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We study the contact equivalence problem for toric contact structures on S3-
bundles over S2. That is, given two toric contact structures, one can ask the
question: when are they equivalent as contact structures while inequivalent
as toric contact structures? In general this appears to be a difficult problem.
To show that two toric contact structures with the same first Chern class are
contact inequivalent, we use Morse–Bott contact homology. To find inequiv-
alent toric contact structures that are contact equivalent, we show that the
corresponding 3-tori belong to distinct conjugacy classes in the contacto-
morphism group. We treat a subclass of contact structures which includes
the Sasaki–Einstein contact structures Y p,q studied by physicists with the
anti-de Sitter/conformal field theory conjecture. In this case we give a com-
plete solution to the contact equivalence problem by showing that Y p,q and
Y p′,q′ are inequivalent as contact structures if and only if p 6= p′.
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Introduction

It is well known that contact structures have only discrete invariants; that is, Gray’s
theorem says that the deformation theory is trivial. Apparently, the crudest such
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invariant is the first Chern class of the contact bundle D. Indeed, the mod 2 reduction
of D is a topological invariant, namely the second Stiefel–Whitney class. A much
more subtle and powerful invariant is contact homology, a small part of the more
general symplectic field theory (SFT) of Eliashberg, Givental, and Hofer [Eliashberg
et al. 2000] — which can be used to distinguish contact structures belonging to the
same isomorphism class of oriented 2n-plane bundle.

On the other hand, given two contact structures with the same invariants, when
can one show that they are equivalent? In full generality this appears to be a very
difficult problem. However, if we restrict ourselves to toric contact structures in
dimension five, we can begin to get a handle on things. The problem is of particular
interest when applied to toric contact manifolds since they have been classified
[Lerman 2003a]. Thus, one is interested in when two inequivalent toric contact
structures are equivalent as contact structures. Specializing further we consider all
toric contact structures on S3-bundles over S2. It is well known that such manifolds
are classified by π1(SO(4))= Z2, so there are exactly two such bundles, the trivial
bundle S2

× S3 and one nontrivial bundle X∞ (in the notation of [Barden 1965]).
They are distinguished by their second Stiefel–Whitney class w2 ∈ H 2(M,Z2). The
problem of determining when two such toric contact structures belong to equivalent
contact structures is now somewhat tractable owing to the work of Karshon [2003]
and Lerman [2003b].

The general toric contact structures on S2
× S3 or X∞ depend on four integers

(p1, p2, p3, p4) that satisfy gcd(pi , pj ) = 1 for i = 1, 2 and j = 3, 4. We write
the contact structures as D p, using vector notation p for the quadruple. However,
this general situation appears somewhat intractable, so we consider the special
case when p1 = p2 or p3 = p4, which is more tractable because then a certain
quotient is a Hirzebruch surface with branch divisors. We may as well assume
that p3 = p4. It is often convenient to further divide this case into two subcases,
as follows. We set p = ( j, 2k− j, l, l) for S2

× S3 and p = ( j, 2k− j+1, l, l)
for X∞ with 1 ≤ j ≤ k. We denote either one of these contact structures by
Dp1,p2,l,l,Dj,2k− j,l,l,Dj,2k− j+1,l,l or simply as Dj,k,l , depending on which notation
is more convenient. The first Chern class c1(D) of the contact bundle is a classical
algebraic invariant of the contact structure. For the contact structure D p we will
give an explicit formula for c1(D p) which for Dj,2k− j,l,l and Dj,2k− j+1,l,l equals
2(k − l) and 2(k − l)+ 1, respectively. Using contact homology we show that
even if Dj,k,l and Dj ′,k′,l ′ are not distinguished by the first Chern class, they are
inequivalent if k 6= k ′.

Our main result about inequivalence is this:

Theorem 1. The two toric contact structures Dp1,p2,l,l and Dp′1,p
′

2,l
′,l ′ on S2

× S3

or X∞ are inequivalent contact structures if p′1+ p′2 6= (p1+ p2).
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For our main result about equivalence, we need to specialize a bit further. In this
case we require that gcd(p2− p1, l) be constant. We have

Theorem 2. The two contact structures Dp1,p2,l,l and Dp′1,p
′

2,l,l satisfying p′1+ p′2=
p1+ p2 are equivalent if gcd(l, p2− p1)= gcd(l, p′2− p′1).

Recently there has been a great deal of focus on certain toric contact structures
Y p,q with vanishing first Chern class on S2

× S3 discovered by Gauntlett, Martelli,
Sparks, and Waldram [2004a], and used in their study of the anti-de Sitter/conformal
field theory conjecture [Gauntlett et al. 2004b; 2005] (see Chapter 11 of [Boyer
and Galicki 2008] and [Sparks 2011] and references therein). In our notation the
contact structures Y p,q correspond to Dp−q,p+q,p,p. Remarkably our results give a
complete answer to the contact equivalence problem for these structures.

Theorem 3. Let φ denote the Euler φ-function. The toric contact structures Y p,q

and Y p′,q ′ on S2
× S3 belong to equivalent contact structures if and only if p′ = p,

and for each fixed integer p> 1 there are exactly φ(p) toric contact structures Y p,q

on S2
× S3 that are equivalent as contact structures, denoted by Dp. Moreover, the

contactomorphism group of Dp has at least φ(p) conjugacy classes of maximal
tori of dimension three.

A partial result, namely that Y p′,1 and Y p,1 are inequivalent contact structures if
p′ 6= p, was recently given by Abreu and Macarini [2012], and an outline of the
proof of Theorem 3 was recently given by one of us [Boyer 2011a].

As a bonus we also obtain the following results concerning extremal Sasakian
structures:

Corollary 4. For each such contact structure Dp there are φ(p) compatible Sasaki–
Einstein metrics that are inequivalent as Riemannian metrics.

