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SUMS OF SQUARES
IN ALGEBRAIC FUNCTION FIELDS

OVER A COMPLETE DISCRETELY VALUED FIELD

KARIM JOHANNES BECHER, DAVID GRIMM AND JAN VAN GEEL

A recently found local-global principle for quadratic forms over function
fields of curves over a complete discretely valued field is applied to the study
of quadratic forms, sums of squares, and related field invariants.

1. Introduction

Let K be a field of characteristic different from 2 and F/K an algebraic function
field (i.e., a finitely generated extension of transcendence degree one). The study of
quadratic forms over F is generally difficult, even in such cases where the quadratic
form theory over all finite extensions of K is well understood. It can be considered
complete in the cases where K is algebraically closed, real closed, or finite, but it
is wide open for example when K is a number field.

A breakthrough was obtained recently in the situation where the base field K is
a nondyadic local field. Parimala and Suresh [2010] proved that in this case any
quadratic form of dimension greater than eight over F is isotropic. Harbater, Hart-
mann, and Krashen [Harbater et al. 2009] obtained the same result as a consequence
of a new local–global principle for isotropy of quadratic forms over F . The local
conditions are in geometric terms, relative to an arithmetic model for F . A less
geometric version of the local–global principle, in terms of the discrete rank one
valuations of F , was obtained by Colliot-Thélène, Parimala, and Suresh [Colliot-
Thélène et al. 2012]; see Theorem 6.1 below. Both versions of the local–global
principle hold more generally when K is complete with respect to a nondyadic
discrete valuation.

In this article we apply the local–global principle to study sums of squares in F
and to obtain further results on quadratic forms over F . This is of particular interest
in the case where K is the field of Laurent series k((t)) over a (formally) real field k.

We outline the structure of this article and the main results. Section 2 provides
some necessary basic results on valuations. In Section 3 we discuss discrete
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valuations on an algebraic function field over a complete discretely valued field and
characterize their residue fields. In Section 4 we move on to the study of sums of
squares in fields and corresponding field invariants, in the context of valuations. In
Section 5 we do an analogous discussion of the u-invariant in the context of valua-
tions. According to [Elman and Lam 1973], the u-invariant of a field is the supremum
on the dimension of anisotropic torsion forms over that field. In Section 6 we finally
apply the local-global principle to obtain new results for algebraic function fields
and in particular the rational function field. Let us describe some of these results.

In Theorem 6.4 we show that the upper bound on the dimension of anisotropic
torsion forms over algebraic function fields over K is the double of the corresponding
upper bound for algebraic function fields over k, the residue field of the discrete
valuation on K . We thus obtain an upper bound on the u-invariant of an algebraic
function field over K . We obtain in Theorem 6.6 a refinement for the case of
the rational function field, saying that the u-invariant of K (X) is equal to the
supremum of the u-invariant of all `(X) where `/k is a finite algebraic extension.
In Corollary 6.9 we prove that the Pythagoras number of the rational function
field K (X) is equal to the supremum of the Pythagoras numbers of `(X) for all
finite field extensions `/k. We conjecture in Conjecture 4.16 that this is equal
to the Pythagoras number of k(X). This is motivated by the observation — made
previously in [Scheiderer 2001] — that both Pythagoras numbers are bounded by
the same power of two. In the case where k is real closed we show in Theorem 6.12
that any sum of squares in F can be expressed as a sum of three squares and further
prove the finiteness of

∑
F2/DF (2), the quotient of the group of nonzero sums of

squares modulo the subgroup of sums of two squares in F .
Our methods are based on valuation theory and quadratic form theory, for which

[Engler and Prestel 2005] and [Lam 2005] are our standard references. We also use
some algebraic geometry, namely desingularization of arithmetic surfaces and the
properties of blowing-ups in regular points. Our reference on this topic is [Liu 2002].

This article grew out of results obtained in the Ph.D. thesis of D. Grimm under
the supervision of K. J. Becher at Universität Konstanz.

2. Valuations

For a ring R we denote by R× its group of invertible elements.
Let K be a field. Given a valuation on K , we denote by Ov the valuation ring

of v, by mv its maximal ideal, by κv the residue field, by K v the completion of K
with respect to v, and we further call v dyadic if κv has characteristic 2, nondyadic
otherwise. Given a local ring R contained in K , we say that a valuation v of K
dominates R if mv ∩ R is the maximal ideal of R. Given a field extension L/K , we
say that a valuation v of L is unramified over K if v(L×)= v(K×).
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A valuation with value group Z is called a Z-valuation. Any discrete valuation
of rank one can be identified (via a unique isomorphism of the value groups) with
a Z-valuation. A commutative ring is the valuation ring of a Z-valuation if and
only if it is a regular local ring of dimension one (see [Matsumura 1986, Theorem
11.2]); such rings are called discrete valuation rings.

Lemma 2.1. Let w1 and w2 be two valuations on K such that mw1 ⊆ Ow2 . Then
Ow1 ⊆ Ow2 or Ow2 ⊆ Ow1 .

Proof. If mw1 ⊆ mw2 , then Ow1 ⊇ Ow2 , otherwise for any choice of t ∈ mw1\mw2

we have t−1
∈ Ow2 and Ow1 = t−1(tOw1)⊆ t−1mw1 ⊆ Ow2 . �

The property for a valuation to be henselian is characterized by a list of equivalent
conditions, including the statement of Hensel’s Lemma, hence satisfied in particular
by complete Z-valuations; see [Engler and Prestel 2005, Section 4.1].

Proposition 2.2. Let v be a henselian Z-valuation on K . Then v is the unique
Z-valuation on K .

Proof. By [Engler and Prestel 2005, Corollary 2.3.2] for distinct Z-valuations w1

and w2 on K one has Ow1 6⊆ Ow2 and Ow2 6⊆ Ow1 . Consider now a Z-valuation
w on K . Since v is henselian we have 1 + mv ⊆ K×n for all n ∈ N prime to
the characteristic of κv. As w(K×) = Z, this implies that 1+mv ⊆ O×w and thus
mv ⊆ Ow. Now Lemma 2.1 yields that Ow = Ov. �

Let X always denote a variable over a given ring or field.

Proposition 2.3. Let R be a local domain with maximal ideal m and residue field k.
Let p ∈ R[X ] be monic and such that p ∈ k[X ], the reduction of p modulo m, is
irreducible. Then R[X ]/(p) is a local domain with maximal ideal (m[X ]+(p))/(p)
and residue field k[X ]/(p). The ring R[X ]/(p) has the same dimension as R.
Moreover, if R is regular, then R[X ]/(p) is regular.

