
parabolic p1 = f−1 fixes 0, identifying the internal sides of P2 sharing this ideal
vertex. Thus in MT0 , B1 consists of h0 ∩ P2 with its internal sides identified. The
description of the pi in terms of f, g, and h above Lemma 2.4 shows that p3 is a
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DB3

∞

1− i
√

2
2

1−i
√
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√
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√
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1−i
√

2
3

0 −i
√

2 2−i
√

2
3 1

1− i
√

2 −i
√

2
2

DB1 DB2

DB4

Figure 9. Cross sections of the cusps of MT .

conjugate of g−1. Since g−1 fixes 1− i
√

2/2, identifying the internal edges of P2

which abut it, h1−i
√

2/2 projects to B3 in MT0 . This justifies the depictions of B1

and B3 in Figure 9.
Since p2 fixes∞, h∞ ∩ P2 projects to a subrectangle of B2. Since g takes the

internal side Y3 to Y ′1 and∞ to (1− i
√

2)/2, in B2 the projection of h∞∩P2 meets
the projection of h(1−i

√
2)/2 ∩ P2 along a side contained in the projection of Y3

to MT0 . Since the internal face of P2 meeting Y ′1 at (1− i
√

2)/2 is Y ′3, and this
is taken to Y ′2 by h−1, the rectangle meeting the projection of h(1−i

√
2)/2 in B2 on

the internal side opposite its intersection with h∞ is h
−i
√

2. Carrying this line of
argument to completion yields the depictions of B2 and B4 in the figure.

From Figure 4, we find that the internal sides of h∞∩ P2 have length
√

2/2 and
the external sides length 1/2. Since the symmetry group of P2 is transitive on its
ideal vertices, the same holds for each rectangle hv ∩ P2. Thus the cores of B1 and
B3 have length 1/2, and the cores of B2 and B4 have length 5/2. For any square
hv∩P2, an internal side projects to a perpendicular arc joining opposite sides of the
cusp cross section in MT0 containing hv ∩P2. The moduli are thus as described. �

By Corollary 3.4, pT0 : MT0 → C(0T0) determines a reflection-invariant map
from the double MT of MT0 across ∂+MT0 to C(0T ). Furthermore, as we remarked
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below Lemma 2.5, each cusp of C(0T0) joins one component of ∂C(0T0) to the
other. Therefore taking DB j ⊂ MT , j ∈ {1, 2, 3, 4}, to be the double of B j across
its component of intersection with ∂+MT0 , we have:

Lemma 4.15. For each j ∈ {1, 2, 3, 4}, the image in C(0T ) of DB j is a cross
section of the cusp corresponding to p j , and m(DB1) = m(DB3) = 2

√
2 and

m(DB2)= m(DB4)= 2
√

2/5.

It is a well-known consequence of the Margulis lemma that each cusp C of a
hyperbolic manifold M = H3/0 of finite volume is foliated by similar Euclidean
tori, the projections to M of horospheres in H3 centered at the fixed point of a
parabolic subgroup of 0 corresponding to C .

Definition 4.16. The parameter of a cusp C of a finite-volume complete hyperbolic
manifold is the complex modulus of a horospherical cross section of C .

By Lemma 4.9 the PSL2(Z) orbit of the cusp parameter is an invariant of the
cusp shape, the Euclidean similarity class of a cross section.

Proposition 4.17. For j = 1, 2, let T j be a cusp cross section of Mn containing the
annular cusp cross section A j of MS (see Lemma 4.13). Then m(T1)= i(2+4n

√
2),

and m(T2) is PGL2(Q)-equivalent to m(T1).

Remarks. 1. It is not hard to show that m(T2)= i(2+ 4n
√

2)/5, but this is not
necessary for our purposes and requires more work.

2. The cusps T1 and T2 are labeled in Figure 1.

Proof. By Proposition 3.10 Mn = C(0S)∪C(0(1)T )∪ · · · ∪C(0(n)T )∪C(0S), with
gluing maps that factor through the inclusion-induced isometries ι(i)± defined on
F (i) for 0≤ i ≤ n− 1, and final gluing φrι

(0)
− φ
−1
n+1(ι

(n)
− )
−1
: ∂+C(0(n)T )→ ∂C(0S).

For j ∈ {1, 2, 3, 4} and i ∈ N, define DB(i)j = φi ◦ pT (DB j )⊂ C(0(i)T ), with φi

as in Definitions 3.9. We also refer by DB(i)j to its image in C(0n) under the natural
map, or in Mn under inclusion. Let ∂±DB(i)j = DB(i)j ∩ ∂±C(0(i)T ).

By Lemma 4.13, pS(A1) is a cross section of the cusp of C(0S) corresponding to
p1, and by Lemma 4.15, DB(1)1 is a cross section of the cusp of C(0T ) corresponding
to p1. Lemma 2.4 thus implies that ι(0)+ (ι

(0)
− )
−1 takes one component of pS(∂A1) to

∂−DB(0)1 . In Remark 1 on page 351, we note that p1 and p3 are conjugate in 0S .
It follows that the other component of pS(∂A1) is a cross section of the cusp of
∂C(0S) corresponding to p3, so ι(0)+ (ι

(0)
− )
−1 takes this component to ∂−DB(1)3 .

The doubling involution of MT preserves DB j by construction, exchanging
its boundary components. Therefore by Corollary 3.4, φc−2r preserves pT (DB j )

and exchanges boundary components. It follows that ι(i)+ (ι
(i)
− )
−1 takes ∂+DB(i)j to

∂−DB(i+1)
j for each i between 1 and n− 1, upon recalling the identity (3):

ι
(i)
+ (ι

(i)
− )
−1
= φi+1ι

(0)
+ φ
−1
2 (ι

(1)
− )
−1φ−1

i = φi+1φc−2rφ
−1
i .
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One finds that φrι
(0)
− φ
−1
n+1(ι

(n)
− )
−1 takes ∂+DB(n)1 t∂+DB(n)3 to the components of

φr ◦ pS(∂A1), arguing as above and applying (2). Therefore T1 is decomposed by
its intersection in Mn with the separating spheres F (i) into the following collection
of Euclidean annuli with geodesic boundary:

pS(A1)∪ DB(1)1 ∪ · · · ∪ DB(n)1 ∪φr ◦ pS(A1)∪ DB(n)3 ∪ · · · ∪ DB(1)3 .

Similarly, we find that T2 decomposes into the union of pS(A2), φr ◦ pS(A2), and
DB(i)j for 1 ≤ i ≤ n and j = 2, 4. We may take β1 to be the geodesic ∂−DB(1)1
on T1 and β2 = ∂−DB(1)2 ⊂ T2. Then we obtain the following from Lemma 4.12,
applying Lemmas 4.13 and 4.15:

=(m(T1))=±(2+ 4n
√

2), =(m(T2))=±
2+ 4n

√
2

5
.

We will show m(T1) and m(T2) have real part equal to 0 by describing geodesics
α j , j = 1, 2, which meet the β j once, perpendicularly. Let a1 be the arc in A1

which is the projection of the internal edges of h0 ∩ P1 (the vertical arcs on the
left-hand square in Figure 8). Recall that the internal edges of h0∩P1. In particular,
pS(∂a1) is the intersection of pS(A1) with the one-skeleton of the triangulation 1S

defined below Corollary 2.2.
Let b1 ⊂ B1 and b3 ⊂ B3 similarly be projections of internal edges of h0 ∩ P2

and h1−i
√

2/2∩P2, respectively (see Figure 9), and let db1 and db3 be the geodesic
arcs of DB1 and DB3 containing them. Let db(i)j = φi ◦ pT (db j ), and let ∂±db(i)j =

db(i)j ∩ ∂±DB(i)j , j = 1, 3 and i ∈ N. Let 1−T be the image of the triangulation 1−T0

defined below Corollary 2.3 under the inclusion MT0 → MT , and let 1+T be its
image under the doubling involution of MT . Then ∂±db(i)j is the intersection of
∂DB(i)j with the one-skeleton of φi (1

±

T ).
By Lemma 2.4, ι(0)+ (ι

(0)
− )
−1 preserves triangulations, and the discussion above

implies that the other gluing maps do as well. From Figure 5 it is apparent that the
cusps of F (0) corresponding to p1 and p3 each contain only one end of an edge
of the triangulation that F (0) inherits from the pictured fundamental domain F.
Therefore ι0(∂a1)= ∂−db(1)1 ∪ ∂−db(1)3 . It then follows as before that

α1 = pS(a1)∪ db(1)1 ∪ · · · ∪ db(n)1 ∪φr ◦ pS(a1)∪ db(n)3 ∪ · · · ∪ db(1)3

is a closed geodesic on T1 which meets β1 once, at right angles. Therefore by
Lemma 4.11 <(m(T1))= 0, so m(T1)= i(2+ 4n

√
2).

A similar argument will give m(T2). Let A2 be the collection of arcs in A2 which
are the projections of internal edges of the squares hv , v ∈V1−{0}. From Figure 8,
A2 consists of five arcs evenly spaced around A2, each joining one component of
∂A2 to the other and perpendicular to ∂A2 at each endpoint. For j = 2, 4, we define
a collection of arcs DB j ⊂ DB j analogously, and take DB(i)

j = φi ◦ pT (DB j ). Let
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∂±DB(i)
j = DB(i)

j ∩ ∂±DB(i)j , and note that the points of ∂±DB(i)
j are the points of

intersection of ∂DB(i)j with the one-skeleton of φi (1
±

T ).
For the same reasons as above, i (0)+ (i

(0)
− )
−1 takes pS(∂A2) to ∂−DB(1)

2 ∪∂−DB(1)
4 ,

and the other gluing maps take the ∂+DB(i)
j to ∂−DB(i+1)

j for the appropriate i
and j . Then the collection

pS(A2)∪ DB(1)
2 ∪ · · · ∪ DB(n)

2 ∪φr ◦ pS(A2)∪ DB(n)
4 ∪ · · · ∪ DB(1)

4

consists of a disjoint union of up to five closed geodesics, each meeting β2 perpen-
dicularly in at most five points.

Fix a component α2 of the collection above, let k be the intersection number of α2

with β2, and let T̃2 be the k-fold cover of T2 dual to α2. Then β2 lifts to T̃2, and any
lift intersects the preimage α̃2 of α once, perpendicularly. Computing the modulus
of T̃2 using this pair, we obtain ±k · i(2+ 4n

√
2)/5. This is PGL2(Q)-equivalent

to m(T1), so the result follows from Lemma 4.9. �

Lemma 4.18. Suppose z= i(m+n
√

2) is PGL2(Q)-equivalent to z′= i(m+n′
√

2),
where m, n, n′ ∈Q and m 6= 0. Then n′ =±n.

Remark. Since commensurable hyperbolic manifolds have commensurable cusps,
the collection of PGL2(Q)-orbits of cusp parameters is a commensurability invariant
(see Lemma 4.9). Thus Proposition 4.17 and Lemma 4.18 imply Proposition 4.7.

Proof. Suppose
(a

c
b
d

)
∈ PGL2(Q) takes z to z′. After clearing denominators (which

does not change the action by Möbius transformations), we may assume that
a, b, c, d ∈ Z. We have

ai(m+ n
√

2)+ b

ci(m+ n
√

2)+ d
= i(m+ n′

√
2).

Multiplying by the denominator on the left, and collecting the real and imaginary
parts, we find

m(a− d)+ (an− dn′)
√

2= 0, b+ c(m2
+ 2nn′)+ cm(n′+ n)

√
2= 0.

Since 1 and
√

2 are linearly independent over Q, the left-hand equation above
implies that m(a−d)= 0 and an−dn′ = 0. Since m 6= 0, the first equation implies
a = d . Then the second equation implies n = n′ unless a = d = 0. But in this case,
c 6= 0 since

(a
c

b
d

)
∈ PGL2(Q). Hence, using the coefficient of

√
2 in the right-hand

equation above, we find n′ =−n. �

5. Mutants

In the remaining sections, we will consider links obtained from Ln by mutation
along the separating spheres S(i), 0≤ i ≤ n, from Definitions 3.8(3).
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Definition 5.1. For marked points 1, 2, 3, 4 ∈ S2, a mutation of (S2, {1, 2, 3, 4}) is
a mapping class of order 2 which acts on {1, 2, 3, 4} by an even permutation.

Above a mapping class is the isotopy class, rel {1, 2, 3, 4}, of an orientation-
preserving self-homeomorphism of the pair (S2, {1, 2, 3, 4}). The set Mod0,4 of
such classes inherits the structure of a group from its bijection with the quotient of the
group of orientation-preserving homeomorphisms by its identity component. See,
for example, [Farb and Margalit 2012] for an introduction to the study of mapping
class groups; here we need only the following fact on recognizing mutations using
the symmetric group S4:

Proposition 5.2. The homomorphism θ : Mod0,4→ S4 that records the action on
{1, 2, 3, 4} takes the set of mutations bijectively to {(12)(34), (13)(24), (14)(23)}.

Proof. Here we will embed S2 as the unit sphere in R3 and take

{1, 2, 3, 4} =
{(
±1
√

2
,
±1
√

2
, 0
)
,

(
±1
√

2
,
∓1
√

2
, 0
)}
.

The definitions imply that θ takes any mutation into the subset of S4 listed above,
and the 180-degree rotations mx , m y , and mz in the three coordinate axes of R3

determine mutations of (S2, {1, 2, 3, 4}) taken by θ to each of its distinct elements.
The kernel of θ is the pure mapping class group PMod0,4. This group is free on

two generators: Dehn twists in essential simple closed curves α, β⊂ S2
−{1, 2, 3, 4}

that intersect exactly twice. See the beginning of [Farb and Margalit 2012, §4.2.4]
for a proof of this fact, and for the definition of a Dehn twist see [Farb and Margalit
2012, §3.1.1]. With S2 as above we can take α to be its intersection with the
xz-plane and β the intersection with the yz-plane; then it is clear that each of mx ,
m y , and mz takes each of α and β to itself. It follows that mx , m y , and mz centralize
PMod0,4 (see [Farb and Margalit 2012, Fact 3.8]).

For an arbitrary mutation m ∈Mod0,4 we have θ(m) = θ(mx), θ(m) = θ(m y),
or θ(m)= θ(mz). Assuming (without loss of generality) that the first case holds, it
follows that m = mx h for some h ∈ PMod0,4. Since m has order 2 we have:

id = m2
= (mx h)2 = m2

x h2
= h2.

Thus since PMod0,4 is a free group, h = id and m = mx . �

It is easy to see that every mutation of (S2, {1, 2, 3, 4}) is isotopic to the identity
as a self-homeomorphism of S2, so cutting S3 along a smoothly embedded copy
and regluing by a mutation recovers S3. This motivates:

Definition 5.3. For a link L ⊂ S3 and a smoothly embedded two-sphere S ⊂ S3

intersecting L in four points, let B± be the closures of the components of S3
−S and

T± = L ∩ B±. For a mutation m of (S, S ∩ L), we define (S3, L ′)= (B−, T−)∪m

(B+, T+) and say L ′ is obtained from L by mutation along S.
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The lemma below describes the change in projection from L to a link L ′ obtained
from it by mutation. Below we refer to mutations by their images under θ .

Lemma 5.4. For a link L projected to R2, if a two-sphere S ⊂ S3 intersects R2 in a
vertical line and L in four points, label them 2, 3, 4, and 1, reading top-to-bottom.
The link obtained by the mutation (13)(24) (respectively, (12)(34)) along S has
projection obtained by cutting L along S and inserting the braid on the left (resp.
right) of Figure 10.

Proof. We may assume L is arranged so that there is an axis in R2 intersecting
S perpendicularly, midway between points 3 and 4 and so that points 2 and 1 are
also equidistant from it. The 180-degree rotation in this axis restricts on S to an
involution acting on the marked points by the permutation (12)(34).

There is a homeomorphism R : S× I → S× I , which preserves slices S×{t}
and restricts on each to rotation by −180 · t degrees in the horizontal axis. This
interpolates between the identity, on S×{0}, and the inverse of (12)(34) on S×{1},
although it does not preserve marked points for 0< t < 1.

Let (B±, T±) be as in Definition 5.3, and let C be a collar of S in B− that is
small enough that it intersects T− in the collection of horizontal arcs {{ j}× I | j ∈
{1, 2, 3, 4}}. There is a homeomorphism h : B− ∪(12)(34) B+→ S3 defined as the
identity on B+ and the complement of C in B−, and as R on C . By the definition of
R, the image of T− ∩C under R is as pictured on the right-hand side of Figure 10,
thus the image of L ′ in S3 under h is as stated in the lemma.

Note that the braid on the left-hand side of Figure 10 is the conjugate of the braid
on the right by a left-handed half-twist exchanging the points 2 and 3. This reflects
the fact that the conjugate of (12)(34), by any homeomorphism of (S, {1, 2, 3, 4})
which exchanges 2 and 3 and fixes 1 and 4, is a mapping class of order 2 acting on
the marked points as (13)(24); hence such a conjugate is (13)(24). The conjugating
braid in Figure 10 tracks the marked points under an isotopy S× I → S taking the
simplest such conjugator to the identity. The conclusion for (13)(24) thus follows
as it did above for (12)(34). �

44

3

1

2

1

3

2

(13)(24) (12)(34)

Figure 10. The mutations as braids.
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The numbering of marked points from Lemma 5.4 and Figure 10 agrees with
the numbering of the S(i)∩ Ln from Definitions 3.8(3). This, in turn, was chosen to
agree with the numbering of parabolics of 3 from Lemma 2.4. To be more precise:

Let S be the sphere obtained by compactifying each cusp of F (0) =H/3 with a
single point. Label each new point with a number between 1 and 4, according to the
parabolic pi corresponding to the cusp it compactifies. With the points of S(0) ∩ Ln

numbered as in Definitions 3.8(3), it follows from Proposition 2.8 that the restriction
of fT (as in Proposition 3.7) to S(0)− T extends to a map S(0)→ S that preserves
numbering. Corollary 3.11 and the definition of F (i) (see Definitions 3.9) now
imply that for each i between 0 and n, φc2i ◦ ι−1

i ◦ fn extends to a homeomorphism
S(i)→ S that takes marked points to marked points preserving numbering.

By [Ruberman 1987, Theorem 2.2], each mutation of (S, {1, 2, 3, 4}) is realized
by an isometry of F (0); that is, there exists an isometry of F (0) whose extension
to (S, {1, 2, 3, 4}) represents the mutation mapping class. The following lemma
identifies lifts to PSL2(R) of the isometries realizing (13)(24) and (12)(34).

Lemma 5.5. Define

m1 =

(
−3 5
−2 3

)
, m2 =

(
0

√
5

−1/
√

5 0

)
.

Each of m1 and m2 normalizes 3 (from Lemma 2.4), and the induced isometries
φm1 and φm2 of F (0) realize (13)(24) and (12)(34), respectively.

Proof. Since each of m1 and m2 has trace equal to zero, it has order 2 in PSL2(C).
Their actions by conjugation on the generators p1, p2, and p3 for 3 defined above
Lemma 2.4 are given by

pm1
1 = p−1

3 , pm1
2 = p−1

4 , pm2
1 = p2, pm2

3 = p
p−1

1
4 ,

as may be verified by direct computation. Here p4 = p1p2p
−1
3 is as described in

Remark 1 on page 351. Therefore m1 and m2 normalize 3 and induce isometries
φm1 and φm2 , respectively, of F (0) = C(3).

Each of φm1 and φm2 has order 2, since m1 and m2 have order 2, and their
extensions to S act on the set of marked points as described in the statement of the
lemma. Its conclusion therefore follows from Proposition 5.2. �

Corollary 5.6. For j = 1, 2 and i ∈ Z, let m(i)j = c−2im jc
2i . Each of m(i)1 and m

(i)
2

normalizes 3(i) (from Definitions 3.9), and the induced isometries of F (i) realize
(13)(24) and (12)(34), respectively.

Lemma 5.4 gives a prescription for describing links obtained from Ln by the
mutations (13)(24) and (12)(34). The result below describes hyperbolic manifolds
to which their complements are homeomorphic, analogous to Proposition 3.10.
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3

2

4

1

Figure 11. The tangle S admits an order-2 rotational symmetry
which restricts to the mutation (13)(24) on its boundary.

Proposition 5.7. For I = (a0, a1, . . . , an)∈ {0, 1, 2}n+1, let L I be the link obtained
from Ln by the following prescription: for 0 ≤ i ≤ n, if ai = 0, do not mutate
along S(i); if ai = 1, mutate by (13)(24); and if ai = 2, mutate by (12)(34). Let
MI = C(0S)∪C(0(1)T )∪ · · · ∪C(0(n)T )∪C(0S), where for each i such that ai = 0
the gluing is as in Proposition 3.10, and otherwise is given by

ι
(i)
+ φm(i)

j
(ι
(i)
− )
−1 for 0≤ i < n, where ai = j ∈ {1, 2}, and

φrι
(0)
− φc2nφ

m
(n)
j
(ι
(n)
− )
−1 if an = j ∈ {1, 2}.

Then there is a homeomorphism f I : S3
− L I → MI whose restriction to each

complementary component of the collection {S(i)} agrees with that of fn .

Proposition 5.7 follows immediately from Proposition 3.10 and Corollary 5.6.
Below we note a couple of “obvious” isometry relations on the {MI }.

Lemma 5.8. For fixed (a1, . . . , an) ∈ {0, 1, 2}n let I0 = (0, a1, . . . , an) and I1 =

(1, a1, . . . , an). MI0 is isometric to MI1 .

Proof. It is evident from Figure 11 that the mutation (13)(24) extends to a homeo-
morphism on B3

− S. Thus (S3, L I0) is homeomorphic to (S3, L I1), and the result
follows from Mostow rigidity. �

Lemma 5.9. For I = (a0, a1, . . . , an) ∈ {0, 1, 2}n+1, let Ī = (an, an−1, . . . , a0).
There is an orientation-reversing isometry MI → M Ī that, for each i ∈ {1, . . . , n},
takes the image of C(0(i)T ) in MI to the image of C(0(n−i)

T ) in M Ī .

Proof. It is straightforward to check that the braids in Figure 10 are isotopic
(in S2

× I ) to their mirror images. Therefore, there is an orientation-reversing
homeomorphism L I → L Ī . By composing this homeomorphism with f −1

I and f Ī
we get a homeomorphism MI → M Ī . The result follows by Mostow rigidity. �
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Below we describe the change effected at the level of Kleinian groups by cutting
a hyperbolic manifold along an embedded, separating totally geodesic surface and
regluing by an isometry.

Lemma 5.10. Suppose 00 and 01 meet cute along a plane K, and take2=00∩01,
E = K/2, and ι0 and ι1 as in Lemma 3.2. If n normalizes 2 and preserves
components of H3

−K, then 〈00, 0
n
1〉 is a Kleinian group, and there is an isometry

C(00)∪ι1φ−1
n ι−1

0
C(01)→ C(〈00, 0

n
1〉)

which restricts on C(00) to the natural map, and on C(01) to φn : C(01)→ C(0n
1)

followed by the natural map.

Proof. Since n normalizes2, it preserves K; hence our hypotheses ensure that00 and
0n

1 meet cute along K, and Lemma 3.2 applies. Thus 〈00, 0
n
1〉 is a Kleinian group,

and in particular, the natural maps C(00)→C(〈00, 0
n
1〉) and C(0n

1)→C(〈00, 0
n
1〉)

determine an isometry

C(00)∪nι1ι−1
0

C(0n
1)→ C(〈00, 0

n
1〉).

Here we are using nι1 : E→C(0n
1) to refer to the natural map. It is now an exercise

in definition-chasing to show that nι1 ◦φn = φn ◦ ι1, whence the map

C(00)∪ι1φ−1
n ι−1

0
C(01)→ C(00)∪nι1ι−1

0
C(0n

1),

defined as the identity on C(00) and φn on C(01), is well defined. The lemma
follows. �

Since m1 and m2 have order 2, φmi = φ
−1
mi

for i = 1, 2. Lemma 5.10 thus
yields the result below, which describes how the algebraic model for Mn from
Proposition 3.12 changes under mutation.

Proposition 5.11. For I = (a0, a1, . . . , an) ∈ {0, 1, 2}n+1 let qi+1 = m
(0)
a0 · · ·m

(i)
ai

for 0 ≤ i ≤ n, with m
( j)
0 := id, and m

( j)
1 and m

( j)
2 as in Corollary 5.6 for every j .

Define

0I =
〈
0S,

(
0
(1)
T

)q1
, . . . ,

(
0
(n)
T

)qn
,
(
0c−2n

S
)qn+1

〉
.

There is an isometry MI → C(0I ) that restricts on C(0S) to the natural map, and
on C(0(i)T ) to φqi ◦φi followed by the natural map, for 1≤ i ≤ n.

The proof of Proposition 5.11 follows the inductive approach of that of Proposition
3.12, but at each stage appeals to Lemma 5.10 for instructions on how to change
the construction. We will not write the details, as it is very similar.
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6. Commensurable mutants

Here we show that Mn is commensurable to each of its mutants by (13)(24) and
with this fact classify the MI up to isometry for I ∈ {0, 1}n+1, proving Theorem 2.
In the process, we show that our polyhedral decomposition of Mn is “canonical”
in the sense of [Goodman et al. 2008, §2]; that is, produced by a construction
of Epstein and Penner [1988]. This allows us to identify the commensurator for
0n and the minimal orbifold quotient of Mn . In practice, it is a challenge to find
Epstein–Penner decompositions, commensurators, and commensurator quotients.
Infinite families where these are known are rare.

Below, let B0 be the open half-ball in H3 bounded by the Euclidean hemisphere
of unit radius centered at 0 ∈ C, and let B j = c− j (B0), where c is as defined in
Lemma 3.3. Recall that we have defined H as the geodesic hyperplane of H3 with
ideal boundary R∪ {∞}. If w and z are complex numbers, we will take wH+ z to
be the hyperplane with ideal boundary (wR+ z)∪ {∞}.

Definitions 6.1. (1) Let f0 be obtained by first reflecting in iH and then in iH+1/2.

(2) Let b0 be obtained by first reflecting in H+ i/2 and then in ∂B0.

(3) For j ≥ 0, let a j be obtained by reflecting in iH+ 1/2 and then in ∂B j .

Since iH and iH+1/2 are parallel and share the ideal point∞, f0 is a parabolic
isometry fixing ∞. H+ i/2 meets ∂B0 at an angle of π/3, so b0 is an elliptic
isometry of order 3 rotating around the geodesic of intersection. For the same
reason, ai is elliptic of order 3, rotating around the geodesic iH+ 1/2∩ ∂Bi , for
each i ≥ 0.

Lemma 6.2. Let Gn be the group generated by reflections in the face of Pn , where

Pn =
{
(z, t) ∈ H3

| 0≤<(z)≤ 1/2,−n
√

2≤ =(z)≤ 1/2
}
−

n⋃
k=0

Bk .

Then Gn contains ai for 0 ≤ i ≤ 2n, as well as f0 and b0, and On
.
= H3/Gn is a

one-cusped hyperbolic orbifold.

Proof. By its definition, Pn is cut out by H+ i/2, iH, iH+ 1/2, H− n · i
√

2, and
the ∂Bk , 0≤ k ≤ n. It is not hard to show directly that the dihedral angle between
any two of these planes that intersect is an integer submultiple of π , whence by the
Poincaré polyhedron theorem Gn is discrete and H3/Gn is an orbifold isometric to
Pn with mirrored sides (see [Ratcliffe 1994, Theorem 13.5.1]). In particular, since
Pn has a single ideal point H3/Gn has one cusp.

One finds that Gn contains f0, b0, and the ai , for 0≤ i ≤ n, by direct appeal to
Definitions 6.1. It remains to establish that Gn contains ai for n < i ≤ 2n. Note
that H− n · i

√
2 is the image of H under c−n , so reflection in H− n · i

√
2 is given
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by c−nrcn , where r is the reflection through H. By the property of r observed above
Lemma 3.3, conjugating an element x∈ PSL2(C) by reflection in H−n · i

√
2 gives

(6) c−nrcnxc−nrcn
= c−2n x̄c2n.

We further observe that c conjugates ai to ai−1 for i≥1, since c(iH+1/2)= iH+1/2
and c(Bi )=Bi−1, and we note that ā0 = a0. Thus:

(7) ciaic−i = ā0 = a0 = ciaic
−i
⇒ c−2i āic

2i
= ai .

For 0≤ i ≤ n, it follows that the conjugate of ai by reflection in H− n · i
√

2 is

c−2n āic
2n
= c−2(n−i)aic

2(n−i)
= a2n−i ∈ Gn.

Therefore Gn contains ai for n ≤ i ≤ 2n as well, and the lemma is proved. �

Since H meets both ∂B0 and iH+ 1/2 at right angles, it does the same for
the fixed geodesic of a0 and is therefore preserved by a0. In fact, the following
description of a0 ∈ PSL2(C) is easily obtained from its definition:

a0 =

(
0 1
−1 1

)
.

In particular, a0 acts on the ideal points of P1∩P2 by 0 7→ 1 7→∞ 7→ 0. Similarly,
it is easy to see that f0(z, t)= (z+ 1, t).

Then the face pairings f (defined in Corollary 2.3) and s (defined in Corollary 2.2),
which are equal, are obtained from f0 by conjugating by a0:

(8) s= f = a0f0a
−1
0 .

One may use similar analyses to establish the following:

(9) t= f0a0b0, g = (a−1
0 a1)f

−1
0 (a−1

0 a1)
−1, h= a1a0f

−1
0 a1.

The main group-theoretic fact of this section extends these observations.

Proposition 6.3. For each n ∈ N, Gn contains 0n and m
(i)
1 for 0≤ i ≤ n.

Proof. We recall from Proposition 3.12 that 0n = 〈0S, 0
(1)
T , . . . , 0

(n)
T , 0c−2n

S 〉, where
by Definitions 3.9(2), 0(i)T

.
= 0c−2(i−1)

T for each i between 1 and n. Furthermore, by
Lemma 3.3, 0T = 〈0T0, 0

c−2

T0
〉.

It is a direct consequence of the descriptions (8) and (9) that 0S < Gn and
0T0 < Gn . Furthermore, since f0 commutes with c and f̄0 = f0, (7) implies, for
instance, that

c−2 f̄c2
= c−2(ā0 f̄0ā

−1
0 )c2

= a2f0a
−1
2 ∈ 0n,

since ā0 = a0 and c−2a0c2
= a2. Using the same strategy, we find

c−2ḡc2
= (a−1

2 a1)f
−1
0 (a−1

2 a1)
−1
∈ Gn and c−2h̄c2

= a1a2f
−1
0 a1 ∈ Gn.
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Thus Gn contains 0T =0
(1)
T . Since conjugation by c−1 takes ai to ai+1, and ai ∈0n

for each i between 0 and 2n, it follows from the descriptions above and in (8) and
(9) that 0(i)T < Gn , for 1≤ i ≤ n. Finally the relation (6) immediately implies that
0c−2n

S < Gn , and we have established that 0n < Gn .
To show that Gn contains the elements m

( j)
1 for each j between 0 and n, we

observe that the element obtained by reflecting first in ∂B0 and then in iH is the
rotation of order 2 described by

( 0 −1
1 0

)
. This is well known to generate PSL2(Z),

along with a0. Since m1 ∈ PSL2(Z), it follows that m1 ∈ G.
We note that c−2 j preserves iH and takes B0 to B2 j , and that B2 j intersects Pn ,

for j ≤ n/2, and intersects its image under reflection in H−n · i
√

2 for n/2≤ j ≤ n.
Thus for each j between 0 and n, the rotation obtained by reflecting first in ∂B2 j

and then in iH is contained in Gn . If m1 is expressed as a word in the two elements
described in the paragraph above, then c−2 jm1c

2 j is expressed as the same word in
a2 j and the rotation obtained from ∂B2 j as above. The lemma follows. �

It is now easy to prove the first part of Theorem 2, that the complement of each
link obtained from Ln using only the mutation (13)(24) is commensurable to Mn .

Proposition 6.4. Mn branched covers On , as does MI for any I ∈ {0, 1}n+1. Hence
these are commensurable.

Proof. Since Gn is a discrete reflection group, it is enough to show that 0I ⊂ Gn .
This is immediate from Propositions 5.11 and 6.3. �

To finish the proof of Theorem 2 we need an isometry classification of the link
complements that fall under the purview of Proposition 6.4. Our first step is to
show that Gn is the commensurator of 0n .

The commensurator of a Kleinian group 0 is the group

Comm(0)= {g ∈ Isom(H3) | [0 : g0g−1
]<∞}.

It follows easily from the definition that since 0n is a finite-index subgroup of Gn ,
Gn is contained in Comm(0n). Since 0n is nonarithmetic (by Proposition 4.1), by
a famous theorem of Margulis [1991, (1) Theorem] Comm(0n) is discrete.

Let O ′n be the hyperbolic orbifold H3/Comm(0n). Since Gn < Comm(0n), O ′n
is finitely covered by On . Recall from Lemma 6.2 that On , and therefore also O ′n ,
has exactly one cusp. It is our goal to show that Gn = Comm(0n); hence On = O ′n .

We use the strategy of [Goodman et al. 2008]. Recall the hyperboloid model for
H3. The Lorentz inner product on R4 is the indefinite bilinear form

〈v,w〉 = v1w1+ v2w2+ v3w3− v4w4.

We let H3
= {v | 〈v, v〉 = −1, v4 > 0} and equip TvH3 with the Riemannian

metric determined by the Lorentz inner product. The positive light cone is the set
L+ = {v | 〈v, v〉 = 0, v4 ≥ 0}. The ideal point of H3 represented by v ∈ L+ is the
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set [v] of scalar multiples of v in L+−{0}. Isom(H3) is the group of matrices in
GL4(R) which act on R4 preserving the Lorentz inner product and the sign of the
last coordinate, hence acting on H3 by isometries. Those in Isom+(H3)⊂ Isom(H3)

preserve orientation on H3.
For v ∈ L+−{0} the set Hv = {w ∈H3

| 〈v,w〉 =−1} is a horosphere centered at
the ideal point [v]. If α ∈ R+ then Hαv is a horosphere centered at [αv] = [v], and
if α ≤ 1 then Hv is contained in the horoball {w | 〈αv,w〉 ≥ −1} determined by αv.
This determines a bijective correspondence between vectors in L+ and horospheres
in H3, so we call the vectors in L+ horospherical vectors.

We use the hyperboloid model to construct certain canonical tilings of H3 as-
sociated to Mn as in [Epstein and Penner 1988]. First, choose a horospherical
vector v ∈ L+ fixed by a peripheral element of 0n , so that under the covering
map H3

→ O ′n the horosphere Hv projects to a cross section of the cusp. Then
Vn = Comm(0n) ·v is Comm(0n)-invariant and determines a Comm(0n)-invariant
set of horospheres. The convex hull of Vn in R4 is called the Epstein–Penner convex
hull; we denote it as Cn . Epstein and Penner show that ∂Cn consists of a countable
set of 3-dimensional faces Fi , where each Fi is a finite-sided Euclidean polyhedron
in R4. Furthermore, this decomposition of ∂Cn projects along straight lines through
the origin to a Comm(0n)-invariant tiling Tn of H3 by ideal polyhedra [Epstein and
Penner 1988, Proposition 3.5 and Theorem 3.6]. We refer to the tiling so obtained
as a canonical tiling. (It is easy to see that a different choice for the vector v yields a
convex hull which differs from Cn by multiplication by a positive scalar. Therefore
it projects to the same canonical tiling as Cn .)

Consider the group of symmetries Sym(Tn) < Isom(H3). Given that Tn is
Comm(0n)-invariant we have that Comm(Tn) < Sym(Tn). On the other hand,
Sym(Tn) is discrete [Goodman et al. 2008, Lemma 2.1] and since 0n is nonar-
ithmetic Comm(0n) is the maximal discrete group containing 0n . Therefore
Sym(Tn)= Comm(0n). Below we will first identify the tiling Tn and then show
that Gn = Sym(Tn).

Theorem 4. With S as in Lemma 4.5, Tn = 0n ·
⋃
{P ∈ S} is the canonical tiling

for Comm(0n).

Proof. We choose matrices

M=


2 1 0 1 0 –1 –2 –1 1 –1 –1 1
0 1 2 1 –2 –1 0 –1 –1 1 1 –1
0
√

2 0 –
√

2 0
√

2 0 –
√

2 –
√

2 –
√

2
√

2
√

2

2 2 2 2 2 2 2 2 2 2 2 2

, N=


√

2 0 0 –
√

2 0 0
0
√

2 0 0 –
√

2 0
0 0

√
2 0 0 –

√
2

√
2
√

2
√

2
√

2
√

2
√

2

.
For X = M, N , let xi be the i-th column of X . Each xi below lies in L+ and so
represents an ideal point of H3. We will call PX the convex hull in H3 of the [xi ].
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Our M and N are such that PM is a right-angled ideal cuboctahedron and PN a
regular ideal octahedron, and, furthermore:

• For X = M, N , each member of Isom(PX ) fixes (0, 0, 0, 1)T ∈H3 and the set
of columns of X is Isom(PX )-invariant.

• There exists h ∈ Isom+(H3) with h(n1) = m1, h(n2) = m9, and h(n3) = m4,
so that h(PN )∩ PM is the face (m1,m9,m4) with ideal vertices at [m1], [m9],
and [m4].

Let P1= h(PN ) and P2=PM . There is an isometry p from the upper half-space
to the hyperboloid model taking Pi (as in Corollaries 2.2 and 2.3) to Pi as above
for i = 1, 2, and∞ to the center [m1] of the horosphere Hm1 . We again refer by
S to the image under p of the set S from Lemma 4.5. Also, p conjugates each of
the isometries we’ve used thus far in our constructions to elements of GL4(R), to
which we’ll refer by the same names.

From the explicit description in Lemma 6.2 it is clear that [m1] is a parabolic fixed
point of Gn . Since Gn is discrete, each element fixing [m1] actually fixes m1, so
the orbit Vn = Gn.m1 is a Gn-invariant collection of horospherical vectors bijective
to the set of parabolic fixed points of Gn . Since On =H3/Gn has one cusp and the
same holds for O ′n=H3/Comm(0n), it follows that Vn is also Comm(0n)-invariant.

Lemma 4.5 implies that 0n.
⋃
{P ∈ S} is a 0n-invariant tiling of H3. We claim

that it is identical to the canonical tiling Tn , the projection to H3 of the boundary of
the convex hull of Vn in R4. Note that Tn is also 0n-invariant, since it is Gn-invariant
by construction and 0n < Gn .

We will use [Goodman et al. 2008, Proposition 6.1] to prove the claim. The
proposition requires for each element of S that the horospherical vectors representing
its vertices be coplanar in R4, and that the angle between this plane and the plane
determined by each neighboring tile be convex. Equivalently, if v1, . . . , vk ∈ Vn

represent the ideal vertices of an element of S and w ∈ Vn−{v1, . . . , vk} represents
a vertex of a neighboring tile, then there exists a vector n ∈ R4 such that

(1) (coplanarity) n · vi = 1 for every i = 1, . . . , k, and

(2) (convex angles) n ·w > 1.

(See the proof of [Goodman et al. 2008, Proposition 6.1].) Observe that these
conditions are invariant under Isom(H3), for if n · v = α and A ∈ Isom(H3) then
(nA−1) · Av = α.

For each member P of S, we note that the subset of Vn representing the set
of ideal points of P contains m1 and is Isom(P)-invariant. This is because the
members of S all share the ideal vertex [m1], and the stabilizer in Gn of any P ∈ S

acts transitively on its set of ideal vertices. (The latter assertion can be proved
by directly examining Pn ∩ P, for Pn as in Lemma 6.2.) In particular, the ideal
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vertices of P1 are represented in Vn by {h(ni )}
6
i=1 and those of P2 by {mi }

12
i=1, by

the properties bulleted above.
Take n = (0, 0, 0, 1/2)T . Then n · mi = 1 for i = 1, . . . , 12, so the mi are

coplanar. The ni (and hence also the h(ni )) are also coplanar, since
√

2n · ni = 1
for i = 1, . . . , 6 and the same n. Coplanarity follows for the other elements of
S, since, for example, {c−1(mi )}

12
i=1 is an Isom(c−1(P2))-invariant collection of

horospherical vectors containing m1 = c−1(m1) and representing the ideal vertices
of c−1(P2).