Corollary 5. For both S2
× S3 and X∞ the moduli space of extremal Sasakian

structures has a countably infinite number of components. Moreover, each com-
ponent has extremal Sasakian metrics of positive Ricci curvature whose isometry
group contains T 3.

This corollary follows already from the results of [Pati 2009; 2010; Boyer 2011b],
but Theorem 1 actually gives a much larger class in the sense that there are countably
many new components. As shown in [Boyer 2011b], many of these components
are themselves non-Hausdorff.

Corollary 6. The moduli space of Sasaki–Einstein metrics on S2
× S3 has a count-

ably infinite number of components. Moreover, each such component has Sasaki–
Einstein metrics whose isometry group contains T 3.

This corollary also follows from [Abreu and Macarini 2012].
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1. Contact structures and cones

It is well known that contact geometry is equivalent to the geometry of certain
symplectic cones. However, for certain contact structures there are several cones
that become important, and as we shall see they are all related.

A warning about notation. In contact topology the contact bundle is usually denoted
by ξ , whereas in Sasakian geometry ξ is almost always a Reeb vector field. To
avoid confusion we eschew the use of ξ completely, and use D for the contact
bundle and R for a Reeb vector field.

Contact structures. Recall that a contact structure1 on a connected oriented mani-
fold M is an equivalence class of 1-forms η satisfying η∧ (dη)n 6= 0 everywhere on
M where two 1-forms η and η′ are equivalent if there exists a nowhere-vanishing
function f such that η′ = f η. We shall also assume that our contact structure
has an orientation, or equivalently, the function f is everywhere positive. More
conveniently the contact structure can be thought of as the oriented 2n-plane bundle
defined by D = ker η, and we denote by C+(D) the set of all contact 1-forms
representing the oriented bundle D.

Recall that an almost-complex structure J on D is compatible with the contact
structure if these two conditions hold for any smooth sections X and Y of D:

dη(J X, JY )= dη(X, Y ), dη(J X, Y ) > 0.

It is easy to see that these conditions are independent of the choice of 1-form η

representing D. The space of almost-complex structures that are compatible with
D is contractible which implies that the Chern classes are invariants of the contact
bundle D. In particular, the first Chern class c1(D) will play an important role for us.
Notice also that the pair (D, J ) defines a strictly pseudoconvex almost-CR structure
on M , and a choice of contact form η gives a choice of Levi form — essentially dη.

Also for every choice of contact 1-form η there exists a unique vector field R,
called the Reeb vector field, that satisfies η(R)=1 and R dη=0. Such vector fields
and the orbits of their flows will play a crucial role for us. We can now extend J to
an endomorphism 8 of TM by defining 8|D= J and 8R= 0. The triple (R, η,8)
canonically defines a Riemannian metric on M by setting g = dη◦ (8⊗1l)+η⊗η,
and the quadruple (R, η,8, g) is known as a contact metric structure on M .

Notice that R defines a one-dimensional foliation FR on M , often called the
characteristic foliation. We say that the foliation FR is quasiregular if there is a
positive integer k such that each point has a foliated coordinate chart (U, x) such
that each leaf of FR passes through U at most k times. If k = 1 then the foliation is

1This is not the most general definition of a contact structure, but it suffices in most situations
(compare [Boyer and Galicki 2008, Chapter 6]), and certainly for us here.
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called regular. We also say that the corresponding contact 1-form η is quasiregular
(regular), and more generally that a contact structure D is quasiregular (regular) if
it has a quasiregular (regular) contact 1-form. A contact 1-form (or characteristic
foliation) that is not quasiregular is called irregular. On a compact manifold any
quasiregular contact form is necessarily K-contact, and then the foliation FR is
equivalent to a locally free circle action (compare [Boyer and Galicki 2008, §7.1])
preserving the quadruple (R, η,8, g). This is the case that we are interested in. The
quotient space Z=M/FR is a compact orbifold with a naturally defined symplectic
structure ω and compatible almost-complex structure Ĵ satisfying π∗ω= dη and J
is the horizontal lift of Ĵ , that is, (ω, Ĵ ) defines an almost-Kähler structure on the
orbifold Z. Moreover, η can be interpreted as a connection 1-form in the principal
S1 orbibundle π : M→ Z with curvature 2-form π∗ω.

In this paper we are interested in the case when both J and Ĵ are integrable.
Then the quadruple (R, η,8, g) is a Sasakian structure on M , and (ω, Ĵ ) defines
a is projective algebraic orbifold structure on Z with an orbifold Kähler metric.
This construction has a converse, that is, beginning with a compact almost-Kähler
orbifold one can construct a K-contact structure on the total space of a certain
S1 orbibundle over Z. This is often referred to as the orbifold Boothby–Wang
construction.2 It lies at the heart of the proof of Theorem 2. Indeed, we shall show
the equivalence of certain contact structures by exhibiting a symplectomorphism
between their corresponding quotient orbifolds.