Proof. Note that m[X ] + (p) is a maximal ideal of R[X ]. Consider a maximal
ideal M of R[X ] containing p and set p= M ∩ R. Since R[X ]/(p) is an integral
extension of R, it follows using [Matsumura 1986, Theorems 9.3 and 9.4] that both
rings have the same dimension. Moreover, the field R[X ]/M is an integral extension
of R/p, whereby R/p is a field. It follows that p= m and thus M = m[X ] + (p).
This shows that m[X ] + (p) is the unique maximal ideal of R[X ] containing p.
Hence, R[X ]/(p) is a local domain with maximal ideal (m[X ] + (p))/(p) and
residue field k[X ]/(p). Any set of generators of m in R yields a set of generators of
(m[X ] + (p))/(p) in R[X ]/(p). In particular, if R is regular, so is R[X ]/(p). �

Corollary 2.4. Let T be a discrete valuation ring of K with residue field k. Let
p∈T [X ] be monic with p∈k[X ] irreducible. Then T [X ]/(p) is a discrete valuation
ring with field of fractions K [X ]/(p) and residue field k-isomorphic to k[X ]/(p).
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Proof. Since a discrete valuation ring is the same as a regular local ring of dimension
one, the statement follows from Proposition 2.3. �

We want to mention the following partial generalization of Corollary 2.4.

Proposition 2.5. Let T be a valuation ring of K with residue field k and let `/k be
a finite field extension. There exists a finite field extension L/K with [L : K ]= [` : k]
and a valuation v on L dominating T and unramified over K whose residue field is
k-isomorphic to `.

Proof. It suffices to consider the case where `= k[x] for some x ∈ `. Let m denote
the maximal ideal of T . Let p ∈ T [X ] be a monic polynomial whose residue p
in k[X ] is the minimal polynomial of x over k. Then p is irreducible in K [X ],
so L = K [X ]/(p) is a field. We obtain from Proposition 2.3 that R = T [X ]/(p)
is a local domain with maximal ideal M = (m[X ] + (p))/(p) and residue field
k[X ]/(p). Let v be a valuation on L dominating T . Then T ⊆ R ⊆ Ov, and as
M is generated by m, it follows that v dominates R. Hence, k[X ]/(p) embeds
naturally into κv. In particular [κv : k] ≥ deg(p) = deg(p) = [L : K ]. Using the
Fundamental Inequality [Engler and Prestel 2005, Theorem 3.3.4] we conclude that
v is unramified over K and [κv : k] = deg(p)= [L : K ], whereby κv is k-isomorphic
to k[X ]/(p) and therefore to `. �

3. Valuations on algebraic function fields

In this section we want to relate algebraic function fields over a valued field to
algebraic function fields over the corresponding residue field. In particular we
show in Proposition 3.4 that an algebraic function field over the residue field of a
valuation on K can be realized as the residue field of an unramified extension to
some algebraic function field over K , and we refine this statement in Theorem 3.5
for rational function fields.

In the sequel let T denote a valuation ring, K its field of fractions, and k the
residue field of T . (That is, we have T = Ov for a valuation v on K and k = κv .) We
consider the residue fields of valuations dominating T . (The reader may observe
that we avoid to speak of extensions of valuations, as this can lead to confusion
about the corresponding value groups.) For a field extension F/K and a valuation
v on F dominating T , the field k is naturally embedded in the residue field κv . We
often identify residue fields of valuations dominating T up to k-isomorphism, in
order to simplify the language.

A finitely generated field extension F/K of transcendence degree one is called
an algebraic function field. We say that F/K is an algebrorational function field
if F = L(x) for a finite extension L/K with L ⊆ F and some element x ∈ F that
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is transcendental over L; if this holds already with L = K , then F/K is called a
rational function field.

Proposition 3.1. Let F/K be an algebraic function field and v a valuation on F
dominating T . The extension κv/k is either algebraic or an algebraic function field.

Proof. This is a special case of the Dimension Inequality [Engler and Prestel 2005,
Theorem 3.4.3]. �

The following is a refinement of Proposition 3.1 for rational function fields.

Theorem 3.2 (Ohm and Nagata). Let F/K be a rational function field and v be a
valuation on F dominating T . Then κv/k is either algebraic or algebrorational.

Proof. This is shown in [Ohm 1983, Theorem], as a generalization of [Nagata 1967,
Theorem 1]. �

We recall a construction to extend a valuation to a rational function field; in
[Engler and Prestel 2005, Section 2.2] this is called the Gauss extension.

Proposition 3.3. Let F/K be a rational function field. Let x ∈ F be such that
F = K (x). Let T ′ be the localization of T [x] with respect to the prime ideal
m[x] where m is the maximal ideal of T . Then T ′ is a valuation ring with field of
fractions F. The residue field of T ′ is k(x̄) where x̄ is the class of x modulo m[x],
which is transcendental over k. The corresponding valuation v on F with Ov = T ′,
uniquely determined up to equivalence, is unramified over K .

Proof. This follows from [Engler and Prestel 2005, Corollary 2.2.2]. �

Proposition 3.4. Let E/k be an algebraic function field. There exists an algebraic
function field F/K and a valuation v on F dominating T and unramified over K
whose residue field is E.

Proof. Let F ′/K be a rational function field. Let x ∈ F ′ be such that F ′= K (x) and
let T ′ denote the valuation ring described in Proposition 3.3. We identify x̄ with
some element of E transcendental over k. Then E/k(x̄) is a finite extension. By
Proposition 2.5 there exists a finite field extension F/F ′ with [F : F ′] = [E : k(x̄)]
and a valuation v on F dominating T ′ and unramified over F ′ with residue field E .
Using Proposition 3.3 it follows that v is also unramified over K . �

Theorem 3.5. Assume that T 6= K and let F/K be a rational function field. Let
`/k be a finite separable field extension. There exists a valuation v on F dominating
T and unramified over K for which κv/k is an algebrorational function field with
field of constants `.

Proof. Let y ∈ F and α ∈ ` be such that F = K (y) and `= k(α). Let q ∈ T [Y ] be
monic and such that the residue q̄ in k[Y ] is the minimal polynomial of α. Let m
be the maximal ideal of T . We choose m ∈m\ {0} and set x =m−1q(y) ∈ F . Note
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that x is transcendental over K , and thus F/K (x) is a finite extension. Let T ′ be the
localization of T [x] with respect to m[x], the ideal consisting of the polynomials
in x with coefficients in m. Let m′ be the maximal ideal of T ′. By Proposition 3.3
T ′ is a valuation ring with field of fractions K (x) and residue field k(x̄), and x̄ is
transcendental over k. Note that q̄ remains irreducible in k(x̄)[Y ].