Consider all pairs (Q,PX ) where X ∈ {M, N } and Q is a regular ideal octahedron
or cuboctahedron which meets PX in a face. Choose horospherical vectors for Q to
agree with those chosen for PX and to be Isom(Q)-invariant. Since the convexity
condition (2) is invariant under isometries, to finish the proof it suffices to check
this condition for each possible pair (Q,PX ).

If Q is a cuboctahedron adjacent to PM sharing the triangular face (m1,m9,m4)

then w = (7, 1,−5
√

2, 10)T is a horospherical vector for Q which is not shared
by PM . We have n ·w = 5 > 1. If Q is a cuboctahedron adjacent to PM sharing
the square face (m1,m2,m3,m4) then w = (3, 5,−

√
2, 6)T is a horospherical

vector for Q which is not shared by PM . We have n · w = 3 > 1. If Q is an
octahedron adjacent to PN sharing the face (n1, n2, n3) then w=

√
2(1, 2, 2, 3)T is

a horospherical vector for Q which is not shared by PN . We have
√

2n ·w = 3> 1.
By construction, P1 = h(PN ) is an octahedron intersecting PM in (m1,m9,m4).
For w = h(n1)= (2+ 2

√
2, 0,−2− 2

√
2, 4+ 4

√
2)T we have n ·w = 2+

√
2> 1.

With coplanarity and convex angles thus established, [Goodman et al. 2008,
Proposition 6.1] implies that 0n.

⋃
{P ∈ S} implies the claim; hence the result. �

By construction Gn is a subgroup of the symmetry group for Tn . We complete
the proof that Gn = Comm(0n) below, showing that it is the full symmetry group.

Corollary 6.5. Gn is the commensurator of 0n and On is the minimal orbifold
quotient of Mn . If I ∈ {0, 1}n+1, then Comm(0I ) = Gn and On is the minimal
quotient of MI .

Proof. Proposition 6.4 implies Comm(0I ) = Comm(0n). Take x ∈ Comm(0n).
We want to show that x ∈ Gn . Recall that c−nrcn

∈ Gn exchanges P1 and c−2nrP1.
Therefore the octahedral tiles of Tn lie in a single Gn-orbit, and we may assume
that x fixes P1.

Recall, for instance from Corollary 2.2, that P1 is checkered and its face A
spanned by the vertices 0, 1, and∞ is external, with A = P1 ∩P2. We have that
a0, b0 ∈ Isom(P1)∩Gn . The internal faces of P1 are paired by elements of 0S , so
every internal face of P1 meets an octahedron in Tn . Since P2 is a cuboctahedron,
x(A) must be an external face of P1.
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It follows immediately from the definitions of a0 and b0 that 〈a0, b0〉 acts tran-
sitively on the external faces of P1. Hence after multiplying by an element of
〈a0, b0〉< Gn , we may assume that x(A)= A. By construction it is clear that Gn

contains the stabilizer of A in Isom(P1), so we have x ∈ Gn as desired. �

The second half of Theorem 2 follows from the isometry classification below.

Proposition 6.6. Suppose I = (0, a1 . . . , an−1, 0) and J = (0, b1, . . . , bn−1, 0) are
elements of {0, 1}n+1. MI is isometric to MJ if and only if J = I or J = Ī .

Remark. We have assumed that the first and last entries of I and J are all zero to
make the proposition easier to state. By Lemma 5.8, changing the first or last entry
of either I or J to “1” yields another isometric manifold.

Proof. Any two distinct tiles of Tn which meet the interior of the fundamental
domain Pn from Lemma 6.2 have distinct Gn-orbits. On the other hand, any tile
that does not is contained in the orbit of one that does. It follows that Gn has a
unique orbit of octahedral tiles (that of P1) and exactly n of cuboctahedral tiles,
those of P2, c

−1(P2), . . . , c
−n+1(P2), since Pn has an open subset in each of these

and is contained in their union.
The planes c−i (H) meet the interior of Pn for i ∈ {0, 1, . . . , n− 1}, so their Gn-

orbits are also distinct. We note that the Gn-orbit of H is distinct from that of iH

since H contains points of the interior of Pn but iH contains a face. Since iH∩ Pn

is contained in an internal face of P1 and H∩ Pn in an external face, it follows that
the Gn-orbit of an internal face of P1 is distinct from that of an external face.

For I as in the hypothesis, it follows, as in Lemma 4.5, that the members of

SI = {P1,P2, c
−1P2, q2c

−2P2, . . . , qnc
−2n+1P2, qnc

−2nrP1}

project to a polyhedral decomposition of MI , where the qi are as defined in
Proposition 5.11. (In particular, q1=1 and qn+1=qn , since I has first and last entries
equal to 0.) This is because qi (c

−2(i−1)P2 ∪ c
−2i+1P2) projects to a decomposition

of C((0(i)T )
qi ) for each i (see the proof of Lemma 4.5), and φm1 preserves the

triangulation 1F of Lemma 2.4. Therefore SI is in bijective correspondence with
the set of 0I -orbits of the top-dimensional tiles of Tn .

Clearly qi (c
−2(i−1)P2) is Gn-equivalent to c−2(i−1)P2 for each i between 1 and

n, and qi (c
−2i+1P2) to c−2i+1P2. The reflection u through H−n · i

√
2, also in Gn ,

exchanges P1 with c−2nrP1 and c−i P2 with c−2n+i+1P2 for each i between 0 and
2n− 1. It follows that each Gn-orbit of top-dimensional tiles of Tn is the union of
exactly two 0I -orbits.

Now suppose for some J as in the hypothesis that there is an isometry MJ→MI .
This lifts to x ∈ Isom(H3) with the property that 0x

J = 0I . Since 0I and 0J

are each finite-index subgroups of Gn they are commensurable, by definition x ∈

Comm(0J )= Gn . By the above, xP1 is 0I -equivalent to one of P1 or qnc
−2nrP1.
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The reflection isometry of Lemma 5.9 determines ρ ∈ Isom(H3) that conjugates
0I to 0 Ī and takes qnc

−2nrP1 into the 0 Ī -orbit of P1, so replacing x by ρx (and I
by Ī ) if necessary, we may ensure that there exists γ ∈ 0I with γ xP1 = P1. By
the above γ x takes internal faces of P1 to internal faces. Because it conjugates
0J to 0I and P1 is contained in a fundamental domain for each, γ x preserves the
internal face-pairings induced by the projections to MI and to MJ .

It follows from Proposition 5.11 that each of these is the pairing described in
Corollary 2.2. The combinatorial description there implies that γ x preserves the
pairs {X1, X2} and {X3, X4} (see Figure 3), so it is either the identity or 180-degree
rotation in the axis joining the ideal vertex 0 (the “intersection” X1 ∩ X2 on the
sphere at infinity) to 1+ i = X3 ∩ X4. However the latter map does not preserve
equivalence classes of the ideal vertices of X3 and X4 under face pairing, so γ x= 1.
It follows that x ∈ 0I , so 0J = 0I .

We claim, however, that if J 6= I then 0J 6= 0I . The key fact here is that 0m1
T0
6=

0T0 : for instance, the face (fg)−1(Y ′2) of (fg)−1(P2) is taken by (fg)−1hfg ∈ 0T0 to
(fg)−1(Y ′3) (see the proof of Corollary 2.3), but (fg)−1(Y ′2) = m1g

−1(Y ′1) is taken
by m1g

−1m−1
1 ∈ 0

m1
T0

to m1g
−1(Y3). (This description follows from the fact that m1

preserves the polygon F from Lemma 2.4, acting on it as a rotation exchanging
g−1(E) with (fg)−1(D).) In fact, this further implies that no group 0 containing
0T0 also contains 0m1

T0
, as long as the natural map C(0T0)→ C(0) is embedding.

If J 6= I then for the minimal i such that bi 6= ai we have 0w
T0
< 0I and

(0
m1
T0
)w < 0J , where w = qic

−2(i−1) (see Proposition 5.11). The claim, and hence
also the result, thus follows from Proposition 5.11 and Lemma 3.3. �

7. Incommensurable mutants

Lemma 5.5 might lead one to suspect that the mutations (13)(24) and (12)(34) of
F (0) act very differently at the level of Kleinian groups. Indeed, it follows from
Proposition 7.1 below, together with Proposition 4.2, that S3

− Ln is incommensu-
rable with the complement of any link obtained from it by the mutation (12)(34)
along a subcollection of the S(i). In fact, we consider it likely that no two such
mutants are commensurable unless they are isometric.

We lack the tools to fully prove this assertion — mutants are notoriously difficult
to distinguish — but in this section we will describe large families of mutants whose
members have different cusp parameters and are mutually incommensurable. We
begin with traces, however. By [Neumann and Reid 1991] the MI all have trace
field Q(i,

√
2).

Proposition 7.1. For fixed n and any I = (a0, . . . , an) ∈ {0, 1, 2}n+1 such that
ai = 2 for some i , 0I has a nonintegral trace.

Proof. Suppose I = (a0, . . . , an) ∈ {0, 1, 2}n+1 satisfies the hypothesis, and fix i0
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with ai0 = 2. By Proposition 5.11, if i0 = 1 then 0I contains the following matrix:

tm2gm
−1
2 =

(
1
5(−2+ 12

√
2+ 31i + 4i

√
2) −2+

√
2+ 21i + 2i

√
2

1
5(−1+ 7

√
2+ 16i + 2i

√
2) −1+

√
2+ 11i + i

√
2

)
.

(Recall from Corollary 5.6 that m(0)2 =m2.) The trace of tm2gm
−1
2 is not an algebraic

integer, since the ring of integers of Q(i,
√

2) is Z[i,
√

2]. If i0= n then 0I contains
a conjugate of ḡm2t̄m

−1
2 = (m2ḡ)−1(tm2gm−1

2 )m2ḡ.
In all other cases, Proposition 5.11 implies that 0I contains an element with the

same trace as the following matrix:

h̄(m2hm
−1
2 )=

(
−2i
√

2 −3+ i
√

2
−3− i

√
2 3i

√
2

)(
−3i
√

2 15− 5i
√

2
1
5(3+ i

√
2) 2i

√
2

)
=

(
−71/5 −20− 30i

√
2

18
5 (−2+ 3i

√
2) 55

)
.

The trace of this matrix is evidently not an algebraic integer. �

For fixed n and any I ∈ {0, 1, 2}n+1, since Mn and MI decompose along totally
geodesic surfaces into isometric pieces, they have the same volume. (In fact,
[Ruberman 1987, Theorem 1.3] asserts that hyperbolic volume is always invariant
under mutation.) It would follow from the classical “Dehn invariant sufficiency”
conjecture that any two hyperbolic manifolds with the same volume are scissors
congruent (again see [Neumann 1998], for instance). In our situation we will verify
this explicitly.

Proposition 7.2. For fixed n and any I ∈ {0, 1, 2}n+1, Mn and MI have the same
Bloch invariant.

Proof. Recall from Lemma 2.4 that F (0) inherits a triangulation 1F from the
fundamental domain F for the action of 3 on H pictured in Figure 5. From the
figure, one finds that 1F has six edges, each a geodesic arc joining cusps of F . For
example, the geodesic joining 0 and∞ projects to an edge which joins cusp 1 to
cusp 2. Of the other five edges, one joins 3 to 4, two join 2 to 4, and for each of 2
and 4 there is an edge joining it to itself.

Since m1 ∈ PSL2(Z) it preserves the Farey tessellation of H, which restricts on
F to the triangulation pictured in Figure 5. Therefore φm1 preserves 1F . On the
other hand, since φm2 exchanges 1 with 2 and 3 with 4 it does not preserve 1F . For
instance, if e is the edge joining 2 to itself then φm2(e) joins 1 to itself.

Fix I = (a0, . . . , an) ∈ {0, 1, 2}n+1 and suppose ai = 2 for some 0 < i <
n. The gluing map C(0(i)T )→ C(0(i+1)

T ) factors through φm(i)
2
: F (i) → F (i) by

Proposition 5.7. This is conjugate to φm2 by the inverse of φi+1 from Definitions 3.9,
so the gluing does not preserve the triangulations of F (i) induced by its intersections
with external faces of the cuboctahedra on either side (see Lemma 2.4(3)). The cases
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Figure 12. Interpolating between 1F , on the left, and φm2(1F ).

i = 0 and i = n are analogous, and show that if ai = 2 for any i then the division of
MI into octahedra and cuboctahedra is not a true ideal polyhedral decomposition.

It is possible to rectify this by gluing “flat” tetrahedra between copies of C(0S)

and/or C(0T ) joined by the mutation φm2 . If T is a flat tetrahedron glued to, say,
C(0S) along two adjacent triangles in ∂C(0S), then C(0S)∪T is homeomorphic
to C(0S), but in the induced triangulation of the boundary, the edge separating
the triangles along which T is glued has been replaced by an edge joining their
two opposite vertices. See [Neumann and Yang 1999, §4] for a more thorough
exposition.

Figure 12 illustrates a process by which 1F may be changed to its image under
φm2 by a sequence of moves on edges. The edges of 1F are pictured on the left in
bold. Moving left to right, at each stage two edges are replaced by edges transverse
to them and disjoint from the remaining edges. After three such moves, the original
triangulation has been changed to its image under φm2 .

Now suppose I = (a1, . . . , an) ∈ {0, 1, 2}n+1. For each i < n such that ai = 2,
replace C(0(i+1)

T ) by its union with 6 flat tetrahedra, glued successively along
∂−C(0(i+1)

T ), to realize the change of triangulations illustrated in Figure 12. The
result is homeomorphic to C(0(i+1)

T ), since adding a flat tetrahedron does not
change the homeomorphism type, but the gluing induced by φmi+1

2
now preserves

the triangulation. The case i = n is similar, but C(0S) is changed instead.
It follows from the above that the Bloch invariant β(MI ) may be calculated

using the resulting polyhedral decomposition. This differs from the original by the
addition of the cross ratio parameters of the flat tetrahedra. Each of these is equal
to 2, since the triangulation of F is a projection of the Farey tessellation of H. But
in the Bloch group, 2 · [2] = 0 is a consequence of the relation [z] = [z/(z− 1)].
Since the number of flat tetrahedra is a multiple of 6, the sum of their cross ratio
parameters contributes nothing to the Bloch invariant. �

The following proposition tracks the change of cusp parameters under mutation.
To simplify our task, we restrict our attention to complements of links obtained by
mutating only with (12)(34) along a subcollection of the S(i) and note in passing
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that since those obtained by mutating only with (13)(24) are commensurable with
Mn , their cusp parameters are PGL2(Q)-equivalent to those of Mn .

Proposition 7.3. For I = (t0, t1, . . . , tn) ∈ {0, 2}n+1 and j ∈ {0, 1, . . . , n}, define

c j =

j∑
k=0

tk
2

(mod 2).

Let T1 be a cross section of the cusp of MI such that T1 ∩ C(0S) = pS(A1) (as
defined in Lemma 4.13), and let T2 be a cross section of the cusp of MI with
T2 ∩C(0S)= pS(A2). Up to the action of PGL2(Q), their complex moduli are:

m(T1)= i
[

1+ 2
n∑

j=1

2
√

2
5c j−1
+

1
5cn

]
,

m(T2)= i
[

1
5
+ 2

n∑
j=1

2
√

2
5(1−c j−1)

+
1

5(1−cn)

]
.

Proof. To simplify notation, we will identify Ak with pS(Ak) and view Ak ⊂C(0S)

for k = 1, 2. Recall the decomposition of MI , along the surfaces F ( j), into a union
of isometric copies of C(0S) and C(0T ) as described in Proposition 5.7:

C(0S)∪C(0(1)T )∪ · · · ∪C(0(n)T )∪C(0S)→ MI .

We will denote by l j the gluing map supplied by Proposition 5.7, taking ∂+C(0( j)
T )

to ∂−C(0( j+1)
T ) when 1 ≤ j < n. The map l0 takes ∂C(0S) to ∂−C(0(1)T ), and

ln : ∂+C(0(n)T )→ ∂C(0S).
For 1≤ j ≤ n and k ∈ {1, 2, 3, 4} we take DB( j)

k = φ j ◦ pT (DBk) as in the proof
of Proposition 4.17. DBk is defined above Lemma 4.15, which implies that DB( j)

k
is an annular cross section of the cusp of C(0( j)

T ) corresponding to pc
−2 j

k . Each of
T1 and T2 meets each of the C(0( j)

T ) in a collection of cusp cross sections parallel
to a subcollection of the DB( j)

k , k ∈ {1, 2, 3, 4}. Similarly, each of T1 ∩C(0S) and
T2 ∩C(0S) is parallel to one of the cross sections A1 or A2.

By the proof of Proposition 4.17, for 1≤ j < n, if t j = 0 then l j = ι
( j)
+ (ι

( j)
− )
−1

takes ∂+DB( j)
k to ∂−DB( j+1)

k for each k ∈ {1, 2, 3, 4}. However if t j = 2 then l j acts
on the indices k by the permutation (12)(34), since it uses φ( j)

m2 . Likewise if t0 = 0
then l0(∂Ak)= ∂−DB(1)k t ∂−DB(1)k+2 for k = 1, 2, by the proof of Proposition 4.17;
hence if t0 = 2, then l0(∂Ak)= ∂−DB(1)3−k t ∂−DB(1)5−k . A similar dichotomy holds
for ln .

Remark. The definitions of the annular cusp cross sections in Lemmas 4.13
and 4.14 depended on a particular collection of horospheres centered at the ideal
vertices of P1 and P2. These give rise to a particular collection of horospherical
cross sections of the cusps of F (0), which is not preserved by φm2 .
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It is more accurate to say, for example, that when t j = 2 and 1 ≤ j < n,
l j (∂+DB( j)

1 ) is a cusp cross section of ∂−C(0( j+1)
T ) parallel (and therefore similar)

to ∂−DB( j+1)
2 . Since the modulus is unaffected by similarities, we have largely

ignored this distinction above and will continue to do so below.

Claim. For each j ∈ {1, . . . , n},

T1 ∩C(0( j)
T )=

{
DB( j)

1 ∪ DB( j)
3 if c j−1 = 0,

DB( j)
2 ∪ DB( j)

4 if c j−1 = 1.

Furthermore, T1 ∩C(0S)= A1 if cn = 0 and A2 if cn = 1.

Proof of claim. This is proved by induction on j . In the base case j = 1, since
c0 = t0/2 and T1 ∩C(0S)= A1, the conclusion in this case follows directly from
the dichotomy in the behavior of l0 recorded above the claim.

Suppose now that the claim holds for some j < n, and note that therefore
T1 ∩ M ( j)

T has components DB( j)
k and DB( j)

k′ , where k, k ′ ∈ {1, 2, 3, 4} have the
same parity, which is opposite that of c j−1. By definition, c j has the opposite
parity from c j−1 if and only if t j=2. Writing l j (∂+DB( j)

k )=∂−DB( j+1)
k′′ , the above

implies that k ′′ has parity opposite that of k if and only if t j = 2. A similar assertion
holds for k ′, and the claim follows for j + 1.

By induction, the claim holds for each j ≤ n. The final statement in the claim
follows by an argument that mimics the one used in the inductive step. �

The moduli of A1, A2, A1, and A2 are described in Lemma 4.13, and those of the
DB(i)j are described in Lemma 4.15. Using these descriptions and Lemma 4.12, the
claim above shows that the imaginary part of m(T1) is as described in the statement
of the proposition. The description of the imaginary part of m(T2) follows similarly.

Now recall the definitions of the arcs a1 and db( j)
k for 1 ≤ j ≤ n and k = 1, 3,

and the collections of arcs A2 and DB
( j)
k for 1 ≤ j ≤ n and k = 2, 4, from the

proof of Proposition 4.17. For our purposes here, we additionally define A1 to be a
collection of five arcs evenly spaced around A1, each perpendicular to ∂A1 at each
of its endpoints, such that a1 ∈A1. We analogously define D B

( j)
k as a collection

of evenly spaced arcs in DB( j)
k containing db( j)

k for 1≤ j ≤ n and k = 1, 3.

Claim. If t0 = 0 then l0(∂Ak) = ∂−DB(1)
k ∪ ∂−DB(1)

k+2 for k = 1, 2, and if t0 = 2
then l0(∂Ak)= ∂−DB(1)

3−k ∪ ∂−DB(1)
5−k . Similarly, for 1≤ j ≤ n− 1,

l j (∂+DB
( j)
k )= ∂−DB

( j+1)
k for k = 1, 2, 3, 4, if t j = 0,

l j (∂+DB
( j)
k )=

{
∂−DB

( j+1)
3−k for k = 1, 2,

∂−DB
( j+1)
7−k for k = 3, 4,

if t j = 2.
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Also, if tn = 0 then l−1
n (∂Ak) = ∂+DB(n)

k ∪ ∂+DB(n)
k+2 for k = 1, 2, and if tn = 2

then l−1
n (∂Ak)= ∂+DB(n)

3−k ∪ ∂−DB(n)
5−k .

In the discussion above the first claim, we recorded the analogous dichotomy
to that of the claim above for the action of the gluing maps l j on boundaries of
annular cusp cross sections. The substance of this claim is thus that the gluing maps
preserve arc endpoints.

Proof of claim. Suppose first that t j = 0, so by its definition l j = ι
( j)
+ (ι

( j)
− )
−1. The

proof of Proposition 4.17 directly addresses the cases of A2, A2, and DB
( j)
k , where

k = 2 or 4. In the remaining case of A1, the definition implies that ∂A1 consists
of ten points, five evenly spaced around each component of ∂A1, with each such
collection containing a point of ∂a1. Also by definition, ∂−DB(1)

k is a collection
of five points spaced evenly around ∂−DB(1)k , one of which is ∂−db(1)k for k = 1, 3.
By the proof of Proposition 4.17, ι(0)+ (ι

(0)
− )
−1 takes ∂a1 to ∂−db(1)1 ∪ ∂−db(1)3 ; hence

the entire collection ∂A1 is taken to ∂−DB(1)
1 ∪ ∂−DB(1)

3 since ι(0)+ (ι
(0)
− )
−1 is an

isometry. The remaining cases when t j = 0, j ≥ 1, follow similarly.
To illustrate the case t j = 2 we focus on the subcase 1 ≤ j < n. When t0 = 2,

l j takes ∂+DB( j)
1 to ∂−DB( j+1)

2 , for example. The crucial observation here is that
l0(∂+db( j)

1 ) is in ∂−DB( j+1)
2 . This holds because by definition, ∂+db( j)

1 is a point
in the edge of the triangulation 1T which exits the ideal vertex 1. (This is the
top edge in Figure 12.) Although φm2 does not preserve 1T , it preserves this
edge, exchanging its endpoints at 1 and 2. Since ∂−DB

( j+1)
2 has a point in each

edge which exits 2, it contains φm2(∂+db( j)
1 ). Since the points of ∂+DB

( j)
1 are

evenly spaced around ∂+DB( j)
1 and the same is true for ∂−DB

( j+1)
2 , it follows that

l0(∂+DB
( j)
1 )= ∂−DB

( j+1)
2 .

Since φm2 takes the edge of 1T to itself and exchanges its endpoints, we have
l0(∂+db( j)

3 ) ∈ ∂−DB
( j+1)
4 in this case. Then it follows from “even-spacedness”

that l0(∂+DB
( j)
3 )= ∂−DB

( j+1)
4 . The same argument implies that ∂−db( j+1)

1 lies
in l0(∂+DB

( j+1)
2 ) and therefore that l0(∂+DB

( j)
2 )= ∂−DB

( j+1)
1 , and similarly that

l0(∂+DB( j)
4 ) = ∂−DB

( j+1)
3 . The same sequence of observations, applied to ∂Ak

and ∂Ak , k = 1, 2, completes the claim. �

The second claim implies that the set

A1 ∪A2 ∪
⋃
j,k

DB
( j)
k ∪A1 ∪A2

consists of a disjoint union of closed geodesics, some in T1 and some in T2, each
meeting any of the geodesics F ( j)

∩ T1 or F ( j)
∩ T2 perpendicularly in up to five

points. That m(T1) and m(T2) have real part equal to 0 (up to the action of PGL2(Q))
now follows as in the proof of Proposition 4.17. �
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Proposition 7.3 allows us to describe arbitrarily large subfamilies of the MI which
have PGL2(Q)-inequivalent cusp parameters and hence are not commensurable.

Corollary 7.4. For 0≤ k ≤ n, let Ik = (t0, t1, . . . , tn) be defined by ti = 0 for i 6= k,
and tk = 2. The cusp parameters of MIk are not PGL2(Q)-equivalent to those of
MIk′

for k 6= k ′, when both are less than (n+ 1)/2.

Proof. By Proposition 7.3, the cusps of MIk have moduli described as

m(T1)= i
[ 6

5 +
4
5(n+ 4k)

√
2
]
, m(T2)= i

[ 6
5 +

4
5(5n− 4k)

√
2
]
.

Since m(T1) and m(T2) are both of the form described in Lemma 4.18 for any k,
if the cusp parameters of MIk are equivalent to those of MIk′

, then one of the two
following cases holds:

n+ 4k = n+ 4k ′, and 5n− 4k = 5n− 4k ′,

n+ 4k = 5n− 4k ′, and 5n− 4k = n+ 4k ′,

In the first case, k = k ′, and in the second, k ′ = n − k. Thus as long as k and
k ′ < (n+ 1)/2 are unequal, their cusp parameters are as well. �

There are also arbitrarily large subfamilies which share cusp parameters, even
among complements of links obtained by mutating only with (12)(34). We do not
know if these are commensurable, although we suspect they are not.

Corollary 7.5. For 0≤k<n, let Ik= (t0, . . . , tn) be defined by ti =0 for i 6=k, k+1,
and tk = tk+1 = 2. For each k, the cusp parameters of MIk are

m(T1)= i
[
2+ 4

(
n− 4

5

)√
2
]
, m(T2)= i

[2
5 +

4
5(n+ 4)

√
2
]
,

up to the action of PGL2(Q).

Corollaries 7.4 and 7.5 prove parts (2) and (3), respectively, of Theorem 3.

Appendix: Proof of Lemma 2.6

Following Morgan [1984], we define a pared manifold to be a pair (M, P), where
M is a compact, orientable, irreducible 3-manifold with nonempty boundary which
is not a 3-ball, and P ⊆ ∂M is the union of a collection of disjoint incompressible
annuli and tori satisfying the following properties:

• Every noncyclic abelian subgroup of π1 M is conjugate into the fundamental
group of a component of P .

• Every map φ : (S1
× I, S1

× ∂ I )→ (M, P) which induces an injection on
fundamental groups is homotopic as a map of pairs to a map ψ such that
ψ(S1

× I )⊂ P .
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This definition describes the topology of the compact manifold obtained by trun-
cating the cusps of the convex core of a geometrically finite hyperbolic 3-manifold by
open horoball neighborhoods. Indeed, Corollary 6.10 of [Morgan 1984] asserts that
if (M, P) is obtained in this way, where P consists of the collection of boundaries
of the truncating horoball neighborhoods, then (M, P) is a pared manifold.

Lemma 2.6 asserts that if (M, P) has the pared homotopy type of a geometrically
finite hyperbolic manifold H3/0 where 0 is not Fuchsian and ∂C(0) is totally
geodesic, then M− P is homeomorphic to C(0). The key point of the proof is that
the geometric conditions on 0 ensure that (M, P) is an acylindrical pared manifold.
Then Johannson’s theorem [Johannson 1979], that pared homotopy equivalences
between acylindrical pared manifolds are homotopic to pared homeomorphisms,
applies. We expand on this below.

It is worth noting that Lemma 2.6 fails in more general circumstances. The
memoir [Canary and McCullough 2004] gives examples of this; Example 1.4.5,
for instance, describes homotopy-equivalent non-Fuchsian geometrically finite
manifolds with incompressible convex core boundary which are not homeomorphic.
That work is devoted to understanding the ways in which homotopy equivalences
of hyperbolic 3-manifolds can fail to be homotopic to homeomorphisms, and
Lemma 2.6 follows quickly from results therein.

The treatment of Canary and McCullough itself uses the theory of characteristic
submanifolds of manifolds with boundary pattern developed in [Johannson 1979].
The characteristic submanifold of a manifold with boundary pattern is a maximal
collection of disjoint codimension-zero submanifolds, each an interval bundle or
Seifert-fibered space embedded reasonably with respect to the boundary pattern.
Rather than attempting to establish all of the notation necessary to define this
formally, we refer the interested reader to the two works just cited. Here we simply
transcribe the relevant theorem of [Canary and McCullough 2004], which strongly
restricts the topology of the characteristic submanifold of a pared manifold with
boundary pattern determined by the pared locus.

For the purposes of Lemma 2.6 we exclude from consideration certain pared
manifolds which never arise from convex cores of geometrically finite hyperbolic
3-manifolds. We say (M, P) is elementary if it is homeomorphic to one of (T 2

× I,
T 2
×{0}), (A2

× I, A2
×{0}), or (A2

× I,∅), where T 2 and A2 denote the torus and
annulus, respectively; otherwise (M, P) is nonelementary. Define ∂0 M := M − P .
We say an annulus properly embedded in M − P is essential in (M, P) if it is
incompressible and boundary-incompressible in M − P . For a codimension-0
submanifold V embedded in M , we denote by Fr(V ) the frontier of V (that is, its
topological boundary in M), and note that Fr(V )= ∂V − (V ∩ ∂M). With notation
thus established, the following theorem combines the definition of the characteristic
submanifold with [Canary and McCullough 2004, Theorem 5.3.4].
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Theorem. Let (M, P) be a nonelementary pared manifold with ∂0 M incompress-
ible. Select the fibering of the characteristic submanifold so that no component is
an I -bundle over an annulus or Möbius band.

(1) Suppose V is a component of the characteristic submanifold which is an
I -bundle over a surface B. Then each component of the associated ∂ I -bundle
is contained in ∂0 M , each component of the associated I -bundle over ∂B is
either a component of P or a properly embedded essential annulus, and B has
negative Euler characteristic.

(2) A Seifert-fibered component V of the characteristic submanifold is homeomor-
phic either to T 2

× I or to a solid torus. If V is T 2
× I then one component of

T 2
× ∂ I lies in P and the other components of V ∩ ∂M are annuli in ∂0 M. If

V is a solid torus, then V ∩ ∂M has at least one component, each an annulus
either containing a component of P or contained in ∂0 M. In either case, each
component of the frontier Fr(V ) of V in M is a properly embedded essential
annulus.

The characteristic submanifold contains regular neighborhoods of all compo-
nents of P.

The key claim in the proof of Lemma 2.6 is a further restriction on the character-
istic submanifold of (M, P), in the case that M is obtained from the convex core
of a non-Fuchsian geometrically finite manifold with totally geodesic convex core
boundary by removing horoball neighborhoods of the cusps. P is the union of the
boundaries of these neighborhoods.

Claim. (M, P) as above is nonelementary, and ∂0 M is incompressible. The
characteristic submanifold of (M, P) consists only of (Seifert-fibered) regular
neighborhoods of the components of P , each of whose boundary has a unique
component of intersection with ∂M.

We prove the claim below, but assuming it for now, the proof of Lemma 3
proceeds as follows. A representation as given in the statement of the lemma
induces a pared homotopy equivalence between (M, P) and the pared manifold
(N , Q) obtained by truncating C(0)with open horoball neighborhoods. Since C(0)
has totally geodesic convex core boundary, (N , Q) is as described by the claim;
hence (M, P) is as well (see [Canary and McCullough 2004, Theorem 2.11.1],
for example). Johansson’s classification theorem (see [Canary and McCullough
2004, Theorem 2.9.10]) implies that the original pared homotopy equivalence is
homotopic to one which maps the complement of the characteristic submanifold
of (M, P) homeomorphically to the complement of the characteristic submanifold
of (N , Q). It follows from the claim that these are homeomorphic to M − P and
N − Q, respectively, and the lemma follows.
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Proof of claim. As was mentioned above, the elementary pared manifolds do not
arise from geometrically finite hyperbolic manifolds. Since (M, P) is obtained
from the convex core of a geometrically finite manifold with totally geodesic convex
core boundary, the following are known not to occur:

(1) A compressing disk for ∂0 M . (By definition ∂0 M lifts to a geodesic hyperplane
in H3, hence the induced map π1∂M0→ π1 M is injective.)

(2) An accidental parabolic: an essential annulus properly embedded in M with
one boundary component in P and one in ∂0 M , which is not parallel to P .
(Every essential curve on ∂0 M that is not boundary-parallel is homotopic to a
geodesic, but an element of π1(M) corresponding to an accidental parabolic
has translation length 0.)

(3) A cylinder; that is, a properly embedded essential annulus in M − P . (The
double DM of M across ∂0 M is a hyperbolic manifold, but the double of a
cylinder in M would be an essential torus in DM .)

We show that if the characteristic manifold has any components other than those
listed in the claim then at least one of the above facts cannot hold.

For a component V of the characteristic submanifold which is an I -bundle over
a surface B, at least one component of the associated I -bundle over ∂B must be
properly embedded, since otherwise we would have M = V and it is well known
that an I -bundle over a surface does not admit a hyperbolic structure with totally
geodesic convex core boundary unless the convex core is a Fuchsian surface. But
this annulus violates (2) or (3). Thus there are no I -bundle components of the
characteristic submanifold.

If V is a Seifert-fibered component of the characteristic submanifold homeo-
morphic to T 2

× I , then one component of ∂V is a torus P1 ⊂ P , and all other
components of ∂V ∩ ∂M are annuli in ∂0 M . If this second class is nonempty then
each component of Fr(V ) is an essential annulus properly embedded in M − P ,
contradicting fact (3). Thus ∂V ∩ ∂M = P1 and V is a regular neighborhood of P1.

If V is a solid torus and V ∩ ∂M contains a component of P , then a similar
argument shows that this is the unique component of ∂V ∩ ∂M , so in this case V
is a regular neighborhood of an annular component of P . If, on the other hand,
V ∩∂M does not contain any components of P , then it has at least two components,
for otherwise a meridional disk of V determines a boundary compression of the
annulus Fr(V ) in M − P . But then any component of Fr(V ) violates fact (3). �
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TAUT FOLIATIONS
AND THE ACTION OF THE FUNDAMENTAL GROUP

ON LEAF SPACES AND UNIVERSAL CIRCLES

YOSUKE KANO

Let F be a leafwise hyperbolic taut foliation of a closed 3-manifold M and let
L be the leaf space of the pullback of F to the universal cover of M. We show
that if F has branching, then the natural action of π1(M) on L is faithful.
We also show that if F has a finite branch locus B whose stabilizer acts on
B nontrivially, then the stabilizer is an infinite cyclic group generated by an
indivisible element of π1(M).

1. Introduction

Unless otherwise specified, we assume throughout this article that M is a closed
oriented 3-manifold and F a codimension-one transversely oriented, leafwise hy-
perbolic, taut foliation of M . Here we say that F is leafwise hyperbolic if there is
a transversely continuous leafwise Riemannian metric on M where the leaves are
locally isometric to the hyperbolic plane, and that F is taut if there is a loop in M
which intersects every leaf of F transversely. Note that by [Candel 1993], if M is
irreducible and atoroidal, then every taut foliation of M is leafwise hyperbolic.

Leafwise hyperbolic taut foliations have been extensively investigated by many
people in connection with the theory of 3-manifolds (see, for example, Calegari’s
book [2007]). One of the most powerful methods of analyzing the structure of
such foliations is to consider canonical actions of π1(M) on 1-manifolds naturally
associated with F. Two kinds of such 1-manifolds are known. The first one, denoted
L , is the leaf space of F̃, where F̃ is the pullback of F to the universal cover M̃ of
M . The action of π1(M) on M̃ induces an action of π1(M) on L . In the sequel we
refer to it as the natural action. The second one is a universal circle. By unifying
circles at infinity of all the leaves of a given F̃, Thurston [1998] (see also [Calegari
and Dunfield 2003]) constructs a universal circle with a canonical π1(M) action.

This work is partially supported by the AGSST support program for young researchers, 2011, Chiba
University, Japan.
MSC2010: 57M05, 57M60, 57R30.
Keywords: foliation, leaf space, universal circle.
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We say that F has branching if L is non-Hausdorff. The first result of this article
is the following:

Theorem 3.2. If F has branching, then the natural action on L is faithful.

This result is obtained from an investigation of both actions of π1(M) on the
leaf space and on the universal circle (see Section 3). Notice that the hypothesis
that F has branching is indispensable. In fact, just consider a surface bundle over
S1 foliated by fibers. Notice also that, by Theorem 7.10 of [Calegari and Dunfield
2003], any taut foliation can be modified by suitable Denjoy-like insertions so that
the natural action associated with the resulting foliation becomes faithful. In the
case where the foliation is leafwise hyperbolic and has branching, our result is
stronger in that we assure faithfulness without performing any modifications.

Next we consider the stabilizer of a branch locus of F. We call a subset B of L
a branch locus if B contains at least two points and can be expressed in the form
B= limt→0 νt for some interval {νt ∈ L | 0< t <ε} embedded in L . Furthermore, if
the parameter t of the interval is incompatible (resp. compatible) with the orientation
of L , we call B a positive (resp. negative) branch locus. (Note that L has a natural
orientation induced from the transverse orientation of F̃.) Branch loci have been
studied, for example, in [Fenley 1998; Shields 2002]. For a branch locus B we
define the stabilizer of B by Stab(B)= {α ∈ π1(M) | α(B)= B}.

In the case where a branch locus B is finite, we obtain the following results about
the action of Stab(B) on B (see Section 5 for details).

Theorem 5.2. Let B be a finite branch locus of L. If an element of Stab(B) fixes
some point of B then it fixes all the points of B.

We remark that for Anosov foliations, Theorem D of [Fenley 1998] contains
results related to this theorem.

Let π : M̃→ M be the covering projection. For a leaf λ of F̃, we denote by λ
the projected leaf π(λ) of F.

Theorem 5.3. Let B be a branch locus of L. Then,

(1) if Stab(B) is trivial, λ is diffeomorphic to a plane, and

(2) if B is finite and Stab(B) is nontrivial, λ is diffeomorphic to a cylinder

for any λ ∈ B.

Theorem 5.6. Let B be a finite branch locus of L with a nontrivial stabilizer. Then
the stabilizer Stab(B) is isomorphic to Z.

We say that α ∈ π1(M) is divisible if there is some β ∈ π1(M) and an integer
k ≥ 2 such that α = βk . Otherwise we say α is indivisible.

Theorem 5.7. Let B be a finite branch locus of L such that Stab(B) acts on B
nontrivially. Then a generator of Stab(B) (∼= Z) is indivisible.
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For an oriented loop γ in M , we say that γ is tangentiable if γ is freely homotopic
to a leaf loop (a loop contained in a single leaf) of F, and that γ is positively
(resp. negatively) transversable if γ is freely homotopic to a loop positively (resp.
negatively) transverse to F. As a final topic of this article, we study relations
between the infiniteness of branch loci and the existence of a nontransversable leaf
loop in M (see Section 6). One of the results we obtain is the following:

Theorem 6.5. Suppose F has branching. If there is a noncontractible leaf loop in
M which is not freely homotopic to a loop transverse to F, then F has an infinite
branch locus.

This article is organized as follows. In Section 2, we briefly review the Calegari–
Dunfield construction of a universal circle. Using their construction, we prove the
faithfulness of the natural action of π1(M) on L in Section 3. In Section 4, we
introduce a notion of comparable sets and give several basic properties of such sets,
which are applied in Section 5 to the investigation of the structure of finite branch
loci and their stabilizers. In Section 6, we study how the nontransversability of leaf
loops in M is related to the infiniteness of branch loci in L .

2. Universal circles

The theory of universal circles was originally developed in [Thurston 1998], and
was written up carefully in [Calegari and Dunfield 2003]. In this section we briefly
recall the definition of a universal circle after the latter reference.

Let M , F and L be as in the introduction. Here the topology of L is the quotient
topology from M̃ ; that is, there is a canonical projection map q : M̃→ L sending a
point to the leaf containing it. The topology of L is the quotient topology from the
map q.