Orbifolds. As just described, orbifolds will play an important role for us in this
paper. We refer to [Boyer and Galicki 2008, Chapter 4] for the basic definitions and
results. Here we want to emphasize several aspects. First, many cohomology classes
that are integral classes on manifolds are only rational classes on the underlying
topological space of an orbifold, in particular, the orbifold first Chern class of a com-
plex line orbibundle or circle orbibundle is generally a rational class. However, not
all rational classes occur as such. To determine which rational classes can be used to
classify line orbibundles, it is convenient to pass to Haefliger’s classifying space BX
(see [Haefliger 1984] and/or [Boyer and Galicki 2008, Chapter 4]) of an orbifold X

where, as with smooth manifolds, all complex line orbibundles correspond to integral
cohomology classes. Let X be a complex orbifold with underlying topological space
X . Then Haefliger’s orbifold cohomology H∗orb(X,Z) equals H∗(BX,Z), which is
generally different than H∗(X,Z), but satisfies H∗orb(X,Z)⊗Q= H∗(X,Z)⊗Q.
So, for example, we obtain an integral cohomology class p∗corb

1 (X)∈ H 2
orb(X,Z) for

complex line orbibundles from the rational class corb
1 (X)∈ H 2(X,Q). This amounts

to clearing the order of the orbifold in the denominator. Here p : BX→ X is the

2In [Eliashberg et al. 2000] a contact manifold constructed in this way is called a prequantization
space.
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natural projection. We warn the reader that the orbifold cohomology H∗orb(X,Z) is
not the Chen–Ruan cohomology.

The orbifolds that occur in this paper are of a special type. They are all complex
orbifolds whose underlying space is a smooth projective algebraic variety with an
added orbifold structure. In such cases it is convenient to view an orbifold X as
a pair (X,1) where X is a smooth algebraic variety and 1 is a certain Q-divisor,
called a branch divisor [Boyer et al. 2005; Ghigi and Kollár 2007; Boyer and
Galicki 2008, Chapter 4]. We write (X,∅) to denote the algebraic variety X with
the trivial orbifold structure, that is, the charts are just the standard manifold charts.
In this situation, as emphasized in [Ghigi and Kollár 2007], we consider the map
1lX : (X,1)→ (X,∅), which is the identity as a set map, and a Galois cover with
trivial Galois group.

Symplectic cones. Given a contact structure D on M we recall the symplectic
cone C(M)= M ×R+ with its natural symplectic structure (the symplectization of
(M,D)) �= d(r2η), where r is a coordinate on R+. Recall the Liouville vector
field 9 = r∂/∂r on the cone C(M).

Now for each choice of contact form η ∈ C+(D) there is a natural extension of
the almost-complex structure J on D to an almost-complex structure I on the cone
C(M) defined uniquely by

(1) I =8+9⊗ η, I9 =−R,

where 8 is the extension of J to TM defined by 8R = 0. We can also check
that there is a one-to-one correspondence between the compatible almost-complex
structures I on C(M) and elements of C+(D), and that (1) hold, so we recover
the full-contact metric structure for each η ∈ C+(D). Given an almost-complex
manifold, W , with complex structure j , a C∞ map, u, from W into the almost-
complex manifold (N , J ) is called J-holomorphic if du+ J (u)d(u ◦ j)= 0. We
are specifically interested in pseudoholomorphic maps into the cone, that is, maps
which are pseudoholomorphic with respect to the almost-complex structure given
by (1). Such maps from a Riemann surface into C(M) are of particular interest and
are known as pseudoholomorphic curves.

Summarizing, we have these correspondences:

(1) symplectic cone (C(M),�)↔ contact structure (M,D),

(2) almost-Kähler cone (C(M),�, I )↔ contact metric structure (M, R, η,8, g),

(3) almost-Kähler cone (C(M),�, I )with9−iR pseudoholomorphic↔K-contact
structure (M, R, η,8, g), and

(4) Kähler cone (C(M),�, I ) with 9 − i R holomorphic↔ Sasakian structure
(M, R, η,8, g).
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Remark 1.1. In the sequel when we study pseudoholomorphic curves, it is cus-
tomary to parametrize the cone by R so that the singularity, which appears at 0
in the parametrization above, appears at −∞ instead. This amounts to choosing
�= d(erη) for the symplectic form on C(M).

Sasakian structures. The contact structures considered in this paper are all of
Sasaki type, that is, there is a contact form η and compatible metric g such that
S = (R, η,8, g) is a Sasakian structure on M . In this case not only is the cone
C(M) discussed above Kähler, but the geometry transverse to the characteristic
foliation FR is also Kähler. This gives rise to a basic cohomology ring H∗B(FR)

(see [Boyer and Galicki 2008, §7.2]), and a transverse Hodge theory. This gives
basic Chern classes ck(FR) which, if (R, η,8, g) is quasiregular, are the pullbacks
of the orbifold Chern classes corb

k (Z) on the base orbifold Z. In particular we are
interested in the basic first Chern class c1(FR) ∈ H 1,1

B (FR). A Sasakian structure
S = (R, η,8, g) is said to be positive (negative) if its basic first Chern class
c1(FR) can be represented by a positive (negative)-definite (1, 1)-form. It is null if
c1(FR)= 0, and indefinite otherwise. It follows from [Boyer 2011b, Lemma 5.1]
that all Sasakian structures occurring in toric contact structures of Reeb type are
either positive or indefinite. We mention that these types occur in rays, that is,
performing a transverse homothety (see [Boyer and Galicki 2008, p. 228]), preserves
the type.

The Sasaki cone. Let CR(D, J ) denote the group of almost-CR transformations
of (D, J ) on M . If M is compact, it is a Lie group which is compact except when
(D, J ) is the standard CR structure on the sphere S2n+1 by, in various stages, a
theorem of Frances, Lee, and Schoen (see [Boyer 2013]). We let cr(D, J ) denote
the Lie algebra of CR(D, J ). Recall [Boyer et al. 2008] that the subset

cr+(D, J )= {X ∈ cr(D, J ) | η(X) > 0}

is independent of the choice of η ∈ C+(D) and is an open convex cone (without the
cone point) in cr(D, J ). Now the adjoint action of the group CR(D, J ) on its Lie
algebra leaves cr+(D, J ) invariant, and the quotient space