Consider p = q − q(y) ∈ T ′[Y ]. As q(y)= mx , taking residues modulo m′[Y ]
we have p = q̄ in k(x̄)[Y ]. It follows by Proposition 2.3 that R = T ′[Y ]/(p) is a
local ring with maximal ideal lying over m′, with field of fractions K (x)[Y ]/(p),
and residue field k(x̄)[Y ]/(p). Note that K (x)[Y ]/(p) is K (x)-isomorphic to F .
Using Chevalley’s theorem [Engler and Prestel 2005, Theorem 3.1.1], we obtain a
valuation v on F that dominates T ′. Then v also dominates T . As p(y)= 0, we
have that y is integral over T ′. Since p = q̄ is irreducible in k(x̄)[Y ], we have that
p(0) 6= 0, whereby p(0) ∈ T ′×. As v dominates T ′ and p(y)= 0, we obtain that
v(y) = 0. Hence, x̄, ȳ ∈ κv, and ȳ is algebraic over k, because q̄(ȳ) = p(ȳ) = 0.
As q̄ is irreducible in k(x̄)[Y ] we obtain that

[κv : k(x̄)] ≥ [k(x̄)[ȳ] : k(x̄)] = deg(p)= deg(p)= [F : K (x)].

By the Fundamental Inequality [Engler and Prestel 2005, Theorem 3.3.4], it follows
that v is unramified over K (x) and κv = k(x̄)[ȳ] = k[ȳ](x̄). Using Proposition 3.3
we obtain that v is unramified over K . Since q(ȳ)= 0= q̄(α) and since we consider
residue fields up to k-isomorphism, we can identify `= k[α] with k[ȳ]. �

Remark 3.6. In Theorem 3.5, the hypothesis on the finite extension `/k to be sep-
arable is not necessary. Given a finite extension `/k we can obtain a regular model
(see below for the definition) for F/T whose special fiber contains a component
isomorphic to P1

` in the following way: We choose α ∈ ` and `′= k(α). Blowing up
P1

T in a point on the special fiber P1
k with residue field `′, we obtain a new regular

model whose special fiber has a component given by the exceptional fiber of this
blowing-up and thus isomorphic to P1

`′ . Iterating this process we eventually obtain
a regular model for F/T whose special fiber has a component isomorphic to P1

`,
and its generic point corresponds to a Z-valuation whose residue field is a rational
function field over `.

Assume that the valuation ring T is discrete and consider an algebraic function
field F/K . By a regular model for F/T we mean a 2-dimensional integral regular
projective flat T -scheme X whose function field is K -isomorphic to F . Given a
regular model X for F/K we denote by Xk its special fiber; by [Liu 2002, Chapter
8, Lemma 3.3] Xk is a curve.

Given an integral scheme X, a point P ∈ X, and a valuation v on the function
field of X, we say that v is centered at P if v dominates OX,P , the local ring at P .
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Proposition 3.7. Assume that T is a discrete valuation ring. Let F/K be an
algebraic function field. Let X be a regular model for F/T . Let v be a Z-valuation
on F dominating T . Then v is centered at a point P of X lying in Xk . Moreover, if
the extension κv/k is neither algebraic nor algebrorational, then Ov = OX,P where
P is the generic point of an irreducible component of Xk .

Proof. By [Liu 2002, Chapter 8, Definition 3.17] v is centered at a point P of the
special fiber Xk . Since Xk is a curve, P is either a closed point or the generic point
of an irreducible component Xk . In either case OX,P is a regular local ring.

If P is a closed point of Xk , then by [Abhyankar 1956, Proposition 3] the
extension κv/k is either algebraic or algebrorational. Assume now that P is a
generic point of Xk . Then P has codimension one in X, so OX,P is a regular local
ring of dimension one and thus a discrete valuation ring. As OX,P is dominated by
Ov and both are discrete valuation rings with the same field of fractions, it follows
by [Engler and Prestel 2005, Corollary 2.3.2] that Ov = OX,P . �

Proposition 3.8. Assume that T is a complete discrete valuation ring. Let F/K be
an algebraic function field. Then there exists a regular model for F/T .

Proof. There exists a regular projective curve C over K whose function field is
K -isomorphic to F . If the curve C is smooth, then by [Liu 2002, Chapter 10,
Proposition 1.8)] there exists a regular model for F/T . Note that this applies in
particular when char(K )= 0. Without assuming that C is smooth, we can follow the
first steps in the proof of the proposition cited to obtain a 2-dimensional projective
T -scheme X with function field F . Since the structure morphism X→ Spec(T )
is surjective, it is flat (see [Liu 2002, Chapter 8, Definition 3.1]). Then T is an
excellent ring (see [ibid., Corollary 2.40]), and X, being locally of finite type over T ,
is excellent (see [ibid., Theorem 2.39]).

Let X′→ X be the normalization of X. Since X is excellent and projective over
T , the normalization X′→ X is a finite projective birational morphism (see [ibid.,
Theorem 8.2.39 and Lemma 3.47]). The singular locus of X′ is closed in X′ (see
[ibid., Corollary 2.38]). We consider the blowing-up X′′→ X′ along the singular
locus of X′; this is a birational projective morphism (see [ibid., Propositions 1.12
and 1.22]).

We may alternate normalization and blowing-up until we reach a scheme that is
regular. At each step we obtain a flat projective 2-dimensional T -scheme whose
function field is F . By Lipman’s desingularization theorem (see [ibid., Theorem
3.44]), after finitely many steps we come to a situation where the T -scheme is
regular. �

Corollary 3.9. Assume that T is a complete discrete valuation ring. Let F/K be
an algebraic function field. Then there exist only finitely many Z-valuations v on F
dominating T for which the extension κv/k is neither algebraic nor algebrorational.
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Proof. By Proposition 3.8 there exists a regular model for F/T . The statement
follows by applying Proposition 3.7 to any such model. �

The result Corollary 3.9 can be extended to the situation where T is an arbitrary
discrete valuation ring. Moreover, one may ask to characterize the Z-valuations
on an algebraic function field that dominate a given discrete valuation ring of
the base field and for which the residue field extension is neither algebraic nor
algebrorational. We intend to develop these topics in a forthcoming article.