For λ,µ ∈ L we write λ<µ if there is an oriented path in M̃ from λ to µ which
is positively transverse to F̃. We say that λ and µ are comparable if either λ≤ µ
or λ ≥ µ. For a leaf λ of F̃, the endpoint map e : Tpλ− {0} → S1∞(λ) from the
tangent space of λ at p to the ideal boundary of λ takes a vector v to the endpoint
at infinity of the geodesic ray γ with γ (0)= p and γ ′(0)= v. The circle bundle at
infinity is the disjoint union E∞ =

⋃
λ∈L S1∞(λ) with the finest topology such that

the endpoint map e : T F̃ \ (zero section)→ E∞ is continuous. A continuous map
φ : X→ Y between oriented 1-manifolds homeomorphic to S1 is monotone if it is
of mapping degree one and if the preimage of any point of Y is contractible. A gap
of φ is the interior in X of such a preimage. The core of φ is the complement of
the union of gaps.

Definition 2.1. A universal circle S1
univ for F is a circle together with a homomor-

phism ρuniv :π1(M)→Homeo+(S1
univ) and a family of monotone maps φλ : S1

univ→
S1∞(λ), λ ∈ F̃, satisfying the following conditions:
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1. For every α ∈ π1(M), the following diagram commutes:

S1
univ

ρuniv(α)−−−−→ S1
univ

φλ

y φα(λ)

y
S1∞(λ)

α−−−→ S1∞(α(λ)).

2. If λ and µ are incomparable, then the core of φλ is contained in the closure of
a single gap of φµ and vice versa.

Calegari and Dunfield’s construction for a universal circle is as follows. Let
I = [0, 1] be the unit interval. A marker for F is a continuous map m : I×R+→ M̃
with the following properties:

• For each s ∈ I , the image m(s×R+) is a geodesic ray in a leaf of F̃. We call
these the horizontal rays of m.

• For each t ∈ R+, the image m(I × t) is transverse to F̃ and of length smaller
than some constant depending only on F̃.

We use the interval notation [λ,µ] to represent the oriented image of an injective
continuous map c : I→ L such that c(0)= λ and c(1)=µ. We call this the interval
from λ to µ. Here, notice that the orientation of such an interval is induced from
that of I (not from that of L).

Let J = [λ,µ] be an interval in L and let m be a marker which intersects only
leaves of F̃|J . Then the endpoints of the horizontal rays of m form an interval in
E∞|J which is transverse to the circle fibers. By abuse of notation we refer to such
an interval as a marker.

For each ν ∈ J , the intersection of S1∞(ν) with the union of all markers is dense
in S1∞(ν). If two markers m1,m2 in E∞|J are not disjoint, their union m1 ∪m2 is
also an interval transverse to the circle fibers. It follows that a maximal such union
of markers is still an interval. Again by abuse of notation we call such an interval a
marker.

A continuous section τ : J → E∞|J is admissible if the image of τ does not
cross (but might run into) any marker. The leftmost section τ(p, J ) : J → E∞|J
starting at p ∈ S1∞(λ) is an admissible section which is clockwisemost among all
such sections if the order of J is compatible with that of L , and anticlockwisemost
otherwise. Here, the meaning of “(anti-)clockwisemost” is the following: Consider
the universal cover Ẽ∞|J ∼= R× J of E∞|J and take a lift p̃ ∈ R× J of p. Then,
we say that τ is clockwisemost (resp. anticlockwisemost) if for any admissible
section τ ′ the lifts τ̃ , τ̃ ′ of τ, τ ′ to R× J based at p̃ satisfy τ̃ (ν) ≤ τ̃ ′(ν) (resp.
τ̃ ′(ν)≤ τ̃ (ν)) for any ν ∈ J . For any p the leftmost section starting at p exists.

Let B = limt→0 νt be a branch locus and let µ1, µ2 ∈ B. For each t > 0, let
αt = [µ1, νt ] and βt = [νt , µ2]. Then, we can define a map rt : S1∞(µ1)→ S1∞(µ2)
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by rt(p)= τ(τ (p, αt)(νt), βt)(µ2). As t tends to 0, rt converges to a constant map.
We denote the image of the constant map by r(µ1, µ2) ∈ S1∞(µ2).

Definition 2.2. We call r(µ1, µ2) the turning point from µ1 to µ2.

Given a pair λ,µ ∈ L , we define a geodesic spine from λ to µ to be a disjoint
union of finitely many intervals [ν̂i−1, ν̌i ], 1 ≤ i ≤ n, in L (some of them may
degenerate to singletons), with the following properties:

(1) ν̂0 = λ and ν̌n = µ,

(2) ν̌i and ν̂i belong to a common branch locus for each 1≤ i ≤ n− 1, and

(3) n is minimal under the conditions (1) and (2).

Note that a geodesic spine connecting any two points in L exists and is unique.
Geodesic spines have been extensively used in [Barbot 1996; 1998; Fenley 2003;
Roberts et al. 2003].

For a point p in S1∞(λ), the special section σp : L→ E∞ at p is defined as follows.
First, set σp(λ) = p. Next, pick any point µ ∈ L . We define σp(µ) as follows:
When µ is comparable with λ, then σp is defined on [λ,µ] to be the leftmost section
starting at p. When µ is incomparable with λ, let

∐n
i=1[ν̂i−1, ν̌i ] (n > 1) be the

geodesic spine from λ to µ. We then put r = r(ν̌n−1, ν̂n−1) ∈ S1∞(ν̂n−1) and define
σp on the interval [ν̂n−1, ν̌n] by σp = σr . This completes the definition of σp.

Let S be the union of the special sections σp as p varies over all points in all
circles S1∞(λ) of points λ in L . By [Calegari and Dunfield 2003, Lemma 6.25],
the set S admits a natural circular order. The universal circle S1

univ will be derived
from S as a quotient of the order completion of S with respect to the circular order.
Remark that limits of special sections are also sections, hence that any element of
S1

univ is represented by a section L→ E∞.

3. Faithfulness of the action

We now show that if F has branching, the natural action of π1(M) on the leaf space
L is faithful.

As explained in Section 2, every element σ of S1
univ can be described as a section

σ : L→ E∞ =⋃λ∈L S1∞(λ) and that the maps φλ : S1
univ→ S1∞(λ) are defined by

φλ(σ ) = σ(λ). For a point x in S1∞(λ), we define a (possibly degenerate) closed
interval Ix in S1

univ by Ix = {σ ∈ S1
univ | σ(λ)= x}. Then, for any x the interval Ix

is nonempty because the special section σx at x belongs to Ix . From the definition
of a turning point, we have the following fact: If µ1, µ2 are in a branch locus and
if z is in S1∞(µ2), then φµ1(σz)= r(µ2, µ1); that is, σz ∈ Ir(µ2,µ1).

Let λ ∈ L and α ∈ π1(M) be such that α(λ)= λ. Then α, as the restriction of a
covering transformation of M̃ to λ, induces an isometry of the hyperbolic plane λ,
(hence also a projective transformation of S1∞(λ)). We notice that this isometry is a
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hyperbolic element (meaning that its trace is greater than 2). In fact, since it has no
fixed points in λ, it is not elliptic. If it were parabolic, then it would yield in M a
noncontractible loop whose length can be made arbitrarily small, contradicting the
compactness of M .

The following is a key lemma.

Lemma 3.1. Let B = limt→0 νt be a branch locus of L. If α ∈ π1(M) fixes two
distinct points µ1 and µ2 in B and also fixes the interval {νt | 0< t < ε} pointwise,
then α is trivial in π1(M).

Proof. Suppose α is nontrivial. Let p1, q1 ∈ S1∞(µ1) and p2, q2 ∈ S1∞(µ2) be the
fixed points of α, and let r1 ∈ S1∞(µ1) be the turning point from µ2 to µ1. Without
loss of generality, we assume that p1 6= r1. Note that by construction of the universal
circle, the special sections σpi and σqi in S1

univ are fixed by ρuniv(α) for i = 1, 2;
therefore the images φνt (σpi ) and φνt (σqi ) are fixed by α for any t ∈ (0, ε).

We claim that if t is sufficiently close to 0, then φνt (σp1) and φνt (Ir1) are disjoint
in S1∞(νt). Take two distinct points x and y in S1∞(µ1)− {p1, r1} so that the 4-
tuple (p1, x, r1, y) lies in circular order. Because of the density of markers, for
sufficiently small t > 0 the 4-tuple (σp1(νt), σx(νt), σr1(νt), σy(νt)) lies in S1∞(νt)

also in circular order. Let Kt be the closed interval in S1∞(νt) with boundary points
σx(νt) and σy(νt) and containing σr1(νt). Since Ir1 contains σr1 but not σp1, σx and
σy , and since special sections cannot cross, φνt (Ir1) is contained in Kt . In particular,
φνt (σp1) and φνt (Ir1) are disjoint. This shows the claim.

For t sufficiently close to 0, the two points σp2(νt) and σq2(νt) are distinct. Since
both σp2 and σq2 pass through the turning point r1 from µ2 to µ1, it follows that
φµ1(σp2)= φµ1(σq2)= r1; that is, σp2 and σq2 are contained in Ir1 . Therefore the 3
points σp1(νt), σp2(νt) and σq2(νt) are also mutually distinct. Thus, we find at least
3 fixed points of α in S1∞(νt), contradicting the fact that α is a nontrivial orientation
preserving isometry of the hyperbolic plane νt . �

Now, the first main result of this article is the following:

Theorem 3.2. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. If F has branching, then the natural action
of π1(M) on the leaf space of F̃ is faithful.

Proof. This is a direct consequence of Lemma 3.1. �

4. Comparable sets

In this section we do not assume leafwise hyperbolicity of F. For α ∈ π1(M), we
define the comparable set Cα for α to be the subset of L consisting of points λ
such that λ and α(λ) are comparable. Below we collect some basic properties of
comparable sets.
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Obviously, α(Cα)= Cα, Cα = Cα−1 and Cα ⊂ Cαk for every k > 0.
We say that F has one-sided branching in the positive (resp. negative) direction

if L has positive (resp. negative) branch loci but has no negative (resp. positive)
ones. If L has both positive loci and negative loci, then we say F has two-sided
branching.

Lemma 4.1. Let F have one-sided branching in the positive direction, and let
α ∈ π1(M). Suppose λ and µ are points in L such that λ is a common lower bound
of µ and α(µ), meaning that λ≤ µ and λ≤ α(µ). Then λ ∈ Cα.

Proof. Since the natural action preserves the order of L , the inequality λ≤µ implies
α(λ) ≤ α(µ). Thus, by the hypothesis, α(µ) is a common upper bound of λ and
α(λ). Since F has no branching in the negative direction, it follows that λ and α(λ)
are comparable. �

From this lemma we see the following fact: Let F and α be as above. Then,
there is λ ∈ L such that {µ ∈ L | µ < λ} ⊂ Cα.

Lemma 4.2. Let α ∈ π1(M) and let λ,µ ∈ Cα. Then the geodesic spine γ from λ

to µ is entirely contained in Cα . Furthermore, if γ is written as γ =∐n
i=1[ν̂i−1, ν̌i ]

(ν̂0 = λ, ν̌n = µ) by using a union of intervals, then ν̌i , ν̂i are fixed by α for each
1≤ i ≤ n− 1.

Proof. Without loss of generality we may assume that λ≤ ν̌1. We may also assume
that α(λ)≤ λ, because if α−1(λ)≤ λ we may just consider α−1 instead of α.

We first treat the case when n= 1 (that is, the case when λ and µ are comparable).
Suppose ν /∈ Cα for some ν ∈ [λ,µ]. Then we have ν ∈ [α(λ), µ] and α(ν) ∈
[α(λ), α(µ)]. Since ν and α(ν) are incomparable, it follows that µ and α(µ) are
also incomparable, which is a contradiction. Therefore, we have [λ,µ] ⊂ Cα.

Next, we assume n ≥ 2. We claim that α(ν̌1)= ν̌1 and α(ν̂1)= ν̂1. Note that

[α(λ), λ] ∪ γ = [α(λ), ν̌1] ∪
( n∐

i=2

[ν̂i−1, ν̌i ]
)

is the geodesic spine from α(λ) to µ, and that

α(γ )= [α(λ), α(ν̌1)] ∪
( n∐

i=2

[α(ν̂i−1), α(ν̌i )]
)

is the geodesic spine from α(λ) to α(µ). Then the reader can work through the
several possibilities (α(ν̌1) < ν̌1, α(ν̌1) > ν̌1, or α(ν̌1) and ν̌1 are incomparable) to
deduce that any point ν ∈ ∐n

i=2[ν̂i−1, ν̌i ] is incomparable with α(ν), contrary
to the hypothesis that µ ∈ Cα. Similarly, if α(ν̂1) 6= ν̂1, we also obtain that∐n

i=2[ν̂i−1, ν̌i ]∩Cα =∅, and therefore µ /∈Cα , which is a contradiction. The claim
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is proven. Since λ, ν̌1 ∈ Cα, by arguing just as in the case of n = 1 we have that
[λ, ν̌1] ⊂ Cα. Now, since ν̂1 ∈ Cα, the induction on n proves the lemma. �

Lemma 4.3. Let α ∈ π1(M) and let B be an α-invariant branch locus. If {νt }0<t<ε

is an embedded interval such that B = limt→0 νt , then there exists 0< ε′ < ε such
that νt is in Cα for any t ∈ (0, ε′).
Proof. Let {νt }0<t<ε be an embedded interval as described above. Then we have
α(B)= limt→0 α(νt). Since B=α(B), the two intervals {νt }0<t<ε and {α(νt)}0<t<ε

are both asymptotic to B from the same direction as t tends to 0. This with the fact
that L is a 1-manifold implies that the two intervals coincide near B. Thus, the
conclusion of the lemma follows. �

Proposition 4.4. For any α ∈ π1(M), Cα is connected and open.

Proof. First, we will show connectedness. Let λ and µ be any points in Cα, and
γ =∐n

i=1[ν̂i−1, ν̌i ] (ν̂0=λ, ν̌n=µ) the geodesic spine from λ to µ. By Lemma 4.2,
we have that γ ⊂ Cα , and that ν̌i and ν̂i are fixed by α for each 1≤ i ≤ n−1. Now
let Bi (1≤ i ≤ n− 1) denote the branch locus which contains both ν̌i and ν̂i . Then
Bi is α-invariant. Therefore, by Lemma 4.3, there is an interval {νi

t }0<t<ε ⊂ Cα
such that Bi = limt→0 ν

i
t . It follows that ν̌i and ν̂i can be joined by a path in

{νi
t }0<t<ε ⊂ Cα, hence that λ and µ can be joined by some path.
Next, we will prove openness. Let λ be any point in Cα. If α(λ) 6= λ then

the open interval bounded by α−1(λ) and α(λ) is contained in Cα and contains λ.
Thus, λ is an interior point of Cα. If α(λ)= λ, take any point µ ∈ L with λ < µ.
Then the interval [λ,µ] is mapped by α orientation preservingly onto the interval
[λ, α(µ)]. Since L is an oriented 1-manifold, there must exist ν ∈ (λ, µ] such that
[λ, ν) is contained in [λ,µ] ∩ [λ, α(µ)]. This implies that [λ, ν) is contained in
Cα . Similarly, we can find η < λ such that (η, λ] is contained in Cα . Consequently,
we have λ ∈ (η, ν)⊂ Cα , which means λ is an interior point of Cα . This proves the
proposition. �

Here we give some definitions. For a geodesic spine γ =∐n
i=1[ν̂i−1, ν̌i ], we call

n the length of γ and denote it by l(γ ). Let λ,µ ∈ L . As in [Barbot 1998], we
set d(λ, µ)= l(γ )− 1, where γ is the geodesic spine from λ to µ. Moreover, we
define the fundamental axis Aα of α by Aα = {λ ∈ L | d(λ, α(λ)) is even}. Notice
that Cα = {λ ∈ L | d(λ, α(λ))= 0}, and therefore, Cα ⊂ Aα.

Proposition 4.5. Let α ∈ π1(M). Suppose there is λ ∈ L such that d(λ, α(λ)) is
nonzero and even. Then Cαk =∅ for any k > 0.

Proof. Let γ be the geodesic spine joining λ to α(λ). Since d(λ, α(λ)) is even
and since α preserves the orientation on L , there are no nontrivial overlappings
in composing k geodesic spines γ, α(γ ), . . . , αk−1(γ ) successively, and the result
γ ∪ α(γ ) ∪ · · · ∪ αk−1(γ ) is the geodesic spine from λ to αk(λ). Then we have
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d(λ, αk(λ)) = kd(λ, α(λ)), and therefore d(λ, αk(λ)) is nonzero and even. By
Corollary 2.20 of [Barbot 1998], αk fixes no points, and stabilizes no branch loci.

By Proposition 2.10 of the same reference, we have that A = ⋃i∈Z α
i (γ ) is

the fundamental axis of αk . Then A can be expressed as a union of intervals
A=∐i∈Z[µi , νi ] where νi and µi+1 belong to a common branch locus. By [Barbot
1998, Corollary 2.11], there is an integer m 6=0 such that αk([µi , νi ])=[µi+m, νi+m].
Since d(µ, αk(µ))= m 6= 0 for any µ ∈ A, it follows that µ /∈ Cαk . Therefore, we
have Cαk =∅, because Cαk ⊂ A. �

Lemma 4.6. Let α ∈ π1(M) and λ ∈ L be such that λ /∈ Cα and that λ ∈ Cαk for
some k > 1. Let γ = ∐n

i=1[ν̂i−1, ν̌i ] (ν̂0 = λ, ν̌n = α(λ)) be the geodesic spine
from λ to α(λ). Then α(ν̌m)= ν̂m and αk(ν̌m)= ν̌m where m = l(γ )/2 (which is an
integer by the above proposition).

Proof. Let γ j be the geodesic spine from λ to α j (λ), and let δ0 and δ1 be the
geodesic spines from λ to ν̌m , and from ν̂m to α(λ), respectively. By reversing the
transverse orientation of F if necessary, we can assume that ν̌m and ν̂m belong to a
common positive branch locus.

First, we show that ν̌m /∈ Cα. Suppose on the contrary that ν̌m ∈ Cα. Note that
the length of the geodesic spine α(δ0) joining α(λ) to α(ν̌m) is l(γ )/2. So if ν̌m

and α(ν̌m) are comparable, the intersection γ ∩ α(δ0) must coincide with δ1 as a
set. In particular, α(δ0) cannot contain ν̌m . Therefore ν̌m > α(ν̌m). See Figure 1.
Then ν̌m > α

k−1(ν̌m), and we have

γk = δ0 ∪ [ν̌m, α
k−1(ν̌m)] ∪αk−1(δ1).

Since γk passes through αk−1(ν̌m) and αk−1(ν̂m), it follows that λ and αk(λ) are
incomparable, which contradicts the choice of λ.

ν̌m ν̂m

λ α(λ)
α(ν̌m)

α(ν̌m)

α(δ0)

α(δ0)

Figure 1. α(δ0) is shown as a broken line in the case ν̌m ∈Cα , and
as a dotted line in the case α(ν̌m) ∈ (ν̂m, ν̌m+1].
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Next, we show that α(ν̌m) /∈ (ν̂m, ν̌m+1]. Suppose not. Then α(ν̌m) is in the
interval (ν̂m, ν̌m+1]; that is, the branch locus obtained from the embedded interval
(ν̂m, α(ν̌m)) contains α(ν̂m). It follows that ν̂m and α(ν̂m) are comparable. See
Figure 1. Since we are assuming that ν̌m and ν̂m belong to a common positive
branch locus, we have ν̂m < α(ν̂m). Then ν̂m < α

k−1(ν̂m), and therefore

γk = δ0 ∪ [ν̂m, α
k−1(ν̂m)] ∪αk−1(δ1).

Since γk passes through ν̌m and ν̂m , it follows that λ and αk(λ) are incomparable,
which is a contradiction.

Finally, we consider other cases. If α(ν̌m) 6= ν̂m , we have

l(α j+1(γ )−α j (γ )) > l(γ )/2 for all 0≤ j < k.

Therefore, we have

1< l(γ1) < l(γ2) < · · ·< l(γk)= 1.

This contradiction shows that α(ν̌m)= ν̂m . In particular, α(ν̌m) is nonseparated from
ν̌m on the negative side. So αk(ν̌m) is also nonseparated from ν̌m on the negative
side. We also have that αk(ν̌m)= ν̌m . Otherwise, γk = δ0∪αk(δ0), and therefore γk

passes through ν̌m and αk(ν̌m), which belong the common branch locus. It follows
that λ /∈ Cαk , which is a contradiction. �

5. Branch loci and their stabilizers

In this section we focus on a branch locus of the leaf space L . We consider the case
where a branch locus is a finite set and clarify the structure of the stabilizer of such
a locus.

Lemma 5.1. Let B be a finite branch locus and let α ∈ Stab(B). If ρuniv(α) has a
fixed point in S1

univ, then α fixes B pointwise.

Proof. Let α ∈ Stab(B) be a nontrivial element satisfying the hypothesis of the
lemma, and let λ be any point of B. Then, since B is finite, there exists some k ∈N

such that αk(λ)= λ. Notice here that αk is nontrivial in π1(M), because by tautness
of F and by Novikov’s theorem [1965] our manifold M is aspherical and hence
has no torsion in π1(M) (see [Hempel 1976, Corollary 9.9]).

Now, let us suppose by contradiction that α(λ) 6= λ. Let r ∈ S1∞(λ) be the
turning point from α(λ) to λ and let p ∈ S1∞(λ) be one of the two fixed points
of αk which is different from r . Then the special section σp in S1

univ is fixed by
ρuniv(α

k). This with the hypothesis that ρuniv(α) has a fixed point implies that
σp must be fixed by ρuniv(α) itself. So we have ρuniv(α)(σp) ∈ Ip. On the other
hand, since α(p) ∈ S1∞(α(λ)), it follows from the definition of turning point that
ρuniv(α)(σp)= σα(p) ∈ Ir . This is a contradiction because Ip and Ir are disjoint. �
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Theorem 5.2. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. Suppose F has a finite branch locus B. If
an element of Stab(B) fixes some point of B then it fixes all the points of B.

Proof. Let λ be the α-fixed point in B, and let p, q ∈ S1∞(λ) be the fixed points of α.
Then σp, σq ∈ S1

univ are fixed by ρuniv(α). The result follows from Lemma 5.1. �

The next result gives information on topological types of leaves in a finite branch
locus.

Theorem 5.3. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. Let B be a branch locus of L. Then,

(1) if Stab(B) is trivial, λ is diffeomorphic to a plane, and

(2) if B is finite and if Stab(B) is nontrivial, λ is diffeomorphic to a cylinder,

for any λ ∈ B.

Proof. Let λ ∈ B. Since F is taut, by Novikov’s theorem the inclusion map of each
leaf of F into M is π1-injective. So, if λ is not a plane, there exists a nontrivial
element α ∈ π1(M) such that α(λ)= λ. This α must belong to Stab(B), showing
the first statement of the theorem.

To prove the second statement, suppose that B is finite and that Stab(B) is
nontrivial. Then, we can first observe that λ is not a plane. In fact, let γ be any
nontrivial element of Stab(B). Since B is finite, γ n(λ)= λ for some n ∈N. By the
same argument as in the proof of Lemma 5.1 we see that γ n nontrivial in π1(M).
This shows the observation.

Now, by way of contradiction, let us assume λ is not a cylinder, either. Then,
again by π1-injectivity of the inclusion λ→ M , we can find elements α, β ∈ π1(M)
generating a free subgroup of rank 2 such that α(λ) = β(λ) = λ. These two
elements are hyperbolic as isometries of λ and having no common fixed point on
S1∞(λ). Let µ be another leaf in B, and let r ∈ S1∞(λ) be the turning point from
µ to λ. By exchanging α and β if necessary, we may assume α(r) 6= r . Then,
αk(r) 6= αl(r) for any k 6= l ∈ Z. Pick a point s ∈ S1∞(µ) and consider the special
section σs at s. Then, ρuniv(α

k)(σs)= σαk(s) is the special section at αk(s). Since
σαk(s)(λ) = φλ ◦ ρuniv(α

k)(σs) = αk ◦ φλ(σs) = αk(r), it follows that αk(r) is the
turning point from αk(µ) to λ. In particular, αk(µ) 6= αl(µ) for k 6= l; hence, B
contains infinitely many elements αk(µ), k ∈Z, contradicting the finiteness of B. �

Remark 5.4. The author does not know whether or not there exists a branch locus
which has a trivial stabilizer.

Proposition 5.5. Let B = {λ1, . . . , λn} be a finite branch locus which has a non-
trivial stabilizer and let r j

i ∈ S1∞(λi ) be the turning point from λ j to λi . Then there
exists 1≤ k ≤ n such that the set of turning points {r j

k | j 6= k} is a single point in
S1∞(λk).
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Proof. By Theorem 5.3, each λi is a cylindrical leaf. Let γ be a generator of
Stab(λ1)= {α ∈ π1(M) | α(λ1)= λ1}. By Theorem 5.2, γ fixes all points in B. Let
pi , qi ∈ S1∞(λi ) be the fixed points of γ acting on S1∞(λi ). Note that r j

i ∈ {pi , qi }
for any i, j . Otherwise, B cannot be finite by the same argument as in the proof of
Theorem 5.3.

We suppose that {r j
1 | j 6= 1} = {p1, q1}. After renumbering the indices if

necessary, we can assume that r j
1 = p1 for 2≤ j < n1 and r j

1 = q1 for n1 ≤ j ≤ n,
where 3≤n1≤n. Then, we claim that r j

n1=r1
n1

for 1≤ j <n1. In fact, let 2≤ j <n1,
and take 4 points x, y, z, w as follows: x, y are in S1∞(λ1)−{p1, q1} such that the
4-tuple (p1, x, q1, y) is circularly ordered, z ∈ S1∞(λ j ) and w ∈ S1∞(λn1)− {r1

n1
}.

Then, σz ∈ Ip1 , σw ∈ Iq1 and the 4-tuple (Ip1, σx , Iq1, σy) is circularly ordered in
S1

univ. Furthermore, σx , σy ∈ Ir1
n1

and σw /∈ Ir1
n1

. It follows that σz ∈ Ir1
n1

; that is, r1
n1

is the turning point from λ j to λn1 . This proves the claim.
Now, if {r j

n1 | j 6= n1} = {r1
n1
} we can put k = n1. Otherwise, by renumbering

the indices again, we can assume that r j
n1 = r1

n1
= pn1 for 1 ≤ j < n2 ( j 6= n1),

and r j
n1 = qn1 for n2 ≤ j ≤ n, where n1 < n2 ≤ n. Similarly, we have r j

n2 = r1
n2

for
1≤ j < n2. Since B is finite, we can find a desired k after repeating this process
finitely many times. �

Theorem 5.6. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. Let B be a finite branch locus of L with a
nontrivial stabilizer. Then the stabilizer Stab(B) is isomorphic to Z.

Proof. Let B = {λ1, . . . , λn}, and let r j
i ∈ S1∞(λi ) be the turning point from λ j to

λi for i 6= j . By Proposition 5.5, without loss of generality we can assume that
{r j

1 | j 6= 1} is a single point. Let γ be a generator of Stab(λ1).
Now, if Stab(B) acts on B trivially, then each α ∈ Stab(B) fixes λ1. It follows

that there exists an integer k such that α = γ k ; that is, γ is a generator of Stab(B).
So we assume that Stab(B) acts on B nontrivially. By Theorem 5.2, γ fixes

every point λi in B. Let pi , qi ∈ S1∞(λi ) be the fixed points of γ acting on S1∞(λi ).
Put Stab(B)(λ1)= {α(λ1) | α ∈ Stab(B)} = {λ1, . . . , λm} where 1< m ≤ n. Since
the natural action preserves the set of turning points, {r j

i | 1≤ j ≤ n, j 6= i} is also
a single point for any i ≤ m. Let us denote this single point by pi . It follows that
the subset {σpi | 1≤ i ≤ m} of S1

univ is kept invariant by homeomorphisms ρuniv(α)

for α ∈ Stab(B). After renumbering indices if necessary, we can assume that the
m-tuple (σp1, . . . , σpm ) is circularly ordered in S1

univ. Let β ∈ Stab(B) be such that
ρuniv(β)(σp1)= σp2 ; that is, β(λ1)= λ2. Since ρuniv(β) preserves the circular order
on S1

univ, we have β(λi )= λi+1 where the indices i are taken modulo m.
Now, since βγβ−1(λ1) = λ1, it follows that βγβ−1 = γ k for some k 6= 0.

Moreover, there is l 6=0 such that βm=γ l . It follows that βkm=γ kl=βγ lβ−1=βm ;
that is, β(k−1)m is trivial. If k 6= 1, β is a torsion element in π1(M), which is a
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contradiction. Therefore k = 1 and we have that γ and β commute. Since π1(M)
is torsion-free, the subgroup 〈γ, β | γ lβ−m〉 must be isomorphic to Z. It follows
that there is δ ∈ π1(M) such that γ = δi and β = δ j where i 6= 0 and j 6= 0. Let α
be any element in Stab(B). Then α(λ1)= λi for some 1≤ i ≤m. By the choice of
γ and β, we have that α can be represented as a word in γ and β, and hence in δ.
It follows that Stab(B) is isomorphic to Z. �

We say that α ∈ π1(M) is infinitely divisible if for any integer `, there are k > `
and β ∈ π1(M) such that α = βk .

Theorem 5.7. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. Let B be a finite branch locus of L such that
Stab(B) acts on B nontrivially. Then a generator of Stab(B) (∼= Z) is indivisible.

Proof. Let B = {λ1, . . . , λn}. By Theorem 5.6, Stab(B) is generated by some single
element α. We assume by contradiction that α is divisible. Since M is aspherical (as
was noted in the proof of Lemma 5.1), π1(M) has no infinitely divisible elements
(see [Friedl 2011, Theorem 4.1]). Hence, there exists an indivisible element β in
π1(M) such that α = βk for some k > 1.

Note that since β /∈ Stab(B), the points λi ∈ B and β(λi ) ∈ β(B) are distinct for
any i . Moreover, we see that they are incomparable for any i . In fact, if λi and
β(λi ) were comparable, say, λi < β(λi ), then λi < β

k(λi )= α(λi ), contradicting
the assumption that α ∈ Stab(B).

Let {νt }0<t<ε be an embedded interval such that B = limt→0 νt . Since B is
α-invariant, it follows from Lemma 4.3 that there is some ν ∈ {νt }0<t<ε such that
ν ∈ Cα = Cβk . We can (and do) take such ν so that ν also satisfies that ν /∈ Cβ . Let∐l

i=1[ν̂i−1, ν̌i ] (l > 1) be the geodesic spine joining ν to β(ν). By the choice of ν
and by Lemma 4.6, we have βk(ν̌m)= ν̌m where m = l/2. It follows that ρuniv(β

k)

has a fixed point in S1
univ. By Lemma 5.1, βk = α fixes all points in B, which is

a contradiction to the hypothesis, as α generates Stab(B) and Stab(B) acts on B
nontrivially. �

Remark 5.8. The author does not know whether or not there is a finite branch locus
B such that Stab(B) acts on B trivially and is generated by a divisible element.

We will give an example of a tautly foliated compact 3-manifold admitting a
finite branch locus whose stabilizer acts on the locus nontrivially. We remark that a
recipe how to construct such a locus has already been provided in [Calegari and
Dunfield 2003, Example 3.7], and our construction follows it.

Example 5.9. Let P = D2 \ (E1 ∪ E2) be the unit disk in C with two open disks
removed, where E1, E2 are disks centered in −1

2 ,
1
2 with radius 1

4 respectively. Put
S0 = ∂D2, S1 = ∂E1 and S2 = ∂E2. On P we consider a standard singular foliation
G (see Figure 2) satisfying the following properties:
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Figure 2. A singular foliation G of P .

(1) G has the origin as its unique singular point, which is of saddle type.

(2) G is transverse to ∂P .

(3) All leaves of G (except the 4 separatrices) are compact.

(4) G is symmetric with respect to both the x-axis and y-axis.

(5) The holonomy maps h1 : S1 \
{− 1

4

}→ S0 and h2 : S2 \
{1

4

}→ S0 of G are
given by

h1
(1

4 e2π iθ − 1
2

)= eπ i(θ+ 1
2 ) if 0< θ < 1,

h2
(1

4 e2π iθ + 1
2

)= eπ iθ if − 1
2 < θ <

1
2 .

Let (P ′,G′) be a copy of (P,G), and let c : P→ P ′ be the map induced by the
identity. We construct a double 6 = P ∪ P ′ using diffeomorphisms gi : Si → c(Si )

(for i = 0, 1, 2) to glue Si to c(Si ), where c−1 ◦ g0 is given by

c−1 ◦ g0(e2π iθ )= e2π i(θ+α)

for some α ∈R−Q, and c−1◦gi is the antipodal map of Si for i = 1, 2. Since h1, h2

preserve rational (with respect to θ ) points in S1, S2 and S0, it follows that G and G′
induce a singular foliation G′′ of 6 with two saddle singularities and without any
saddle connection. By construction, the homeomorphism ρ of 6 which is defined
to be the rotation by π in both P and P ′ preserves G′′.

Fix a hyperbolic structure on 6. Then each leaf of G′′ except the singular points
and the separatrices is isotopic to a unique embedded geodesic, and the closure of
the union of these geodesics constitutes a geodesic lamination, say, λ, on 6. Note
that the two complementary regions Q1 and Q2 to λ are ideal open squares. There
exists a λ-preserving homeomorphism ψ of 6 isotopic to ρ. Let M be the mapping
torus of ψ , that is, M = 6× [0, 1]/(s, 1) ∼ (ψ(s), 0). Then λ induces a surface
lamination 3 of M whose complementary regions Ri are Qi -bundles over S1 for
i = 1, 2. Denote by pi : Ri → S1 the bundle projection.
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Now we extend 3 to a foliation F of M by filling Ri (for i = 1, 2) with leaves
diffeomorphic to Qi as follows. Denote the boundary components of Ri by Ci1 and
Ci2, which are open cylinders. Let γi be an oriented loop in Ri such that pi |γi is a
diffeomorphism onto S1. Then the composition γ 2

i = γi ∗ γi is freely homotopic to
a leaf loop γi j of Ci j which is a generator of π1(Ci j ). We foliate Ri as a product
by leaves isotopic to the fibers Qi so that the holonomy along γi1 is contracting
and the holonomy along γi2 is expanding. Then the resulting foliation F is taut and
has two-sided branching, and each end of a lift of γi to M̃ gives a branch locus
consisting of two points. Let αi be an element in π1(M) whose conjugacy class
corresponds with the free homotopy class of γi . Then αi belongs to the stabilizer
of some branch locus and acts on the locus nontrivially, as desired.

6. Loops and actions

Given a loop in a tautly foliated manifold (M,F), it is natural to ask whether it is
transversable, or tangentiable, to F. In this section, we observe that these properties
of loops are expressed completely in the language of the natural action. Furthermore,
we consider relations between such properties and the branching phenomenon of F̃.

We do not need to assume leafwise hyperbolicity in the first two propositions
below.

Proposition 6.1. Let γ be a loop in M , and α an element in π1(M, p) whose con-
jugacy class corresponds with the free homotopy class of γ . Then, γ is tangentiable
if and only if the action of α on L has a fixed point. Similarly, γ is positively (resp.
negatively) transversable if and only if there is a point λ in L such that α(λ) > λ
(resp. α(λ) < λ).

Proof. Let λ be a leaf of F̃ and suppose that the deck transformation α leaves λ
invariant. Take any point x in λ and join x to α(x) by a path in λ. Then it projects
down to a leaf loop in M freely homotopic to α. Conversely, suppose γ is a leaf
loop in M . Join the base point p to a point of γ by a path c. Then, the loop
c ∗ γ ∗ c−1 represents an element of π1(M, p) conjugate to α. Obviously it has a
fixed point, hence so does α. The claim on transversability is also shown easily. �

We remark here that π1(M) can have an element which is neither tangentiable
nor transversable. Such an element exists if and only if F has two-sided branching.
This fact is due to Barbot, and also follows from Lemma 4.1 and Proposition 4.5.
(Notice that if F has two-sided branching, there are λ,µ ∈ L such that d(λ, µ) is
nonzero and even. Then by the tautness of F, we can find ν ∈ L which satisfies
d(µ, ν)= 0, d(λ, ν)= d(λ, µ), and α(λ)= ν for some α ∈ π1(M).)

Proposition 6.2. Let α ∈ π1(M). Suppose there are points λ,µ ∈ L such that
α(λ) > λ and α(µ) < µ. Then there exists a point ν ∈ L such that α(ν) = ν.
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Moreover, if λ and µ are incomparable, then such ν can be found in some branch
locus.

Proof. If λ and µ are comparable, then the conclusion follows immediately from
the intermediate value theorem. If λ and µ are incomparable, then the conclusion
follows from Lemma 4.2. �

This proposition means that if a loop in M is both positively and negatively
transversable to F, then it is tangentiable to F.

In the following we assume leafwise hyperbolicity and observe that tangentiability
and/or transversability of loops in M and the infiniteness of branch loci are closely
related.

Theorem 6.3. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M with one-sided branching. Suppose that
there is a noncontractible leaf loop γ in M which is not transversable. Then every
branch locus of L is an infinite set.

Proof. Suppose that there exists a finite (say, positive) branch locus B={λ1, . . . , λn}.
Let α be an element in π1(M) whose conjugacy class corresponds with the free
homotopy class of γ . By Proposition 6.1, α has a fixed point in L , and for each
µ∈ L if µ is not fixed by α then µ /∈Cα . Let ν be a fixed point of α. By Lemma 4.1,
for every η with η ≤ ν, we have η ∈ Cα, and therefore α(η) = η. By replacing
B with β(B) for some β ∈ π1(M) if necessary, we can assume that λ1 ≤ ν and
therefore α(λ1) = λ1. This implies in particular that B is α-invariant. Since B
is finite, by Theorem 5.2 we have α(λi ) = λi for any 1 ≤ i ≤ n. By Lemma 3.1,
α must be trivial, which is a contradiction. �

Corollary 6.4. Let M be a closed oriented 3-manifold, and F a transversely ori-
ented leafwise hyperbolic taut foliation of M with every leaf dense. Suppose that
there is noncontractible leaf loop γ in M which is not transversable. Then every
branch locus of L is an infinite set.

Proof. Suppose there is a finite branch locus B. Let α ∈ π1(M) be as in the proof
of the preceding theorem. By Proposition 4.4, there is an embedded open interval
I ⊂ L such that I is contained in Cα. Since every leaf of F is dense, there is
β ∈ π1(M) such that β(B)∩ I 6=∅. Then the same argument as in Theorem 6.3
shows the conclusion. �

Theorem 6.5. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M with branching. Suppose that there is a
noncontractible leaf loop γ in M which is not transversable. Then L has an infinite
branch locus.
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Proof. Let α be as in Theorem 6.3. Then α has a fixed point ν ∈ L , and for each
µ ∈ L if µ is not fixed by α then µ /∈ Cα. Without loss of generality, we assume
that F has a positive branch locus.

We claim that there exist some ν ′ > ν such that ν ′ and α(ν ′) are incomparable.
Put L ′ = {µ | µ > ν}. Notice that α(L ′) = L ′. Then we can observe that L ′ is a
submanifold of L with one-sided branching in the positive direction and contains
at least one branch locus. For, by the tautness of F we can find a positive branch
locus B ′ in L and β ∈ π1(M) such that β(ν) is a common lower bound of all points
in B ′; that is, β−1(B ′)⊂ L ′. If α fixes all leaves in L ′, then by applying Lemma 3.1
to a branch locus in L ′ we obtain that α is trivial in π1(M), which contradicts the
hypothesis that α is represented by a noncontractible loop. Therefore, there exists
some ν ′ ∈ L which is not fixed by α. Since such ν ′ does not belong to Cα , the claim
is shown.

Since ν < ν ′ and α(ν)= ν, it follows that ν is a common lower bound for ν ′ and
α(ν ′). Thus, the fact that ν ′ and α(ν ′) are incomparable implies that there is a unique
λ ∈ (ν, ν ′] such that µ ∈ [ν, ν ′] is fixed by α if and only if µ ∈ [ν, λ). Evidently,
λ belongs to some α-invariant branch locus, say, B. Also note that ρuniv(α) has a
fixed point because α fixes a point in L . We now show B is infinite. Suppose not.
Then, by Lemma 5.1, all leaves in B are α-fixed, contradicting α(λ) 6= λ. �
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A NEW MONOTONE QUANTITY
ALONG THE INVERSE MEAN CURVATURE FLOW IN Rn

KWOK-KUN KWONG AND PENGZI MIAO

We find a new monotone increasing quantity along smooth solutions to the
inverse mean curvature flow in Rn. As an application, we derive a sharp geo-
metric inequality for mean convex, star-shaped hypersurfaces which relates
the volume enclosed by a hypersurface to a weighted total mean curvature
of the hypersurface.