κ(D, J )= cr+(D, J )/CR(D, J )

is known as the (reduced) Sasaki cone of (D, J ). One should think of κ(D, J ) as
the moduli space of K-contact structures associated to the strictly pseudoconvex
almost-CR structure (D, J ). In the case that the almost-CR structure is integrable,
κ(D, J ) is the moduli space of Sasakian structures associated to (D, J ). It is often
convenient to work with the unreduced Sasaki cone given by choosing a maximal
torus T of CR(D, J ). Then the unreduced Sasaki cone is t+(D, J )= t∩cr+(D, J )
where t is the Lie algebra of T .
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Of course, many contact structures do not have a Sasaki cone. In fact, a contact
structure has a nonempty Sasaki cone if and only if it is of K-contact type. It
is important to realize that the Sasaki cone depends on the choice of transverse
almost-complex structure J . Indeed by changing J in a given K-contact structure,
we can have more than one Sasaki cone. These occur in bouquets related to the
conjugacy classes of maximal tori in the contactomorphism Con(M,D) of (M,D)
[Boyer 2011b; 2013].

The moment cone. Now let T be a torus subgroup of Con(M,D), and let t be its
Lie algebra. Consider the annihilator Do of D which is a trivial real line bundle
over M . The orientation on D allows us to write Do

\ {0} =Do
+
∪Do

−
, and we can

identify Do
+
≈ M ×R+ = C(M). Then the contact moment map ϒ :Do

+
→ t∗ is

defined by

(2) 〈ϒ(x, p), τ 〉 = 〈p, τx 〉,

where τ ∈ t and τx denotes the fundamental vector field associated to τ at the point
x . The moment cone C(ϒ) is defined [Lerman 2003a] as the union of the image
set with the cone point, that is,

(3) C(ϒ)= ϒ(Do
+
)∪ {0}.

By averaging over T we can choose a T-invariant contact form η which gives an
equivariant moment map µη : M→ t∗ satisfying

(4) µη = ϒ ◦ η.

Again by averaging we can choose an almost-complex structure J that is T-invariant,
so t is an Abelian subalgebra of cr(D, J ). Furthermore, the contact form η is
K-contact (with respect to J ) if and only if its Reeb vector field Rη lies in the Lie
algebra t. In this case we also say that the torus action is of Reeb type [Boyer and
Galicki 2000a]. It is easy to see that this is equivalent to the existence of an element
τ ∈ t such that η(τ) is strictly positive on M . When the contact structure D is of
Reeb type C(ϒ) is a convex rational polyhedral cone, and we have the following
result of Lerman [2003a].

Lemma 1.2. A T-invariant contact form η is K-contact if and only if the image
µη(M) lies in the intersection of a hyperplane Hη with the moment cone C(ϒ).
Moreover, in the K-contact case the intersection Pη= Hη∩C(ϒ) is a simple convex
polytope which is rational if and only if η is quasiregular.

The hyperplane Hη is called the characteristic hyperplane.
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2. Toric contact structures of Reeb type

Toric contact structures on manifolds of dimension greater than three come in two
types, those where the action of the torus is free, and those where it is not [Banyaga
and Molino 1993; Lerman 2003a]. The latter contain an important special subclass
known as toric contact structures of Reeb type [Boyer and Galicki 2000a]. These are
precisely the toric contact where the torus action is not free and the moment cone
contains no nonzero linear subspace. When the moment cone contains a nontrivial
linear subspace, the toric contact manifold will have infinite fundamental group.
Thus, any toric contact structure on an S3-bundle over S2 must be of Reeb type, and
these correspond precisely to convex polyhedral cones in the dual of the Lie algebra
of the torus that are cones over a polytope [Boyer and Galicki 2000a; Lerman 2003a].

Definition 2.1. A toric contact manifold (M,D,A) is a contact manifold of di-
mension 2n+ 1 together with an effective action of a torus T of dimension n+ 1
that leaves the contact structure invariant, that is, if A : T ×M→ M denotes the
action map then A∗D=D.

By averaging over T we can always find a contact 1-form η representing D such
that A∗η= η. In this case we also have A∗R = R for the Reeb vector field. A toric
contact manifold is said to be of Reeb type if there is a contact form η ∈ C+(D)

whose Reeb vector field lies in the Lie algebra t of T .
Two toric contact manifolds (M,D,A) and (M ′,D′,A′) are said to be equivari-

antly equivalent (or equivalent toric contact manifolds) if there exists a contacto-
morphism between them that conjugates the torus actions A and A′. Toric contact
manifolds were classified in [Lerman 2003a]. In this paper we are interested in
inequivalent toric contact manifolds that are equivalent as contact manifolds. In
this case the tori generated by the actions A and A′ belong to distinct conjugacy
classes in the contactomorphism group Con(M,D). Furthermore, to each such
conjugacy class there is an associated toric CR structure (D, J ) which by [Boyer
2013, Theorem 7.6] is unique up to biholomorphism.

Contact reduction. It is well known (see [Boyer and Galicki 2000a; Lerman
2003a]) that every contact toric structure of Reeb type can be obtained by symmetry
reduction of the standard sphere by a compact Abelian group A, and that this
is equivalent to the symplectic reduction of the standard symplectic structure on
CN
\ {0} by a compact Abelian group which commutes with the action of dilations

of the cone. For this one must choose the zero level set of the toral moment map.
This equivalence can be described by the commutative diagram

(5)
S2N−1
w

//

��

CN
\ {0}oo

��
M2n−1 // C(M2n−1),oo
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with dim A = N − n. See [Boyer and Galicki 2008, p. 293].

Lemma 2.2. Let M be an S3-bundle over S2. Every toric contact structure on M
can be obtained by contact circle reduction of the standard contact structure on S7.