4. Sums of squares and valuations

From now on let K be a field of characteristic different from 2. We denote by∑
K 2 the subgroup of nonzero sums of squares in K and, for n ∈N, by DK (n) the

set of nonzero elements that can be written as sums of n squares in K . One calls

s(K ) = inf {n ∈ N | −1 ∈ DK (n)} ∈ N ∪ {∞}

the level of K . Recall that K is real if s(K )=∞ and nonreal otherwise, and in the
latter case s(K ) is a power of two (see [Lam 2005, Chapter XI, Section 2]).

The Pythagoras number of K is defined as

p(K ) = inf
{
n ∈ N | DK (n)=

∑
K 2
}
∈ N∪ {∞}.

We further define

p′(K )=
{

p(K ) if K is real,
s(K )+ 1 if K is nonreal.

This field invariant has no independent interest, but it allows us to avoid case
distinctions in statements about valuations and Pythagoras numbers, by formulating
them for p′(K ) rather than for p(K ). As for nonreal field K we always have
s(K ) ≤ p(K ) ≤ s(K )+ 1 = p′(K ). Hence, p′(K ) is always equal to p(K ) or to
p(K )+ 1.

We now consider valuations in the context of sums of squares. We say that a
valuation v on K is real or nonreal, respectively, if the residue field κv has the
corresponding property.

Lemma 4.1. Let v be a valuation on K and n ∈ N. Then s(κv) ≥ n if and only if
v(a2

1 + · · ·+ a2
n)= 2 min{v(a1), . . . , v(an)} holds for all a1, . . . , an ∈ K .

Proof. Both conditions are easily seen to be equivalent to having that any sum of n
squares of elements in O×v lies in O×v . �

Let �(K ) denote the set of nondyadic Z-valuations on K .

Proposition 4.2. Let v ∈�(K ). If v is real, then v
(∑

K 2
)
= 2Z. If v is nonreal,

then for s = s(κv) we have v(DK (s))= 2Z and v(DK (s+ 1))= v
(∑

K 2
)
= Z.
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Proof. If v is real, then it follows from Lemma 4.1 that v
(∑

K 2
)
= 2Z. Assume

now that v is nonreal and let s = s(κv). Then it follows from Lemma 4.1 that
v(DK (s)) = 2Z and that there exist x0, . . . , xs ∈ K such that v(x2

0 + · · · + x2
s ) 6=

2 min{v(x0), . . . , v(xs)}. Dividing by one of the elements x0, . . . , xs with minimal
value, we can assume that min{v(x0), . . . , v(xs)} = 0. Hence v(x2

0 + · · ·+ x2
s )≥ 1.

If v(x2
0 + · · · + x2

s ) > 1, then we choose t ∈ K with v(t) = 1, and we conclude
that v((x0+ t)2+ x2

1 · · · + x2
s )= 1, as v is nondyadic. We may therefore assume

that v(x2
0 + · · ·+ x2

s )= 1. Since K×2
· DK (s+ 1)= DK (s+ 1), we conclude that

v(DK (s+ 1))= Z, and thus in particular that v
(∑

K 2
)
= Z. �

Proposition 4.3. Let v ∈ �(K ). Then p′(K ) ≥ p(K ) ≥ p′(κv). Moreover, if v is
henselian, then p′(K )= p(K )= p′(κv).

Proof. Note that p(K )≥ p(κv). If v is real, then κv and K are real, and we obtain
that p′(K )= p(K )≥ p(κv)= p′(κv). If v is nonreal, then for s= s(κv)we conclude
that DK (s)( DK (s+1) by Proposition 4.2, and therefore p′(K )≥ p(K )≥ s+1=
p′(κv).

Assume finally that v is henselian. Then s(K )= s(κv), and further p(K )= p(κv)
in case v is real. This yields that p′(K )= p′(κv). �

Recall that the completion of K with respect to a valuation v is denoted by K v .

Corollary 4.4. For v ∈�(K ) we have p(K )≥ p(K v)= p′(κv).

Proof. Since v extends to a Z-valuation on K v with the same residue field κv, we
obtain using both statements in Proposition 4.3 that p(K )≥ p′(κv)= p(K v). �

Corollary 4.5. We have p′(K (t))= p(K (t))≥ p′(K ((t)))= p(K ((t)))= p′(K ).

Proof. We have p(K (t))≥ p(K ((t))) by Corollary 4.4 and p′(K ((t)))= p(K ((t)))=
p′(K ) by Proposition 4.3. If K is real, then K (t) is real, thus p′(K (t))= p(K (t)) by
the definition. If K is nonreal, then p(K (t))= s(K )+1= s(K (t))+1= p′(K (t)).

�

Corollary 4.6. Let F/K be an algebrorational function field. Then p′(F)= p(F).

Proof. Replacing K by its relative algebraic closure in F , we have F = K (t) for
some t ∈ F transcendental over K . We conclude using Corollary 4.5. �

This does not generalize to arbitrary algebraic function fields:

Example 4.7. Consider the function field F of the curve Y 2
=−(X2

+1)(X2
+1+t)

over R((t)). By [Becher and Van Geel 2009, Example 5.13] we have p(F)= s(F)=
2, and therefore p′(F)= 3> p(F). In particular −1 /∈ F×2 whereas −1 is a square
in Fv for any v ∈�(F) by Corollary 4.4.

We apply Proposition 4.3 to give a short argument for a well-known fact:
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Corollary 4.8. Assume that K is a finitely generated nonalgebraic extension of a
subfield. Then p(K )≥ 2.

Proof. It follows from the hypotheses that there exists v ∈ �(K ) such that κv is
nonreal. From Proposition 4.3 we obtain that p(K )≥ p′(κv)= s(κv)+ 1≥ 2. �

Remark 4.9. If K = k(t) for a subfield k and t ∈ K transcendental over k, then
1+ t2 /∈ K×2 and thus p(K )≥ 2. An alternative proof of Corollary 4.8 is therefore
obtained by reduction to the case of a rational function field via the Diller–Dress
Theorem [Lam 2005, Chapter VIII, Theorem 5.7], which says that if p(K ) ≥ 2
then p(L)≥ 2 for every finite field extension L/K .

For S ⊆�(K ) we define a homomorphism

8S : K×→ ZS, x 7→ (v(x))v∈S.

If S ⊆�(K ) is a finite subset, then it follows from the Approximation Theorem
(see [Engler and Prestel 2005, Theorem 2.4.1] or [Liu 2002, Chapter 9, Lemma
1.9]) that 8S is surjective.