1. Statement of the result

Monotone quantities along hypersurfaces evolving under the inverse mean flow
have many applications in geometry and relativity. Huisken and Ilmanen [2001]
applied the monotone increasing property of Hawking mass to give a proof of the
Riemannian Penrose inequality. Brendle, Hung and Wang [Brendle et al. 2012]
discovered a monotone decreasing quantity along the inverse mean curvature flow
in anti-de Sitter–Schwarzschild manifolds and used it to establish a Minkowski-type
inequality for star-shaped hypersurfaces.

In this note, we provide a new monotone increasing quantity along smooth
solutions to the inverse mean curvature flow in Rn:

Theorem 1. Let† be a smooth, closed, embedded hypersurface with positive mean
curvature in Rn. Let I be an open interval and X W†� I ! Rn be a smooth map
satisfying

(1-1)
@X

@t
D
1

H
�;

where H is the mean curvature of the surface †t DX.†; t/ and � is the outward
unit normal vector to †t . Let �t be the bounded region enclosed by †t and
r D r.x/ be the distance from x to a fixed point O . Then the function

(1-2) Q.t/D e�
n�2
n�1

t

�
nVol.�t /�

1

n� 1

Z
†t

r2H d�

�
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is monotone increasing and Q.t/ is a constant function if and only if †t is a round
sphere for each t . Here Vol.�/ denotes the volume of a bounded region � and d�
denotes the volume form on a hypersurface.

As an application, we derive a sharp inequality for star-shaped hypersurfaces in
Rn which relates the volume enclosed by a hypersurface to an r2-weighted total
mean curvature of the hypersurface.

Theorem 2. Let † be a smooth, star-shaped hypersurface with positive mean
curvature in Rn. Then

(1-3) nVol.�/�
1

n� 1

Z
†

r2H d�

where Vol.�/ is the volume of the region � enclosed by †, r is the distance to a
fixed point O and H is the mean curvature of †. Furthermore, equality in (1-3)
holds if and only if † is a sphere centered at O .

We give some remarks about Theorem 1 and Theorem 2. The discovery of the
monotonicity of Q.t/ in Theorem 1 is motivated by [Brendle et al. 2012, Section 5].
To prove Theorem 1, we also need a result of Ros, proved using Reilly’s formula.
Once we know that Q.t/ is monotone increasing, to prove Theorem 2, it may be
tempting to ask whether limt!1Q.t/D 0? We do not know if this is true because
both Vol.�t / and

R
†t
r2H d� grow like exp

�
n

n�1
t
�

when f†tg are spheres, while
there is only a factor of exp

�
�

n�2
n�1

t
�

in (1-2). Instead, we take an alternate approach
by first proving Theorem 2 for a convex hypersurface †. The proof in that case
again makes use of Reilly’s formula. When † is merely assumed to be mean
convex and star-shaped, we prove Theorem 2 by reducing it to the convex case
using solutions to the inverse mean curvature flow provided by [Gerhardt 1990]
and [Urbas 1990].

2. Proof of the theorems

Given a compact Riemannian manifold .�; g/ with boundary †, Reilly’s formula
[1977] asserts that

(2-1)
Z

�

jr
2uj2Chr.�u/;ruiCRic.ru;ru/ dV

D

Z
†

.�u/
@u

@�
� II

�
r

†u;r†u
�
� 2.�†u/

@u

@�
�H

�
@u

@�

�2

d�:

Here u is a smooth function on �; r2, � and r denote the Hessian, the Laplacian
and the gradient on �; �† and r† denote the Laplacian and the gradient on †;
� is the unit outward normal vector to †; II and H are the second fundamental
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form and the mean curvature of † with respect to �; and Ric is the Ricci curvature
of g.

To prove Theorem 1, we need a result of [Ros 1987], which was proved by
choosing �uD 1 on � and uD 0 at † in the above Reilly’s formula.

Theorem 3 [Ros 1987]. Let .�; g/ be an n-dimensional compact Riemannian
manifold with nonnegative Ricci curvature with boundary †. Suppose † has
positive mean curvature H ; then

(2-2) nVol.�/� .n� 1/
Z

†

1

H
d�

and equality holds if and only if .�; g/ is isometric to a round ball in Rn.

Proof of Theorem 1. We use 0 to denote differentiation with respect to t . Some basic
formulas along the inverse mean curvature flow (1-1) in Rn are

(2-3) H 0 D��†t

�
1

H

�
�
jIIj2

H
; d�0 D d�; Vol.�t /

0
D

Z
†t

1

H
d�:

Let uD r2. Then u satisfies

(2-4) r
2uD 2g and �uD 2n;

where g is the Euclidean metric. Now

(2-5)
�Z

†t

uH d�

�0
D

Z
†t

.u0H CuH 0CuH/ d�:

Let h � ; � i be the Euclidean inner product. By (2-3), (2-4) and the divergence
theorem, we have

(2-6)
Z

†t

u0H d�D

Z
†t

�
ru;

1

H
�

�
H d�D

Z
�t

�udV D 2nVol.�t /:

By (2-4), we also have

�†t
uD�u�H

@u

@�
�r

2u.�; �/D 2.n� 1/�H
@u

@�
;

which together with (2-3) and (2-4) implies

(2-7)
Z

†t

uH 0 d�D

Z
†t

�
�
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u

H
�
ujIIj2

H
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D

Z
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H
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ujIIj2

H
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H
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ujIIj2
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Substituting (2-6) and (2-7) into (2-5) yields

(2-8)
�Z

†t

uH d�

�0
D 4nVol.�t /C

Z
†t

�
�
2.n� 1/

H
�
ujIIj2

H
CuH

�
d�

� 4nVol.�t /C

Z
†t

�
�
2.n� 1/

H
�
uH

n� 1
CuH

�
d�

D 4nVol.�t /C

Z
†t

�
�
2.n� 1/

H
C
n� 2

n� 1
uH

�
d�

� 4nVol.�t /� 2nVol.�t /C
n� 2

n� 1

Z
†t

uH d�

D 2nVol.�t /C
n� 2

n� 1

Z
†t

uH d�;

where we have used jIIj2 � 1
n�1

H 2 in the second line and Theorem 3 in the fourth.
On the other hand, by Theorem 3 again, we have

(2-9) Vol.�t /
0
D

Z
†t

1

H
d��

n

n� 1
Vol.�t /:

It follows from (2-8) and (2-9) that�
n.n� 1/Vol.�t /�

Z
†t

uH d�

�0
�
n� 2

n� 1

�
n.n� 1/Vol.�t /�

Z
†t

uH d�

�
or equivalently

(2-10)
�
e�

n�2
n�1

t

�
nVol.�t /�

1

n� 1

Z
†t

r2H d�

��0
� 0:

We conclude thatQ.t/ is monotone increasing, moreoverQ.t/ is a constant function
if and only if equalities in (2-8) and (2-9) hold. By Theorem 3, we know these
equalities hold if and only if †t is a round sphere for all t . This completes the
proof of Theorem 1. �

Next, we prove Theorem 2 in the case that † is a convex hypersurface.

Proposition 1. Let † be a smooth, closed, convex hypersurface in Rn. Then

(2-11) nVol.�/�
1

n� 1

Z
†

r2H d�;

where Vol.�/ is the volume of the region � enclosed by †, r is the distance to a
fixed pointO andH is the mean curvature of†. Moreover, equality in (2-11) holds
if and only if † is a sphere centered at O .

Remark. Proposition 1 generalizes the first inequality in Theorem 3.2(1) of [Kwong
2012].
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Proof. Apply Reilly’s formula (2-1) to the Euclidean region � and choose uD r2;
we have

4n.n� 1/Vol.�/D
Z

†

II
�
r

†u;r†u
�
C 2.�†u/

@u

@�
CH

�
@u

@�

�2

d�

where �†uD�u�H
@u

@�
�r2u.�; �/D 2.n� 1/�H

@u

@�
: Therefore,

(2-12)
Z

†

H

�
@u

@�

�2

d�D

Z
†

II
�
r

†u;r†u
�
d�C 4n.n� 1/Vol.�/:

Since † is convex, II. � ; � / is positive definite. Hence, (2-12) implies

(2-13) n.n� 1/Vol.�/�
1

4

Z
†

H
˝
r.r2/; �

˛2
d��

Z
†

Hr2 d�:

When n.n� 1/Vol.�/ D
R

†Hr
2 d�, we must have II

�
r†u;r†u

�
D 0, hence

r†uD 0. This implies that uD r2 is a constant on †, which shows that † is a
sphere centered at O . �

To deform a star-shaped hypersurface to a convex hypersurface through the
inverse mean curvature flow, we make use of a special case of a general result of
Gerhardt and Urbas:

Theorem 4 [Gerhardt 1990; Urbas 1990]. Let † be a smooth, closed hypersurface
in Rn with positive mean curvature, given by a smooth embedding X0 WS

n�1!Rn.
Suppose † is star-shaped with respect to a point P . Then the initial value problem

(2-14)

8̂<̂
:
@X

@t
D
1

H
�;

X. � ; 0/DX0. � /;

has a unique smooth solution X W Sn�1 � Œ0;1/ ! Rn, where � is the unit
outer normal vector to †t D X.Sn�1; t / and H is the mean curvature of †t .
Moreover, †t is star-shaped with respect to P and the rescaled hypersurface z†t ,
parametrized by zX. � ; t /D e�t=.n�1/X. � ; t /, converges to a sphere centered at P
in the C1 topology as t !1.

Proof of Theorem 2. By Theorem 4, there exists a smooth solution f†tg to the
inverse mean curvature flow with initial condition †. Moreover, the rescaled
hypersurface z†t D fe

�t=.n�1/x j x 2†tg converges exponentially fast in the C1

topology to a sphere. In particular, z†t and hence †t , must be convex for large t .
Let T be a time when †T becomes convex. By Proposition 1, we have

nVol.�T /�
1

n� 1

Z
†T

r2H d�I
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thus Q.T /� 0. By Theorem 1, we know that Q.t/ is monotone increasing. Hence
Q.0/�Q.T /� 0, which proves (1-3).

If the equality in (1-3) holds, then Q.0/D 0. It follows from the monotonicity
of Q.t/ and the fact Q.t/ � 0 for large t that Q.t/D 0 for all t . By Theorem 1,
this implies that †t is a sphere for each t . By Theorem 1, †t is a sphere centered
at O for large t . Therefore, we conclude that the initial hypersurface † is a sphere
centered at O . �

Remark. It can be shown that Theorem 2 is still true if the mean curvature is
only assumed to be nonnegative. Please refer to the arXiv version of this paper
(1212.1906) for details.
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NONFIBERED L-SPACE KNOTS

TYE LIDMAN AND LIAM WATSON

We construct an infinite family of knots in rational homology spheres with
irreducible, nonfibered complements, for which every nonlongitudinal fill-
ing is an L-space.

The Heegaard Floer homology of a rational homology three-sphere Y is an
abelian group ĤF(Y ) satisfying rk ĤF(Y )≥ |H1(Y ;Z)| [Ozsváth and Szabó 2004].
When equality is realized in this bound Y is called an L-space and any knot in Y
admitting a nontrivial L-space surgery is called an L-space knot [Ozsváth and Szabó
2005]. A result of Ghiggini [2008] and Ni [2007] shows that L-space knots in
the three-sphere must be fibered. Since manifolds with finite fundamental group
provide examples of L-spaces,1 this result implies that a knot K in S3 admitting
a finite filling must be fibered. This observation should be compared with other
restrictions related to finite fillings such as the Cyclic Surgery Theorem [Culler
et al. 1987] and its extensions [Boyer and Zhang 2001].

The restriction to knots in S3 is not necessary. It is shown in [Boileau et al.
2012] that a primitive knot2 in an irreducible L-space admitting a nontrivial L-space
surgery must be fibered. Irreducibility of the complement is required: removing
an unknot from an embedded three-ball in any L-space produces a nonfibered
manifold with nontrivial L-space fillings. Even in the general setting of knots in
rational homology spheres with irreducible complements fibered is not a necessary
condition:

Theorem 1. There exist infinitely many irreducible, nonfibered knot complements
such that all nonlongitudinal Dehn fillings are L-spaces. Moreover, these examples
arise as knots in manifolds with finite fundamental group.

Lidman was supported by a UCLA Dissertation Year Fellowship. Watson was partially supported by
an NSERC Postdoctoral Fellowship.
MSC2010: 57M27.
Keywords: Heegaard Floer homology, L-space, fibration.

1Ozsváth and Szabó [2005] have shown that manifolds admitting elliptic geometry are L-spaces;
Perelman’s Geometrization Theorem (see [Kleiner and Lott 2008], for example) implies that three-
manifolds with finite fundamental group admit elliptic geometry.

2Recall that a knot K is primitive in Y if [K ] ∈ H1(Y ;Z) is a generator.
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In particular, our examples are nonprimitive knots in L-spaces.
Before turning to the construction, we fix some terminology. Fibrations will

always be locally trivial surface bundles over a circle and we say the total space
fibers. To avoid confusion, we will refer to Seifert fibrations as Seifert structures;
these are foliations of a manifold by circles. The base orbifold is the leaf space of
such a foliation, where the (possibly empty) collection of cone points records the
multiplicities of the exceptional fibers in the Seifert structure. A circle bundle is a
Seifert structure for which there are no exceptional fibers.

Given a three-manifold M with torus boundary, a slope α is a primitive class in
H1(∂M;Z)/{±1}. We use M(α) to denote Dehn filling along α. If ∂M = T1 ∪ T2,
for tori Ti , then we denote α-filling on T1 (respectively T2) by M(α,−) (respectively
M(−, α)). When M admits a Seifert structure, the slope given by a regular fiber
in the boundary is called the fiber slope. For background on Seifert structures
and Dehn filling we refer the reader to [Boyer 2002]. A key fact is that Dehn
filling a Seifert manifold with torus boundary along any slope α other than the fiber
slope results in a Seifert manifold with a possible additional singular fiber. The
multiplicity of this new fiber is 1(α, ϕ), the distance between the slopes α and φ
[Heil 1974].

Finally, for knots in rational homology three-spheres recall that there is a preferred
slope given by the rational longitude. This slope is characterized by the property
that some number of like-oriented parallel copies in the boundary of the knot
complement bounds a properly embedded surface. We will refer to this slope as
the longitude. Note that an oriented three-manifold M with torus boundary for
which H1(M;Q)∼=Q always arises (nonuniquely) as the complement of a knot in
a rational homology three-sphere.

1. The twisted I-bundle over the Klein bottle

Let N denote the twisted I -bundle over the Klein bottle. As this orientable three-
manifold with torus boundary plays a central role in our construction we will study
its construction in depth.

First consider the group G generated by f, g : R3
→ R3, where

f (x, y, z)= (x + 1, y, z),

g(x, y, z)= (−x, y+ 1,−z),

and consider the noncompact, orientable three-manifold N ◦ = R3/G. Note that
the z-component of R3 gives N ◦ the structure of a line bundle, the zero-section of
which is a Klein bottle; this is the unique line bundle over the Klein bottle with
orientable total space. By restricting the action of G to Ñ = R2

×
[
−

1
2 ,

1
2

]
⊂ R3

we obtain the twisted I -bundle over the Klein bottle N = Ñ/G.
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From this description two Seifert structures on N become apparent: the x- and
y-components of Ñ both determine foliations of N by circles. (This is essentially
the observation that the Klein bottle is foliated by circles in two ways.) The leaf
space of the foliation described by the x-components is a Möbius strip without cone
points. Denote a regular fiber in this Seifert structure by φ0. The base orbifold of
the foliation determined by y-components is D2(2, 2), with regular fiber denoted
φ1; this follows readily from a natural Heegaard decomposition which we now
describe.

From the preceding construction, a fundamental domain for N is obtained by
taking

[
−

1
2 ,

1
2

)2
×
[
−

1
2 ,

1
2

]
⊂ R3. Then given a disk D2 of radius less than 1

2 (and
centered at the origin of the xy-plane), the result of removing D2

×
[
−

1
2 ,

1
2

]
is

a genus-two handlebody. This gives rise to a Heegaard decomposition for N ; a
Heegaard diagram corresponding to this decomposition is described in Figure 1,
from which the fundamental group π1(N )= 〈a, b | a2b2

〉 may be calculated. Note
that since f g f g−1 is trivial in the group G, the homomorphism determined by a 7→
f g f −1 and b 7→ f g−1 is well-defined and gives an isomorphism G ∼= 〈a, b | a2b2

〉.
Further, by considering a separating disk decomposing the handlebody into solid

a b

K0

Figure 1. Two views of the Heegaard diagram for the twisted
I -bundle over the Klein bottle N . With a and b generating the
fundamental group of the genus-two handlebody, N is obtained by
attaching a handle along a curve in the boundary representing a2b2

so that φ0'ab and φ1'b2. On the left, an annulus in the boundary
with core representing the element φ0 ' ab may be used to find
the fundamental group of M , the complement of a regular fiber
in the interior of N , via HNN extension. On the right, the axis of
rotational symmetry shows that the hyperelliptic involution on the
handlebody induces a strong inversion on the pair (N , K0) where
K0 is a knot in N isotopic to a regular fiber φ0 in the interior of N .
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tori, it is immediate that N is the union of two solid tori along essential annuli in the
boundary. By fixing Seifert structures on each of these solid tori with base orbifolds
D2(2), these annuli are foliated by regular fibers. The identification along these
essential annuli therefore extends to a Seifert structure on N with base orbifold
D2(2, 2) as claimed.

Both Seifert structures induce foliations on the torus ∂N . Let φ0 and φ1 be regular
fibers in ∂N , and notice that 1(φ0, φ1)= 1. (These conventions are consistent with
[Boyer et al. 2013, Section 3].) The longitude of N is homotopic to the element ab
(this element has order two in the abelianization of π1(N )). That is, φ0 represents
the longitude of N . Any filling N (α) for which α 6= φ0, φ1 admits a pair of Seifert
structures with base orbifolds RP2(1(α, φ0)) and S2(2, 2,1(α, φ1)). We point out
that these manifolds always admit elliptic geometry [Scott 1983].

Now consider a knot K0 in N that is isotopic to a regular fiber φ0 in the interior
of N . Define M by removing a neighborhood of K0 from N ; by construction M
inherits a Seifert structure (the base orbifold is a punctured Möbius band). Now
∂M = T1 ∪ T2 where T2 denotes the boundary of a regular neighborhood of K0.

The fundamental group of M is presented by

π1(M)= 〈a, b, t | a2b2, [t, ab]〉.

To see this, consult Figure 1 and notice that M may be constructed by identifying
(disjoint neighborhoods of) each boundary component of the annulus with core
ab in ∂N . This gives rise to the HNN extension presented above. Notice that
M(−, µ)∼= N for any slope on T2 satisfying 1(µ, φ0)= 1. A preferred choice for
µ is given by a representative of the homotopy class of t in the above presentation.

A final observation pertains to a natural strong inversion on (N , K0) that descends
to an involution on M with one-dimensional fixed point set. Recall that a strong
inversion on (N , K0) is an orientation preserving involution on N that reverses
orientation on K0; such a symmetry is illustrated in Figure 1. The involution on
N is induced by the hyperelliptic involution on the genus-two handlebody since
the attaching curve is fixed (as a set) by this involution. A fundamental domain for
this involution is a three-ball, with one dimensional fixed point set. That is, N is

φ1
←−

φ0
−→

Figure 2. The branch set for the manifold M = M(−,−) with
branch sets for the fillings M(φ1,−)= N and M(φ0,−). Notice
that M(φ0,−) is reducible, containing an S2

× S1 summand.
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the twofold branched cover of a two-tangle; this is the leftmost tangle in Figure 2.
We leave the following step to the reader: the genus-two handlebody is the twofold
branched cover of a three-tangle, and attaching the handle closes one of the arcs
(the arc meeting the attaching curve) to an unknotted curve in the branch set. The
same construction may be applied to the complement of K0 in N , to see that M is
the twofold branched cover of a tangle in S2

× I . This tangle is shown in Figure 2.
Towards a proof of Theorem 1, our interest is in the family of manifolds

{M(−, α) | for any slope α with 1(α, φ0) > 1}.

Notice that each manifold in this set admits a Seifert structure with base orbifold a
Möbius band with a single cone point of order 1(α, φ0). Since M(φ1, α) admits
a Seifert structure with base orbifold S2(2, 2, n) it follows that M(−, α) is the
complement of a knot in an elliptic manifold for all α.

2. The proof of Theorem 1

Let M be the complement of K0 in the twisted I -bundle over the Klein bottle N .
We assume all of the notation introduced in the previous section.

Lemma 2. Fix a slope α on T2 with 1(α, φ0)= p. Then

M(φ0, α)=


S2
×S1 # S2

×S1 if p = 0,
S2
×S1 # L(p, q) if p > 1,

S2
×S1 if p = 1.

Proof. Since π1(M)∼= 〈a, b, t | a2b2, [t, ab]〉 and φ0 ' ab, we have that

π1(M(φ0,−))∼= 〈a, b, t | a2b2, [t, ab]〉/〈〈ab〉〉 ∼= 〈a, b, t | ab〉.

In other words, π1(M(φ0,−))∼= Z ∗Z. If α = pµ+ qφ0, then

π1(M(φ0, α))∼= 〈a, b, t | ab〉/〈〈t p(ab)q〉〉 ∼= Z ∗Z/p.

By Whitehead’s proof of Kneser’s conjecture [Whitehead 1958], M(φ0, α) is a
connect-sum of closed manifolds Y1 and Y2 with π1(Y1) ∼= Z and π1(Y2) ∼= Z/p.
Geometrization now establishes the lemma. �

Remark 3. Alternatively, Lemma 2 follows from considering M(φ0,−) as the
double branched cover of a tangle as in Figure 2. The unknotted component gives
rise to the S2

× S1 summand. Dehn filling corresponds to attaching a rational tangle,
which (ignoring the unknotted component) produces a two-bridge link and exhibits
the lens space connect-summand.

Proposition 4. For any α on T2 with 1(α, φ0) > 1, the manifold M(−, α) does not
fiber over the circle.
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Proof. Suppose that M(−, α) fibers. Since φ0 is the longitude, this is the only
filling that extends the fibration on M(−, α) as any other filling of M(−, α) results
in a rational homology sphere. By Lemma 2, M(φ0, α) ∼= S2

×S1 # L(p, q) for
p = 1(φ0, α) ≥ 2. Since M(φ0, α) is fibered and π2(M(φ0, α)) 6= 0, the fiber
surface F must also have π2(F) 6= 0 by the long exact sequence for a fibration.
Hence F must be S2 or RP2. However, π1(M(φ0, α)) is not the fundamental group
of such a fibration, since it does not admit a surjective homomorphism onto Z with
finite kernel. �

Proof of Theorem 1. Fix α with 1(α, φ0) ≥ 2. As the fiber slope of the Seifert
structure on M(−, α) is the longitude, all nonlongitudinal fillings will extend the
Seifert structure, yielding a base orbifold RP2 with two cone points. By [Boyer
et al. 2013, Proposition 5], such manifolds are always L-spaces. Proposition 4
shows that M(−, α) is not fibered. Furthermore, M(−, α) is irreducible, since the
only orientable, reducible Seifert manifolds are S2

× S1 and RP3 # RP3 (and in
particular, are closed). Finally, M(−, α) is the complement of a knot in an elliptic
manifold as observed in Section 1. �

Remark 5. Further examples may be constructed in an analogous way by removing
a regular fiber from any manifold which has a Seifert structure with base orbifold
RP2 with any positive number of singular fibers. It is also possible to construct
examples, in a similar manner, admitting Sol geometry. The main observation is
that every Sol rational homology sphere is an L-space [Boyer et al. 2013, Theorem
2]. Since every such L-space arises by identifying two twisted I -bundles along
the boundary tori, one may consider the complement of the knot K0 in one of the
twisted I -bundles. In this setting, our construction goes through almost verbatim,
having noticed that the obvious essential torus must be horizontal to the purported
fibration of the exterior of K0.

Question 6. All of our examples relied on the presence of an essential annulus,
and have nonhyperbolic exterior. Do there exist examples of hyperbolic, nonfibered
knots for which every nonlongitudinal surgery is an L-space?
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FAMILIES AND SPRINGER’S CORRESPONDENCE

GEORGE LUSZTIG

We establish a relationship between the known parametrization of a family
of irreducible representations of a Weyl group and Springer’s correspon-
dence.

Introduction

0.1. Let G be a connected reductive algebraic group over an algebraically closed
field k of characteristic p. Let W be the Weyl group of G; let IrrW be a set of
representatives for the isomorphism classes of irreducible representations of W over
Q̄l , an algebraic closure of the field of l-adic numbers (l is a fixed prime number
other than p).

Now IrrW is partitioned into subsets called families as in [Lusztig 1979b, § 9;
1984a, 4.2]. Moreover to each family F in IrrW , a certain set XF, a pairing
{ , } : XF × XF→ Q̄l , and an imbedding F→ XF was canonically attached in
[Lusztig 1979b; 1984a, Chapter 4]. (The set XF with the pairing { , }, which can
be viewed as a nonabelian analogue of a symplectic vector space, plays a key role
in the classification of unipotent representations of a finite Chevalley group [Lusztig
1984a] and in that of unipotent character sheaves on G.) In [Lusztig 1979b; 1984a]
it is shown that XF = M(GF) where GF is a certain finite group associated to
F and, for any finite group 0, M(0) is the set of all pairs (g, ρ) where g is an
element of 0 defined up to conjugacy and ρ is an irreducible representation over
Q̄l (up to isomorphism) of the centralizer of g in 0; moreover { , } is given by the
“nonabelian Fourier transform matrix” of [Lusztig 1979b, § 4] for GF.

In the remainder of this paper we assume that p is not a bad prime for G. In this
case a uniform definition of the group GF was proposed in [Lusztig 1984a, 13.1]
in terms of special unipotent classes in G and the Springer correspondence, but
the fact that this leads to a group isomorphic to GF as defined in [Lusztig 1984a,
Chapter 4] was stated in [Lusztig 1984a, (13.1.3)] without proof. One of the aims
of this paper is to supply the missing proof.
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MSC2010: 20G99.
Keywords: Weyl group, unipotent class, Springer correspondence.
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To state the results of this paper we need some definitions. For E ∈ IrrW let
aE ∈ N, bE ∈ N be as in [Lusztig 1984a, 4.1]. As noted in [Lusztig 1979a], for
E ∈ IrrW we have

(a) aE ≤ bE ;

we say that E is special if aE = bE .
For g ∈ G let ZG(g) or Z(g) be the centralizer of g in G and let AG(g) or A(g)

be the group of connected components of Z(g). Let C be a unipotent conjugacy
class in G and let u ∈C . Let Bu be the variety of Borel subgroups of G that contain
u; this is a nonempty variety of dimension, say, eC . The conjugation action of Z(u)
on Bu induces an action of A(u) on Su := H 2eC (Bu, Q̄l). Now W acts on Su by
Springer’s representation [Springer 1976]; however here we adopt the definition
of the W -action on Su given in [Lusztig 1984b] which differs from Springer’s
original definition by tensoring by sign. The W -action on Su commutes with the
A(u)-action. Hence we have canonically Su = ⊕E∈IrrW E ⊗ VE (as W × A(u)-
modules) where VE are finite dimensional Q̄l-vector spaces with A(u)-action. Let
IrrC W = {E ∈ IrrW ;VE 6= 0}; this set does not depend on the choice of u in C . By
[Springer 1976], the sets IrrC W (for C variable) form a partition of IrrW ; also, if
E ∈ IrrC W then VE is an irreducible A(u)-module and, if E 6= E ′ in IrrC W , then
the A(u)-modules VE ,VE ′ are not isomorphic. By [Borho and MacPherson 1981]
we have

(b) eC ≤ bE for any E ∈ IrrC W,

and the equality bE = eC holds for exactly one E ∈ IrrC W which we denote by EC

(for this E , VE is the unit representation of A(u)).
Following [Lusztig 1984a, (13.1.1)] we say that C is special if EC is special.

(This concept was introduced in [Lusztig 1979a, § 9] although the word “special”
was not used there.) From (b) we see that C is special if and only if aEC = eC .

Now assume that C is special. We denote by F⊂ IrrW the family that contains
EC . (Note that C 7→ F is a bijection from the set of special unipotent classes in G
to the set of families in IrrW .) We set Irr∗C W = {E ∈ IrrC W ; E ∈ F} and

K(u)= {a ∈ A(u); a acts trivially on VE for any E ∈ Irr∗C W }.

This is a normal subgroup of A(u). We set Ā(u)= A(u)/K(u), a quotient group
of A(u). Now, for any E ∈ Irr∗C W , VE is naturally an (irreducible) Ā(u)-module.
Another definition of Ā(u) is given in [Lusztig 1984a, (13.1.1)]. In that definition
Irr∗C W is replaced by {E ∈ IrrC W ; aE = eC} and K(u), Ā(u) are defined as above
but in terms of this modified Irr∗C W . However the two definitions are equivalent in
view of the following result.
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Proposition 0.2. Assume that C is special. Let E ∈ IrrC W .

(a) We have aE ≤ eC .

(b) We have aE = eC if and only if E ∈ F.

This follows from [Lusztig 1992, 10.9]. Note that (a) was stated without proof in
[Lusztig 1984a, (13.1.2)] (the proof I had in mind at the time of [Lusztig 1984a]
was combinatorial).

0.3. The following result is equivalent to a result stated without proof in [Lusztig
1984a, (13.1.3)].

Theorem 0.4. Let C be a special unipotent class of G, let u ∈ C and let F be the
family that contains EC . Then we have canonically XF = M( Ā(u)) so that the
pairing { , } on XF coincides with the pairing { , } on M( Ā(u)). Hence GF can be
taken to be Ā(u).

This is equivalent to the corresponding statement in the case where G is adjoint,
which reduces immediately to the case where G is adjoint simple. It is then
enough to prove the theorem for one G in each isogeny class of semisimple, almost
simple algebraic groups; this will be done in Section 3 after some combinatorial
preliminaries in Sections 1 and 2. The proof uses the explicit description of the
Springer correspondence: for type An,G2 in [Springer 1976]; for type Bn,Cn, Dn

in [Shoji 1979a; 1979b] (as an algorithm) and in [Lusztig 1984b] (by a closed
formula); for type F4 in [Shoji 1980]; for type En in [Alvis and Lusztig 1982;
Spaltenstein 1982].

An immediate consequence of (the proof of) Theorem 0.4 is the following result
which answers a question of R. Bezrukavnikov and which plays a role in [Losev
and Ostrik 2012].

Corollary 0.5. In the setup of Theorem 0.4 let E ∈ Irr∗C W and let VE be the
corresponding A(u)-module viewed as an (irreducible) Ā(u)-module. The image of
E under the canonical imbedding F→ XF = M( Ā(u)) is represented by the pair
(1,VE) ∈ M( Ā(u)). Conversely, if E ∈ F and the image of E under F→ XF =

M( Ā(u)) is represented by the pair (1, ρ) ∈ M( Ā(u)) where ρ is an irreducible
representation of Ā(u), then E ∈ Irr∗C W and ρ ∼= VE .

0.6. Corollary 0.5 has the following interpretation. Let Y be a (unipotent) character
sheaf on G whose restriction to the regular semisimple elements is 6= 0; assume
that in the usual parametrization of unipotent character sheaves by

⊔
F′ XF′ , Y cor-

responds to (1, ρ) ∈ M( Ā(u)) where C is the special unipotent class corresponding
to a family F, u ∈ C and ρ is an irreducible representation of Ā(u). Then Y |C is
(up to shift) the irreducible local system on C defined by ρ.
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0.7. Notation. If A, B are subsets of N we denote by A ∪̇ B the union of A and B
regarded as a multiset (each element of A∩ B appears twice). For any set X, we
denote by P(X) the set of subsets of X viewed as an F2-vector space with sum given
by the symmetric difference. If X 6=∅ we note that {∅,X} is a line in P(X) and
we set P̄(X)=P(X)/{∅,X}, Pev(X)= {L ∈P(X); |L| = 0 mod 2}; let P̄ev(X) be
the image of Pev(X) under the obvious map P(X)→ P̄(X) (thus P̄ev(X)= P̄(X)

if |X| is odd and P̄ev(X) is a hyperplane in P̄(X) if |X| is even). Now if X 6=∅, the
assignment L , L ′ 7→ |L ∩ L ′| mod 2 defines a symplectic form on Pev(X) which
induces a nondegenerate symplectic form ( , ) on P̄ev(X) via the obvious linear
map Pev(X)→ P̄ev(X).

For g ∈ G let gs and gω be the semisimple and unipotent parts of g.
For z ∈ 1

2 Z we set bzc = z if z ∈ Z and bzc = z− 1
2 if z ∈ Z+ 1

2 .

Errata to [Lusztig 1984a]. On page 86, on line −6 delete “b′ < b” and on line
−4 before “In the language. . . ” insert “The array above is regarded as identical to
the array obtained by interchanging its two rows.”

On page 343, line −5, after “respect to M” insert “and where the group GF

defined in terms of (u′,M) is isomorphic to the group GF defined in terms of
(u,G)”.

Erratum to [Lusztig 1984b]. In the definition of Aα, Bα in [Lusztig 1984b, 11.5],
the condition I ∈ α should be replaced by I ∈ α′ and the condition I ∈ α′ should
be replaced by I ∈ α.

1. Combinatorics

1.1. Let N be an even integer ≥ 0. Let a := (a0, a1, a2, . . . , aN ) ∈ NN+1 be
such that a0 ≤ a1 ≤ a2 ≤ · · · ≤ aN , a0 < a2 < a4 < · · · , a1 < a3 < a5 < · · · .
Let J = {i ∈ [0, N ]; ai appears exactly once in a}. We have J = {i0, i1, . . . , i2M}

where M ∈ N and i0 < i1 < · · ·< i2M satisfy is = s mod 2 for s ∈ [0, 2M]. Hence
for any s ∈ [0, 2M − 1] we have is+1 = is + 2ms + 1 for some ms ∈ N. Let
E be the set of b := (b0, b1, b2, . . . , bN ) ∈ NN+1 such that b0 < b2 < b4 < · · · ,
b1 < b3 < b5 < · · · and such that [b] = [a] (we denote by [b], [a] the multisets
{b0, b1, . . . , bN }, {a0, a1, . . . , aN }). We have a ∈ E. For b ∈ E we set

b̂ = (b̂0, b̂1, b̂2, . . . , b̂N )

= (b0, b1+ 1, b2+ 1, b3+ 2, b4+ 2, . . . , bN−1+ N/2, bN + N/2).

Let [b̂] be the multiset {b̂0, b̂1, b̂2, . . . , b̂N }. For s ∈ {1, 3, . . . , 2M − 1} we define
a{s} = (a{s}0 , a{s}1 , a{s}2 , . . . , a{s}N ) ∈ E by

(a{s}is
, a{s}is+1, a{s}is+2, a{s}is+3, . . . , a{s}is+2ms

, a{s}is+2ms+1)

= (ais+1, ais , ais+3, ais+2, . . . , ais+2ms+1, ais+2ms )
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and a{s}i = ai if i ∈ [0, N ]− [is, is+1]. More generally, for X ⊂ {1, 3, . . . , 2M − 1}
we define aX

= (aX
0 , aX

1 , aX
2 , . . . , aX

N ) ∈ E by aX
i = a{s}i if s ∈ X , i ∈ [is, is+1], and

aX
i = ai for all other i ∈ [0, N ]. Note that [âX ] = [â]. Conversely, we have the

following result.

Lemma 1.2. Let b ∈ E be such that [b̂] = [â]. There exists X ⊂ {1, 3, . . . , 2M−1}
such that b = aX .

The proof is given in 1.3–1.5.

1.3. We argue by induction on M . We have

a = (y1 = y1 < y2 = y2 < · · ·< yr = yr < ai0 < . . . )

for some r . Since [b] = [a], we must have

(b0, b2, b4, . . . )= (y1, y2, . . . , yr , . . . ), (b1, b3, b5, . . . )= (y1, y2, . . . , yr , . . . ).

Thus,

(a) bi = ai for i < i0.

We have a = ( · · ·< ai2M < y′1 = y′1 < y′2 = y′2 < · · ·< y′r ′ = y′r ′) for some r ′. Since
[b] = [a], we must have

(b0, b2, b4, . . . )= (. . . , y′1, y′2, . . . , y′r ′), (b1, b3, b5, . . . )= (. . . , y′1, y′2, . . . , y′r ′).

Thus,

(b) bi = ai for i > i2M .

If M = 0 we see that b = a and there is nothing further to prove. In the rest of the
proof we assume that M ≥ 1.

1.4. From 1.3 we see that

(a0, a1, a2, . . . , ai2M )= (. . . , ai2M−1 < x1 = x1 < x2 = x2 < · · ·< xq = xq < ai2M )

(for some q) has the same entries as (b0, b1, b2, . . . , bi2M ) (in some order). Hence
the pair

(. . . , bi2M−5, bi2M−3, bi2M−1), (. . . , bi2M−4, bi2M−2, bi2M )

must have one of the following four forms.

(. . . , ai2M−1, x1, x2, . . . , xq), (. . . , x1, x2, . . . , xq , ai2M ),

(. . . , x1, x2, . . . , xq , ai2M ), (. . . , ai2M−1, x1, x2, . . . , xq),

(. . . , x1, x2, . . . , xq), (. . . , ai2M−1, x1, x2, . . . , xq , ai2M ),

(. . . , ai2M−1, x1, x2, . . . , xq , ai2M ), (. . . , x1, x2, . . . , xq).



436 GEORGE LUSZTIG

Hence (. . . , bi2M−2, bi2M−1, bi2M ) must have one of the following four forms.

(I) (. . . , ai2M−1, x1, x1, x2, x2, . . . , xq , xq , ai2M ),

(II) (. . . , x1, ai2M−1, x2, x1, x3, x2, . . . , xq , xq−1, ai2M , xq),

(III) (. . . , ai2M−1, z, x1, x1, x2, x2, . . . , xq , xq , ai2M ),

(IV) (. . . , ai2M−1, z′, x1, z′′, x2, x1, x3, x2, . . . , xq , xq−1, ai2M , xq),

where ai2M−1 > z, ai2M−1 > z′′≥ z′ and all entries in . . . are<ai2M−1 . Correspondingly,
(. . . , b̂i2M−2, b̂i2M−1, b̂i2M ) must have one of the following four forms.

(I) (. . . , ai2M−1+h−q, x1+h−q, x1+h−q+1, x2+h−q+1, x2+h−q+2,
. . . , xq + h− 1, xq + h, ai2M + h),

(II) (. . . , x1+h−q, ai2M−1+h−q, x2+h−q+1, x1+h−q+1, x3+h−q+2,
x2+ h− q + 1, . . . , xq + h− 1, xq−1+ h− 1, ai2M + h, xq + h),

(III) (. . . , ai2M−1+h−q−1, z+h−q, x1+h−q, x1+h−q+1, x2+h−q+1,
x2+ h− q + 2, . . . , xq + h− 1, xq + h, ai2M + h),

(IV) (. . . , ai2M−1+h−q−1, z′+h−q−1, x1+h−q, z′′+h−q, x2+h−q+1,
x1+ h−q+ 1, x3+ h−q+ 2, x2+ h−q+ 1, . . . , xq + h− 1, xq−1+ h− 1,
ai2M + h, xq + h),

where h = i2M/2 and in cases (III) and (IV), ai2M−1 + h − q is not an entry of
(. . . , b̂i2M−2, b̂i2M−1, b̂i2M ).