Proof. As stated above, every compact toric contact manifold of Reeb type can be
obtained by symmetry reduction of the standard sphere S2N−1 by a compact Abelian
group A [Boyer and Galicki 2000a; Lerman 2003a]. Now by the homotopy exact
sequence M is simply connected and π2(M) = Z. By a result of Lerman [2004]
π1(M) = π0(A) and π2(M) = π1(A) = Zdim T . Thus, A is a torus of dimension
one, that is, a circle. Since n = 3, N = n+ dim A= 4, so M is obtained by contact
reduction from S7. �

Remark 2.3. It is well known that there are exactly two S3-bundles over S2, dis-
tinguished by their second Stiefel–Whitney class, the trivial bundle S3

× S2 and the
nontrivial bundle denoted by X∞ in the Barden–Smale classification [Barden 1965]
of simply connected 5-manifolds. We will show their relation with the reduction
parameters in Theorem 2.6.

We now describe this reduction. First, the standard T 4 action on C4 is z j 7→ eiθj z j ,
and its moment map ϒ4 : C

4
\ {0} → t∗4 = R4 is given by

(6) ϒ4(z)= (|z1|
2, |z2|

2, |z3|
2, |z4|

2).

Now we consider the circle group T ( p) acting on C4
\ {0} by

(7) (z1, z2, z3, z4) 7→ (ei p1θ z1, ei p2θ z2, e−i p3θ z3, e−i p4θ z4),

where p denotes the quadruple (p1, p2, p3, p4) with pi ∈ Z+ and we assume
gcd(p1, p2, p3, p4)= 1. We have an exact sequence of commutative Lie algebras

(8) 0→ t1( p)→ R4 $̃
→ t3( p)→ 0,

where t1( p) is the Lie algebra of T ( p) generated by the vector field L p = p1 H1+

p2 H2− p3 H3− p4 H4.
Dualizing (8) gives

(9) 0→ t∗3( p) $̃
∗

→ (R4)∗→ t∗1( p)→ 0.

The moment map ϒ1 : C
4
\ {0} → t∗1 = R for this action is given by

(10) ϒ1(z)= p1|z1|
2
+ p2|z2|

2
− p3|z3|

2
− p4|z4|

2.

Now consider the 1-form

(11) η0 =−
i
2

n∑
j=0

(z j dz̄ j − z̄ j dz j )
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on C4
\ {0} together with the vector field

(12) R p =
∑

j

pj Hj

where Hj =−i(z j ∂/∂z j − z̄ j ∂/∂ z̄ j ). Imposing the constraint η0(R p)= 1 gives S7

represented as
∑

j pj |z j |
2
= 1. Then η0 pulls back to a contact form on S7, also

denoted by η0, with Reeb vector field R p = p1 H1 + p2 H2 + p3 H3 + p4 H4. By
a change of coordinates one easily sees that this represents the standard contact
structure on S7.

So the zero level set ϒ−1
1 (0) is diffeomorphic to a cone over S3

× S3, or equiva-
lently restricting to S7, the zero level set of µη0 is S3

× S3, represented by

(13) p1|z1|
2
+ p2|z2|

2
=

1
2 , p3|z3|

2
+ p4|z4|

2
=

1
2 .

The action of T ( p) is free on this zero set if and only if gcd(pi , pj ) = 1 for
i = 1, 2 and j = 3, 4. So assuming these gcd conditions our reduced contact
manifold is the M p = (S3

× S3)/T ( p) whose contact form is the unique 1-form
η p satisfying ι∗η0 = ρ

∗η p, where ι : µ−1
η0
(0)→ S7 and ρ : µ−1

η0
(0)→ M p are the

natural inclusion and projection, respectively. In order to identify M p we consider
the T 2( p) action on µ−1

η0
(0) ≈ S3

× S3 generated by the S1 action (7) together
with the S1 action generated by the Reeb vector field R p. To guarantee a smooth
quotient we have:

Definition 2.4. We say that the quadruple p= (p1, p2, p3, p4) of positive integers
is admissible if gcd(pi , pj ) = 1 for i = 1, 2 and j = 3, 4. We denote the set of
admissible quadruples by A.

Let us describe some obvious equivalences. We can interchange the coordinates
z1↔ z2, likewise z3↔ z4. Thus, without loss of generality we can assume that
p1 ≤ p2 and p3 ≤ p4. We can also interchange the pairs (z1, z2) and (z3, z4). It is
also convenient to set k = gcd(p1, p2) and l = gcd(p3, p4) and define (p1, p2)=

k( p̄1, p̄2) and (p3, p4)= l( p̄3, p̄4) with gcd( p̄1, p̄2)= gcd( p̄3, p̄4)= 1. Note that
p ∈ A implies gcd(k, l) = 1. We will need the “standard” Kähler forms on the
weighted projective spaces for which we take the Bochner-flat Kähler forms of
area 2 described in [Bryant 2001; David and Gauduchon 2006; Gauduchon 2009].
We denote the corresponding Kähler forms by ω p̄1, p̄2 and ω p̄3, p̄4 . We note that these
Kähler forms are just those obtained by quotienting from the weighted Sasakian
3-sphere.

Lemma 2.5. Let p be admissible. Then quotient space of µ−1
η0
(0)≈ S3

× S3 by the
T 2( p) action is the orbifold CP( p̄1, p̄2)×CP( p̄3, p̄4). Moreover, the cohomology
class in H 2

orb(CP( p̄1, p̄2)× CP( p̄3, p̄4),Z) of this orbibundle is the class of the
Kähler form ω p = lω p̄1, p̄2 + kω p̄3, p̄4 .
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Proof. The T 2( p) action on S3
× S3 splits as a weighted S1 action on each factor.

Setting k = gcd(p1, p2) and l = gcd(p3, p4), we see after reparametrizing that the
quotient of the first factor is CP( p̄1, p̄2), and similarly for the second factor.