The following statement extends Proposition 4.2 from a single Z-valuation to
finitely many Z-valuations on K .

Proposition 4.10. Let S be a finite subset of �(K ) and n ∈ N. Then

8S(DK (n))= {(ev)v∈S ∈ ZS
| ev ∈ 2Z for v ∈ S with s(κv)≥ n}.

Proof. For v ∈�(K ) with s(κv)≥ n we have v(DK (n))⊆ 2Z by Lemma 4.1. This
shows that

8S(DK (n))⊆ {(ev)v∈S ∈ ZS
| ev ∈ 2Z for v ∈ S with s(κv)≥ n}.

It remains to show the other inclusion. Consider a tuple (ev)v∈S ∈ ZS such that
ev ∈ 2Z for all v ∈ S with s(κv) ≥ n. The aim is to find an element x ∈ DK (n)
with 8S(x) = (ev)v∈S . We explain how to obtain such an element, using the
Approximation Theorem (see above) several times.

For v ∈ S with ev /∈ 2Z, as s(κv) < n we may choose xv,2, . . . , xv,n ∈ Ov such
that v(1+x2

v,2+· · ·+x2
v,n) > 0. For v ∈ S with ev ∈ 2Z we set xv,2= · · · = xv,n = 0.

For i = 2, . . . , n we choose xi ∈ K× such that v(xi − xv,i ) > 0 for all v ∈ S. We
set y = x2

2 +· · ·+ x2
n . For v ∈ S we have v(1+ y)= 0 if ev ∈ 2Z and v(1+ y) > 0

otherwise. We choose t ∈ K× such that, for all v ∈ S, we have v(t) = 1 if
v(1+ y) > 1, and v(t) > 1 otherwise. Note that (1+ t)2+ y ∈ DK (n). For any v ∈ S
the value v((1+ t)2+ y) is either 0 or 1 and such that v((1+ t)2+ y)≡ ev mod 2Z.
Now choose z ∈ K× such that 2v(z) = ev − v((1+ t)2+ y) for all v ∈ S and set
x = z2((1+ t)2+ y). Then x ∈ DK (n) and 8S(x)= (v(x))v∈S = (ev)v∈S . �
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Corollary 4.11. Let n ∈ N and S a finite subset of �(K ) such that s(κv)= 2n for
all v ∈ S. Then 8S induces a surjective homomorphism

DK (2n+1)/DK (2n)→ (Z/2Z)S.

In particular, |DK (2n+1)/DK (2n)| ≥ 2|S|.

Proof. By the hypotheses on S and by Proposition 4.10, we have 8S(DK (2n+1))=

ZS and 8S(DK (2n))= (2Z)S . From this the statement follows. �

Theorem 4.12. Let K be a real field. For n ∈ N the following are equivalent:

(i) p(K (X))≤ 2n .

(ii) p(L) < 2n for all finite real extensions L/K .

(iii) s(L)≤ 2n−1 for all finite nonreal extensions L/K .

(iv) p′(L) < 2n for all finite extensions L/K with −1 /∈ L×2.

Proof. See [Becher and Van Geel 2009, Theorem 3.3] for the equivalence of (i)–(iii);
the equivalence of these conditions with (iv) is obvious. �

Corollary 4.13. Let n ∈ N be such that p(K (X)) ≤ 2n . Then p(L(X)) ≤ 2n for
any finite field extension L/K .

Proof. If K is nonreal, then p(L(X))= s(L)+1≤ s(K )+1= p(K (X))≤ 2n . If K
is real and L is nonreal, then s(L)≤ 2n−1 by Theorem 4.12 and thus p(L(X))≤ 2n .
If L is real, then since any finite real extension of L is a finite real extension
of K , the equivalence of (i) and (ii) in Theorem 4.12 allows us to conclude that
p(L(X))≤ 2n . �

Theorem 4.14. Let K be endowed with a Z-valuation with residue field k. Then
p(K (X)) ≥ p(k(X)). Moreover, if the valuation is henselian and n ∈ N is such
that p(k(X))≤ 2n , then p(K (X))≤ 2n .

Proof. Using Proposition 3.3 the given Z-valuation on K extends to a Z-valuation
on K (X) with residue field k(X). Hence, p(K (X)) ≥ p′(k(X)) = p(k(X)) by
Proposition 4.3 and Corollary 4.5.

Assume now that the Z-valuation on K is henselian. If K is nonreal, then
p(K (X))= s(K )+ 1= s(k)+ 1= p(k(X)). Assume that K is real. Then k and
k(X) are real. Let n ∈N be such that p(k(X))≤ 2n . By Theorem 4.12, to prove that
p(K (X))≤ 2n it suffices to show that p′(L) < 2n for all finite extensions L/K with
−1 /∈ L×2. Consider such an extension L/K . Then L is endowed with a henselian
Z-valuation whose residue field ` is a finite extension of k. Then −1 /∈ `×2 and
thus p′(L)= p′(`) < 2n by Proposition 4.3 and Theorem 4.12. �

The last two statements motivate us to formulate the following two conjectures.

Conjecture 4.15. For any finite field extension L/K , one has p(L(X))≤ p(K (X)).
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Conjecture 4.16. If K is complete with respect to a nondyadic Z-valuation with
residue field k, then p(K (X))= p(k(X)).

Note that both conjectures hold trivially if K is a nonreal field. In the case where
K is real, Conjecture 4.16 was raised originally by C. Scheiderer [2001, Remark
5.18.2] as a question. We shall prove in Corollary 6.9 that the two conjectures are
equivalent.

5. The u-invariant for algebraic function fields

We refer to [Lam 2005] for basic facts and terminology from the theory of quadratic
forms over fields of characteristic different from two. The u-invariant of K was
defined in [Elman and Lam 1973] as

u(K ) = sup {dimϕ | ϕ anisotropic torsion form over K } ∈ N∪ {∞},

where a torsion form is a regular quadratic form that corresponds to a torsion
element in the Witt ring.

Proposition 5.1. Let v ∈�(K ). Let ψ be a torsion form over κv . There exist n ∈N,
a1, . . . , an ∈ O×v , and t ∈ K× with v(t) = 1 such that 〈1,−t〉 ⊗ 〈a1, . . . , an〉 is a
torsion form over K and such that ψ is Witt equivalent to 〈ā1, . . . , ān〉.