Since (. . . , âi2M−2, âi2M−1, âi2M ) is given by (I) we see that ai2M−1 + h− q is an
entry of (. . . , âi2M−2, âi2M−1, âi2M ). Using (b) in 1.3 we see that

{. . . , âi2M−2, âi2M−1, âi2M } = (. . . , bi2M−2, bi2M−1, bi2M )

as multisets. We see that cases (III) and (IV) cannot arise. Hence we must be in
case (I) or (II). Thus we have either

(a) (bi2M−1, bi2M−1+1, . . . , bi2M−2, bi2M−1, bi2M )

= (ai2M−1, ai2M−1+1, . . . , ai2M−2, ai2M−1, ai2M )

or

(b) (bi2M−1, bi2M−1+1, . . . , bi2M−2, bi2M−1, bi2M )

= (ai2M−1+1, ai2M−1, ai2M−1+3, ai2M−1+2, . . . , ai2M , ai2M−1).

1.5. Let a′ = (a0, a1, a2, . . . , ai2M−1−1), b′ = (b0, b1, b2, . . . , bi2M−1−1),

â′ = (a0, a1+ 1, a2+ 1, a3+ 2, a4+ 2, . . . , ai2M−1−1+ (i2M−1− 1)/2),

b̂′ = (b0, b1+ 1, b2+ 1, b3+ 2, b4+ 2, . . . , bi2M−1−1+ (i2M−1− 1)/2),

From [b̂] = [â], (b) in 1.3 and (a)+(b) in 1.4 we see that the multiset formed by
the entries of â′ coincides with the multiset formed by the entries of b̂′. Using
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the induction hypothesis we see that there exists X ′ ⊂ {1, 3, . . . , 2M − 3} such
that b′ = a′X

′

where a′X
′

is defined in terms of a′, X ′ in the same way as aX was
defined (see 1.1) in terms of a, X . We set X = X ′ if we are in case (a) of 1.4 and
X = X ′ ∪ {2M − 1} if we are in case (b). Then we have b = aX (see again (a) and
(b) in 1.4), as required. This completes the proof of 1.2.

1.6. We shall use the notation of 1.1. Let T be the set of all unordered pairs (A,B)
where A,B are subsets of {0, 1, 2, . . . } and A ∪̇B= (a0, a1, a2, . . . , aN ) as multi-
sets. For example, setting A∅= (a0, a2, a4, . . . , aN ) and B∅= (a1, a3, . . . , aN−1),
we have (A∅,B∅) ∈ T. For any subset a of J we consider

Aa = ((J− a)∩A∅)∪ (a∩B∅)∪ (A∅ ∩B∅),

Ba = ((J− a)∩B∅)∪ (a∩A∅)∪ (A∅ ∩B∅).

Then (Aa,Ba) ∈ T and the map a 7→ (Aa,Ba) induces a bijection P̄(J) ↔ T.
(Note that if a=∅ then (Aa,Ba) agrees with the earlier definition of (A∅,B∅).)

Let T′ be the set of all (A,B) ∈ T such that |A| = |A∅| and |B| = |B∅|.
Let P(J)0 be the subspace of Pev(J) spanned by the 2-element subsets

{ai0, ai1}, {ai2, ai3}, . . . , {ai2M−2, ai2M−1}

of J. Let P(J)1 be the subspace of Pev(J) spanned by the 2-element subsets

{ai1, ai2}, {ai3, ai4}, . . . , {ai2M−1, ai2M }

of J.
Let P̄(J)0 and P̄(J)1 be the images of P(J)0 and P(J)1 under the obvious map

P(J)→ P̄(J). Then:

(a) P̄(J)0 and P̄(J)1 are opposed Lagrangian subspaces of the symplectic vector
space P̄(J), ( , ) (see 0.7); hence ( , ) defines an identification

P̄(J)0 = P̄(J)∗1,

where P̄(J)∗1 is the vector space dual to P̄(J)1.

LetT0 andT1 be the subsets of T corresponding to P̄(J)0 and P̄(J)1, respectively,
under the bijection P̄(J)↔ T. Note that T0 ⊂ T′, T1 ⊂ T′, and |T0| = |T1| = 2M .

For any X ⊂ {1, 3, . . . , 2M − 1} we set aX =
⋃

s∈X {ais , ais+1} ∈ P(J). Then
(AaX ,BaX ) ∈ T1 is related to aX in 1.1 as follows:

AaX = {a
X
0 , aX

2 , aX
4 , . . . , aX

N }, BaX = {a
X
1 , aX

3 , . . . , aX
N−1}.
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1.7. We shall use the notation of 1.1. Let T be the set of all ordered pairs
(A, B) where A is a subset of {0, 1, 2, . . . }, B is a subset of {1, 2, 3, . . . }, A
contains no consecutive integers, B contains no consecutive integers, and A ∪̇ B =
(â0, â1, â2, . . . , âN ) as multisets. For example, setting A∅ = (â0, â2, â4, . . . , âN )

and B∅ = (â1, â3, . . . , âN−1), we have (A∅, B∅) ∈ T .
For any (A, B)∈ T we define (A−, B−) as follows: A− consists of x0< x1−1<

x2−2< · · ·< x p− p where x0 < x1 < · · ·< x p are the elements of A; B− consists
of y1− 1< y2− 2< · · ·< yq − q where y1 < y2 < · · ·< yq are the elements of B.

We can enumerate the elements of T as in [Lusztig 1984b, 11.5]. Let J be the
set of all c ∈ N such that c appears exactly once in the sequence

(â0, â1, â2, . . . , âN )=(a0, a1+1, a2+1, a3+2, a4+2, . . . , aN−1+N/2, aN+N/2).

A nonempty subset I of J is said to be an interval if it is of the form {i, i + 1,
i + 2, . . . , j} with i − 1 /∈ J, j + 1 /∈ J and with i 6= 0. Let I be the set of intervals
of J . For any s ∈ {1, 3, . . . , 2M−1}, the set Is := {âis , âis+1, âis+2, . . . , âis+2ms+1}

is either a single interval or a union of intervals I 1
s t I 2

s t . . .t I ts
s (ts ≥ 2) where

âis ∈ I 1
s , âis+2ms+1 ∈ I ts

s , |I 1
s |, |I

ts
s | are odd, |I h

s | are even for h ∈ [2, ts −1] and any
element in I e

s is < than any element in I e′
s for e < e′. Let Is be the set of all I ∈ I

such that I ⊂ Is . Let H be the set of all c ∈ J such that c does not belong to any
interval. For any subset α ⊂ I we consider

Aα =
⋃

I∈I−α

(I ∩ A∅)∪
⋃
I∈α
(I ∩ B∅)∪ (H ∩ A∅)∪ (A∅ ∩ B∅),

Bα =
⋃

I∈I−α

(I ∩ B∅)∪
⋃
I∈α
(I ∩ A∅)∪ (H ∩ B∅)∪ (A∅ ∩ B∅).

Then (Aα, Bα) ∈ T and the map α 7→ (Aα, Bα) is a bijection P(I)↔ T . (Note
that if α =∅ then (Aα, Bα) agrees with the earlier definition of (A∅, B∅).)

Let T ′ = {(A, B) ∈ T ; |A| = |A∅|, |B| = |B∅|}, T1 = {(A, B) ∈ T ′; A− ∪̇ B− =
A−∅ ∪̇ B−∅ }. Let P(I)′ and P(I)1 be the subsets of P(I) corresponding to T ′ and
T1 under the bijection P(I)↔ T .

Now let X be a subset of {1, 3, . . . , 2M − 1}. Let αX =
⋃

s∈X Is ∈P(I). From
the definitions we see that

(a) A−αX
= AaX , B−αX

=BaX

(in the notation of 1.6). In particular we have (AαX , BαX ) ∈ T1. Thus |T1| ≥ 2M .
Using Lemma 1.2 we see that

(b) |T1| = 2M and T1 =
{
(AαX , BαX ); X ⊂ {1, 3, . . . , 2M − 1}

}
.

Using (a) and (b) we deduce:

(c) The map T1→ T1 given by (A, B) 7→ (A−, B−) is a bijection.
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2. Combinatorics (continued)

2.1. Let N ∈ N. Let

a := (a0, a1, a2, . . . , aN ) ∈ NN+1

be such that a0 ≤ a1 ≤ a2 ≤ · · · ≤ aN , a0 < a2 < a4 < · · · , a1 < a3 < a5 < · · · and
such that the set J := {i ∈ [0, N ]; ai appears exactly once in a} is nonempty. Now
J consists ofµ+1 elements i0< i1< · · ·< iµ, whereµ∈N, µ= N mod 2. We have
is = s mod 2 for s ∈ [0, µ]. Hence for any s ∈ [0, µ−1] we have is+1= is+2ms+1
for some ms ∈ N. Let E be the set of b := (b0, b1, b2, . . . , bN ) ∈ NN+1 such that
b0 < b2 < b4 < · · · , b1 < b3 < b5 < · · · and such that [b] = [a] (we denote by
[b], [a] the multisets {b0, b1, . . . , bN }, {a0, a1, . . . , aN }). We have a ∈E. For b ∈E

we set

b̊ = (b̊0, b̊1, b̊2, . . . , b̊N )= (b0, b1, b2+ 1, b3+ 1, b4+ 2, b5+ 2, . . . ) ∈ NN+1.

Let [b̊] be the multiset {b̊0, b̊1, b̊2, . . . , b̊N }. For any s ∈ [0, µ− 1] ∈ 2N we define
a{s} = (a{s}0 , a{s}1 , a{s}2 , . . . , a{s}N ) ∈ E by

(a{s}is
, a{s}is+1, a{s}is+2, a{s}is+3, . . . , a{s}is+2ms

, a{s}is+2ms+1)

= (ais+1, ais , ais+3, ais+2, . . . , ais+2ms+1, ais+2ms )

and a{s}i =ai if i ∈[0, N ]−[is, is+1]. More generally, for a subset X of [0, µ−1]∩2N

we define aX
= (aX

0 , aX
1 , aX

2 , . . . , aX
N ) ∈ E by aX

i = a{s}i if s ∈ X , i ∈ [is, is+1], and
aX

i = ai for all other i ∈ [0, N ]. Note that [åX
] = [å]. Conversely:

Lemma 2.2. Let b ∈E be such that [b̊] = [å]. Then there exists X ⊂ [0, µ−1]∩2N

such that b = aX .

The proof is given in 2.3–2.5.

2.3. We argue by induction on µ. By the argument in 1.3 we have

bi = ai for i < i0,(a)

bi = ai for i > iµ.(b)

If µ= 0 we see that b = a and there is nothing further to prove. In the rest of the
proof we assume that µ≥ 1.

2.4. From 2.3 we see that (ai0, ai0+1, . . . , aN )= (ai0 < x1 = x1 < x2 = x2 < · · ·<

x p = x p < ai1 < . . . ) (for some p) has the same entries as (bi0, bi0+1, . . . , bN ) (in
some order). Hence the pair (bi0, bi0+2, bi0+4, . . . ), (bi0+1, bi0+3, bi0+5, . . . ) must
have one of the following four forms.

(ai0, x1, x2, . . . , x p, . . . ), (x1, x2, . . . , x p, ai1, . . . ),
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(x1, x2, . . . , x p, ai1, . . . ), (ai0, x1, x2, . . . , x p, . . . ),

(ai0, x1, x2, . . . , x p, ai1, . . . ), (x1, x2, . . . , x p, . . . ),

(x1, x2, . . . , x p, . . . ), (ai0, x1, x2, . . . , x p, ai1, . . . ).

Hence (bi0, bi0+1, bi0+2, . . . , bN ) must have one of the following four forms.

(I) (ai0, x1, x1, x2, x2, . . . , x p, x p, ai1, . . . ),

(II) (x1, ai0, x2, x1, x3, x2, . . . , x p, x p−1, ai1, x p, . . . ),

(III) (ai0, x1, x1, x2, x2, . . . , x p, x p, z, ai1, . . . ),

(IV) (x1, ai0, x2, x1, x3, x2, . . . , x p, x p−1, z′, x p, z′′, ai1, . . . ),

where ai1 < z, ai1 < z′ ≤ z′′ and all entries in . . . are > ai1 . Correspondingly,
(b̊i0, b̊i0+1, b̊i0+2, . . . , b̊N ) must have one of the following four forms.

(I) (ai0 + h, x1 + h, x1 + h + 1, x2 + h + 1, x2 + h + 2, . . . , x p + h + p − 1,
x p + h+ p, ai1 + h+ p, . . . ),

(II) (x1+h, ai0+h, x2+h+1, x1+h+1, x3+h+2, x2+h+2, . . . , x p+h+ p−1,
x p−1+ h+ p− 1, ai1 + h+ p, x p + h+ p, . . . ),

(III) (ai0+h, x1+h, x1+h+1, x2+h+1, x2+h+2, . . . , x p+h+ p−1, x p+h+ p,
z+ p, ai1 + h+ p+ 1, . . . ),

(IV) (x1+h, ai0+h, x2+h+1, x1+h+1, x3+h+2, x2+h+2, . . . , x p+h+ p−1,
x p−1+h+ p−1, z′+h+ p, x p+h+ p, z′′+h+ p+1, ai1+h+ p+1, . . . ),

where h = i0/2 and in cases (III) and (IV) ai1 + h+ p is not an entry of (b̊i0, b̊i0+1,

b̊i0+2, . . . ).
Since (åi0, åi0+1, åi0+2, . . . ) is given by (I) we see that ai1 + h+ p is an entry of

(åi0, åi0+1, åi0+2, . . . ). Using 2.3 we see that

{åi0, åi0+1, åi0+2, . . . } = {b̊i0, b̊i0+1, b̊i0+2, . . . }

as multisets. We see that cases (III) and (IV) cannot arise. Hence we must be in
case (I) or (II). Thus we have either

(a) (bi0, bi0+1, bi0+2, . . . , bi1)= (ai0, ai0+1, ai0+2, . . . , ai1)

or

(b) (bi0, bi0+1, bi0+2, . . . , bi1)= (ai0+1, ai0, ai0+3, ai0+2, . . . , ai1, ai1−1).

From 2.3 and (a)+(b) we see that if µ= 1 then Lemma 2.2 holds. Thus in the rest
of the proof we can assume that µ≥ 2.
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2.5. Let a′ = (ai1+1, ai1+2, . . . , aN ), b′ = (bi1+1, bi1+2, . . . , bN ),

å′ = (ai1+1, ai1+2, ai1+3+ 1, ai1+4+ 1, ai1+5+ 2, ai1+6+ 2, . . . ),

b̊′ = (bi1+1, bi1+2, bi1+3+ 1, bi1+4+ 1, bi1+5+ 2, bi1+6+ 2, . . . ).

From [b̊] = [å], (a) in 2.3 and (a)+(b) in 2.4 we see that the multiset formed by
the entries of å′ coincides with the multiset formed by the entries of b̊′. Using the
induction hypothesis we see that there exists X ′⊂[2, µ−1]∩2N such that b′= a′X

′

where a′X
′

is defined in terms of a′, X ′ in the same way as aX (see 2.1) was defined
in terms of a, X . We set X = X ′ if we are in case (a) of 2.4 and X = {0}∪ X ′ if we
are in case (b). Then we have b = aX (see again (a) and (b) of 2.4), as required.
This completes the proof of Lemma 2.2.

2.6. We shall use the notation of 2.1. Let T be the set of all unordered pairs
(A,B) where A,B are subsets of {0, 1, 2, . . . } and A ∪̇B= (a0, a1, a2, . . . , aN )

as multisets. For example, setting

A∅ = {ai ; i ∈ [0, N ] ∩ 2N} and B∅ = {ai ; i ∈ [0, N ] ∩ (2N+ 1)},

we have (A∅,B∅) ∈ T. For any subset a of J we consider

Aa = ((J− a)∩A∅)∪ (a∩B∅)∪ (A∅ ∩B∅),

Ba = ((J− a)∩B∅)∪ (a∩A∅)∪ (A∅ ∩B∅).

Then (Aa,Ba)= (AJ−a,AJ−a) ∈T and the map a 7→ (Aa,Ba) induces a bijection
P̄(J)↔ T. (Note that if a=∅ then (Aa,Ba) agrees with the earlier definition of
(A∅,B∅).)

Let T′ be the set of all (A,B) ∈ T such that |A| = |A∅| and |B| = |B∅|. Let
P(J)1 be the subspace of P(J) spanned by the following 2-element subsets of J:

{ai1, ai2}, {ai3, ai4}, . . . , {aiµ−2, aiµ−1} if N is odd,

{ai1, ai2}, {ai3, ai4}, . . . , {aiµ−1, aiµ} if N is even.

Let P(J)0 be the subspace of P(J) spanned by the following 2-element subsets of J:

{ai0, ai1}, {ai2, ai3}, . . . , {aiµ−1, aiµ} if N is odd,

{ai0, ai1}, {ai2, ai3}, . . . , {aiµ−2, aiµ−1} if N is even.

Let P̄(J)0 and P̄(J)1 be the images of P(J)0 and P(J)1 under the obvious map
P(J)→ P̄(J). Then:

(a) P̄(J)0 and P̄(J)1 are opposed Lagrangian subspaces of the symplectic vector
space P̄ev(J), ( , ) (see 0.7); hence ( , ) defines an identification P̄(J)1 =

P̄(J)∗0, where P̄(J)∗0 is the vector space dual to P̄(J)0.



442 GEORGE LUSZTIG

Let T0 and T1 be the subsets of T corresponding to P̄(J)0 and P̄(J)1 under the
bijection P̄(J)↔ T. Note that T0 ⊂ T′,T1 ⊂ T′, |T0| = |T1| = 2bµ/2c.

For any X ⊂ [0, µ − 1] ∩ 2N we set aX =
⋃

s∈X {ais , ais+1} ∈ P(J). Then
(AaX ,BaX ) is related to aX in 2.1 as follows:

AaX = {a
X
i ; i ∈ [0, N ] ∩ 2N},BaX = {a

X
i ; i ∈ [0, N ] ∩ (2N+ 1)}.

2.7. We shall use the notation of 2.1. Let T be the set of all unordered pairs
(A, B) where A is a subset of {0, 1, 2, . . . }, B is a subset of {1, 2, 3, . . . }, A
contains no consecutive integers, B contains no consecutive integers, and A ∪̇ B =
(å0, å1, å2, . . . , åN ) as multisets. For example, setting

A∅ = {åi ; i ∈ [0, N ] ∩ 2N} and B∅ = (åi ; i ∈ [0, N ] ∩ (2N+ 1)},

we have (A∅, B∅) ∈ T .
For any (A, B)∈ T we define (A−, B−) as follows: A− consists of x1< x2−1<

x3− 2 < · · · < x p − p+ 1 where x1 < x2 < · · · < x p are the elements of A; B−

consists of y1< y2−1< · · ·< yq−q+1 where y1< y2< · · ·< yq are the elements
of B.

We can enumerate the elements of T as in [Lusztig 1984b, 11.5]. Let J be the
set of all c ∈ N such that c appears exactly once in the sequence

(å0, å1, å2, . . . , åN )= (a0, a1, a2+ 1, a3+ 1, a4+ 2, a5+ 2, . . . ).

A nonempty subset I of J is said to be an interval if it is of the form {i, i + 1,
i + 2, . . . , j} with i − 1 /∈ J, j + 1 /∈ J . Let I be the set of intervals of J . For
any s ∈ [0, µ− 1] ∩ 2N, the set Is := {åis , åis+1, åis+2, . . . , åis+2ms+1} is either a
single interval or a union of intervals I 1

s t I 2
s t . . . t I ts

s (ts ≥ 2) where åis ∈ I 1
s ,

åis+2ms+1 ∈ I ts
s , |I 1

s |, |I
ts
s | are odd, |I h

s | are even for h ∈ [2, ts − 1] and any element
in I e

s is < than any element in I e′
s for e < e′. Let Is be the set of all I ∈ I such

that I ⊂ Is . For any subset α ⊂ I we consider

Aα =
⋃

I∈I−α

(I ∩ A∅)∪
⋃
I∈α
(I ∩ B∅)∪ (A∅ ∩ B∅),

Bα =
⋃

I∈I−α

(I ∩ B∅)∪
⋃
I∈α
(I ∩ A∅)∪ (A∅ ∩ B∅).

Then (Aα, Bα) ∈ T and the map α 7→ (Aα, Bα) is a bijection P̄(I)↔ T . (Note
that if α =∅ then (Aα, Bα) agrees with the earlier definition of (A∅, B∅).)

Let
T ′ = {(A, B) ∈ T ; |A| = |A∅|, |B| = |B∅|},

T1 = {(A, B) ∈ T ′; A− ∪̇ B− = A−∅ ∪̇ B−∅ }.

Let P̄(I)′ and P̄(I)1 be the subsets of P̄(I) corresponding to T ′ and T1 under the
bijection P̄(I)↔ T .
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Now let X be a subset of [0, µ− 1] ∩ 2N. Let αX =
⋃

s∈X
Is ∈ P(I). From the

definitions we see that

(a) A−αX
= AaX , B−αX

=BaX

(in the notation of 2.6). In particular we have (AαX , BαX ) ∈ T1. Thus |T1| ≥ 2bµ/2c.
Using Lemma 2.2 we see that

(b) |T1| = 2bµ/2c and T1 =
{
(AαX , BαX ); X ⊂ [0, µ− 1] ∩ 2N

}
.

Using (a) and (b) we deduce:

(c) The map T1→ T1 given by (A, B) 7→ (A−, B−) is a bijection.

3. Proof of Theorem 0.4 and of Corollary 0.5

3.1. If G is simple adjoint of type An , n ≥ 1, then Theorem 0.4 and Corollary 0.5
are obvious: we have A(u)= {1}, Ā(u)= {1}.

3.2. Assume that G = Sp2n(k) where n ≥ 2. Let N be a sufficiently large even
integer. Now u : k2n

→ k2n has ie Jordan blocks of size e (e = 1, 2, 3, . . . ). Here
i1, i3, i5, . . . are even. Let 1 = {e ∈ {2, 4, 6, . . . }; ie ≥ 1}. Then A(u) can be
identified in the standard way with P(1). Hence the group of characters Â(u) of
A(u) (which may be canonically identified with the F2-vector space dual to P(1))
may be also canonically identified with P(1) itself (so that the basis given by the
one-element subsets of 1 is self-dual).

To the partition 1i1+2i2+3i3+· · · of 2n we associate a pair (A, B) as in [Lusztig
1984b, 11.6] (with N , 2m replaced by 2n, N ). We have A = (â0, â2, â4, . . . , âN ),
B= (â1, â3, . . . , âN−1), where â0≤ â1≤ â2≤ · · ·≤ âN is obtained from a sequence
a0≤a1≤a2≤· · ·≤aN as in 1.1. (Here we use that C is special.) Now the definitions
and results in Section 1 are applicable. As in [Lusztig 1984a, 4.5] the family F is
in canonical bijection with T′ in 1.6.

We arrange the intervals in I in increasing order I(1), I(2), . . . , I( f ) (any element
in I(1) is smaller than any element in I(2), etc.). We arrange the elements of 1
in increasing order e1 < e2 < · · · < e f ′ ; then f = f ′ and we have a bijection
I ↔ 1, I(h) ↔ eh; moreover we have |I(h)| = ieh for h ∈ [1, f ]; see [Lusztig
1984b, 11.6]. Using this bijection we see that A(u) and Â(u) are identified with
the F2-vector space P(I) with basis given by the one-element subsets of I. Let
π : P(I)→ P(I)∗1 (the dual of P(I)1 in 1.7) be the (surjective) F2-linear map
which to X ⊂ I associates the linear form L 7→ |X ∩ L| mod 2 on P(I)1. We will
show that

(a) kerπ = K(u), with K(u) as in 0.1.
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We identify IrrC W with T ′ (see 1.7) via the restriction of the bijection in [Lusztig
1984b, (12.2.4)] (we also use the description of the Springer correspondence in
[Lusztig 1984b, 12.3]). Under this identification the subset Irr∗C W of IrrC W be-
comes the subset T1 (see 1.7) of T ′. Via the identification P(I)′↔ T ′ in 1.7 and
Â(u)↔P(I) (see above), the map E 7→VE from T ′ to Â(u) becomes the obvious
imbedding P(I)′→P(I) (we use again [Lusztig 1984b, 12.3]). By definition, K(u)
is the set of all X ∈P(I) such that for any L ∈P(I)1 we have |X ∩ L| = 0 mod 2.
Thus, (a) holds.

Using (a) we have canonically Ā(u)=P(I)∗1 via π . We define an F2-linear map
P(I)1 → P̄(J)1 (see 1.6) by Is 7→ {ais , ais+1} for s ∈ {1, 3, . . . , 2M − 1} (Is as
in 1.7). This is an isomorphism; it corresponds to the bijection 1.7(c) under the
identification T1↔P(I)1 in 1.7 and the identification T1↔ P̄(J)1 in 1.6. Hence
we can identify P(I)∗1 with P̄(J)∗1 and with P̄(J)0 (see 1.6(a)). We obtain an
identification Ā(u)= P̄(J)0.

By [Lusztig 1984a, 4.5] we have XF = P̄(J). Using 1.6(a) we see that P̄(J)=

M(P̄(J)0) = M( Ā(u)) canonically so that Theorem 0.4 holds in our case. From
the arguments above we see that in our case Corollary 0.5 follows from 1.7(c).

3.3. Assume that G=SOn(k)where n≥7. Let N be a sufficiently large integer such
that N = n mod 2. Now u : kn

→ kn has ie Jordan blocks of size e (e= 1, 2, 3, . . . ).
Here i2, i4, i6, . . . are even. Let 1 = {e ∈ {1, 3, 5, . . . }; ie ≥ 1}. If 1 = ∅ then
A(u)= {1}, Ā(u)= {1} and GF = {1} so that the result is trivial.

In the remainder of this subsection we assume that 1 6=∅. Then A(u) can be
identified in the standard way with the F2-subspace Pev(1) of P(1) and the group
of characters Â(u) of A(u) (which may be canonically identified with the F2-vector
space dual to A(u)) becomes P̄(1); the obvious pairing A(u)× Â(u)→ F2 is
induced by the inner product L , L ′ 7→ |L ∩ L ′| mod 2 on P(1).

To the partition 1i1+2i2+3i3+· · · of n we associate a pair (A, B) as in [Lusztig
1984b, 11.7] (with N ,M replaced by n, N ). We have A = {åi ; i ∈ [0, N ] ∩ 2N},
B = (åi ; i ∈ [0, N ] ∩ (2N+ 1)} where å0 ≤ å1 ≤ å2 ≤ · · · ≤ åN is obtained from a
sequence a0 ≤ a1 ≤ a2 ≤ · · · ≤ aN as in 2.1. (Here we use that C is special.) Now
the definitions and results in §2 are applicable. As in [Lusztig 1984a, 4.5] (if N is
even) or [Lusztig 1984a, 4.6] (if N is odd) the family F is in canonical bijection
with T′ in 2.6.

We arrange the intervals in I in increasing order I(1), I(2), . . . , I( f ) (any element
in I(1) is smaller than any element in I(2), etc.). We arrange the elements of 1
in increasing order e1 < e2 < · · · < e f ′ ; then f = f ′ and we have a bijection
I↔1, I(h)↔ eh ; moreover we have |I(h)| = ieh for h ∈ [1, f ]; see [Lusztig 1984b,
11.7]. Using this bijection we see that A(u) is identified with Pev(I) and Â(u) is
identified with P̄(I). For any X ∈Pev(I), the assignment L 7→ |X ∩ L| mod 2 can
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be viewed as an element of P̄(I)∗1 (the dual space of P̄(I)1 in 2.7 which by 2.7(b)
is an F2-vector space of dimension 2bµ/2c). This induces a (surjective) F2-linear
map π : Pev(I)→ P̄(I)∗1. We will show that

(a) kerπ = K(u), with K(u) as in 0.1.

We identify IrrC W with T ′ (see 2.7) via the restriction of the bijection in [Lusztig
1984b, (13.2.5)] if N is odd or [ibid., (13.2.6)] if N is even (we also use the
description of the Springer correspondence in [Lusztig 1984b, 13.3]). Under this
identification the subset Irr∗C W of IrrC W becomes the subset T1 (see 2.7) of T ′.
Via the identification P̄(I)′↔ T ′ in 2.7 and Â(u)↔ P̄(I) (see above), the map
E 7→VE from T ′ to Â(u) becomes the obvious imbedding P̄(I)0→ P̄(I) (we use
again [ibid., 13.3]). By definition, K(u) is the set of all X ∈Pev(I) such that for any
L ∈P(I) representing a vector in P̄(I)1 we have |X∩L|=0 mod 2. Thus, (a) holds.

Using (a) we have canonically Ā(u)= P̄(I)∗1 via π . We have an F2-linear map
P̄(I)1→ P̄(J)0 (see 2.6) induced by Is 7→ {ais , ais+1} for s ∈ [0, µ− 1] ∩ 2N (Is

as in 2.7). This is an isomorphism; it corresponds to the bijection 2.7(c) under
the identification T1 ↔ P̄(I)1 in 2.7 and the identification T1 ↔ P̄(J)0 in 2.6.
Hence we can identify P̄(I)∗1 with P̄(J)∗0 and with P̄(J)1 (see 2.6(a)). We obtain
an identification Ā(u)= P̄(J)1.

By [Lusztig 1984a, 4.6] we have XF = P̄ev(J). Using 2.6(a) we see that
P̄(J)= M(P̄(J)1)= M( Ā(u)) canonically so that Theorem 0.4 holds in our case.
From the arguments above we see that in our case Corollary 0.5 follows from 2.7(c).

3.4. In 3.5–3.9 we consider the case where G is simple adjoint of exceptional type.
In each case we list the elements of the set IrrC W for each special unipotent class
C of G; an element e of IrrC W − Irr∗C W is listed as [e]. (The notation for the
various C is as in [Spaltenstein 1985]; the notation for the objects of IrrW is as
in [Spaltenstein 1985] (for type En) and as in [Lusztig 1984a, 4.10] for type F4.)
In each case the structure of A(u), Ā(u) (for u ∈ C) is indicated; here Sn denotes
the symmetric group in n letters. The order in which we list the objects in IrrC W
corresponds to the following order of the irreducible representations of A(u)= Sn:

1, ε (n = 2),
1, r, ε (n = 3,G 6= G2),
1, r (n = 3,G = G2),
1, λ1, λ2, σ (n = 4),
1, ν, λ1, ν ′, λ2, λ3 (n = 5),

in the notation of [Lusztig 1984a, 4.3]. Now Theorem 0.4 and Corollary 0.5 follow
in our case from the tables in 3.5–3.9 and the definitions in [Lusztig 1984a, 4.8–4.13].
(In those tables Sn is the symmetric group in n letters.)



446 GEORGE LUSZTIG

3.5. Assume that G is of type E8.
IrrE8 W = {10}; A(u)= {1}, Ā(u)= {1}.
IrrE8(a1)W = {81}; A(u)= {1}, Ā(u)= {1}.
IrrE8(a2)W = {352}; A(u)= {1}, Ā(u)= {1}.
IrrE7 A1 W = {1123, 288}; A(u)= S2, Ā(u)= S2.
IrrD8 W = {2104, 1607}; A(u)= S2, Ā(u)= S2.
IrrE7(a1)A1 W = {5605, [508]}; A(u)= S2, Ā(u)= {1}.
IrrE7(a1)W = {5676}; A(u)= {1}, Ā(u)= {1}.
IrrD8(a1)W = {7006, 3008}; A(u)= S2, Ā(u)= S2.
IrrE7(a2)A1 W = {14007, 10089, 5619}; A(u)= S3, Ā(u)= S3.
IrrA8 W = {14008, 157510, 35014}; A(u)= S3, Ā(u)= S3.
IrrD7(a1)W = {32409, [105010]}; A(u)= S2, Ā(u)= {1}.
IrrD8(a3)W = {224010, [17512], 84013}; A(u)= S3, Ā(u)= S2.
IrrD6 A1 W = {226810, 129613}; A(u)= S2, Ā(u)= S2.
IrrE6(a1)A1 W = {409611, 409612}; A(u)= S2, Ā(u)= S2.
IrrE6 W = {52512}; A(u)= {1}, Ā(u)= {1}.
IrrD7(a2)W = {420012, 336013}; A(u)= S2, Ā(u)= S2.
IrrE6(a1)W = {280013, 210016}; A(u)= S2, Ā(u)= S2.
IrrD5 A2 W = {453613, [84014]}; A(u)= S2, Ā(u)= {1}.
IrrD6(a1)A1 W = {607514, [70016]}; A(u)= S2, Ā(u)= {1}.
IrrA6 A1 W = {283514}; A(u)= {1}, Ā(u)= {1}.
IrrA6 W = {420015}; A(u)= {1}, Ā(u)= {1}.
IrrD6(a1)W = {560015, 240017}; A(u)= S2, Ā(u)= S2.
Irr2A4 W ={448016,453618,567018,140020,168022,7032}; A(u)= S5, Ā(u)= S5.
IrrD5 W = {210020}; A(u)= {1}, Ā(u)= {1}.
Irr(A5 A1)′′W = {560021, 240023}; A(u)= S2, Ā(u)= S2.
IrrD4 A2 W = {420015, [16824]}; A(u)= S2, Ā(u)= {1}.
IrrA4 A2 A1 W = {283522}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A2 W = {453623}; A(u)= {1}, Ā(u)= {1}.
IrrD5(a1)W = {280025, 210028}; A(u)= S2, Ā(u)= S2.
IrrA42A1 W = {420024, 336025}; A(u)= S2, Ā(u)= S2.
IrrD4 W = {52536}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A1 W = {409626, 409627}; A(u)= S2, Ā(u)= S2.
IrrA4 W = {226830, 129633}; A(u)= S2, Ā(u)= S2.
IrrD4(a1)A2 = {224028, 84031}; A(u)= S2, Ā(u)= S2.
IrrA3 A2 W = {324031, [97232]}; A(u)= S2, Ā(u)= {1}.
IrrD4(a1)A1 W = {140032, 157534, 35038}; A(u)= S3, Ā(u)= S3.
IrrD4(a1)W = {140037, 100839, 5649}; A(u)= S3, Ā(u)= S3.
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Irr2A2 W = {70042, 30044}; A(u)= S2, Ā(u)= S2.
IrrA3 W = {56746}; A(u)= {1}, Ā(u)= {1}.
IrrA22A1 W = {56047}; A(u)= {1}, Ā(u)= {1}.
IrrA2 A1 W = {21052, 16055}; A(u)= S2, Ā(u)= S2.
IrrA2 W = {11263, 2868}; A(u)= S2, Ā(u)= S2.
Irr2A1 W = {3574}; A(u)= {1}, Ā(u)= {1}.
IrrA1 W = {891}; A(u)= {1}, Ā(u)= {1}.
Irr∅W = {1120}; A(u)= {1}, Ā(u)= {1}.

3.6. Assume that G is adjoint of type E7.
IrrE7 W = {10}; A(u)= {1}, Ā(u)= {1}.
IrrE7(a1)W = {71}; A(u)= {1}, Ā(u)= {1}.
IrrE7(a2)W = {272}; A(u)= {1}, Ā(u)= {1}.
IrrD6 A1 W = {563, 216}; A(u)= S2, Ā(u)= S2.
IrrE6 W = {213}; A(u)= {1}, Ā(u)= {1}.
IrrE6(a1)W = {1204, 1055}; A(u)= S2, Ā(u)= S2.
IrrD6(a1)A1 W = {1895, [157]}; A(u)= S2, Ā(u)= {1}.
IrrD6(a1)W = {2106}; A(u)= {1}, Ā(u)= {1}.
IrrA6 W = {1056}; A(u)= {1}, Ā(u)= {1}.
IrrD5 A1 W = {1686}; A(u)= {1}, Ā(u)= {1}.
IrrD5 W = {1897}; A(u)= {1}, Ā(u)= {1}.
IrrD6(a2)A1 W = {3157, 2809, 3513}; A(u)= S3, Ā(u)= S3.
Irr(A5 A1)′ = {4058, 18910}; A(u)= S2, Ā(u)= S2.
IrrD5(a1)A1 W = {3789}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A2 W = {21010}; A(u)= {1}, Ā(u)= {1}.
IrrD5(a1)W = {42010, 33611}; A(u)= S2, Ā(u)= S2.
IrrA′′5 W = {10512}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A1 W = {51211, 51212}; A(u)= S2, Ā(u)= S2.
IrrD4 W = {10515}; A(u)= {1}, Ā(u)= {1}.
IrrA4 W = {42013, 33614}; A(u)= S2, Ā(u)= S2.
IrrA3 A2 A1 W = {21013}; A(u)= {1}, Ā(u)= {1}.
IrrA3 A2 W = {37814, [8415]}; A(u)= S2, Ā(u)= {1}.
IrrD4(a1)A1 W = {40515, 18917}; A(u)= S2, Ā(u)= S2.
IrrD4(a1)W = {31516, 28018, 3522}; A(u)= S3, Ā(u)= S3.
Irr(A3 A1)′′W = {18920}; A(u)= {1}, Ā(u)= {1}.
Irr2A2 W = {16821}; A(u)= {1}, Ā(u)= {1}.
IrrA23A1 W = {10521}; A(u)= {1}, Ā(u)= {1}.
IrrA3 W = {21021}; A(u)= {1}, Ā(u)= {1}.
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IrrA22A1 W = {18922}; A(u)= {1}, Ā(u)= {1}.
IrrA2 A1 W = {12025, 10526}; A(u)= S2, Ā(u)= S2.
Irr3A′′1 W = {2136}; A(u)= {1}, Ā(u)= {1}.
IrrA2 W = {5630, 2133}; A(u)= S2, Ā(u)= S2.
Irr2A1 W = {2737}; A(u)= {1}, Ā(u)= {1}.
IrrA1 W = {746}; A(u)= {1}, Ā(u)= {1}.
Irr∅W = {163}; A(u)= {1}, Ā(u)= {1}.

3.7. Assume that G is adjoint of type E6.
IrrE6 W = {10}; A(u)= {1}, Ā(u)= {1}.
IrrE6(a1)W = {61}; A(u)= {1}, Ā(u)= {1}.
IrrD5 W = {202}; A(u)= {1}, Ā(u)= {1}.
IrrA5 A1 W = {303, 155}; A(u)= S2, Ā(u)= S2.
IrrD5(a1)W = {644}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A1 W = {605}; A(u)= {1}, Ā(u)= {1}.
IrrA4 W = {816}; A(u)= {1}, Ā(u)= {1}.
IrrD4 W = {246}; A(u)= {1}, Ā(u)= {1}.
IrrD4(a1)W = {807, 908, 2010}; A(u)= S3, Ā(u)= S3.
Irr2A2 W = {2412}; A(u)= {1}, Ā(u)= {1}.
IrrA3 W = {8110}; A(u)= {1}, Ā(u)= {1}.
IrrA22A1 W = {6011}; A(u)= {1}, Ā(u)= {1}.
IrrA2 A1w = {6413}; A(u)= {1}, Ā(u)= {1}.
IrrA2 W = {3015, 1517}; A(u)= S2, Ā(u)= S2.
Irr2A1 W = {2020}; A(u)= {1}, Ā(u)= {1}.
IrrA1 W = {625}; A(u)= {1}, Ā(u)= {1}.
Irr∅W = {136}; A(u)= {1}, Ā(u)= {1}.

3.8. Assume that G is of type F4.
IrrF4 W = {11}; A(u)= {1}, Ā(u)= {1}.
IrrF4(a1)W = {42, 23}; A(u)= S2, Ā(u)= S2.
IrrF4(a2)W = {91}; A(u)= {1}, Ā(u)= {1}.
IrrB3 W = {81}; A(u)= {1}, Ā(u)= {1}.
IrrC3 W = {83}; A(u)= {1}, Ā(u)= {1}.
IrrF4(a3)W = {121, 93, 62, 13}; A(u)= S4, Ā(u)= S4.
Irr Ã2

W = {82}; A(u)= {1}, Ā(u)= {1}.
IrrA2 W = {84, [12]}; A(u)= S2, Ā(u)= {1}.
IrrA1 Ã1

W = {94}; A(u)= {1}, Ā(u)= {1}.
Irr Ã1

W = {45, 22}; A(u)= S2, Ā(u)= S2.
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Irr∅W = {14}; A(u)= {1}, Ā(u)= {1}.