We have an exact sequence of groups

0→ T ( p)→ T 2( p)→ S1(R p)→ 0,

where S1(R p) is the circle generated by the Reeb vector field R p. Thus, we have
the commutative diagram

(14)

S3
× S3

π1×π2

��

ρ

**
M p.

πtt
CP( p̄1, p̄2)×CP( p̄3, p̄4)

We want to determine the integral orbifold first Chern class (Euler class) of the S1

orbibundle given by π . That is, we look for the class aα+bβ ∈ H 2
orb(CP( p̄1, p̄2)×

CP( p̄3, p̄4),Z) which transcends to the zero class on M p, where α and β are
primitive classes in each factor. (See [Boyer and Galicki 2008, Chapter 4] for a
discussion of these orbifold classes.) For this we take α=[ω p̄1, p̄2], and β=[ω p̄3, p̄4].
Now according to the action (7) the circle wraps around k times on the first factor
and l times with the reverse orientation on the second. So if we take the Kähler
form to be

(15) ω p = lω p̄1, p̄2 + kω p̄3, p̄4,

its class pulls back to zero under π , since π∗[ω p̄1, p̄2] = kγ and π∗[ω p̄3, p̄4] = −lγ ,
where γ is a generator of H2(M p,Z)≈ Z. �

The first Chern class and diffeomorphism types. In this subsection we relate the
diffeomorphism type of our manifolds M to the reduction parameters p. We do this
by giving a formula for the first Chern class of the contact bundle in terms of p.

Theorem 2.6. M p is diffeomorphic to S2
× S3 if p1+ p2− p3− p4 is even, and

diffeomorphic to X∞, the nontrivial S3-bundle over S2, if p1+ p2− p3− p4 is odd.

Proof. We know from the reduction procedure and Lemma 2.2 that M p is simply
connected and π2(M p) = Z. So by the Barden–Smale classification of simply
connected 5-manifolds M p is determined by its second Stiefel–Whitney class
w2(M). Moreover, since TM p splits as D p plus a trivial line bundle, w2(M) is
the mod 2 reduction of c1(D). So the theorem will follow immediately from the
following lemma. �
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Lemma 2.7. The first Chern class of the contact bundle D p = ker η p on M p is
given by

c1(D p)= (p1+ p2− p3− p4)γ,

where γ is the positive generator of H 2(M p,Z)≈ Z.

Proof. We begin by computing the orbifold first Chern class of

CP( p̄1, p̄2)×CP( p̄3, p̄4).

From [Boyer and Galicki 2008, Chapter 4] we see that p∗corb
1 is given by

(16) ( p̄1+ p̄2)[ω p̄1, p̄2]+( p̄3+ p̄4)[ω p̄3, p̄4] ∈ H 2
orb(CP( p̄1, p̄2)×CP( p̄3, p̄4),Z),

which pulls back to the basic first Chern class c1(FR p) in the basic cohomology
group H 2

B(FR p) under the natural projection π : M p→ CP( p̄1, p̄2)×CP( p̄3, p̄4)

by the circle action of R p. Now we have an exact sequence

0

��

H 2(M p,Z)

��

0 // H 0
B(FR p)

δ
// H 2

B(FR p)
ι∗
// H 2(M p,R) // · · ·

(see [Boyer and Galicki 2008, p. 245]), with ι∗c1(FR p)=c1(D p)R and δa=a[dη p]B .
So c1(D p)R is c1(FR p)mod [dη p]B , where η p is the contact form on M p. Now
since π∗ω p = dη p, we know from the proof of Lemma 2.5 that π∗[ω p̄1, p̄2] = kγ
and π∗[ω p̄3, p̄4] = −lγ holds over Z. Thus, since π1(M p)= {1l} we have over Z

c1(D p)= ( p̄1+ p̄2)π
∗
[ω p̄1, p̄2] + ( p̄3+ p̄4)π

∗
[ω p̄3, p̄4]

= k( p̄1+ p̄2)γ − l( p̄3+ p̄4)γ = (p1+ p2− p3− p4)γ. �

It is easy to see that the argument in [Lerman 2003b] for S2
×S3 can be generalized

to the nontrivial bundle X∞ to give the following.

Proposition 2.8. As a complex vector bundle, D p is determined uniquely by
p1+ p2− p3− p4.

3. Contact homology

Here we apply pseudoholomorphic curve theory as briefly described on page 282 to
the Morse–Bott formulation of contact homology. The study of pseudoholomorphic
curves in symplectic manifolds was initiated in the seminal paper by Gromov [1985].
Since then, these objects have become a basic tool in understanding symplectic
geometry and topology, perhaps most notably in the work of Floer, which is the main
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motivation behind symplectic field theory (SFT) and contact homology. The latter
is a small part of the larger SFT of Eliashberg, Givental, and Hofer [Eliashberg et al.
2000]. The original idea, inspired by Floer homology, was to create a homology
theory from the chain complex generated by closed orbits of the Reeb vector
field.

Given a contact manifold (M,D), we choose a contact form η for D, and an
almost-complex structure J on the symplectization of M which extends the almost-
complex structure on D such that the Reeb vector field is the purely imaginary
direction. For the moment, assume that periodic orbits of the Reeb vector field
are isolated. This is a generic property of contact forms, and one can always find
such a Reeb field for any contact structure. We consider the set of all closed Reeb
orbits. We consider two orbits as different if they have different periods, even if they
geometrically trace out the same set. Orbits with period one are often called simple
orbits. We will consider the chain complex whose generators are periodic orbits of
the Reeb vector field. The grading is given by the Robbin–Salamon index, which
in the case of isolated orbits is the same as the well-known Conley–Zehnder index
[Robbin and Salamon 1993]. The differential is given by an algebraic count of rigid
J-holomorphic curves from a twice-punctured two-sphere into the symplectization
which are asymptotically cylindrical over closed Reeb orbits, that is, they are curves
for which there exist polar coordinates about each puncture, such that for sufficiently
small radius the curve behaves like a cylinder over a closed Reeb orbit. If we look at
such a curve in standard coordinates in the symplectization, we call punctures which
correspond to limits as the real coordinate approaches positive infinity positive
punctures; the others are called negative punctures [Hofer et al. 1996; Eliashberg
et al. 2000].