Proof. Assume first that v is nonreal. Then by Proposition 4.2 there exists t ∈
∑

K 2

with v(t) = 1. For n = dimψ and a1, . . . , an ∈ O×v such that ψ is isometric to
〈ā1, . . . , ān〉, we obtain that 〈1,−t〉⊗ 〈a1, . . . , an〉 is a torsion form over K .

Assume now that v is real. Then ψ is Witt equivalent to a sum of binary torsion
forms over κv (see [Pfister 1966, Satz 22]). Every binary torsion form over κv
is of the shape 〈ā1, ā2〉 with a1, a2 ∈ O×v such that −a1a2 ∈

∑
K 2. Hence, there

exist r ∈ N and a1, . . . , a2r ∈ O×v such that ψ is Witt equivalent to 〈ā1, . . . , ā2r 〉

and −a2i−1a2i ∈
∑

K 2 for i = 1, . . . , r . Then 〈a1, . . . , a2r 〉 is torsion form over
K . We choose any t ∈ K× with v(t) = 1. Then also 〈1,−t〉 ⊗ 〈a1, . . . , a2r 〉 is a
torsion form over K . �

The following statement was independently obtained in [Scheiderer 2009, Propo-
sition 5] using different arguments, based on the theory of spaces of orderings.

Proposition 5.2. For v ∈�(K ) we have u(K )≥ u(K v)= 2u(κv).

Proof. Let v ∈ �(K ). Let ψ be an anisotropic torsion form over κv. Using
Proposition 5.1 we choose n ∈ N, a1, . . . , an ∈ O×v , and t ∈ K× with v(t) = 1
such that ψ is Witt equivalent to 〈ā1, . . . , ān〉 and such that 〈1,−t〉⊗ 〈a1, . . . , an〉

is a torsion form over K . Let ϕ denote its anisotropic part. Then ϕ is a tor-
sion form and isometric to 〈b1, . . . , bs〉 ⊥ −t〈c1, . . . , cr 〉 for certain r, s ∈ N and
c1, . . . , cr , b1, . . . , bs ∈ O×v . Applying residue homomorphisms (see [Lam 2005,
Chapter VI, §1]), it follows that the forms 〈b̄1, . . . , b̄s〉 and 〈c̄1, . . . , c̄r 〉 over κv are
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Witt equivalent to ψ . As ψ is anisotropic we conclude that dimϕ= r+s ≥ 2 dimψ .
This shows that u(K ) ≥ 2u(κv). Using Springer’s Theorem for complete dis-
cretely valued fields (see [Lam 2005, Chapter VI, §1]), we further obtain that
u(K v)= 2u(κv). �

A generalization of Proposition 5.2 for arbitrary nondyadic valuations is given
in [Becher and Leep 2013, Theorem 5.2].

Corollary 5.3. Let k be the residue field of a nondyadic Z-valuation on K . For
every algebraic function field F/K there exists an algebraic function field E/k such
that u(F)≥ 2u(E).

Proof. Let T denote the discrete valuation ring with field of fractions K and residue
field k. Let F/K be an algebraic function field. Choose x ∈ F transcendental over
K . Consider the valuation ring T ′ in K (x) described in Proposition 3.3. Note that
T ′ is a discrete valuation ring. Since F/K (x) is a finite extension, there exists a
Z-valuation v on F dominating T ′. The residue field E of v is a finite extension of
k(x̄), hence an algebraic function field over k. By Proposition 5.2 we obtain that
u(F)≥ 2u(E). �

We define

û(K ) = 1
2 sup{u(F) | F/K algebraic function field}.

For nonreal fields û coincides with the strong u-invariant defined in [Harbater et al.
2009, Definition 1.2], by the following result.

Corollary 5.4. For any algebraic extension L/K we have

u(L)≤ 1
2 u(K (X))≤ û(K ).

Proof. If L is a field of odd characteristic p, then the Frobenius homomorphism
given by x 7−→ x p shows that any quadratic form over L is obtained by scalar
extension from a quadratic form defined over L p. Therefore every torsion form
defined over an algebraic extension of K comes from a torsion form defined over a
finite separable extension of K . Since any finite separable extension of K is the
residue field of a Z-valuation v on K (X), the first inequality now follows from
Proposition 5.2. The second inequality is obvious. �

6. Function fields over complete discretely valued fields

In this section we assume that K is the field of fractions of a complete discrete
valuation ring T with residue field k of characteristic different from 2. We want to
apply the following reformulation of the local-global principle in [Colliot-Thélène
et al. 2012, Theorem 3.1] to the study of the u-invariant and the Pythagoras number
of algebraic function fields over K .
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Theorem 6.1 (Colliot-Thélène, Parimala, Suresh). Let F be an algebraic function
field over K . A regular quadratic form over F of dimension at least 3 is isotropic if
and only if it is isotropic over Fv for every v ∈�(F).

Proof. This slightly more general version of the result cited follows from [Harbater
et al. 2013, Proposition 9.10]. �

We will apply Theorem 6.1 to obtain upper bounds for the two mentioned field
invariants. We have to distinguish two types of Z-valuations on algebraic function
fields over K .

Proposition 6.2. Let F/K be an algebraic function field and v ∈ �(F). Then
either v is trivial on K or it dominates T .

Proof. This follows from Proposition 2.2. �

The lower bounds that we will obtain are based on more elementary arguments:

Lemma 6.3. Let F/K be an algebraic function field and v a Z-valuation on F that
is trivial on K . Then p(Fv)= p′(κv)≤ p(k(X)) and u(Fv)= 2u(κv)≤ u(k(X)).

Proof. By Corollary 4.4 and Proposition 5.2 we have p(Fv)= p′(κv) and u(Fv)=
2u(κv). As κv is a finite extension of K and T is a complete discrete valuation
ring of K , there is a unique Z-valuation w on κv with Ow ∩ K = T . Then κw
is a finite extension of k, and κv is complete with respect to w, in particular
henselian. By Corollary 5.4 and Proposition 4.3 we obtain that p′(κv) = p′(κw)
and u(κv)= 2u(κw). We choose α ∈ κw such that κw/k(α) is purely inseparable.
Since k is of characteristic different from 2, it follows that every element of κw is a
product of a square and an element from k(α). This yields that p′(κw)≤ p′(k(α))
and u(κw) ≤ u(k(α)). Since k(α) is the residue field of a Z-valuation on k(X),
we obtain from Proposition 4.3 and Corollary 5.4 that p′(k(α)) ≤ p(k(X)) and
2u(k(α))≤ u(k(X)). �

We can now extend Theorem 4.10 of [Harbater et al. 2009] to the current setting,
thus covering real function fields. C. Scheiderer [2009, Theorem 3] independently
gave a more geometric proof.