3.9. Assume that G is of type G2.
IrrG2 W is the unit representation; A(u)= {1}, Ā(u)= {1}.
IrrG2(a1)W consists of the reflection representation and the one dimensional

representation on which the reflection with respect to a long (resp. short) simple
coroot acts nontrivially (resp. trivially); A(u)= S3, Ā(u)= S3.

Irr∅W = {sgn}; A(u)= {1}, Ā(u)= {1}.

3.10. This completes the proof of Theorem 0.4 and that of Corollary 0.5.
We note that the definition of GF given in [Lusztig 1984a] (for type Cn, Bn) is

P̄(J)1 (in the setup of 3.2) and P̄(J)0 (in the setup of 3.3) which is noncanonically
isomorphic to Ā(u), unlike the definition adopted here that is, P̄(J)0 (in the setup
of 3.2) and P̄(J)1 (in the setup of 3.3) which makes GF canonically isomorphic to
Ā(u).
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REFLEXIVE OPERATOR ALGEBRAS ON BANACH SPACES

FLORENCE MERLEVÈDE, COSTEL PELIGRAD AND MAGDA PELIGRAD

In this paper we study the reflexivity of a unital strongly closed algebra of
operators with complemented invariant subspace lattice on a Banach space.
We prove that if such an algebra contains a complete Boolean algebra of
projections of finite uniform multiplicity and with the direct sum property,
then it is reflexive, i.e., it contains every operator that leaves invariant every
closed subspace in the invariant subspace lattice of the algebra. In particu-
lar, such algebras coincide with their bicommutant.

1. Introduction

Let A⊂ B(X) denote a strongly closed algebra of operators on the Banach space X.
Suppose that A has the property that each of its invariant subspaces has an invariant
complement. If A contains a complete Boolean algebra of projections of finite
uniform multiplicity and with the direct sum property as defined below, we prove
that A is reflexive in the sense that it contains all the operators which leave its
closed invariant subspaces invariant (Theorem 15). In particular such an algebra is
equal to its bicommutant A′′ (Corollary 22). The problem of whether a strongly
closed algebra of operators with complemented invariant subspace lattice is reflexive
started to be studied in the sixties. This problem is a generalization of the invariant
subspace problem in operator theory. Arveson [1967] introduced a technique for
studying the particular case of transitive algebras on Hilbert spaces, namely the
strongly closed algebras of operators on Hilbert spaces that have no nontrivial
closed invariant subspaces. He proved that every transitive algebra that contains a
maximal abelian von Neumann algebra coincides with the full algebra B(X) if X is
a complex Hilbert space. Douglas and Pearcy [1972] extended the result of Arveson
to the case of transitive operator algebras containing an abelian von Neumann
algebra of finite multiplicity. Hoover [1973] extended the result of Douglas and
Pearcy to the case of reductive operator algebras on Hilbert spaces that contain
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abelian von Neumann algebras of finite multiplicity. Hoover proved that every
reductive operator algebra (that is a strongly closed subalgebra for which every
closed invariant subspace is reducing) which contains an abelian von Neumann
algebra of finite multiplicity is self-adjoint. The transitive algebra result of Douglas
and Pearcy was generalized in [Önder and Orhon 1989] to the case of transitive
algebras on Banach spaces that contain a n-fold direct sum of a cyclic complete
Boolean algebra of projections. The case of operator algebras on Banach spaces
with complemented invariant subspace lattice was considered by Rosenthal and
Sourour [1977]. They proved that every strongly closed algebra of operators with
complemented invariant subspace lattice containing a complete Boolean algebra of
projections of uniform multiplicity one is reflexive.

In this paper we build upon the techniques introduced by Arveson and developed
in [Douglas and Pearcy 1972; Radjavi and Rosenthal 1973] for invariant subspaces
of operator algebras as well as Bade’s multiplicity theory of Boolean algebras
of projections [Bade 1955; 1959]. We also use the results of [Foguel 1959] and
[Tzafriri 1967] about the commutant of Boolean algebras of projections of finite
multiplicity.

2. Notation and preliminary results

2.1. Invariant subspaces of operator algebras. Let X be a complex Banach space
and B(X) the algebra of all bounded linear operators on X . We will denote by X (n)

the direct sum of n copies of X and, if S ⊂ B(X), we set

S(n) =
{
a⊕ a⊕ · · ·⊕ a ∈ B(X (n))

∣∣ a ∈ S
}
.

If S ⊂ B(Y ), where Y is a Banach space, we denote by Lat S the collection of all
closed linear subspaces of Y that are invariant under every element of S. If L is a
collection of closed linear subspaces of Y , we denote by alg L the (strongly closed)
algebra of operators on Y that leave every element of L invariant. An algebra
A ⊂ B(X) is called reflexive if algLat A = A.

In what follows all the subalgebras A ⊂ B(X) will be assumed to be strongly
closed and containing the identity operator I ∈ B(X).

Remark 1. Let A ⊂ B(X) be a strongly closed algebra with I ∈ A and b ∈ B(X).
If Lat A(n) ⊂ Lat b(n) for every n ∈ N, then b ∈ A.

Proof. Indeed, then for every finite set of elements {x1, x2, . . . , xn} ⊂ X we have
that K = {ax1⊕ ax2⊕ · · ·⊕ axn | a ∈ A} ∈ Lat A(n) and therefore K ∈ Lat b(n).
This means that b ∈ A, since A is strongly closed. �

Proposition 2. Let A ⊂ B(X) be a strongly closed algebra with complemented
invariant subspace lattice and with I ∈ A. Let q ∈ B(X) be a projection.
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(i) If q ∈ A, the algebra qAq ⊂ B(q X) has complemented invariant subspace
lattice and algLat(qAq)= q(algLat A)q.

(ii) If q ∈ A′, where A′ denotes the commutant of A, the strong operator closure
qAqso

⊂ B(q X) is an algebra with complemented invariant subspace lattice.

Proof. We prove first (i). Clearly, qAq is a strongly closed subalgebra of B(q X)
whose unit is q. Let L ⊂ q X , L ∈ Lat(qAq). We define L̃ = Aq L , the closure
being taken in X . Then, obviously, L̃ ∈ Lat A and, therefore L̃ has a complement
L̃c in Lat A. Since q ∈ A, we have q L̃ ⊂ L̃ , also q L̃c

⊂ L̃c and q L̃c
∈ Lat(qAq).

Moreover, it is immediate that q L̃ and q L̃c are closed linear subspaces of q X such
that

q L̃ ⊕ q L̃c
= q X.

On the other hand we have L ⊂ q L̃ = q Aq L ⊂ qAq L ⊂ L = L . Hence

q L̃ = L .

It follows that L is complemented in Lat(qAq) and so qAq has complemented
invariant subspace lattice. Let now b ∈ algLat A and L ∈ Lat(qAq). By the above
argument, there exists L̃ ∈ Lat A such that L = q L̃ . Hence bL̃ ⊂ L̃ . Therefore,
since q L̃ = L ⊂ L̃ it follows that qbq L ⊂ L , so qbq ∈ algLat(qAq). Conversely,
let c ∈ algLat(qAq) and let c̃ ∈ B(X) be the extension of c to X that equals 0 on
(I −q)X . Then, it is straightforward to show that c̃ ∈ algLat A and c= qc̃q and so
the proof is completed.

To establish (ii), let K ∈ Lat(qAq). Since q ∈ A′, it follows that K ∈ Lat A and
therefore K has a complement K c

∈ Lat A. Then, clearly K c
∩q X ∈ Lat(qAq) and

K + K c
∩ q X = q X . �

We will also need the following:

Lemma 3. Let A ⊂ B(X) be an algebra with complemented invariant subspace
lattice and let K ∈Lat A. If p∈ A′ is the projection on K and t1, t2, . . . , tn ∈ (p Ap)′,
for some n ∈ N, then the subspace

0{t1,t2,...,tn;p} =
{

x ⊕ t1x ⊕ t2x ⊕ · · ·⊕ tnx
∣∣ x ∈ pX

}
∈ Lat A(n+1)

is complemented in Lat A(n+1).

Proof. Since A has complemented invariant subspace lattice and pX = K ∈ Lat A,
it follows that the subspace (1− p)X = (pX)c = K c belongs to Lat A. It is then
clear that (pX)c⊕ X (n) is a complement of 0{t1,t2,...,tn;p} in Lat A(n+1). �

Remark 4. Let I ∈ A⊂ B(X) be a strongly closed subalgebra with complemented
invariant subspace lattice. If A is reflexive, then A′′ = A where A′′ denotes the
bicommutant of A.
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Proof. If a ∈ A′′, then, in particular, a commutes with every projection on an
invariant subspace of A. Therefore a ∈ algLat A = A. �

The following concept is defined in [Radjavi and Rosenthal 1973, §8.2], for
instance.

Definition 5. Let A ⊂ B(X) be a subalgebra. A linear operator T defined on a not
necessarily closed linear subspace P ⊂ X is called a graph transformation for A if
there exist finitely many linear operators T1, T2, . . . , Tl , all defined on P , such that{

x ⊕ T x ⊕ T1x ⊕ T2x ⊕ · · ·⊕ Tl x
∣∣ x ∈ P

}
∈ Lat A(l+2).

Remark 6. Let K ∈ Lat A(n), n ∈ N. Define

K0 =
{

x ∈ X (n−1) ∣∣ 0⊕ x ∈ K
}
∈ Lat A(n−1).

Then, if K0 is complemented in Lat A(n−1) with complement K c
0 it follows that there

exist graph transformations for A: T1, T2, . . . , Tn−1, defined on a linear subspace,
P ⊂ X , such that(

X ⊕ K c
0
)
∩ K =

{
x ⊕ T1x ⊕ T2x ⊕ · · ·⊕ Tn−1x

∣∣ x ∈ P
}
.

Proof. Straightforward. �

2.2. Boolean algebras of projections in Banach spaces and spectral operators.
Let B be a complete Boolean algebra of projections in a (complex) Banach space X
(as defined for instance in [Bade 1955] or in [Dunford and Schwartz 1988, Chap-
ter XVII]). It is known [Stone 1949] that there exists an extremally disconnected
compact Hausdorff topological space� (that is a compact Hausdorff space in which
the closure of every open set in it is open), such that B is equivalent as a Boolean
algebra with the Boolean algebra of open and closed subsets of �. We will denote
by 6 the collection of Borel sets of �. Such a compact Hausdorff space is called a
Stonean space.

The following remark collects some results about the complete Boolean algebras
of projections in Banach spaces that will be used in this paper.

Remark 7. (i) If B is a complete Boolean algebra of projections, then there is a
regular countably additive spectral measure E in X defined on the family of
Borel sets in � such that the mapping

S( f )=
∫
�

f (w) E(dw)

is a continuous isomorphism of the algebra C(�) of continuous functions on
� onto the uniformly closed algebra of operators, B, generated by B.

(ii) The algebra B coincides with the strongly closed algebra generated by B and
consists of spectral operators of scalar type.
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(iii) The range of E is precisely the Boolean algebra B.

(iv) B is norm bounded.

Proof. (i) and (iii) follow from [Dunford and Schwartz 1988, Lemma XVII.3.9].
Point (ii) is Corollary XVII.3.17 of the same reference, and (iv) follows from [Bade
1955, Theorem 2.2]. �

Let B⊂ B(X) be a complete Boolean algebra of projections that contains the
identity projection I ∈ B(X). We say that I ∈B has multiplicity k, k ∈ N, if there
are x1, x2, . . . , xk ∈ X such that lin {exi | e ∈B, 1≤ i ≤ k} = X and no subset of X
of cardinality less than k has this property [Bade 1959, Definition 3.2]. The Boolean
algebra B is said to be of uniform multiplicity k if every projection e ∈B, e 6= 0
has multiplicity k. For each i , 1 ≤ i ≤ k, define M(xi ) = lin{exi | e ∈ B}. Here,
lin{exi | e ∈B} denotes the closed linear subspace of X spanned by {exi | e ∈B}.

The next remark collects some known results from [Bade 1959] (see also [Dunford
and Schwartz 1988]).

Remark 8. Let B be a complete Boolean algebra of finite uniform multiplicity n,
n ∈ N, and let {x1, . . . , xn} be a set of vectors such that

lin{exi | e ∈B, 1≤ i ≤ n} = X.

(i) There are x∗i ∈ X∗, i = 1, 2, . . . , n, where X∗ is the dual Banach space of X ,
such that each of the measures µi (δ) = x∗i E(δ)xi , i ∈ {1, 2, . . . , n}, δ ∈ 6
vanishes on sets of first category of� and µi (σ ) 6= 0 if σ has nonempty interior.
The measures µi are equivalent and x∗i (M(x j ))= {0} for i 6= j .

(ii) There exists a continuous injective linear map V of X onto a dense linear
subspace L ⊂

∑n
i=1 L1(�,6,µi ) such that if V (x)= f =

∑
fi , then:

(a) x∗i E(δ)x =
∫
δ

fi (ω)µi (dω),

for δ ∈6. In particular, V (xi )= 0⊕· · ·⊕χ�⊕· · ·⊕ 0, where χ� = 1 is
in the i-th place in the direct sum.

(b) x = lim
m→∞

n∑
i=1

S( fiχδm
)xi ,

where χδm
is the characteristic function of

δm =
{
ω
∣∣ | fi (ω)| ≤ m, i = 1, 2, . . . , n

}
.

(iii) The linear space L is a Banach space when endowed with the norm

‖ f ‖0 = max
1≤i≤n

‖ fi‖1+‖V
−1( f )‖,

and V is a Banach space isomorphism between X and (L , ‖ · ‖0).
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Proof. Points (i) and (ii) follow from [Bade 1959, Lemma 5.1 and Theorem 5.2]
(see also [Dunford and Schwartz 1988, Theorem XVIII.3.19]). The proof of (iii) is
immediate. �

A function f is called E-essentially bounded if

inf
E(δ)=1

sup
ω∈δ

| f (ω)|

is finite [Dunford and Schwartz 1988, Definition 7].
Denote by EB(�,6) the set of all E-essentially bounded 6-measurable func-

tions.

Lemma 9. With the notations in Remark 8, if ϕ ∈ EB(�,6), then the opera-
tor Mϕ( f ) = ϕ f is a well defined, bounded operator on (L , ‖ · ‖0) and Mϕ =

V S(ϕ)V−1. Here ϕ f = ϕ f1⊕ϕ f2⊕ · · ·⊕ϕ fn . Thus

V BV−1
=
{

Mϕ

∣∣ ϕ ∈ EB(�,6)
}
.

Proof. Let f ∈ L and x= S(ϕ)V−1( f ). Then, according to point (a) in Remark 8 (ii),
if g = V (x), we have x∗i S(χδ)x =

∫
δ

gi (w)µi (dw) for every Borel set δ ∈6. On
the other hand,

x∗i S(χδ)x = x∗i S(χδ)S(ϕ)V
−1( f )= x∗i S(χδϕ)V

−1( f )=
∫
δ

ϕ(w) fi (w)µi (dw).

Hence gi = ϕ fi µi -a.e., so g = ϕ f a.e. and the proof is completed. �

In [Dieudonné 1956] is presented an example of a Boolean algebra of projections,
B, such that every nonzero projection e ∈B has multiplicity 2. However, for no
choice of x1, x2 ∈ X or e∈B, e 6= 0 is eX the algebraic sum of M(ex1) and M(ex2).
In the rest of this paper we will consider only Boolean algebras of finite uniform
multiplicity with the direct sum property:

Definition 10. We say that the complete Boolean algebra B of uniform multiplicity
k has the direct sum property if X is the algebraic (and therefore, Banach) direct
sum of M(xi ), 1≤ i ≤ k.

A particular case of a Boolean algebra of uniform multiplicity k with the direct
sum property is the k-fold direct sum of k copies of a cyclic Boolean algebra of
projections. Other examples are presented in [Foguel 1959].

Lemma 11. Suppose that B is a complete Boolean algebra of projections of uniform
multiplicity k with the direct sum property. Then, for every ε > 0 there exist e ∈B,
e= E(ρ), and ρ ∈6 withµl(ρ

c)<ε for every 1≤ l≤k (where ρc is the complement
of ρ) such that for every {ϕi j | 1 ≤ i, j ≤ k} ⊂ EB(�,6), the matrix [ϕi jχρ] is a
bounded linear operator on (L , ‖ · ‖0) and [ϕi jχρ] belongs to the commutant B′

of B.
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Proof. Since the measures µl , 1 ≤ l ≤ k are equivalent, let hml = dµm/dµl ,
1 ≤ m, l ≤ k be the corresponding Radon Nikodym derivative. Let ε > 0 be
arbitrary. Fix 1 ≤ m, l ≤ k. Then, since

⋃
∞

n=1 {1/n ≤ hml ≤ n} = �, there is a
n ∈N such that µl({1/n ≤ hml ≤ n}c) < ε/k2. Therefore there is a n ∈N such that
µl({1/n ≤ hml ≤ n}c) < ε for every 1≤m, l ≤ k. Let ρ = {1/n ≤ hml ≤ n} ∈6. It
is easy to see that for every Borel subset σ ⊂ρ we have µi (σ )/n≤µ j (σ )≤ nµi (σ )

for all 1 ≤ i, j ≤ k. Hence all the spaces Mχρ
L1(µi ) = χρL1(µi ), 1 ≤ i ≤ k, are

equal as sets and mutually isomorphic as Banach spaces. Then, clearly,

χρL = χρL1(µ1)⊕χρL1(µ2)⊕ · · ·⊕χρL1(µk).

Since B has the direct sum property, we also have

E(ρ)X = E(ρ)M(x1)⊕ · · ·⊕ E(ρ)M(xk)

and the lemma follows. �

For the definition and basic facts about spectral operators on Banach spaces
we refer to [Dunford and Schwartz 1988]. We will need the following result,
which follows from [Tzafriri 1967, Theorem 2] and [Foguel 1959, Lemma 2.1 and
Theorem 2.3].

Remark 12. Let T ∈ B(X) and let B be a complete Boolean algebra of projections
in X , of uniform multiplicity k, k ∈ N. If T commutes with the strongly closed
algebra B generated by B, then there exists an increasing sequence of projections
{em = E(χδm

) | m ∈ N} ⊂ B such that {em} converges strongly to the identity
I ∈ B(X) and T em is a spectral operator of finite type for every m. Moreover, if
T ∈ B ′ is a spectral operator then T is the sum of a spectral operator R of scalar
type in B ′ and a nilpotent operator Q of order k, Q ∈ B ′.

Next we will study the dense linear subspaces of X that are invariant under
every element of B, where B is the strongly closed algebra generated by B, the
complete Boolean algebra of projections of uniform multiplicity k with the direct
sum property. The following lemma is an extension to the case of Banach spaces
and an improvement on [Douglas and Pearcy 1972, Lemma 3.3]. Using Remark 8
and Lemma 9, we will identify X with L and B with {V S(ϕ)V−1

| S(ϕ) ∈ B}.

Lemma 13. Let k ∈N and B the strongly closed algebra generated by the Boolean
algebra of projections of uniform multiplicity k, B⊂ B(X) and with the direct sum
property. With the above notations, suppose that D⊂X is a dense linear subspace
which is invariant under all operators in B. Then, for every ε > 0, there exists an
open and closed set λε ⊂� such that

(i) µi (λ
c
ε) < ε, i = 1, 2, . . . , k, where λc

ε is the complement of λε in �, and
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(ii) χλε e j ∈D for all j ∈ {1, 2, . . . , k}, where {e j | j = 1, 2, . . . , k} is the standard
basis of C(k).

Proof. If z = (z1, z2, . . . , zk) ∈ C(k), consider the norm

‖z‖ =max
{
|z p
|
∣∣ 1≤ p ≤ k

}
.

It is easy to see that there exists α > 0 such that if the set {h1, h2, . . . , hk} ⊂ C(k)

satisfies ‖hi − ei‖ < α, i = 1, 2, . . . , k, then the set {h1, h2, . . . , hk} is linearly
independent. Let now ε > 0 be arbitrary. We can choose α < ε2/2. Let ρ ∈ 6,
µl(ρ)< ε/2, 1≤ l ≤ k, be as in Lemma 11. Since � is extremally disconnected, we
can assume that ρ is an open and closed set. For every j , 1≤ j ≤ k let g j (w)= e j ,
if w ∈ ρ and g j (w)= 0 if ω ∈ ρc. Since by point (a) of Remark 8 (ii) we have that
g j ∈ χρL for every j , 1 ≤ j ≤ k and χρD is dense in χρL , it follows that there
exists a set of elements { li | 1≤ i ≤ k} ⊂ χρD, li = l1

i ⊕ l2
i ⊕ · · ·⊕ lk

i such that

‖li − gi‖0 = max
1≤p≤k

{
‖l p

i − g p
i ‖0 = ‖l

p
i − g p

i ‖1+‖T
−1(l p

i − gi )
p
‖
}
< α < ε2.

Let δε =
k⋂

i=1

{
ω ∈ ρ

∣∣ |l p
i (w)− g p

i (w)| ≥ ε and 1≤ p ≤ k
}
. Then we have

ε2/2> α >max
{
‖l p

i − g p
i ‖1

∣∣ 1≤ i, p ≤ k
}
≥ εµm(δε) for 1≤ m ≤ k.

Hence µm(δε) < ε/2 for m = 1, 2, . . . , k. Assuming that ε < 2, it follows that
µm(δ

c
ε) 6= 0 and since � is a Stonean space, and µm a normal measure, µm(δ

c
ε)=

µm((δ
c
ε)
◦) where (δc

ε)
◦ is the interior of δc

ε . The same argument as the preceding one
shows that there exists an open and closed subset σε ⊂ (δc

ε)
◦ with µm(σ

c
ε ) < ε/2.

Let λε = ρ ∩ σε . Then, µm(λε) < ε for all 1 ≤ m ≤ k. It follows that all the
components of the vectors lεi = liχλε ∈ L are in EB(�,6). Let M be the matrix
whose i-th column is lεi . Then, using Lemma 11, it follows that M is a bounded
linear operator that commutes with every element in B, so M ∈ B

′

. The choice
of α implies that M(w) is nonsingular for every ω ∈ λε . Consider the matrix N
defined as follows:

N (w)=

{
M(w)−1 if w ∈ λε ,

0 if w ∈ λc
ε .

By restricting N to an open and closed subset of λε , if necessary, we can apply
Lemma 11 again and get N ∈ B ′. It follows that the columns of the product M N
are linear combinations of vectors in D with coefficients in B. Since D is invariant
under B we have that these columns belong to D. Since M(w)N (w)= I for w ∈ λε
the proof is completed. �

We will use next the following results about spectral operators and their resolu-
tions of the identity from [Dunford and Schwartz 1988].
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Remark 14. If the operator M commutes with the spectral operator T , then M
commutes with every resolution of the identity of T .

Proof. This is [Dunford and Schwartz 1988, Corollary XV.3.7]. �

3. Algebras with complemented invariant subspace lattices

In this section we will prove our main result:

Theorem 15. Let B be the strongly closed subalgebra of B(X) generated by a
complete Boolean algebra of projections B⊂ B(X) of finite uniform multiplicity,
k, with the direct sum property. If A ⊂ B(X) is a strongly closed algebra with
complemented invariant subspace lattice that contains B, then A is reflexive.

The proof of this theorem will be given after a series of auxiliary results. In the
rest of this section B and B will be as in Theorem 15. We will identify X with
(L , ‖ · ‖0) as in Remark 8.

Proposition 16. Let B as in Theorem 15 and let T be a densely defined closed
operator on X which commutes with B. There exists an increasing sequence of
projections {qp}

∞

p=1 ⊂B that converges strongly to I such that T qp is a spectral
operator of finite type for every p ∈ N.

Proof. Let D⊂ X be the (dense) domain of T . Since T commutes with B it follows
that D is invariant under B. By Lemma 13 it follows that for every p ∈ N there
is an open and closed subset σp ⊂ � such that χσp

⊕ χσp
⊕ · · · ⊕ χσp

∈ D and
µl(σ

c
p) < 1/2p for every 1 ≤ l ≤ k. Define rp = S(χσp

) ∈B. Obviously, we can
take rp ≤ rp+1 (in the sense that rp X ⊂ rp+1 X) for every p ∈ N. Therefore T rp

(p ∈N) is a bounded operator and rp↗ I . On the other hand, by Remark 12, since
T rp ∈ B

′

, for every p ∈N, there exists a Borel set δp ∈6 such that, for all 1≤ l ≤ p,
we have µl(δ

c
p) < 1/2p. Furthermore, if qp = S(χδp∩σp

), then T qp is a spectral
operator of finite type. Clearly {qp} is an increasing sequence of projections in B

that converges strongly to I and the proof is completed. �

Proposition 17. Assume that B is as in the statement of Theorem 15. Let T be a
densely defined graph transformation for B⊂ B(X). Then there exists an increasing
sequence of projections {qp}

∞

p=1 ⊂ B that converges strongly to I such that T qp

is a spectral operator of finite type for every p ∈ N. In particular every such
transformation is closable and its closure commutes with B.

Proof. Let T be a densely defined graph transformation for B with domain DT . Since
T is a graph transformation for B, there exists l ∈N and operators T1, T2, . . . , Tl−2

such that the subspace

Z =
{

x ⊕ T x ⊕ T1x ⊕ T2x ⊕ · · ·⊕ Tl−2x
∣∣ x ∈ DT

}
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belongs to Lat B(l). Define 1l−1 = {x ⊕ x ⊕ · · ·⊕ | x ∈ X} ⊂ X (l−1). Then it can
be easily seen that the subspace

1c
l−1 =

{
x1⊕ x2⊕ · · ·⊕ xl−1

∣∣∣∣ xi ∈ X with
l−1∑
i=1

xi = 0
}

is a Banach subspace complement of 1l−1 which is invariant under every element
of B(l−1). The operator T̃ defined by

T̃ (x ⊕ x ⊕ · · ·⊕ x)= T x ⊕ T1x ⊕ · · ·⊕ Tl−2x if x ∈ DT

and
T̃ (x1⊕ x2⊕ · · ·⊕ xl−1)= 0 if x1⊕ x2⊕ · · ·⊕ xl−1 ∈1

c
l−1

is a closed, densely defined operator which commutes with B(l−1). An application
of Proposition 16 with k replaced by k(l − 1) completes the proof. �

Remark 18. Let A ⊂ B(X) be a strongly closed algebra with complemented
invariant subspace lattice and I ∈ A. Then, if Q ∈ A′ is such that Q2

= 0 it follows
that Q ∈ (algLat A)′.

Proof. The proof of [Feintuch and Rosenthal 1973, Lemma 3] for the particular case
of Hilbert spaces can be extended to the case of Banach spaces. Indeed, let Q ∈ A′

be such that Q2
= 0. Then, if Y = ker Q is the null space of Q, Y is in Lat A and

since A has a complemented invariant subspace lattice, Y has a complement, Y c in
Lat A. Therefore Q can be written as a matrix

Q =
[

0 c
0 0

]
,

and every a ∈ A can be written as the matrix

a =
[

a1 0
0 a2

]
.

Moreover, every b ∈ algLat A, can be written as a matrix

b =
[

b1 0
0 b2

]
.

Since aQ = Qa it follows that ca2 = a1c. Hence the subspace {cx ⊕ x | x ∈ Y c}

belongs to Lat A and is therefore invariant for algLat A. It follows that cb2 = b1c,
so Qb = bQ. �

Part (i) of the next result is a generalization of Remark 18.

Proposition 19. Let A ⊂ B(X) be an algebra with complemented invariant sub-
space lattice.
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(i) If Q ∈ A′ is a nilpotent operator, then Q ∈ (algLat A)′.

(ii) If T = R+Q is a spectral operator of finite type (where R is spectral of scalar
type and Q is nilpotent) and T ∈ A′, then R ∈ (algLat A)′ and N ∈ (algLat A)′.

Proof. We will prove point (i) of this proposition by induction. By Remark 18, if
Q ∈ A′ and Q2

= 0, then Q ∈ (algLat A)′. Suppose that for every operator Q ∈ A′

with Qn
= 0 it follows that Q ∈ (algLat A)′ and let Q ∈ A′ with Qn+1

= 0. Let p0

denote a projection on ker Q such that p0 ∈ A′. Since Qp0 = 0 it follows that

(1− p0)Q = (1− p0)Q(1− p0)

and therefore

(1− p0)Qk
= ((1− p0)Q(1− p0))

k, k ∈ N.

Since Qn+1
= 0 we have Qn(X)⊂ ker Q and therefore

0= (1− p0)Qn
= ((1− p0)Q(1− p0))

n.

By hypothesis, (1− p0)Q = (1− p0)Q(1− p0) ∈ (algLat A)′. On the other hand,
since Q ∈ A′ and p0 ∈ A′ we have p0 Q ∈ A′. Since obviously (p0 Q)2 = 0, by
Remark 18, it follows that p0 Q ∈ (algLat A)′. Therefore

Q = p0 Q+ (1− p0)Q ∈ (algLat A)′

and the proof of (i) is completed.
We turn now to prove point (ii). By Remark 14, every resolution of the iden-

tity of T , E(δ), where δ is a Borel subset of the spectrum of T , δ ⊂ sp(T ), is
in A′. Therefore, since A has complemented invariant subspace lattice, it follows
that E(δ) ∈ (algLat A)′ for every Borel set δ ⊂ sp(T ). Hence R =

∫
λ E(dλ) ∈

(algLat A)′. Since T ∈ A′ and R ∈ A′ it follows that Q ∈ A′. By part (i) it follows
that Q ∈ (algLat A)′. �

Lemma 20. Let A be a strongly closed algebra with complemented invariant
subspace lattice that contains a complete Boolean algebra of projections of finite
uniform multiplicity k with the direct sum property. Then, if K ∈ Lat A(n) for some
n ∈ N, then, there exists an increasing sequence of projections {pm} ⊂B, pm ↗ I
such that p(n)m K is complemented in Lat(pm Apm)

(n) for every m ∈ N.

Proof. We will prove the lemma by induction on n. For n = 1 the statement is
obvious with pm = I for every m. Let K ∈ Lat A(n). Define

K0 = {x ∈ X (n−1)
| 0⊕ x ∈ K }.

Obviously, K0 ∈ Lat A(n−1), so there exists an increasing sequence of projections
{rm} ⊂ B, rm ↗ I such that r (n−1)

m K0 is complemented in Lat(rm Arm)
(n−1). Let
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(r (n−1)
m K0)

c be the complement of r (n−1)
m K0 in Lat(rm Arm)

(n−1). Then,(
rm X ⊕ (r (n−1)

m K0)
c)
∩ K ∈ Lat A(n)

and
r (n)m K =

(
0⊕ r (n−1)

m K0
)
+
(
rm X ⊕ (r (n−1)

m K0)
c)
∩ r (n)m K .

Since
(
rm X ⊕ (r (n−1)

m K0)
c
)
∩ r (n)m K is the complement of 0⊕ r (n−1)

m K0 in r (n)m K ,
there exist graph transformations T1, T2, . . . , Tn−1 such that(

rm X ⊕ (r (n−1)
m K0)

c)
∩ r (n)m K =

{
x ⊕ T1x ⊕ T2x ⊕ · · ·⊕ Tn−1x

∣∣ x ∈ P
}
,

where P is a linear subspace of rm X invariant under every element of rm Arm . The
closure of P in rm X , P , belongs to Lat(rm Arm) and hence has a complement Pc

in Lat(rm Arm). For 1≤ i ≤ n− 1, consider the following densely defined, graph
transformation on rm X :

T̃i x =
{

Ti x if x ∈ P ,
0 if x ∈ Pc.

Then T̃i commutes with A. By Proposition 17, there exists an increasing sequence
of projections {qp} ⊂B, qp↗ I such that T̃i qp are bounded spectral operators of
finite type. From Lemma 3 it follows that the subspace{

qpx ⊕ T̃1qpx ⊕ T̃2qpx ⊕ · · ·⊕ T̃n−1qpx
∣∣ x ∈ qp P ⊕ qp Pc}

is complemented in Lat(qp Aqp)
(n). By the definition of the transformations T̃i it

follows immediately that the subspace{
qpx ⊕ T1qpx ⊕ T2qpx ⊕ · · ·⊕ Tn−1qpx

∣∣ x ∈ P
}

is complemented in Lat(qp Aqp)
(n). If we set pm = rmqm ∈B we have that pm↗ I ,

p(n)m K is complemented in Lat(pm Apm)
(n):

p(n)m X =
(
0⊕ p(n−1)

m K0
)
+
{

pm x ⊕ T1 pm x ⊕ · · ·⊕ Tn−1 pm x
∣∣ x ∈ P

}
+
(
(pm P)c⊕ p(n−1)

m K c
0
)
.

Hence
p(n)m X =

(
p(n)m K

)
+
(
(pm P)c⊕ p(n−1)

m K c
0
)
,

and the proof of the lemma is completed. �

The following statement follows from the proof of Lemma 20.

Remark 21. If A is as in the statement of Lemma 20 and K ∈ Lat A(n) for some
n ∈N, then there exists an increasing sequence of projections {pm} ⊂B, pm ↗ I
such that p(n)m K = (0⊕ p(n−1)

m K0)+{pm x⊕T1 pm x⊕· · ·⊕Tn−1 pm x
∣∣ x ∈ P}, where

K0= {x ∈ X (n−1)
| 0⊕x ∈ K } and Ti pm , 1≤ i ≤ n−1, m ∈N, are bounded spectral
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operators of finite type on the closed A-invariant subspace pm P that commute with
pm Apm .

Proof of Theorem 15. Let b ∈ algLat A and K ∈ Lat A(n). We will prove by
induction on n that there exists an increasing sequence of projections {pm} ⊂ B

such that pm ↗ I and p(n)m K ∈ Lat(pmbpm)
(n) for every m ∈ N and therefore

K ∈ Lat b(n); then apply Remark 1 to conclude that b ∈ A. By Remark 21, there
exists an increasing sequence of projections {pm} ⊂B, pm ↗ I such that p(n)m K =
(0⊕ p(n−1)

m K0)+{pm x ⊕ T1 pm x ⊕ T2 pm x ⊕ · · ·⊕ Tn−1 pm x | x ∈ P} where K0 =

{x ∈ X (n−1)
| 0⊕ x ∈ K } and Ti pm, 1 ≤ i ≤ n − 1, m ∈ N, are bounded spectral

operators of finite type on the closed A-invariant subspace pm P that commute with
pm Apm . The induction hypothesis and Proposition 2 (i) imply that 0⊕ p(n−1)

m K0 ∈

Lat(pmbpm)
(n). By Proposition 19 (ii) it follows that the bounded spectral operators

of finite type Ti pm, 1≤ i ≤ n− 1, m ∈ N commute with pmbpm . Hence p(n)m K ∈
Lat(pmbpm)

(n). Since pm↗ I and, by Remark 7 (iv), B is norm bounded, it follows
that K ∈ Lat b(n) and the result follows. �

Corollary 22. Let A⊂ B(X) be a strongly closed algebra that contains a complete
Boolean algebra of projections B of finite uniform multiplicity with the direct sum
property. If A has complemented invariant subspace lattice, then A = A′′ where A′′

is the bicommutant of A.

Proof. Follows from Theorem 15 and Remark 4. �
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HARER STABILITY AND ORBIFOLD COHOMOLOGY

NICOLA PAGANI

In this paper we review the combinatorics of the twisted sectors of Mg,n, and
we exhibit a formula for the age of each of them in terms of the combina-
torial data. Then we show that orbifold cohomology of Mg,n when g → ∞

reduces to its ordinary cohomology. We do this by showing that the twisted
sector of minimum age is always the hyperelliptic twisted sector with all
markings in the Weierstrass points; the age of the latter moduli space is just
half its codimension in Mg,n.

1. Introduction

In recent years there have been lots of new results on geometrical and topological
properties of the moduli space Mg,n parametrizing smooth curves of genus g with
n distinct marked points on it. When 2g − 2 + n > 0, this moduli space is a
smooth Deligne–Mumford stack, or an orbifold, and its coarse moduli space is a
quasiprojective variety of dimension 3g− 3+ n. When n > 2g+ 2, every marked
curve is rigid, therefore the moduli space is actually a smooth quasiprojective
variety.

A celebrated result states that there are isomorphisms

(1) H k(Mg,n,Q)∼= H k(Mg+1,n,Q) when 3k+ 2≤ 2g.

These isomorphisms were introduced in [Harer 1985], but the ranges of their
validity have been gradually improved over time by the efforts of different authors.
This allows the definition of the stable cohomology, denoted H∗(M∞,n,Q). The
tautological classes κ and ψ are preserved by the above isomorphisms when g is
sufficiently large.

A recent result, whose proof was completed in [Madsen and Weiss 2007], asserts
that the resulting maps

(2) Q[κ1, κ2, . . . ]⊗Q[ψ1, . . . , ψn] → H∗(M∞,n).

are also isomorphisms. (More precisely, the paper cited shows the result in the case
n = 0; the extension to n > 0 follows from [Looijenga 1996, Proposition 2.1].)

MSC2010: primary 14H10, 32G15, 55N32; secondary 14N35, 14D23, 14H37, 55P50.
Keywords: Harer stability, orbifold cohomology, moduli of curves, Chen–Ruan cohomology,

automorphisms, age, twisted sector, inertia stack.
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We refer the reader to [Kirwan 2002; Wahl 2012] for a survey of these topological
results.

In the latest years, building on earlier results in topology [Kawasaki 1979] and
theoretical physics [Dixon et al. 1985; 1986], it has become clearer that when
studying the geometry and topology of orbifolds, one should include in the study
the twisted sectors of the orbifold itself. We refer to [Adem et al. 2007] for an
introduction to this emerging new subject. In particular, the cohomology theory of
an orbifold is enriched by the so-called orbifold cohomology, introduced by Chen
and Ruan in [2004]. As a graded vector space, the orbifold cohomology is the
direct sum of the cohomology of the original orbifold and of the cohomology of
the twisted sectors; the degree of the cohomology classes of each twisted sector
is shifted in orbifold cohomology by (twice) a rational number called age. This
number is not of topological nature, in fact it depends on the complex structure.
Its geometric significance appears in [Jarvis et al. 2007] as the virtual rank of an
element in the rational K -theory of the twisted sector also known as “half of the
normal bundle”, this element plays a key role in orbifold intersection theory.

In this note, we introduce the twisted sectors of Mg,n in the combinatorial
description of [Pagani 2012; Pagani and Tommasi 2013], we write a closed formula
for the age of the twisted sectors of Mg,n . (The two papers just cited contain the
special cases of this formula for M2,n and Mg, respectively.) Our main result is
Theorem 1, which states that for fixed (g, n), the twisted sector of minimum age is
the hyperelliptic twisted sector with marked Weierstrass points. It is a well-known
and classical fact, which we review in Proposition 1, that the twisted sectors of Mg,n

have codimension higher than g− 2+ n, with equality only for the hyperelliptic
locus. Our novel contribution here is that the virtual rank of “half of the normal
bundle” (see above) is strictly greater than 1

2(g − 2+ n), with equality only for
the hyperelliptic twisted sector. This inequality might have further geometric
consequences, besides the implications in orbifold cohomology investigated in this
note. (The study of the age of the twisted sectors of various types of moduli spaces
of curves, has also recently played a significant role in the investigation of the
singularities of the coarse moduli space.)

Combining Theorem 1 with Harer stability, we obtain that the orbifold coho-
mology of Mg,n stabilizes. Combining further our main result with the theorem of
Madsen–Weiss, we can explicitly compute the orbifold cohomology of Mg,n in low
degrees. Indeed, from Theorem 1, we deduce

(3) H k
orb(Mg,n,Q)= H k(Mg,n,Q) if k < g− 2+ n or n > 2g+ 2.

(There are no twisted sectors of Mg,n if and only if n > 2g+ 2).
The stabilization of orbifold cohomology was conjectured by Fantechi in the

discussion following her talk [Fantechi 2009] at MSRI. We acknowledge her for
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the insight in this topic. We also thank Stefano Maggiolo for having significantly
improved the computer program that plays a role at the end of the proof of our
main result. The author was supported by DFG project Hu 337/6-2.

2. The twisted sectors of Mg,n and their age

In this section we review the combinatorics of the twisted sectors of Mg,n . This
description of the twisted sectors of Mg,n was obtained in [Pagani 2012] for n ≥ 1
or g = 2, and in [Pagani and Tommasi 2013] for the remaining cases Mg,0, g ≥ 3.