Both the Robbin–Salamon indices arise from the Maslov index for a path of
symplectic matrices. We compute the index of a closed Reeb orbit as follows: first,
let us assume that H1(M,Z)= 0 and consider a closed Reeb orbit γ together with
an embedded Riemann surface 6 ⊂ M such that ∂6 = γ . To find the relevant
path of symplectic matrices with which to compute the Maslov index, one then
pulls back the contact bundle D to 6, which then admits a trivialization, since it
is a symplectic vector bundle over a Riemann surface with boundary. Then one
considers the linearized Reeb flow about a Reeb orbit. This linearized flow gives the
desired path of symplectic matrices. It is important to understand that in a contact
manifold, these indices depend on the choice of capping disk used to trivialize D. In
particular, if the closed Reeb orbit γ is contractible (which is always the case in this
article), one trivializes D by choosing a capping disk6 of γ . If we consider another
capping surface of the form 6′ = 6#SA where SA represents a two-dimensional
homology class A in M , then the Conley–Zehnder (and Robbin–Salamon) index of
the orbit computed with 6′ will differ from that computed using 6 by twice the
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first Chern class of D evaluated on A, namely

(17) µCZ(γ ;6γ #SA)= µCZ(γ ;6γ )+ 2〈c1(D), A〉.

Thus, the grading depends on the choice of capping surface.
In order to address this dependence one considers the coefficients for contact

homology to be elements in a Novikov ring as follows. Give H2(M,Z) a grading
| · | by setting |A| = −2〈c1(D), A〉 for any A ∈ H2(M,Z). Let R be a submodule
of H2(M,Z) with zero grading. Then the Novikov ring is the graded group ring
Q[H2(M,Z)/R] whose elements are formal power series of the form

∑
i qi eAi ,

where qi ∈ Q and Ai ∈ H2(M,Z)/R. Here as usual the notation eA is used to
encode the multiplicative structure of a commutative ring with unit (see [McDuff
and Salamon 2004, Chapter 11]).

There are some Reeb orbits for which the moduli space of holomorphic curves
in C(M) cannot be given a coherent orientation [Bourgeois and Mohnke 2004] —
these “bad” Reeb orbits must be discarded. Let γ be a Reeb orbit with minimal
period T , and γm be a Reeb orbit that covers γ with multiplicity m, so the period
of γm is mT . The bad orbits are those for which the parity of the even multiples
|γ2m | disagrees with the parity for the odd multiples |γ2m−1|. A Reeb orbit that is
not bad is said to be good.

Now that we have a grading, under favorable circumstances we can define a
graded chain complex C∗ generated by certain closed Reeb orbits with coefficients
in the ring Q[H2(M,Z)/R].

Definition 3.1. We define C∗ to be the graded chain complex freely generated by
all good closed Reeb orbits with coefficients in the Novikov ring Q[H2(M,Z)/R].
By convention, we shift all degrees by n− 2, where 2n+ 1 is the dimension of the
contact manifold. The contact homology, denoted HC(D), is the homology of the
differential graded algebra C∗ with differential given by (18).

The differential ∂ of this chain complex is given by an algebraic count of
pseudoholomorphic curves in the symplectization C(M) of M which come in
one-dimensional families. Explicitly, for γ a good closed orbit of the Reeb vector
field, M simply connected, and A a two-dimensional homology class, the differential
is given by the formula

(18) ∂γ =
∑

A∈H2(M,Z)

∑
γ ′

1
κγ

nγ,γ ′,AeAγ ′,

where A denotes the image in H2(M,Z)/R of the homology class A, κγ is the
multiplicity of the Reeb orbit γ , and nγ,γ ′ is the algebraic count of elements in the
moduli space MA(γ, γ ′) of J-holomorphic curves into the symplectization of M
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which are asymptotically cylindrical over the closed Reeb orbits γ , γ ′ representing
the homology class A.

Note that nγ,γ ′,A is nonzero only if the dimension of this moduli space is 1.
This indeed gives a reasonable homology. The proofs that ∂2

= 0 and that the
homology does not depend on choices of a contact form or an almost-complex
structure come from analysis of the boundary of moduli spaces of rigid curves
and are discussed in [Eliashberg et al. 2000]. These results, in general, depend
on abstract transversality results for the ∂̄J operator. We will make the standing
assumption that such transversality can be achieved, either by abstract perturbations
or by the amenable geometry of the situation at hand. The signs which appear in the
algebraic count depend on coherent orientations of the moduli space are explained
in [Bourgeois and Mohnke 2004].

Remark 3.2. Due to the lack of compactness of moduli spaces of pseudoholomor-
phic cylinders, ∂2 is not always zero. If it is, then the homology is often called
cylindrical contact homology. Indeed, the boundary of the compactification of this
space can, in general, contain curves with more than two punctures. However, we
can instead consider the supercommutative algebra generated by periodic orbits.
This means that instead of counting only cylinders, we now count curves with an
arbitrary number of negative punctures. In this paper, it suffices to count cylinders.