Theorem 6.4. We have û(K )= 2û(k).

Proof. For any algebraic function field E/k, by Proposition 3.4 there exists an
algebraic function field F/K and a Z-valuation on F with residue field E , and
using Proposition 5.2 we obtain that u(E) ≤ 1

2 u(F) ≤ û(K ). This yields that
2û(k)≤ û(K ).

To prove the converse inequality, we need to show for an arbitrary algebraic
function field F/K that u(F) ≤ 4û(k) holds. Fix F/K . By Theorem 6.1, any
anisotropic form over F remains anisotropic over Fv for some v ∈�(F). It thus
suffices to show that u(Fv) ≤ 4û(k) for every v ∈ �(F). Fix v ∈ �(F). As
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u(Fv) = 2u(κv), it suffices to show that u(κv) ≤ 2û(k). If v is trivial on K , we
obtain by Lemma 6.3 that 2u(κv)≤ u(k(X))≤ 2û(k). Assume that v is nontrivial
on K . Then Ov ∩ K = T by Proposition 6.2. If κv/k is an algebraic function
field then u(κv)≤ 2û(k) by the definition of û(k). Otherwise κv/k is an algebraic
extension and then u(κv)≤ û(k) by Corollary 5.4. �

Corollary 6.5. Let m ∈ N. If u(E) = m for every algebraic function field E/k,
then u(F)= 2m for every algebraic function field F/K .

Proof. Let F/K be an algebraic function field over K . Using Theorem 6.4 we
obtain that u(F) ≤ 2û(K ) = 4û(k). By Corollary 5.3 there exists an algebraic
function field E/k with u(F) ≥ 2u(E). If we assume that u(E) = m holds for
every algebraic function field E/k, we obtain that 2û(k) = m and conclude that
u(F)= 2m. �

Theorem 6.6. We have that

u(K (X))= 2 · sup {u(`(X)) | `/k finite separable field extension}.

Proof. Let F = K (X). As u(F)≥ 2, it follows from Theorem 6.1 that

u(F)≤ sup {u(Fv) | v ∈�(F)}.

Consider v ∈�(F). If v is trivial on K then u(Fv)≤ 2u(k(X)) by Lemma 6.3. If
v is nontrivial on K , then by Proposition 2.2 and Theorem 3.2 κv/k is either an
algebraic extension or algebrorational. In any case we obtain that u(κv)≤ u(`(X))
and thus u(Fv) = 2u(κv) ≤ 2u(`(X)) for a finite extension `/k. Let `′/k be the
separable subextension of `/k such that `/`′ is purely inseparable. Then `(X)/`′(X)
is purely inseparable and of odd degree, so every element of `(X) is a product of
a square in `(X) with an element of `′(X), whereby u(`(X)) ≤ u(`′(X)). This
together shows that

u(F)≤ 2 · sup {u(`(X)) | `/k finite separable field extension}.

On the other hand, given a finite separable field extension `/k, it follows from
Theorem 3.5 that there exists a Z-valuation on F with residue field `(X), which by
Proposition 5.2 implies that u(F)≥ 2u(`(X)). This shows the claimed equality. �

We turn to the study of sums of squares and the Pythagoras number.

Theorem 6.7. Let F/K be an algebraic function field. For any m ≥ 2 we have that
DF (m)= F× ∩ (

⋂
v∈�(F) DFv (m)). Moreover, p(F)= sup{p′(κv) | v ∈�(F)}.

Proof. Applying Theorem 6.1 to the quadratic forms m×〈1〉 ⊥ 〈−a〉 for a ∈ F×

shows for any m ≥ 2 the claimed equality of sets. Note that �(F) contains a
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nonreal valuation v, and we have that p(Fv)= s(κv)+ 1≥ 2. Since p(F)≥ 2 by
Corollary 4.8, we obtain that

p(F)= inf{m ≥ 2 | DF (m)= DF (m+ 1)}

≤ inf{m ≥ 2 | DFv (m)= DFv (m+ 1) for all v ∈�(F)}

= sup{p(Fv) | v ∈�(F)}.

Moreover, by Proposition 4.3 we have p(Fv)= p′(κv) for every v ∈�(F). �

Theorem 6.8. Let F/K be an algebraic function field. There exists an algebraic
function field E/k such that p′(E)≥ p′(F). Moreover, if F/K is algebrorational,
then one may choose E/k to be algebrorational.

Proof. If p(F)=∞, then as F is a finite extension of a rational function field, we
conclude with [Pfister 1995, Chapter 7, Proposition 1.13] that p(K (X))=∞ and
then with Theorem 4.14 we obtain that p(k(X)) =∞, so that for E = k(X) we
have p′(E)=∞= p′(F).

We now suppose that p(F) <∞. By Theorem 6.7 there exists v ∈�(F) such
that p(F)= p′(κv).

Assume first that p′(F) 6= p(F). Then F is nonreal with p(F)= s(F), and by
Corollary 4.6 F is not algebrorational. It follows that κv is nonreal with s(κv)=
p′(κv)− 1= p(F)− 1= s(F)− 1, and as s(κv) and s(F) are both powers of two,
we conclude that s(F) = 2. Then s(k) ≥ 2 and for E = k(X)(

√
−(1+ X2)) we

have that s(E)= 2 and thus p′(E)= 3= p′(F).
Suppose now that p′(F) = p(F) = p′(κv). If v|K is trivial, then we have

p(k(X))≥ p′(κv)= p(F) by Lemma 6.3 and further s(k(X))= s(k)= s(K )≥ s(F),
so we may choose E = k(X) to have p′(E)≥ p′(F). Suppose that v|K is nontrivial.
By Proposition 6.2 then v dominates T , and the residue extension κv/k is either
algebraic or it is an algebraic function field. If κv/k is an algebraic function field,
we may choose E = κv and have that p′(E)≥ p′(F). Moreover, by Theorem 3.2,
if F/K is algebrorational, then so is E/k. If κv/k is algebraic, then as p′(κv) =
p′(F)<∞ there exists a finite extension `/k contained in κv/k with p′(`)≥ p′(κv),
and we may thus choose E = `(X) to have p′(E)≥ p′(`)≥ p′(κv)= p′(F). �

Corollary 6.9. We have p(K (X))= sup {p(`(X)) | `/k finite field extension}.