Let us fix (g, n) with 2g − 2+ n > 0. A (g, n)-admissible datum consists of
non-negative integers (g′, N ; d1, . . . , dN−1, a1, . . . , aN−1) such that N ≥ 2 and

2g− 2= N (2g′− 2)+
N−1∑
i=1

(N − gcd(i, N ))di ,(4)

N−1∑
i=1

i di ≡ 0 (mod N ),(5)

N−1∑
i=1

ai = n, ai ≤ di , ai = 0 if gcd(i, N ) 6= 1,(6)

n = g′ = 0 =⇒ the g.c.d. of N and of the i’s such that di 6= 0 is 1.(7)

Each (g, n)-admissible datum corresponds to
( n

a1,...,aN−1

)
twisted sectors of Mg,n

that are related each to the other by an (a1, . . . , aN−1)-permutation of the n marked
points. Since we will only investigate properties of the twisted sectors of Mg,n that
do not depend on this permutation, from now on we shall slightly abuse the notation
and identify each twisted sector Y of Mg,n with its (g, n)-admissible datum

Y ∼ (g′, N ; d1, . . . , dN−1, a1, . . . , aN−1).

These facts follow from [Pagani 2012, Proposition 2.13] for n ≥ 1 and from [Pagani
and Tommasi 2013, Corollary 2.16, Theorem 2.19] in the case n = 0.

We observe that, from condition (4), there are no (g, n)-admissible data when
n > 2g+ 2; in particular, this is the case when g equals 0.

For completeness, we briefly recall our description of the twisted sectors of
Mg,n , from which the above correspondence follows. For more details, we refer to
[Pagani 2012, Section 2.b] for the case n ≥ 1 and to [Pagani and Tommasi 2013,
Section 2.b] for the case n = 0.

Construction 1. A twisted sector of Mg,n parametrizes connected cyclic covers
of order N of curves of genus g′ with total space a curve of genus g, where the
n marked points are chosen among the points of total ramification. The branch
divisor of the cyclic cover splits into N − 1 divisors, some of which are possibly
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empty. Indeed to any point p in the branch divisor D, let q be any point in the
fiber of p under the cyclic cover map; we define Hp as the stabilizer of the action
of Z/NZ at q , and ψp as the character of the action of Hp on the cotangent space
in q. Then, for 0 < i < N , we define Di as the subset of D of those p such that
Hp equals the subgroup generated by i in Z/NZ, and such that ψp(i) equals ωN , a
fixed generator for µN : the group of N -th roots of 1. In addition to (g, g′, N ), the
admissible datum consists of di := |Di | and of ai , the number of chosen marked
points in the preimage of Di under the cyclic cover map.

Given a (g, n)-admissible datum, we can construct a moduli space of cyclic
covers as in the paragraph above. Condition (4) is the Riemann–Hurwitz formula,
condition (5) is a compatibility condition that guarantees the existence of a (not
necessarily connected) cyclic cover with the data di and N , condition (6) corresponds
to the fact that the marked points must be points of total ramification for the cover.
Now if n ≥ 1, it is easy to see that the total space of the cover is forced to be
connected and that the moduli space parametrizing such covers is also connected.
If instead n = 0, it is shown in [Pagani and Tommasi 2013, Theorem 2.19] that
there is always one connected component of the moduli space that parametrizes
connected cyclic covers. This component may possibly be empty only when g′ = 0,
condition (7) rules out precisely these cases.

Let us fix a twisted sector (g′, N ; d1, . . . , dN−1, a1, . . . , aN−1). Since Y admits
a finite map to Mg′,

∑
di , its dimension is 3g′−3+

∑
di , its codimension in Mg,n is

(8) codim(Y ) := 3g− 3g′−
N−1∑
i=1

di + n,

and its twin is (g′, N ; dN−1, . . . , d1, aN−1, . . . , a1). If (g, n) is fixed and n is at
most 2g+ 2, the hyperelliptic twisted sector with n marked Weierstrass points is
(g′ = 0, N = 2; d1 = 2g + 2, a1 = n). In short, we will also call it simply the
hyperelliptic twisted sector; from (8) it has codimension g− 2+ n.

The next result is classical, but we review it for completeness.

Proposition 1. The codimension of any twisted sector Y of Mg,n satisfies

codim(Y )≥ g− 2+ n,

with equality if and only if Y is the hyperelliptic twisted sector with n marked
Weierstrass points.

Proof. Using (8), our statement is reduced to proving the inequality

(9)
∑

di ≤ 2g− 3g′+ 2.
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Using (4), we have

(10)
N
2

∑
di ≤

∑
di (N − gcd(i, N ))= 2g− 2− N (2g′− 2);

therefore, it is enough to show that

2
N
(2g− 2− N (2g′− 2))≤ 2g− 3g′+ 2.

Or, rearranging the terms, that

(11) (2N − 4)(g− 1)+ Ng′ ≥ 0.

This is clearly always true. Equality holds if and only if g′ = 0 and N = 2. �

Every twisted sector Y is assigned a rational number, first defined by Chen and
Ruan in [2004], which is called the degree shifting number, age, or fermionic shift.
Orbifold cohomology is then the direct sum of the ordinary cohomology and of
the cohomology of all the twisted sectors, where the latter is shifted in degree by
twice the age. For completeness, we briefly review the Chen–Ruan definition of
the degree shifting number, building on Construction 1.

Construction 2. Let f : Y →Mg,n be the natural map from the twisted sector to
the moduli stack of curves. The group µN of N -th roots of 1 acts on f ∗(TMg,n ),
the action can be diagonalized, and each eigenvalue at a point of Y has the form
λk = e2π iαk , where the αk ∈ [0, 1)∩Q are the “logarithms” of the eigenvalues. It is
not difficult to see that the function

∑
k αk is well-defined and constant on Y , thus

the age of Y is defined as

(12) a(Y ) :=
∑

k

αk ∈Q.

Moreover, by the very definition of twisted sector, the action of µN on TY is trivial,
thus in the definition (12) it is equivalent to sum the “logarithms” of the eigenvalues
of the normal bundle NY Mg,n , where the latter is defined by the exact sequence of
vector bundles

0→ TY → f ∗(TMg,n )→ NY Mg,n→ 0.

The age of a twisted sector can be interpreted as the virtual rank of an element
in the rational K -theory of Y that plays an important role in orbifold intersection
theory, see [Jarvis et al. 2007, Definition 1.3, Sections 1.3 and 4].

The age of a twisted sector of Mg,n can explicitly be determined in terms of its
admissible datum. From [Pagani and Tommasi 2013, Proposition 5.6] and [Pagani
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2012, Lemma 4.6], we have the following formula for the age:

(13) a(Y )=
(3g′− 3)(N − 1)

2
+

1
N

∑
gcd(i,N )=1

ai

N−1∑
k=1

kσ(k, i)

+
1
N

N−1∑
i=1

di

N−1∑
k=1

k
({

ki
N

}
+ σ(k, i)

)
,

where {x} := x −bxc denotes the fractional part of x ∈Q+, and

σ(k, i) :=
{

0 if ki + gcd(i, N )≡ 0 (mod N ),
1 if ki + gcd(i, N ) 6≡ 0 (mod N ).

Using only (13), it is an easy exercise to check that, if Y and Y ′ are twins, then

(14) a(Y )+ a(Y ′)= codim(Y )= codim(Y ′).

For example, when a twisted sector Y is twin to itself (this happens always, for
example, when N = 2), its age is half its codimension.

3. The twisted sectors of minimum age

Using only the combinatorial description of the previous section, and in analogy
with Proposition 1, we can prove the main result of this note. From now on, we
assume 2g− 2+ n > 0.

Theorem 1. The age of any twisted sector Y satisfies 2a(Y ) ≥ g − 2+ n, with
equality if and only if Y is the hyperelliptic twisted sector with n marked Weierstrass
points.

The marked hyperelliptic twisted sector is, using the terminology established in
the previous section, twin to itself. Therefore its age is half its codimension:
1
2(g− 2+ n).

This implies the following corollary, relevant for orbifold cohomology:

(15) H k(Mg,n,Q)= H k
orb(Mg,n,Q) if k < g− 2+ n or n > 2g+ 2.

There are no twisted sectors of Mg,n if and only if n > 2g+2; otherwise our bound
on the cohomological degree k is sharp.

Using the stability results for ordinary cohomology, we deduce:

Corollary 1. The isomorphisms (1) are, in fact, isomorphisms

H k
orb(Mg,n,Q)∼= H k

orb(Mg+1,n,Q)

when k ≤min(g− 3+ n, 2g/3− 2/3).
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In particular, we can interpret this by saying that orbifold cohomology of Mg,n

“trivially stabilizes” when g→∞, and the stable orbifold cohomology of Mg,n

coincides with its ordinary stable cohomology. The only pairs (g, n) for which
2g/3− 2/3> g− 3+ n occur are

(1, 1), (2, 0), (3, 0), (4, 0).

In these special cases, the ranges for k in Corollary 1 are optimal, whereas in all
other cases our ranges coincide with the ranges of stability for ordinary cohomology:
k < 2g/3− 2/3. The latter ranges are known to be optimal when g ≡ 2 (mod 3).
More details on the sharpness of the ranges for cohomological stability can be
found in [Wahl 2012, p. 2].

Combining (15) with the isomorphisms (2), we see how the orbifold cohomology
of Mg,n is explicitly computable in low degrees.

We now move to the proof of Theorem 1. Thanks to Proposition 1 and to (14),
what we have to prove is in fact

(16) |a(Y )− a(Y ′)| ≤ codim(Y )− (g− 2+ n)

= 2g+ 2− 3g′−
∑

di ,

with equality only when Y is the hyperelliptic twisted sector with n marked Weier-
strass points.

We introduce some notation. Let

6 := {d ∈ N | d divides N , d 6= N }

be the set of proper divisors of N , and let

a(Y )mark :=
1
N

∑
gcd(i,N )=1

ai

N−1∑
k=1

k σ(k, i),(17)

a(Y )σ :=
1
N

∑
gcd(i,N )=σ

di

N−1∑
k=1

k
({

ki
N

}
+ σ(k, i)

)
.(18)

We can rewrite formula (13) for the age of a twisted sector Y as:

a(Y )=
(3g′− 3)(N − 1)

2
+ a(Y )mark+

∑
σ∈6

a(Y )σ .

The term a(Y )mark is the contribution to the age of Y coming from the marked
points, and as such it is zero when n = 0. Of course now we have the estimate

(19) |a(Y )− a(Y ′)| ≤
∣∣a(Y )mark− a(Y ′)mark

∣∣+∑
σ∈6

∣∣a(Y )σ − a(Y ′)σ
∣∣ .

We can give estimates for each term in the right hand side of (19).
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Lemma 1. The following inequalities hold:

|a(Y )mark− a(Y ′)mark| ≤
N − 2

N

∑
gcd(i,N )=1

ai ,(20)

|a(Y )σ − a(Y ′)σ | ≤
(N − 2σ)(N/σ + 5)

6N

∑
gcd(i,N )=σ

di .(21)

Proof. Let us begin with the contribution coming from the marked points. The left
hand side of (20) is equal to

(22)
1
N

∣∣∣∑ ai (λ(i)− λ(N − i))
∣∣∣ ,

where λ(s) is the multiplicative inverse of s modulo N . The maximum of the
absolute value of

λ(i)− λ(N − i)= 2λ(i)− N

is obtained when i is either 1 or N − 1.
As for the second inequality, we separate the two summands in the right hand

side of (18). For the first term, consider the function of i

gσN (i) :=

∣∣∣∣∣
N−1∑
k=1

k
({

ik
N

}
−

{
(N − i)k

N

})∣∣∣∣∣ .
Its maximum among the values of i such that gcd(i, N )= σ is obtained for i = σ
or for i = N − σ . From this, we obtain

(23)

∣∣∣∣∣
N−1∑
k=1

k
{

ik
N

}
−

{
(N − i)k

N

}∣∣∣∣∣≤ gσN (σ )=
1
6

(
N
σ
− 1

)
(N − 2σ).

The second term is treated similarly to the contribution coming from the marked
points. The maximum of the absolute value of∑

k

(σ (k, i)− σ(k, N − i))= 2i − N

is obtained when i is either σ or N − σ . Combining this fact with (23), we get the
desired inequality. �

Proof of Theorem 1. As we have already observed, it suffices to prove (16). By
using the Riemann–Hurwitz formula (4) to eliminate the variable g, the right hand
side of (16) can be rearranged to

(2N − 3)g′− 2(N − 2)+
∑
σ∈6

(N − σ − 1)
∑

gcd(i,N )=σ

di .
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Now let us define for convenience the function

fN (σ ) := (N − σ − 1)−
(N − 2σ)

( N
σ
+ 5

)
6N

=

(
6− 1

σ

)
N 2
− (6σ + 9)N + 10σ

6N

for any integer N ≥ 2 and any σ a real number between 1 and N/2. By using (20)
and (21), in order to prove (16) it is enough to prove

(24) −
N − 2

N

∑
gcd(i,N )=1

ai +
∑
σ∈6

fN (σ )
∑

gcd(i,N )=σ

di ≥ (2− 2g′)(N − 2)− g′,

with equality only in the case of the hyperelliptic twisted sector. Note that ai ≤ di

from inequality (6).
The left hand side of (24) is always nonnegative for any integer N ≥ 2, because

f̃N (1) := fN (1)−
N − 2

N
=
(N − 2)(5N − 11)

6N
≥ 0.

Therefore when g′ > 0, the strict inequality (24) holds evidently, as the right hand
side is strictly smaller than 0. Thus all we have to prove is (24) when g′ = 0, a case
in which we always have that

∑
di ≥ 3 (this follows from condition (4) with g′ = 0

and g > 0).
We start with the case g′ = 0 and

∑
di ≥ 4. The function fN is concave (just

look at its second derivative with respect to σ ), thus it has its minimum either in
1 or in N/2, and we have fN (N/2)= (N − 2)/2. The following two inequalities
hold in this case:

f̃N (1)
∑

di ≤ 2(N − 2),(25)

fN (N/2)
∑

di ≤ 2(N − 2),(26)

and they suffice to prove (24). If (24) is an equality, then either (25) or (26) must be
an equality. If N = 2, we are precisely in the case of the hyperelliptic twisted sector.
If N > 2, the inequality (25) is strict, so (26) must be an equality and therefore∑

di = 4. So if (24) is an equality, with g′= 0, N > 2 and
∑

di = 4, then dN/2= 4,
but this implies g = 1 by (4), hence n ≥ 1, and this case does not exist because
of (6).

So we are left with the case g′ = 0 and
∑

di = 3. A large number of twisted
sectors still falls into this last category, but not the hyperelliptic twisted sector. We
set the three nonzero di ’s to 1, and denote them by dσ1 = dσ2 = dσ3 = 1. Then it
suffices to prove the strict inequality

(27)
(

6−
3∑

i=1

1
σi

)
N 2
−

(
3+ 6

3∑
i=1

σi

)
N + 10

3∑
i=1

σi > 6n(N − 2).
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If N is fixed, there are only finitely many possibilities for the variables involved in
(27). The constraints are

(28)


σ1+ σ2+ σ3 < N ,

aσ1+ bσ2+ cσ3 = N for some a, b, c ∈ N+,

n ≤
∣∣{i | σi = 1}

∣∣≤ 3,

σi divides N , σi 6= N ,

where all the quantities involved are integers. The first is a consequence of Riemann–
Hurwitz (4) (assuming g > 1), the second follows from (5) and the third from (6).
From now on, we aim at proving (27) for N greater than a certain explicit constant.
We will repeatedly use that the left hand side of (27), for fixed n, N , is a concave
function in the domain of definition (28). We can also assume for convenience that
σ1 ≤ σ2 ≤ σ3.

• If n = 3, then from (28) we deduce σ1 = σ2 = σ3 = 1. The inequality (27) is
satisfied when N > 11.

• If n = 2, from (28), we have that σ1 = σ2 = 1. It is enough to check (27) for the
extreme values σ3 = 1 and σ3 = N/2. The first follows from the case n = 3, by
checking the case of σ3 = N/2 we see that (27) is valid when N > 22.

• If n = 1, from (28) σ1 = 1, so we have 1≤ σ2 ≤ σ3 ≤ N/2 and σ2+σ3 < N − 1.
It is enough to check the extremal values. The case when σ2 = 1 follows from
the case n = 2. From the second point in (28), if σ3 = N/2, then σ2 is either 1
or 2; in the latter case (27) is valid when N > 14. Finally, when σ2 = σ3 = N/3,
(27) is always valid.

• If n = 0, we can assume σi ≥ 2, since the other cases fall in the above paragraph.
Moreover, there are six extremal cases that fulfill the first and the last of (28):

(2, 2, 2),
(

2, 2, N
2

)
,
(

2, N
3
,

N
2

)
,
(N

7
,

N
3
,

N
2

)
,
(N

5
,

N
4
,

N
2

)
,
(N

4
,

N
3
,

N
3

)
.

We check that (27) for the extremal cases is satisfied when N > 36 (the inequality
is sharp in the case of the fourth triple).

To conclude the proof, we have to check that (16) holds in the cases when g′ = 0,∑
di = 3 and N < 37, which imply g ≤ 17. These cases are only finitely many,

and can be handled with the help of a computer program.1 �

Let us conclude with some remarks.

1The source code of a C++ program that lists all twisted sectors of Mg , each one with its age, is
available at http://pcwww.liv.ac.uk/~pagani/twisted.cpp.

http://pcwww.liv.ac.uk/~pagani/twisted.cpp
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Remark 1. We list the number of twisted sectors of Mg for 1≤ g ≤ 17, to give an
idea of its rapid growth:

(7,17,47,72,76,203,196,225,415,537,427,1040,811,779,1750,1860,1371).

Then the number of twisted sectors of Mg with g′ = 0:

(7, 16, 43, 65, 64, 193, 163, 207, 372, 485, 359, 983, 657, 866, 1592, 1636, 1115).

And, finally, the number of twisted sectors of Mg with g′ = 0 and
∑

di = 3:

(6, 12, 32, 38, 42, 108, 76, 100, 184, 190, 150, 352, 162, 286, 544, 382, 196).

These final 2860 twisted sectors are those for which we performed the computer
assisted calculation mentioned in the last paragraph of the proof of Theorem 1.

Remark 2. One can also ask what are the twisted sectors of small age in Mg,n , after
the marked hyperelliptic one. Here we list, for fixed (g, n), the first twisted sectors
in order of increasing age: marked hyperelliptic, marked bielliptic, . . . , (marked)
double covers of curves of genus dg/2e. We remark that the ranges of existence of
those twisted sectors, in terms of g and n, are, respectively,

n ≤ 2g+ 2, n ≤ 2g− 2, n ≤ 2g− 6, . . . , n ≤ 1+ (−1)g;

their ages are, respectively,

g− 2+ n
2

,
g− 1+ n

2
,

g+ n
2

, . . . ,
3bg/2c− 1− (−1)g + n

2
.

After all these, there is one marked trigonal cyclic twisted sector (when n≤ g+2).
Then the picture becomes more complicated, and we do not know the answer. For
example, we have empirically observed that the minimum age among twisted sectors
of codimension k can be bigger than the minimum age among twisted sectors of
codimension k+ 1.

The validity of the statements that we made in this remark require a long combi-
natorial proof along the lines of the proof of Theorem 1, which we do not include
in this note as it is not really relevant to our scope.

Remark 3. Condition (7) has not been used in any of the steps of the proof of
Theorem 1, which could then have been stated slightly more generally for the
twisted sectors of the moduli spaces of not necessarily connected smooth curves of
genus g.

Remark 4. There is no such thing as a stable cohomology in low degrees for Mg,n;
it is a classical fact for example that even the second Betti number (which equals
the dimension of the Picard group in this case) grows exponentially in g. It still
makes sense to ask for the twisted sector of minimum age of Mg,n , but the answer
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is much easier. To fix the ideas, we give the answer when g+ n > 3 and g > 0:
the cases in which the generalized hyperelliptic locus has codimension > 1. Then
the unique twisted sector of minimum age is the codimension-1 locus, consisting
generically of a smooth elliptic curve glued at the origin to a smooth curve of genus
g−1 carrying all the marked points, and with the automorphism induced by the pair
(elliptic involution on the elliptic curve, identity). Its age is 1

2 : half its codimension.
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SPECTRA OF PRODUCT GRAPHS AND
PERMANENTS OF MATRICES OVER FINITE RINGS

LE ANH VINH

We study the spectra of product graphs over the finite cyclic ring Zm. Using
this spectra, we show that if E is a sufficiently large subset of Zk

m then the set
of permanents of k × k matrices with rows in E contains all nonunits of Zm.

1. Introduction

Let Fq be a finite field of q elements where q is an odd prime power. The prime
base field Fp of Fq may then be naturally identified with Zp. Let M be an k × k
matrix. Two basic parameters of M are its determinant

Det(M) :=
∑
σ∈Sk

sgn(σ )
k∏

i=1

aiσ(i),

and its permanent

Per(M) :=
∑
σ∈Sk

k∏
i=1

aiσ(i).

The distribution of the determinants of matrices with entries in a finite field Fq

has been studied by various researchers. Suppose that the ground field Fq is fixed
and M = Mk is a random k× k matrix with entries chosen independently from Fq .
If the entries are chosen uniformly from Fq , then it is well known that

(1-1) Pr(Mk is nonsingular)→
∏
i>1

(1− q−i ) as k→∞.

It is interesting that (1-1) is quite robust. Specifically, J. Kahn and J. Komlós [2001]
proved a strong necessary and sufficient condition for (1-1).

Theorem 1.1 [Kahn and Komlós 2001]. Let Mk be a random k × k matrix with
entries chosen according to some fixed nondegenerate probability distribution µ on

This research is supported by Vietnam National University, Hanoi, under project QG.12.43, “Some
problems on matrices over finite fields”.
MSC2010: 05C50.
Keywords: permanent, finite ring, expander graph.
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Fq . Then (1-1) holds if and only if the support of µ is not contained in any proper
affine subfield of Fq .

An extension of the uniform limit to random matrices with µ depending on k
was considered by Kovalenko, Levitskaya, and Savchuk [1986]. They proved the
standard limit (1-1) under the condition that the entries mi j of M are independent
and Pr(mi j = α) > (log k+α(1))/n for all α ∈ Fq . The behavior of the nullity of
Mk for 1−µ(0) close to log k/k and µ(α) = (1−µ(0))/(q − 1) for α 6= 0 was
also studied by Blömer, Karp, and Welzl [1997].

Another direction is to fix the dimension k of matrices and view the size of
the finite field as an asymptotic parameter. Note that the implied constants in
the symbols O , o, ., and � may depend on the integer parameter k. We recall
that the notations U = O(V ) and U . V are equivalent to the assertion that the
inequality |U | ≤ c|V | holds for some constant c > 0. The notations U = o(V )
and U � V are equivalent to the assertion that for any ε > 0, the inequality
|U | ≤ ε|V | holds when the variables of U and V are sufficiently large. For an
integer k and a subset E⊆ Fk

q , let Mk(E) denote the set of k× k matrices with rows
in E. For any t ∈ Fq , let Dk(E; t) be the number of k×k matrices in Mk(E) having
determinant t . Ahmadi and Shparlinski [2007] studied some natural classes of
matrices over finite fields Fp of p elements with components in a given subinterval
[−H, H ] ⊆ [−(p− 1)/2, (p− 1)/2]. They showed that

(1-2) Dk([−H, H ]k; t)= (1+ o(1))
(2H + 1)k

2

p
,

if t ∈ F∗p and H & p3/4+ε for any constant ε > 0. In the case k = 2, the lower bound
of the size of the interval can be improved to H & p1/2.

Using the geometry incidence machinery developed in [Covert et al. 2010],
and some properties of nonsingular matrices, the author [Vinh 2009] obtained the
following result for higher-dimensional cases (k ≥ 4):

Dk(A
k
; t)= (1+ o(1))

|A|k
2

q
,

if t ∈ F∗q and A ⊆ Fq of cardinality |A| � qk/(2k−1). Covert et al. [2010] studied
this problem in a more general setting. A subset E⊆ Fk

q is called a product-like set
if |Hl ∩ E|. |E|l/k for any l-dimensional subspace Hl ⊂ Fk

q . Covert et al. showed
that

D3(E; t)= (1+ o(1))
|E|3

q
,

if t ∈ F∗q and E ⊂ F3
q is a product-like set of cardinality |E| � q15/8. In the

singular case, the author [Vinh 2012b] showed that for any subset E ⊆ Fk
q with

|E|� qk−1+2/k then the number of singular matrices whose rows are in E is close to
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the expected number (1+o(1))|E|k/q . In the general case, the author [Vinh 2013a]
showed that if E is a subset of the k-dimensional vector space over a finite field Fq

(k ≥ 3) of cardinality |E| ≥ (k− 1)qk−1, then the set of volumes of k-dimensional
parallelepipeds determined by E covers Fq . This bound is sharp up to a factor of
(k− 1) as taking E to be a (k− 1)-hyperplane through the origin shows.

On the other hand, little is known about the permanent. The only known uniform
limit similar to (1-1) for the permanent is due to Lyapkov and Sevast′yanov [Lyapkov
and Sevast’yanov 1996]. They proved that the permanent of a random k× l matrix
Mkl with elements from Fp and independent rows has the limit distribution of the
form

lim
k→∞

Pr(Per(Mkl)= λ)= ρlδλ0+ (1− ρl)/p, λ ∈ Fp,

where δλ0 is Kronecker’s symbol. In [Vinh 2012a], the author studied the distribution
of the permanent when the dimension of matrices is fixed. We are interested in
the set of all permanents, Pk(E)= {Per(M) : M ∈ Mk(E)}. Using Fourier analytic
methods, the author [Vinh 2012a] proved the following result.

Theorem 1.2 [Vinh 2012a]. Suppose that q is an odd prime power and gcd(q, k)=1.
If E∩ (F∗q)

k
6=∅, and |E|& q(k+1/2), then F∗q ⊆ Pk(E).

Note that if |E| > nqn−1 then E ∩ (F∗q)
k
6= ∅. Hence we have an immediate

corollary of Theorem 1.2.

Corollary 1.3 [Vinh 2012a]. Suppose that q is an odd prime power and gcd(q, n)=1.

(a) If E⊂ Fn
q of cardinality |E|> nqn−1, then F∗q ⊆ Pn(E).

(b) If A⊂ Fq of cardinality |A| � q1/2+1/(2n), then F∗q ⊆ Pn(A
n).

The bound in the first part of Corollary 1.3 is tight up to a factor of n. For
example, |{x ∈ Fn

q : x1 = 0}| = qn−1 and Pn({x ∈ Fn
q : x1 = 0}) = 0. However,

we conjecture that the bound in the second part of Corollary 1.3 can be further
improved to |A| � q1/2+ε (for any ε > 0) when n is sufficiently large.

Let m be a large nonprime integer and Zm be the ring of residues modulo m. Let
γ (m) be the smallest prime divisor of m, ω(m) the number of prime divisors of
m, and τ(m) the number of divisors of m. We identify Zm with {0, 1, . . . ,m− 1}.
Define the set of units and the set of nonunits in Zm by Z×m and Z0

m , respectively. The
finite Euclidean space Zk

m consists of column vectors x, with j-th entries x j ∈ Zm .
The main purpose of this paper is to extend Theorem 1.2 to the setting of finite
cyclic rings Zm . One reason for considering this situation is that if one is interested
in answering similar questions in the setting of rational points, one can ask questions
for such sets and see how they compare to the answers in Rk . By scale invariance of
these questions, the problem for a subset E of Qk would be the same as for subsets
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of Zk
m . More precisely, we have the following analog of Theorem 1.2 over the finite

cyclic rings.

Theorem 1.4. Suppose that m is a large integer and gcd(m, k)= 1. If E∩(Z×m)
k
6=

∅, and

|E|&
τ(m)mk

γ (m)(k−1)/2 ,

then Z×m ⊆ Pk(E).

Notice that if |E|> k(m−φ(m))mk−1 then E∩ (Z×m)
k
6=∅. Hence, we have an

immediate corollary of Theorem 1.4.

Corollary 1.5. Suppose that m is a large integer and gcd(m, k)= 1.

(a) Suppose that
(m−φ(m))γ (m)(k−1)/2 & τ(m)m

and
|E|& (m−φ(m))mk−1,

then Z×m ⊆ Pk(E).

(b) Suppose that A⊂ Zm of cardinality

|A|&
τ(m)m

γ (m)(k−1/2k) ,

then Z×m ⊆ Pk(A
k).

Note that the bound in Corollary 1.5 is sharp. For example, if E= Z0
m ×Zk−1

m
then Pk(E)⊂ Z0

m . Theorem 1.4 and Corollary 1.5 are most effective when m has
only a few prime divisors. For example, if m = pr , we have the following result.

Theorem 1.6. Suppose that pr is a large prime power and gcd(p, k) = 1. If
E∩ (Z×pr )k 6=∅, and

|E|& (r + 1)prk−(k−1/2),

then Z×pr ⊆ Pk(E).
In particular, suppose that k ≥ 3, p� r , and |E| & pkr−1, then Z×pr ⊂ Pk(E).

The lower bound of |E| in this case is sharp, as taking E to be the set Z0
pr ×Zk−1

pr

shows.

Note that, the bounds in Corollary 1.5 and Theorem 1.6 are sharp in general
cases. When E=An is a product set, we conjecture that these bounds can be further
improved when n is sufficiently large.

For any t ∈ Fq and E ⊂ Fk
q , let Pk(E; t) be the number of k × k matrices with

rows in E having permanent t . In [Vinh 2012a], the author studied the distribution
of Pn(E; t) when E = Ak for a large subset A ⊂ Fq . It would be of interest to
extend these results to the setting of finite rings.
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2. Product graphs over rings

For a graph G, let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of its adjacency matrix.
The quantity λ(G)=max{λ2,−λn} is called the second eigenvalue of G. A graph
G = (V, E) is called an (n, d, λ)-graph if it is d-regular, has n vertices, and the
second eigenvalue of G is at most λ. It is well known (see [Ahmadi and Shparlinski
2007, Chapter 9] for more details) that if λ is much smaller than the degree d , then
G has certain random-like properties. For two (not necessarily) disjoint subsets of
vertices U,W ⊂ V , let e(U,W ) be the number of ordered pairs (u, w) such that
u ∈U , w ∈ W , and (u, w) is an edge of G. For a vertex v of G, let N (v) denote
the set of vertices of G adjacent to v and let d(v) denote its degree. Similarly, for a
subset U of the vertex set, let NU (v)= N (v)∩U and dU (v)= |NU (v)|. We first
recall the following well-known fact.

Theorem 2.1 [Ahmadi and Shparlinski 2007, Corollary 9.2.5]. Let G = (V, E) be
an (n, d, λ)-graph. For any two sets B,C ⊂ V , we have∣∣∣∣e(B,C)−

d|B||C |
n

∣∣∣∣≤ λ√|B||C |.
For any λ ∈ Zm , the product graph Bm(k, λ) is defined as follows. The vertex set

of the product graph Bm(k, λ) is the set V (Bm(k, λ))= Zk
m\(Z

0
m)

k . Two vertices a
and b ∈ V (Bm(k, λ)) are connected by an edge, (a, b) ∈ E(Bm(k, λ)), if and only
if a · b= λ. When λ= 0, the graph is a variant of the Erdős–Rényi graph, which
has several interesting applications. We will study this case in a separate paper. We
now study the product graph when λ ∈ Z×m .

Theorem 2.2 [Vinh 2013b]. For any k ≥ 2 and λ∈Z×m , the product graph Bm(k, λ)
is an (

mk
− (m−φ(m))k,mk−1,

τ (m)mk−1

γ (m)(k−1)/2

)
-graph.

Proof. This proof follows from the proof of [Vinh 2013b, Theorem 3.1]. We include
its proof here for completeness. It follows from the definition of the product graph
Bm(k, λ) that Bm(k, λ) is a graph of order mk

− (m−φ(m))k . The valency of the
graph is also easy to compute. Given a vertex x ∈ V (Bm(k, λ)), there exists an
index xi ∈ Z×m . We can assume that x1 ∈ Z×m . We can choose y2, . . . , yk ∈ Zm

arbitrarily, then y1 is determined uniquely such that x · y = λ. Hence, Bm(k, λ)
is a regular graph of valency md−1. It remains to estimate the eigenvalues of this
multigraph (that is, graph with loops). For any a 6= b ∈ Zk

m\(Z
0
m)

k , we count the
number of solutions of the following system:

(2-1) a · x ≡ b · x ≡ λ mod m, x ∈ Zk
m\(Z

0
m)

k .
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There exist uniquely n|m and b1 ∈ (Zm/n)
k
\(Z0

m/n)
k such that b = a+ nb1. The

system (2-1) becomes

(2-2) a · x ≡ λ mod m, nb1 · x ≡ 0 mod m, x ∈ (Zm/n)
k
\(Z0

m/n)
k .

Let an ∈ (Zm/n)
k
\(Z0

m/n)
k
≡ a mod m/n, xn ∈ (Zm/n)

k
\(Z0

m/n)
k
≡ x mod m/n,

and λn ≡ λ mod m/n. To solve (2-2), we first solve the following system:

(2-3) an · xn ≡ λn mod m/n, b1 · xn ≡ 0 mod m/n, xn ∈ (Zm/n)
k
\(Z0

m/n)
k .

The system (2-3) has no solution when an ≡ t b1 mod p for some prime p|(m/n)
and t ∈ Z×m , and (m/n)k−2 solutions otherwise. For each solution xn of (2-3),
putting back into the system

(2-4) a · x ≡ λ mod m, x ≡ xn mod m/n,

gives us nk−1 solutions of the system (2-2). Hence, the system (2-2) has mk−2n
solutions when an 6≡ t b1 mod p and no solution otherwise. Let A be the adjacency
matrix of Bm(k, λ). It follows that

(2-5) A2
=mk−2 J+(mk−1

−mk−2)I−mk−2
∑
n|m

1≤n<m

En+
∑
n|m

1<n<m

(mk−2n−mk−2)Fn,

where J is the all-ones matrix; I is the identity matrix; En is the adjacency matrix
of the graph BE,n , where for any two vertices a, b∈ V (Bm(k, λ)), (a, b) is an edge
of BE,n if and only if b= a+ nb1, b1 ∈ (Zm/n)

k
\(Z0

m/n)
k and an ≡ t b1 mod p for

some prime p|(m/n); and Fn is the adjacency matrix of the graph BF,n , where
for any two vertices a, b ∈ V (Bm(k, λ)), (a, b) is an edge of BF,n if and only if
b= a+ nb1, b1 ∈ (Zm/n)

k
\(Z0

m/n)
k , and an 6≡ t b1 mod p for any prime p|(m/n).

Therefore, BE,n is a regular graph of valency at most∑
p|(m/n), p∈P

(p− 1)
( m

np

)k
< ω(m)(m/n)kγ (m)1−k .

Hence all eigenvalues of En are at most ω(m)(m/n)kγ (m)1−k . Besides, it is clear
that all eigenvalues of Fn are at most (m/n)k . Since Bm(k, λ) is a mk−1-regular
graph, mk−1 is an eigenvalue of A with the all-one eigenvector 1. The graph
Bm(k, λ) is connected, therefore the eigenvalue mk−1 has multiplicity one. Since
the graph Bm(k, λ) contains (many) triangles, it is not bipartite. Hence, for any
other eigenvalue θ , |θ |< mk−1. Let vθ denote the corresponding eigenvector of θ .
Note that vθ ∈ 1⊥, so Jvθ = 0. It follows from (2-5) that

(θ2
−mk−1

+mk−2)vθ =
(

mk−2
∑
n|m

1≤n<m

En −
∑
n|m

1<n<m

(mk−2n−mk−2)Fn

)
vθ .
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Hence, vθ is also an eigenvalue of

mk−2
∑
n|m

1≤n<m

En −
∑
n|m

1<n<m

(mk−2n−mk−2)Fn.

Since the absolute values of the eigenvalues of a sum of matrices are bounded by
the sums of the largest absolute values of eigenvalues of the summands, we have

θ2
≤ mk−1

−mk−2
+mk−2

∑
n|m

1≤n<m

ω(m)(m/n)kγ (m)1−k
+

∑
n|m

1<n<m

(mk−2n−mk−2)(m/n)k

< mk−1
+ω(m)(τ (m)−1)m2k−2γ (m)1−k

+

∑
n|m

1<n<m

m2k−2n1−k

< (ω(m)+1)(τ (m)−1)m2k−2γ (m)1−k
≤ τ(m)2m2k−2γ (m)1−k .

The lemma follows. �

The following lemma is an immediate corollary of Theorems 2.1 and 2.2.

Lemma 2.3. For any E,F⊂ Zk
m\(Z

0
m)

k and λ ∈ Z×m , let

eλ(E, F)= |{(x, y) ∈ E×F : x · y = λ}|.
Then

eλ(E,F)=
(1+ o(1))|E||F|

m
+ O

(
τ(m)mk−1

γ (m)(k−1)/2

√
|E||F|

)
.

See also [Covert et al. 2012, Theorem 1.3.2] for another proof using character
sums over finite rings of Lemma 2.3 in the case of m = pr .

3. Proof of Theorem 1.4

Fix an a= (a1, . . . , an)∈E∩(Z×m)
k . For any x= (x1, . . . , xk), and y= (y1, . . . , yk)

∈ E, let M(a; x, y) denote the matrix whose rows are x, y, and (k − 2) a’s. Let
1 := (1, . . . , 1), x/a := (x1/a1, . . . , xk/ak), and y/a := (y1/a1, . . . , yk/ak); we
have

Per(M(a; x, y))=
k∏

i=1

ai Per(M(1; x/a, y/a))=
( k∏

i=1

ai

) k∑
i=1

xi

ai

∑
j 6=i

y j

a j
.

Set

E1 := {(xi/ai )
k
i=1 : (x1, . . . , xk) ∈ E},(3-1)

E2 :=

{( ∑
j 6=i

yi/ai

)k

i=1
: (y1, . . . , yk) ∈ E

}
.(3-2)

It is clear that |E1| = |E2| = |E| (as gcd(k,m) = 1). For any λ ∈ Z×m , it follows
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from Lemma 2.3 that

(3-3)
eλ(E1, E2)=

(1+ o(1))|E1||E2|

m
+ O

(
τ(m)mk−1

γ (m)(k−1)/2

√
|E1||E2|

)
=
(1+ o(1))|E|2

m
+ O

(
τ(m)mk−1

γ (m)(k−1)/2 |E|

)
.

Since

|E|&
τ(m)mk

γ (m)(k−1)/2 ,

(3-3) implies that

Z×m ⊂ {Per(M(a; x, y)) : x, y ∈ E} ⊂ Pk(E),

completing the proof of Theorem 1.4.
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THE CONCAVITY OF THE GAUSSIAN CURVATURE OF THE
CONVEX LEVEL SETS OF MINIMAL SURFACES WITH

RESPECT TO THE HEIGHT

PEI-HE WANG

For the minimal graph with strictly convex level sets, we find an auxiliary
function to study the Gaussian curvature of the level sets. We prove that
this curvature function is a concave function with respect to the height of
the minimal surface while this auxiliary function is almost sharp when the
minimal surface is the catenoid.

1. Introduction

Consider a function whose graph is minimal and whose level sets are strictly convex.
Extending work of Longinetti [1987], we explore the relation between the Gaussian
curvature of the level sets and the height.

The nature of the level sets of the solutions of elliptic partial differential equations
is a subject with a long history, going back to results of Shiffman in the 1950s for
minimal surfaces. The curvature of such level sets has also been studied for several
decades. Some key contributions to these problems are listed in the introduction
of [Chen and Shi 2011]. Here we just mention some recent developments directly
relevant to our problem.

Jost, Ma, and Ou [Jost et al. 2012] and Ma, Ye, and Ye [Ma et al. 2011] proved
that the Gaussian and principal curvatures of convex level sets of three-dimensional
harmonic functions attain their minima on the boundary. Ma, Ou, and Zhang [2010]
gave estimates of the Gaussian curvature of convex level sets of higher-dimensional
harmonic functions based on the Gaussian curvature of the boundary and the norm
of the gradient on the boundary. Wang and Zhang [2012] have given estimates for
the Gaussian curvature of convex level sets of minimal surfaces, Poisson equations,
and a class of semilinear elliptic partial differential equations studied by Caffarelli
and Spruck [1982].

Research was supported by STPF of University (number J11LA05), NSFC (number ZR2012AM010),
the Postdoctoral fund (number 201203030) of Shandong Province and the Postdoctoral Fund (number
2012M521302) of China.
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In this paper we use the support function of strictly convex level sets and the
maximum principle to obtain the concavity of the Gaussian curvature of convex
level sets of minimal graphs with respect to the height:

Theorem 1.1. Let � be a bounded smooth domain in Rn , n ≥ 2, and let

u ∈ C4(�)∩C2(�), t0 ≤ u(x)≤ t1

be a minimal graph in �, that is, one such that

(1-1) div
∇u

√

1+ |∇u|2
= 0 in �.

Assume |∇u| 6= 0 in �. Let

0t = {x ∈� : u(x)= t} for t0 < t < t1

be the level sets of u and let K be their Gaussian curvature function. For

f (t)=min
{[(

|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
(x) : x ∈ 0t

}
,

if the level sets of u are strictly convex with respect to the normal ∇u, we have the
differential inequality

D2 f (t)≤ 0 in (t0, t1).

Under the same assumption as in Theorem 1.1, Wang and Zhang [2012] proved
the following statement: for n ≥ 2, the function (|∇u|2/(1+ |∇u|2))θK attains its
minimum on the boundary, where θ =− 1

2 or θ ≥ 1
2(n− 3). From this fact they got

the lower bound estimates for the Gaussian curvature of the level sets.

Corollary 1.2. Let u satisfy

(1-2)


div

∇u
√

1+ |∇u|2
= 0 in �=�0\�1,

u = 0 on ∂�0,

u = 1 on ∂�1,

where �0 and �1 are bounded smooth convex domains in Rn, n ≥ 2, �1 ⊂ �0.
Assume |∇u| 6= 0 in � and the level sets of u are strictly convex with respect to
normal ∇u. Let K be the Gaussian curvature of the level sets. For any point
x ∈ 0t , 0< t < 1, we have the following estimates.

• For n = 3, we have

(1-3) K (x)1/2 ≥ (1− t)(min∂�0 K )1/2+ t (min∂�1 K )1/2.
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• For n 6= 3, we have

(1-4)
[(
|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
(x)

≥ (1− t)min
∂�0

[(
|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
+ t min

∂�1

[(
|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
.

Remark 1.3. The following example shows that our estimates are almost sharp in
a sense. Let u(r, θ), r > 2, be the n-dimensional catenoid:

(1-5) u(r, θ)=
∫
−2

−r

1
√

s2(n−1)− 1
ds.

Then

(1-6) |∇u| =
1

√
r2(n−1)− 1

,

and the Gaussian curvature of the level set at x is K (x)= r1−n . Hence,

(1-7) f (t)=
[(
|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
= r2−n.

For n = 2, f (t) becomes a constant function, which shows that our estimate of
its concavity is sharp. Now we turn to the case n > 2.

Set

R =
∫
−2

−∞

1
√

s2(n−1)− 1
ds.

Then we have

(1-8) −u+ R =
∫
−r

−∞

1
sn−1 ds−

∫
−r

−∞

1
sn−1

[
1−

1
√

1− s−2(n−1)

]
ds

=
(−1)n

2− n
r2−n
+O(r4−3n).

This means that

(1-9) f (t)= (−1)n(2− n)(R− t)+O(r4−3n),

which shows the “almost sharpness” of our estimate in higher dimensions.

To prove these theorems, let K be the Gaussian curvature of the convex level
sets, and let ϕ = log K (x)+ ρ(|∇u|2). For suitable choices of ρ and β, we shall
show the elliptic differential inequality

(1-10) L(eβϕ)≤ 0 mod ∇θϕ in �,
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where L is the elliptic operator associated with the equation we discussed and here
we have suppressed the terms involving ∇θϕ (see the notations below) with locally
bounded coefficients. Then we apply the strong minimum principle to obtain the
main results.

In Section 2, we first give brief definitions on the support function of the level
sets, and then we obtain the equation of the minimal graph in terms of the support
function. We prove Theorem 1.1 in Section 3 by formal calculations. The main
technique in the proof consists of rearranging the second and third derivative
terms using the equation and the first derivative condition for ϕ. The key idea is
Pogorelov’s method in a priori estimates for fully nonlinear elliptic equations.

2. Notations and preliminaries

Let �0 and �1 be bounded smooth open convex subsets of Rn such that �1 ⊂�0,
and let �=�0\�1. Let u :�→ R be a smooth function with |Du|> 0 in � and
let its level sets be strictly convex with respect to the normal direction Du.

For simplicity, we will assume that

u = 0 on ∂�0,

u = 1 on ∂�1,

and we extend u to �1 with the value 1. For 0≤ t ≤ 1, we set

�t = {x ∈�0 : u ≥ t};

Then every x ∈� belongs to the boundary of �u(x).
Next we define the support function of u, denoted by

H : Rn
×[0, 1] → R

as follows: for each t ∈ [0, 1], H( · , t) is the support function of the convex body
�t , that is,

H(X, t)= H�t
(X) for all X ∈ Rn, t ∈ [0, 1].

For details, see [Colesanti and Salani 2003; Longinetti and Salani 2007].
The rest of this section is devoted to deriving the minimal graph by means of the

support function. For this we need a reformulation of the first and second derivatives
of u in terms of the support function h�t , which is the restriction of H( · , t) to the
unit sphere Sn−1; see [Chiti and Longinetti 1992; Longinetti and Salani 2007]. For
the convenience of the reader, we report the main steps here.

Recall that h is the restriction of H to Sn−1
×[0, 1], so h(θ, t)= H(Y (θ), t)=

h�t
(Y (θ)) where t ∈ [0, 1] and Y (θ) ∈ Sn is a unit vector with coordinate θ . Since

the level sets of u are strictly convex and h(θ, t) is well defined, the map

x(X, t)= x�t
(X),
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which assigns to every (X, t) ∈ Rn
\{0}× (0, 1) the unique point x ∈� on the level

surface {u = t}, where the gradient of u is parallel to X (and orientation reversed).
Let

Ti =
∂Y
∂θi
,

so that {T1, . . . , Tn−1} is a tangent frame field on Sn−1, and let

x(θ, t)= x�t
(Y (θ));

we denote its inverse map by

ν : (x1, . . . , xn)→ (θ1, . . . , θn−1, t).

Notice that all these maps (h, x , and ν) depend on the considered function u (like
H ), even if we do not adopt any explicit notation to stress this fact.

For h(θ, t) = 〈x(θ, t), Y (θ)〉, since Y is orthogonal to ∂�t at x(θ, t), deriving
the previous equation, we obtain

hi = 〈x, Ti 〉.

In order to simplify some computations, we can also assume that θ1, . . . , θn−1, Y is
an orthonormal frame positively oriented. Hence, from the previous two equalities,
we have

x = hY +
∑

i

hi Ti

and
∂Ti

∂θ j
=−δi j Y at x,

where the summation index runs from 1 to n− 1 if no extra explanation is given,
and δi j is the standard Kronecker symbol. Following [Chiti and Longinetti 1992],
we obtain, at the point x under consideration,

∂x
∂t
= ht Y +

∑
i

hti Ti ,

∂x
∂θ j
= hT j +

∑
i

hi j Ti , j = 1, . . . , n− 1.

The inverse of the above Jacobian matrix is

(2-1)

∂t
∂xα
= h−1

t [Y ]α, α = 1, . . . , n,

∂θi

∂xα
=

∑
j

bi j
[T j − h−1

t ht j Y ]α, α = 1, . . . , n,
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where [ · ]i denotes the i-coordinate of the vector in the bracket and

(2-2) bi j =

〈
∂x
∂θi
,
∂Y
∂θ j

〉
= hδi j + hi j

denotes the inverse tensor of the second fundamental form of the level surface ∂�t at
x(θ, t). The eigenvalues of the tensor bi j are the principal curvatures κ1, . . . , κn−1

of ∂�t at x(θ, t); see [Schneider 1993].
The first equation of (2-1) can be rewritten as

Du =
Y
ht
,

where the left hand side is computed at x(θ, t), while the right hand side is computed
at (θ, t). It follows that

|Du| = −
1
ht
.

By the chain rule and (2-1), the second derivatives of u in terms of h can be
computed as

(2-3) uαβ =
∑
i, j

[−h−2
t hti Y + h−1

t Ti ]αbi j
[T j − h−1

t ht j Y ]β − h−3
t ht t [Y ]α[Y ]β

for α, β = 1, . . . , n.
In these new coordinates, the minimal graph equation, div

∇u
√

1+ |∇u|2
= 0, reads

(2-4) ht t =
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi j ,

and the associated linear elliptic operator is

(2-5) L =
∑

i, j,p,q

[(1+h2
t )δpq +htphtq ]bi pb jq ∂2

∂θi ∂θ j
−2

∑
i, j

ht j bi j ∂2

∂θi ∂t
+
∂2

∂t2 .

Now we recall the well-known commutation formulas for the covariant derivatives
of a smooth function u ∈ C4(Sn).

ui jk − uik j =−ukδi j + u jδik,(2-6)

ui jkl − ui jlk = uikδ jl − uilδ jk + uk jδil − ul jδik .(2-7)

They will be used during the calculations in the next section. By the definition of
bi j and the above commutation formulas, we easily get the following Codazzi-type
formula:

(2-8) bi j,k = bik, j .
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3. Gauss curvature of the level sets of minimal graph

In this section we prove Theorem 1.1. We state a technical lemma.

Lemma 3.1 [Ma et al. 2010]. Let λ≥ 0, µ∈R, bk > 0, and ck ∈R for 2≤ k ≤ n−1.
Define the quadratic polynomial

Q(X2, . . . , Xn−1)=−
∑

2≤k≤n−1

bk X2
k − λ

( ∑
2≤k≤n−1

Xk

)2

+ 4µ
∑

2≤k≤n−1

ck Xk .

Then we have
Q(X2, . . . , Xn−1)≤ 4µ20,

where

0 =
∑

2≤k≤n−1

c2
k

bk
− λ

(
1+ λ

∑
2≤k≤n−1

1
bk

)−1( ∑
2≤k≤n−1

ck

bk

)2

.

For a continuous function f (t) on [0, 1], we define its generalized second-order
derivative at any point t in (0, 1) as

D2 f (t)= lim sup
h→0

f (t + h)+ f (t − h)− 2 f (t)
h2 .

Let B be the quotient set B ≡ Rn/2πZn and let Q ≡ B × (0, 1). Let G(θ, t) be
a regular function in Q such that L(G(θ, t)) ≥ 0 for (θ, t) ∈ Q, where L is an
elliptic operator of the form

L=
∑
i, j

ai j ∂2

∂θi ∂θ j
+

∑
i

bi ∂2

∂θi ∂t
+
∂2

∂t2 +
∑

i

ci ∂

∂θi

with regular coefficients ai j , bi , ci .

Lemma 3.2 [Longinetti 1987]. The function φ(t)=max{G(θ, t) : θ ∈ B} satisfies
the differential inequality

D2φ(t)≥ 0.

Moreover, φ(t) is a convex function with respect to t .

The lemma is proved only in dimension n = 2 in [Longinetti 1987], but it is easy
to see that it is valid for the general case n ≥ 2.

Since the level sets of u are strictly convex with respect to the normal Du, the
matrix of second fundamental form (bi j ) is positive definite in �. Set

ϕ = ρ(h2
t )− log K (x),

where K = det(bi j ) is the Gaussian curvature of the level sets and ρ(t) is a smooth
function defined on (0,+∞). For suitable choices of ρ and β, we will derive the
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differential inequality

(3-1) L(eβϕ)≤ 0 mod ∇θϕ in �,

where the elliptic operator L is given in (2-5) and we have modified the terms
involving ∇θϕ with locally bounded coefficients. Then, by applying a maximum
principle argument in Lemma 3.2, we can obtain the desired result.

In order to prove (3-1) at an arbitrary point x0 ∈�, we may assume the matrix
(bi j (x0)) is diagonal by rotating the coordinate system suitably. From now on, all
the calculations will be done at the fixed point x0.

Proof of Theorem 1.1. We shall prove the theorem in three steps.

Step 1: computation L(ϕ). Taking the first derivative of ϕ, we get

∂ϕ

∂θ j
= 2ρ ′ht ht j +

∑
k,l

bklbkl, j ,(3-2)

∂ϕ

∂t
= 2ρ ′ht ht t +

∑
k,l

bklbkl,t .(3-3)

Taking the derivative of (3-2) and (3-3) once more, we have

∂2ϕ

∂θi ∂θ j
= (2ρ ′+ 4ρ ′′h2

t )hti ht j + 2ρ ′ht ht j i −
∑

k,l,r,s

bkr brs,i bslbkl, j +
∑
k,l

bklbkl, j i ,

∂2ϕ

∂θi ∂t
= (2ρ ′+ 4ρ ′′h2

t )hti ht t + 2ρ ′ht ht ti −
∑

k,l,r,s

bkr brs,i bslbkl,t +
∑
k,l

bklbkl,ti ,

∂2ϕ

∂t2 = (2ρ
′
+ 4ρ ′′h2

t )h
2
t t + 2ρ ′ht ht t t −

∑
k,l,r,s

bkr brs,t bslbkl,t +
∑
k,l

bklbkl,t t .

So we can wrtie

(3-4) L(ϕ)= I1+ I2+ I3+ I4,

with

I1 = (2ρ ′+4ρ ′′h2
t )

[∑
i, j

[(1+h2
t )δi j+hti ht j ]bi i b j j hti ht j−2

∑
i

h2
ti b

i i ht t+h2
t t

]
,

I2 = 2ρ ′ht

[∑
i, j

[(1+h2
t )δi j+hti ht j ]bi i b j j ht j i−2

∑
i

hti bi i ht ti+ht t t

]
,

I3 =−
∑
k,l

bkkbll
[∑

i, j

[(1+h2
t )δi j+hti ht j ]bi i b j j bkl,i bkl, j , −2

∑
i

hti bi i bkl,i bkl,t

+b2
kl,t

]
I4 =

∑
k

bkk L(bkk).



CONCAVITY OF GAUSSIAN CURVATURE OF LEVEL SETS 497

In the rest of this section, we will deal with the four terms above respectively.
For the term I1, by recalling our equation, that is,

(3-5) ht t =
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi j ,

we have, by recalling that (bi j ) is diagonal at x0,

(3-6)

I1 = (2ρ ′+ 4ρ ′′h2
t )

[∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j hti ht j − 2

∑
i

h2
ti b

i i ht t + h2
t t

]

= (2ρ ′+ 4ρ ′′h2
t )

[
(1+ h2

t )
∑

i

(hti bi i )2+

(∑
i

h2
ti b

i i
− ht t

)2]
= (2ρ ′+ 4ρ ′′h2

t )(1+ h2
t )
∑

i

(hti bi i )2+ (2ρ ′+ 4ρ ′′h2
t )(1+ h2

t )
2σ 2

1 ,

where σ1 =
∑

i bi i is the mean curvature.
Now we treat the term I2. Differentiating (3-5) with respect to t , we have

(3-7) ht t t = 2ht ht tσ1+ 2
∑
i, j

ht ti ht j bi j
−

∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j bi j,t .

By inserting (3-7) into I2, we can get

I2 = 2ρ ′ht

[∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j ht j i − 2

∑
i

hti bi i ht ti + ht t t

]

= 2ρ ′ht

[∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j (ht j i − bi j,t)+ 2ht ht tσ1

]
.

Recalling the definition of the second fundamental form, that is, (2-2), together
with (3-5), we obtain

(3-8) I2 = 2ρ ′ht

[∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j (−htδi j )+ 2ht ht tσ1

]
=−2ρ ′h2

t (1+ h2
t )
∑

i

(bi i )2− 2ρ ′h2
t

∑
i

(hti bi i )2+ 4ρ ′h2
t (1+ h2

t )σ
2
1

+ 4ρ ′h2
t σ1

∑
i

h2
ti b

i i .

Combining (3-6) and (3-8),

(3-9) I1+ I2

= 4ρ ′h2
t σ1

∑
i

h2
ti b

i i
+[4ρ ′h2

t (1+h2
t )+(2ρ

′
+4ρ ′′h2

t )(1+h2
t )

2
]σ 2

1

+[(2ρ ′+4ρ ′′h2
t )(1+h2

t )−2ρ ′h2
t ]
∑

i

(hti bi i )2−2ρ ′h2
t (1+h2

t )
∑

i

(bi i )2.
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In order to deal with the last two terms, we shall compute L(bkk) in advance. In
this process, the index k is not summed. By differentiating (3-5) twice with respect
to θk , we have

(3-10) ht tkk = J1+ J2+ J3+ J4,

with
J1 =

∑
i, j

[(1+ h2
t )δi j + hti ht j ]kkbi j ,

J2 = 2
∑

i j,p,q

[(1+ h2
t )δi j + hti ht j ]k(−bi pbpq,kbq j ),

J3 =
∑

i j,p,q,r,s

[(1+ h2
t )δi j + hti ht j ](2bir brs,kbspbpq,kbq j ),

J4 =
∑

i j,p,q

[(1+ h2
t )δi j + hti ht j ](−bi pbpq,kkbq j ).

For the term J1, we have

J1 =
∑
i, j

(2ht htkδi j + htikht j + hti ht jk)kbi j

= 2h2
tkσ1+ 2ht htkkσ1+ 2

∑
i

htikkhti bi i
+ 2

∑
i

h2
tikbi i .

Noticing that

htik = hki t = bki,t − htδki ,

htikk = hikkt = bik,kt − hktδik = bkk,i t − hktδik,

we obtain

(3-11) J1 = 2h2
tkσ1+ 2ht bkk,tσ1− 2h2

t σ1+ 2
∑

i

bkk,i t hti bi i

− 2h2
tkbkk
+ 2

∑
l

b2
kl,t b

ll
− 4ht bkk,t bkk

+ 2h2
t bkk .

For the term J2, we have

(3-12) J2 = 2
∑
i, j

(2ht htkδi j + htikht j + hti ht jk)(−bi i bi j,kb j j )

=−4ht htk

∑
i

(bi i )2bi i,k − 4
∑
i, j

htikht j bi i b j j bi j,k

=−4ht htk

∑
i

(bi i )2bi i,k − 4
∑
i,l

hti bi i bllbkl,i bkl,t

+ 4ht

∑
j

ht j bkkb j j bkk, j .
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Note that we have changed the lower index during the above calculations and this
will happen frequently in the following procedure.

Also we have

(3-13) J3 = 2
∑
i, j,l

[(1+ h2
t )δi j + hti ht j ]bi i b j j bllbkl,i bkl, j .

Applying the commutation rule bi j,kl −bi j,lk = b jkδil −b jlδik +bikδ jl −bilδ jk, for
the term J4, we have

(3-14) J4 =−
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j bi j,kk

=−

∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j (bkk,i j + bi j − bkkδi j ).

On the other hand,

(3-15) ht tkk = hkktt = bkk,t t − ht t = bkk,t t −
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi j .

By putting (3-11)–(3-15) into (3-10), recalling the definition of the operator L , we
obtain

L(bkk)=
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi j

+ 2h2
tkσ1+ 2ht bkk,tσ1− 2h2

t σ1

− 2h2
tkbkk
+ 2

∑
l

b2
kl,t b

ll
− 4ht bkkbkk,t + 2h2

t bkk
− 4ht htk

∑
i

(bi i )2bi i,k

− 4
∑
i,l

hti bi i bllbkl,i bkl,t + 2
∑
i, j,l

[(1+ h2
t )δi j + hti ht j ]bi i b j j bllbkl,i bkl, j

+ 4ht

∑
i

hti bkkbi i bkk,i −
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j (bi j − bkkδi j ).

Therefore,

(3-16)

I4 = 2
∑

i, j,k,l

[(1+ h2
t )δi j + hti ht j ]bi i b j j bkkbllbkl,i bkl, j − 4

∑
i,k,l

hti bi i bkkbllbkl,i bkl,t

+ 2htσ1
∑

k

bkkbkk,t − 4ht

∑
k

(bkk)2bkk,t − 2h2
t σ

2
1 + 2

∑
k,l

bkkbllb2
kl,t

+ [(n− 1)(1+ h2
t )+ 2h2

t ]
∑

i

(bi i )2+ 2σ1
∑

i

h2
ti b

i i

+ (n− 3)
∑

i

(hti bi i )2.
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By substituting (3-9) and (3-16) in (3-4), we obtain

(3-17)

L(ϕ)=
∑

i, j,k,l

[(1+h2
t )δi j +hti ht j ]bi i b j j bkkbllbkl,i bkl, j −2

∑
i,k,l

hti bi i bkkbllbkl,i bkl,t

+

∑
k,l

bkkbllb2
kl,t + 2htσ1

∑
k

bkkbkk,t − 4ht

∑
k

(bkk)2bkk,t

+(2+4ρ ′h2
t )σ1

∑
i

h2
ti b

i i
+[(n−1)(1+h2

t )+2h2
t−2ρ ′h2

t (1+h2
t )]
∑

i

(bi i )2

+ [4ρ ′h2
t (1+ h2

t )+ (2ρ
′
+ 4ρ ′′h2

t )(1+ h2
t )

2
− 2h2

t ]σ
2
1

+ [(2ρ ′+ 4ρ ′′h2
t )(1+ h2

t )− 2ρ ′h2
t + (n− 3)]

∑
i

(hti bi i )2.

Step 2: calculation of L(eβϕ) and estimation of the third-order derivatives involving
bkk,t . Notice that

L(eβϕ)= βeβϕ{L(ϕ)+βϕ2
t }+β

2eβϕ
∑

i, j,p,q

[(1+ h2
t )δpq + htphtq ]bi pb jq ∂ϕ

∂θi

∂ϕ

∂θ j

− 2β2eβϕ
∑
i, j

ht j bi j ∂ϕ

∂θi

∂ϕ

∂t
.

To reach (3-1), we only need to prove that, for some constant β < 0,

L(ϕ)+βϕ2
t ≥ 0 mod ∇θϕ.

We now compute βϕ2
t .

By (3-3), we have

(3-18) ϕ2
t = 4(ρ ′)2h2

t h2
t t + 4ρ ′ht ht t

∑
k

bkkbkk,t +

(∑
k

bkkbkk,t

)2

= 4(ρ ′)2h2
t (1+ h2

t )
2σ 2

1 + 8(ρ ′)2h2
t (1+ h2

t )σ1
∑

i

h2
ti b

i i

+ 4(ρ ′)2h2
t

(∑
i

h2
ti b

i i
)2

+ 4ρ ′ht(1+ h2
t )σ1

∑
k

bkkbkk,t

+ 4ρ ′ht

(∑
i

h2
ti b

i i
)(∑

k

bkkbkk,t

)
+

(∑
k

bkkbkk,t

)2

.

Joining (3-17) with (3-18), we regroup the terms in L(ϕ)+βϕ2
t as follows:

L(ϕ)+βϕ2
t = P1+ P2+ P3,
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where

P1 =
∑
k 6=l

(∑
i, j

hti ht j bi i b j j bkkbllbkl,i bkl, j − 2
∑

i

hti bi i bkkbllbkl,i bkl,t

+ bkkbllb2
kl,t

)
,

P2 =
∑

k

(bkkbkk,t)
2
+β

(∑
k

bkkbkk,t

)2

+ 2
∑

k

[
[1+ 2βρ ′(1+ h2

t )]htσ1+ 2βρ ′ht

(∑
i

h2
ti b

i i
)

−

∑
i

hti bi i bkkbkk,i − 2ht bkk
]
· (bkkbkk,t),

P3 = (1+ h2
t )
∑
i,k,l

(bi i )2bkkbllb2
kl,i +

∑
i, j,k

hti ht j bi i b j j bkkbkk,i bkkbkk, j

+ [2+ 4ρ ′h2
t + 8β(ρ ′)2h2

t (1+ h2
t )]σ1

∑
i

h2
ti b

i i

+ [(n− 1)(1+ h2
t )+ 2h2

t − 2ρ ′h2
t (1+ h2

t )]
∑

i

(bi i )2

+ [4ρ ′h2
t (1+ h2

t )+ (2ρ
′
+ 4ρ ′′h2

t )(1+ h2
t )

2
− 2h2

t + 4β(ρ ′)2h2
t (1+ h2

t )
2
]σ 2

1

+ [(2ρ ′+ 4ρ ′′h2
t )(1+ h2

t )− 2ρ ′h2
t + (n− 3)]

∑
i

(hti bi i )2

+ 4β(ρ ′)2h2
t

(∑
i

h2
ti b

i i
)2

.

In the rest of this step, we will deal with the term P2. Let Xk = bkkbkk,t(k =
1, 2, . . . , n− 1). Then P2 can be rewritten as

P2(X1, X2, . . . , Xn−1)=
∑

k

X2
k +β

(∑
k

Xk

)2

+ 2
∑

k

ck Xk,

where

ck = [1+ 2βρ ′(1+ h2
t )]htσ1+ 2βρ ′ht

(∑
i

h2
ti b

i i
)
−

∑
i

hti bi i bkkbkk,i − 2ht bkk .

Denote by P2 the matrix 
1+β β · · · β

β 1+β · · · β
...

...
. . . · · ·

β β · · · 1+β

 .
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In a word, we want to bound P2(X1, X2, . . . , Xn−1) from below. Thus the
nonnegativity of P2 is necessary, and this requires

β ≥−
1

n− 1
.

For convenience, Let us choose the degenerate case, that is, β =−1/(n−1). By
setting τ = (1, 1, . . . , 1), the null eigenvector of the matrix P2, we then have, by
(3-2),

(?) P2(1, 1, . . . , 1)=2
∑

k

ck=2[n−3−2ρ ′(1+h2
t )]htσ1−2

∑
i

hti bi i ∂ϕ

∂θi
,

which suggests that the simplest selection should be ρ(t)= ((n− 3)/2) log(1+ t).
From now on, let us fix ρ(t)= ((n− 3)/2) log(1+ t) and β =−1/(n− 1). But,

for simplicity, we do not always substitute for the values of ρ and β.
By straightforward computation and (?), we have∑

k

(
Xk +β

∑
i

X i + ck

)2

= P2(X1, X2, . . . , Xn−1)+
∑

k

c2
k + P2(∇θϕ),

where

P2(∇θϕ)= 2β
(∑

i

X i

)∑
k

ck = 2β
(∑

j

X j

)∑
i

hti bi i ∂ϕ

∂θi
.

Putting ρ and β into some terms in ck , we derive that

ck =
2

n− 1
htσ1−

2
n− 1

ρ ′ht

(∑
i

h2
ti b

i i
)
−

∑
i

hti bi i bkkbkk,i − 2ht bkk .

Therefore, together with (3-2), we get

P2(X1, X2, . . . , Xn−1)

≥−

∑
k

c2
k − P2(∇θϕ)

=−

∑
i, j,k

hti ht j bi i b j j bkkbkk,i bkkbkk, j − 4ht

∑
i,k

hti bi i (bkk)2bkk,i

− 4h2
t

∑
k

(bkk)2+
4

n− 1
h2

t σ
2
1 −

8
n− 1

ρ ′h2
t σ1

∑
i

h2
ti b

i i

+
4

n− 1
h2

t (ρ
′)2
(∑

i

h2
ti b

i i
)2

+ P̃2(∇θϕ),

where

P̃2(∇θϕ)=−P2(∇θϕ)−
4

n− 1
ht

[
σ1− ρ

′
∑

j

h2
t j b

j j
]∑

i

hti bi i ∂ϕ

∂θi
.
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Observing that P1 ≥ 0,

(3-19) L(ϕ)+βϕ2
t

≥ (1+ h2
t )
∑
i,k,l

(bi i )2bkkbllb2
kl,i − 4ht

∑
i,k

hti bi i (bkk)2bkk,i

+

[
2+ 4ρ ′h2

t + 8β(ρ ′)2h2
t (1+ h2

t )−
8

n−1
ρ ′h2

t

]
σ1
∑

i

h2
ti b

i i

+ [(n− 1)(1+ h2
t )− 2h2

t − 2ρ ′h2
t (1+ h2

t )]
∑

i

(bi i )2

+

[
4ρ ′h2

t (1+h2
t )+[(2ρ

′
+4ρ ′′h2

t )+4β(ρ ′)2h2
t ](1+h2

t )
2
−

2n−6
n−1

h2
t

]
σ 2

1

+ [(2ρ ′+ 4ρ ′′h2
t )(1+ h2

t )− 2ρ ′h2
t + (n− 3)]

∑
i

(hti bi i )2+ P̃2(∇θϕ).

In the next step we will concentrate on the following two terms:

R = (1+ h2
t )
∑
i,k,l

(bi i )2bkkbllb2
kl,i − 4ht

∑
i,k

hti bi i (bkk)2bkk,i .

Step 3: conclusion of the proof of (3-1). Recalling our first-order condition (3-2),
we have

b11b11, j =
∂ϕ

∂θ j
−

∑
k≥2

bkkbkk, j − 2ρ ′ht ht j for j = 1, 2, . . . , n− 1.(3-20)

For the term R, we have

R = (1+ h2
t )

[∑
i

∑
k 6=l

(bi i )2bkkbllb2
kl,i +

∑
i,k

(bi i )2(bkkbkk,i )
2
]

− 4
∑
i,k

ht hti bi i (bkk)2bkk,i

= (1+ h2
t )

[
2
∑
k≥2

(b11)2bkkb11b2
k1,1+ 2

∑
i,k≥2

(bi i )2bkkb11b2
k1,i

+

∑
i

∑
k,l≥2
k 6=l

(bi i )2bkkbllb2
kl,i +

∑
i

(bi i )2(b11b11,i )
2

+

∑
i

∑
k≥2

(bi i )2(bkkbkk,i )
2
]

− 4
∑

i

ht hti bi i (b11)2b11,i − 4
∑

i

∑
k≥2

ht hti bi i (bkk)2bkk,i

= R1+ R2+ R3,
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where

R1 = (1+ h2
t )

[
2
∑
k≥2

(b11)2bkkb11b2
k1,1+

∑
i

(bi i )2(b11b11,i )
2
]

− 4
∑

i

ht hti bi i (b11)2b11,i ,

R2 = 2
∑
i,k≥2

(1+ h2
t )(b

i i )2bkkb11b2
k1,i +

∑
i

∑
k,l≥2
k 6=l

(1+ h2
t )(b

i i )2bkkbllb2
kl,i ,

R3 =
∑

i

∑
k≥2

(1+ h2
t )(b

i i )2(bkkbkk,i )
2
− 4

∑
i

∑
k≥2

ht hti bi i (bkk)2bkk,i .

By (3-20), one has

R1 = (1+ h2
t )

[
2b11

∑
i,k,l≥2

bi i bkkbllbkk,i bll,i + 8ρ ′ht b11
∑
i,k≥2

hti bi i bkkbkk,i

+ 8(ρ ′)2h2
t b11

∑
i≥2

h2
ti b

i i
+

∑
i

∑
k,l≥2

(bi i )2bkkbllbkk,i bll,i

+ 4ρ ′ht

∑
i

∑
k≥2

hti (bi i )2bkkbkk,i + 4(ρ ′)2h2
t

∑
i

(hti bi i )2
]

+ 4ht

∑
i

∑
k≥2

hti bi i b11bkkbkk,i + 8ρ ′h2
t b11

∑
i

h2
ti b

i i
+ R(∇θϕ),

where

R(∇θϕ)= (1+ h2
t )

[
2b11

∑
k≥2

bkk
(
∂ϕ

∂θk

)2

− 4b11
∑
k,l≥2

bkkbllbll,k
∂ϕ

∂θk

− 8ρ ′ht b11
∑
k≥2

bkkhtk
∂ϕ

∂θk
+

∑
i

(bi i )2
(
∂ϕ

∂θi

)2

− 2
∑

i

∑
k≥2

(bi i )2bkkbkk,i
∂ϕ

∂θi
− 4ρ ′ht

∑
i

(bi i )2hti
∂ϕ

∂θi

]
− 4ht b11

∑
i

bi i hti
∂ϕ

∂θi
.

On the other hand,

R2 = (1+ h2
t )

[
2b11

∑
k≥2

(bkk)3b2
kk,1+ 2

∑
i,k≥2
i 6=k

(bi i )2bkkb11b2
k1,i

+ 2
∑
i,k≥2
i 6=k

bi i (bkk)3b2
kk,i +

∑
i

∑
k,l≥2

k 6=l,k 6=i,l 6=i

(bi i )2bkkbllb2
kl,i

]
.
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Recall that 2ρ ′(1+h2
t )= n−3, which will be denoted by α for simplicity in the

following calculations. Now we are at a stage where we can rewrite the terms in R
in a natural way: we denote by T1 the terms involving bkk,1(k ≥ 2), by T2 the terms
involving bkk,i (k, i ≥ 2), and by T3 all of the rest of the terms. More precisely,

T1 =
∑
k≥2

(1+ 2b11bkk) · ((1+ h2
t )

1/2b11bkkbkk,1)
2
+

(∑
k≥2

(1+ h2
t )

1/2b11bkkbkk,1

)2

+ 4ht ht1b11(1+ h2
t )
−1/2

∑
k≥2

(
1+

α

2
− b11bkk

)
· ((1+ h2

t )
1/2b11bkkbkk,1)

and

T2 = (1+ h2
t )
∑
i≥2

{
(1+ 2bi i b11) ·

(∑
k≥2

bi i bkkbkk,i

)2

+

∑
k≥2
k 6=i

2bi i bkk
· (bi i bkkbkk,i )

2

+

∑
k≥2

(bi i bkkbkk,i )
2
+ 4ht hti bi i (1+ h2

t )
−1

×

∑
k≥2

[−bi i bkk
+
α

2
+ (1+α)bi i b11

] · (bi i bkkbkk,i )

}
;

the rest of the terms are

(3-21) T3= h2
t (1+h2

t )
−1
[

2α2b11
∑
i≥2

h2
ti b

i i
+α2

∑
i

(hti bi i )2+4αb11
∑

i

h2
ti b

i i
]

+ (1+ h2
t )

[
2
∑
i,k≥2
i 6=k

(bi i )2bkkb11b2
k1,i +

∑
i

∑
k,l≥2

k 6=l,k 6=i,l 6=i

(bi i )2bkkbllb2
kl,i

]

+ R(∇θϕ).

We shall minimize the terms T1 and T2 via Lemma 3.1 for different choices of
parameters.

At first, let us examine the term T1. set Xk = (1+ h2
t )

1/2b11bkkbkk,1, λ = 1,
µ= ht1b11ht(1+ h2

t )
−1/2, bk = 1+ 2b11bkk , and ck = b11bkk

− (1+ α/2), where
k ≥ 2. By Lemma 3.1, we have

T1 ≥−4h2
t (1+ h2

t )
−1(ht1b11)201,

where

01 =
∑
k≥2

c2
k

bk
−

(
1+

∑
k≥2

1
bk

)−1(∑
k≥2

ck

bk

)2

.

Next we shall simplify 01. By denoting

βk =
1
bk
,
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we have

b11bkk
=

1
2βk
−

1
2 , ck =

1
2βk
−

3+α
2

.

Hence

01 =
∑
k≥2

βk

(
1

2βk
−

3+α
2

)2

−

(
1+

∑
k≥2

βk

)−1[∑
k≥2

βk

(
1

2βk
−

3+α
2

)]2

=
1
4

∑
k≥2

1
βk
−

(
1+

∑
k≥2

βk

)−1
(n+ 1+α)2

4
+
(3+α)2

4
.

Since
1≤ 1+

∑
k≥2

βk ≤ n− 1,

it follows that

01 ≤
1
4

∑
k≥2

1
βk
−
(n+ 1+α)2

4(n− 1)
+
(3+α)2

4

=
n− 2

4(n− 1)
(2+α)2+ 1

4(2σ1b11− 2).

Therefore,

(3-22) T1 ≥−

[
(n− 2)
n− 1

(2+α)2+ 2σ1b11− 2
]

h2
t (1+ h2

t )
−1(ht1b11)2.

Now we will deal with T2. For every i ≥ 2 fixed, set Xk = bi i bkkbkk,i , λ =
1+ 2bi i b11, µ = −hti bi i ht(1+ h2

t )
−1, bk = 1+ 2bi i bkk(k 6= i), bi = 1, and ck =

bi i bkk
−

1
2α− (1+α)bi i b11. By Lemma 3.1, we have

T2 ≥−4(1+ h2
t )
∑
i≥2

(hti bi i )20i ,

where

0i = c2
i +

∑
k≥2
k 6=i

c2
k

bk
−

(
1
λ
+ 1+

∑
k≥2
k 6=i

1
bk

)−1(
ci +

∑
k≥2
k 6=i

ck

bk

)2

.

For k 6= i , denoting

βk =
1
bk
,

we have

bi i bkk
=

1
2βk
−

1
2 , ck =

1
2βk
− δ,

where

δ =
1+α

2
+ (1+α)bi i b11.
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Noticing that

ci =
3
2 − δ,

δ

λ
=

1+α
2

,

we obtain

0i = c2
i +

∑
k≥2
k 6=i

βk(
1

2βk
− δ)2−

(
1
λ
+ 1+

∑
k≥2
k 6=i

βk

)−1[
ci +

∑
k≥2
k 6=i

βk

(
1

2βk
− δ

)]2

=
1
4

∑
k≥2
k 6=i

1
βk
−

(
1
λ
+ 1+

∑
k≥2
k 6=i

βk

)−1(n
2
+
δ

λ

)2

+
9
4
+
δ2

λ

=
1
4

∑
k≥2
k 6=i

1
βk
−

(
1
λ
+ 1+

∑
k≥2
k 6=i

βk

)−1
(n+ 1+α)2

4
+

9
4
+

1+α
2

δ.

Obviously,

1≤
1
λ
+ 1+

∑
k≥2
k 6=i

βk ≤ n− 1,

hence

0i ≤
1
4

∑
k≥2
k 6=i

1
βk
−
(n+ 1+α)2

4(n− 1)
+

9
4
+

1+α
2

δ

=
n− 2

4(n− 1)
α2
−

1
n− 1

α+
n− 3

2(n− 1)
+

1
2σ1bi i +

1
2α

2bi i b11
+αbi i b11.

Therefore, we have

(3-23) T2 ≥−
h2

t

1+ h2
t

∑
i≥2

(
n− 2
n− 1

α2
−

4
n− 1

α+
2n− 6
n− 1

+ 2σ1bi i + 2α2bi i b11
+ 4αbi i b11

)
(hti bi i )2.

Now, combining (3-21) , (3-22), and (3-23), we obtain

(3-24) R≥
h2

t

1+ h2
t

∑
i

(
1

n− 1
α2
+

4
n− 1

α−
2n− 6
n− 1

−2σ1bi i

)
(hti bi i )2+R(∇θϕ).

For choices of ρ and β, by (3-19) and (3-24), we have, for n ≥ 2,

L(ϕ)−
1

n− 1
ϕ2

t ≥
2σ1

1+ h2
t

∑
i

h2
ti b

i i
+ (n− 1)

∑
i

(bi i )2+ (n− 3)σ 2
1

+
2(n− 3)
1+ h2

t

∑
i

(hti bi i )2+ P̃2(∇θϕ)+ R(∇θϕ)

≥ 0 mod ∇θϕ.
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The proof of (3-1) is completed. �

Now we give a remark on Theorem 1.1.

Remark 3.3. In the proof of Theorem 1.1, if we restrict to the case n = 2 and just
set ρ = 0, then (3-2) shows that

b11,1 = 0 mod ∇θϕ.

Applying this to the expression of L(ϕ) in (3-17) will give

L(ϕ)= (b11b11,t)
2
− 2ht(b11)2b11,t + (b11)2h2

t1+ (1+ h2
t )(b

11)2

= [b11b11,t − ht b11
]
2
+ (b11)2h2

t1+ (b
11)2 ≥ 0 mod ∇θϕ,

and this means that, for any point x ∈ 0t , 0< t < 1,

log K (x)≥ (1− t)min
∂�0

log K + t min
∂�1

log K ,

which has already been proved by Longinetti [1987]. Also, by Remark 1.3 we know
that this estimate is not sharp in the two-dimensional case.
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