Proof. The statement is trivial if k is nonreal. Assume that k is real. Given an
arbitrary finite extension `/k, by Theorem 3.5 there is a Z-valuation on K (X) with
residue field `(X), whereby Proposition 4.3 yields that p′(`(X))≤ p′ (K (X)). On
the other hand, by Theorem 6.8, there exists a finite extension `/k with p′ (K (X))≤
p′(`(X)). Since p′(K (X)) = p(K (X)) and p′(k(X)) = p(k(X)) the statement
follows. �

Note that Corollary 6.9 shows the equivalence of Conjectures 4.15 and 4.16.
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Theorem 6.10. Let n ∈N. Assume that p(k(X))≤ 2n and that
∑

E2/DE(2n) is fi-
nite for every algebraic function field E/k. Then p(K (X))≤ 2n and

∑
F2/DF (2n)

is finite for every algebraic function field F/K .

Proof. By Theorem 4.14 we have p(K (X))≤ 2n . Consider an algebraic function
field F/K . By Theorem 6.7 the natural homomorphism∑

F2/DF (2n)−→
∏

v∈�(F)

∑
(Fv)2/DFv (2n)

is injective. To prove that
∑

F2/DF (2n) is finite, it thus suffices to show that the
set

S = {v ∈�(F) | p(Fv) > 2n
}

is finite and that
∑
(Fv)2/DFv (2n) is finite for each v ∈ S. Consider v ∈ �(F).

If v is trivial on K , then p(Fv) ≤ p(k(X)) ≤ 2n by Lemma 6.3. Otherwise
Ov ∩ K = T by Proposition 6.2 and κv is an extension of k. If the extension
κv/k is algebraic, then p(Fv) = p′(κv) ≤ p(k(X)) ≤ 2n . If κv/k is an algebraic
function field which is algebrorational, then using Corollary 6.9 we obtain that
p(Fv) = p′(κv) ≤ p(K (X)) ≤ 2n . This proves that, for any v ∈ S, we have
Ov ∩ K = T and κv/k is an algebraic function field that is not algebrorational.
The finiteness of S thus follows from Corollary 3.9, and for any v ∈ S we have∣∣∑ (Fv)2/DFv (2n)

∣∣≤ 2 ·
∣∣∑ (κv)

2/Dκv (2
n)
∣∣, which is finite by the hypothesis. �

Theorem 6.11. Assume that n∈N is such that p(E)≤2n for any algebraic function
field E/k. Let F/K be an algebraic function field. Then p(F) ≤ 2n

+ 1 and the
set S = {v ∈ �(F) | s(κv) = 2n

} is finite with
∣∣∑ F2/DF (2n)

∣∣ = 2|S|. Moreover,
8S : F×→ ZS induces an isomorphism

∑
F2/DF (2n)→ (Z/2Z)S .

Proof. Consider v ∈ �(F). If v|K is trivial, then p′(κv) ≤ p(k(X)) ≤ 2n by
Lemma 6.3 and the hypothesis. Suppose now that v|K is nontrivial. By Proposition
6.2 then Ov ∩ K = T and the residue field extension κv/k is either algebraic or it
is an algebraic function field. If κv/k is algebraic, then p′(κv)≤ 2n . Suppose that
κv/k is an algebraic function field. Then p(κv)≤ 2n by the hypothesis. Moreover,
if κv/k is algebrorational, then Corollary 4.6 yields that p′(κv)= p(κv)≤ 2n .

Hence, in any case we have that p(κv)≤ 2n , and thus p(Fv)= p′(κv)≤ 2n
+ 1

by Corollary 4.4. Furthermore, we conclude that p(Fv) = 2n
+ 1 if and only if

v ∈ S, and in this case the residue field extension κv/k is an algebraic function field
but not algebrorational.

By Theorem 6.7 we conclude that p(F)≤ p′(F)≤ 2n
+ 1 and furthermore∑

F2
=

(⋂
v∈S

DFv (2n
+1)

)
∩

( ⋂
v∈Sc

DFv (2n)
)
∩ F×,
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where Sc
= �(F) \ S. Moreover, using Corollary 3.9 we obtain that S is fi-

nite. By Corollary 4.11 then 8S : F×→ ZS induces a surjective homomorphism∑
F2/DF (2n)→ (Z/2Z)S . It remains to show that this homomorphism is also

injective. In view of Theorem 6.7 and the above equality for
∑

F2, it suffices
to verify that 8−1

S ((2Z)S) ⊆
⋂
v∈S DFv (2n). Consider x ∈

∑
F2 and v ∈ S with

v(x)∈2Z. Then x= t2 y with t ∈ F× and y∈O×v ∩
(∑

F2
)
, whereby y+mv ∈

∑
κv

2.
Since Fv is complete and p(κv) ≤ 2n , it follows that x = t2 y ∈ DFv (2n). This
shows the claim. �

Recall that the field K is said to be hereditarily quadratically closed if L×= L×2

for every finite field extension L/K . The following result applies in particular to
the situation where R is a real closed field.

Theorem 6.12. Let n ∈N and K = R((t1)) . . . ((tn)) for a field R such that R(
√
−1)

is hereditarily quadratically closed. Let F/K be an algebraic function field. Then
u(F)= 2n+1, 2≤ p(F)≤ 3, and the group

∑
F2/DF (2) is finite.

Proof. We prove this by induction on n. For n = 0 we obtain from [Elman
and Wadsworth 1987, Theorem] that u(F)= 2, and we conclude by [Lam 2005,
Chapter XI, Corollary 6.26] and Corollary 4.8 that p(F) = 2, whereby

∑
F2
=

DF (2) and 2 ≤ p(F) ≤ p′(F) ≤ 3. Assume that n > 0. Applying the induction
hypothesis to all algebraic function fields over k = R((t1)) . . . ((tn−1)), we obtain by
Corollary 6.5 that u(F)= 2n+1, by Corollary 4.8 and Theorem 6.8 that 2≤ p(F)≤
p′(F)≤ 3, and by Theorem 6.10 that

∑
F2/DF (2) is finite. �

For certain real function fields over R((t)), it was asked in [Becher and Van Geel
2009, Question 5.15] whether their Pythagoras number is three or four. We can
now answer this question:

Corollary 6.13. Let h ∈ R[X ] be a nonconstant square-free polynomial with no
roots in R. Let F be the function field of the curve Y 2

= (t X−1)h over R((t)). Then
p(F)= 3.

Proof. We have p(F)≥3 by [Becher and Van Geel 2009, Theorem 5.3 and Corollary
4.2] and p(F)≤ 3 by Theorem 6.12. �
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