Morse–Bott contact homology. In the above constructions we needed to make
an assumption that the closed Reeb orbits are isolated in order to get a good
index, that is, we have to assume that the Poincaré return map constructed about
any periodic Reeb orbit has no eigenvalue equal to 1. This condition is generic;
however, many natural contact forms, especially those which arise from circle
orbibundles, are as far from generic as possible. In order to calculate contact
homology for such manifolds one must make some sort of perturbation. It is only
in very nice situations that this is not extremely difficult. The Morse–Bott version
[Eliashberg et al. 2000; Bourgeois 2002; 2003] allows us to use the symmetries
of nice contact structures and symmetric almost-complex structures, by exploiting
rather than excluding nonisolated orbits. This is accomplished by considering Morse
theory on the quotient space, and relating critical points and gradient trajectories
of a Morse function to pseudoholomorphic curves in the symplectization of the
contact manifold. Since toric contact manifolds of Reeb type are always total spaces
of circle orbibundles admitting Hamiltonian actions of tori and they admit nice
Morse functions, the Morse–Bott formalism works quite well for us. We follow
a combination of [Eliashberg et al. 2000] and [Bourgeois 2002] in what follows,
applying the Morse–Bott setup to our special case.

Let (M,D) be a contact manifold with contact form η, and consider the action
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functional A : C∞(S1
;M)→ R, defined by

(19) A(γ )=

∫
γ

η.

The critical points of A are the closed orbits of the Reeb vector field of η. The
action spectrum is defined to be

σ(η)= {r ∈ R | r = A(γ )}

for γ a periodic orbit of the Reeb vector field. Given T ∈ σ(η), define

NT = {p ∈ M | φT
p = p}, ST = NT /S1,

where S1 acts on M via the Reeb flow. Then ST is called the orbit space for
period T .

When M is the total space of an S1-orbibundle the orbit spaces are precisely the
orbifold strata. This is a special case of a contact form being of Morse–Bott type:

Definition 3.3. A contact form, η is said to be of Morse–Bott type if

(i) The action spectrum σ(η) is discrete.

(ii) The sets NT are closed submanifolds of M, such that the rank of dη|NT is
locally constant and

Tp(NT )= ker(dφT − I ).

Remark 3.4. These conditions are the Morse–Bott analogues for the functional on
the loop space of M .

Rather than set up Morse–Bott contact homology in full generality, let us do
this for the special case of an S1-orbibundle. In this case the contact form is of
Morse–Bott type [Bourgeois 2002]. Let T1, . . . , Tm be all possible simple periods
for closed Reeb orbits. Let φt

x denote the flow of the Reeb vector field. Let

NTj = {x ∈ M | φTj
x = x}, STj = NTj /S1.

For each j , we choose a Morse function f j on STj and, using appropriate bump
functions, build a Morse function f on all of M which descends under the quotient
by the Reeb action to each orbit space. Now, we perturb η by

(20) η f = (1+ ε f )η.

For almost all ε, the closed Reeb orbits of η f are isolated, and, for bounded action,
they correspond to critical points of f . Note that the Reeb orbits of η within each
stratum all have the same Robbin–Salamon index. The following formula [Cieliebak
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et al. 1996; Bourgeois 2002] computes the Conley–Zehnder index of η f in terms
of the Robbin–Salamon index of any Reeb orbit in a particular orbit space:

(21) |γ | = µCZ(γ )= µRS(γT )−
1
2 dim(STj )+ indp( f j ).

We now have a contact form with isolated closed Reeb orbits. Since these orbits
correspond to critical points of a Morse function, we may think of the generators of
contact homology either as isolated orbits, or as critical points of a Morse function
on each orbit space. This gives the generators and their gradings for the chain
complex (or differential graded algebra) of Morse–Bott contact homology when
we add, by convention, the degree shift n− 2, which is 0 in the five-dimensional
case. We now describe the differential ∂; however, we shall be very brief, as the
differential vanishes identically in our case, as proven in Theorem 3.9.

Consider orbit spaces ST1 and ST2 , for T1, T2 ∈ σ(η). Now define the moduli
space MJ (ST1, ST2) to be the space of pseudoholomorphic curves (with respect to
J ) into C(M) with one positive and one negative puncture which are asymptotically
cylindrical over a closed Reeb orbit in ST1 near the positive puncture, and to ST2

near the negative puncture. We require, moreover, that these curves have finite,
nonzero area.

In the case at hand the differential splits into two pieces:

(22) ∂p = ∂MSW p+ dCHS,

where ∂MSW is the differential on the Morse–Smale–Witten complex determined
by our choice of Morse function on the orbit space S containing p, and roughly
speaking dCHS gives a count of rigid pseudoholomorphic curves in MJ (S, S′). Here
S′ is some orbit space with action less than that of S. The count is over all S′ such
that the dimension of MJ (S, S′) is equal to 1. We refer to [Bourgeois 2002; Pati
2009] for more details. The following proposition shows the vanishing of dCH for
orbibundles.

Proposition 3.5. When M is the total space of an orbibundle of a symplectic
orbifold, then there are no rigid holomorphic curves into the symplectization of M.

Proof. There is an effective R-action, as well as that of a circle on the moduli spaces;
hence, these spaces have dimension at least two. So they can never be rigid. �

Remark 3.6 (on transversality). Though in some special cases we can use the nice
properties of toric manifolds to determine regularity of the moduli spaces of curves
defined above, the proof of invariance of contact homology as well as the proof
that the Morse-Bott complex actually computes the homology of the perturbed
complex requires the use of abstract perturbations of the ∂̄J operator. We believe
that the results of Hofer, Wysocki, and Zehnder’s polyfold theory will provide a
good framework for this problem; however, we make it a standing assumption that
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there exists an abstract perturbation of the ∂̄J operator which makes its linearization
surjective. Proposition 3.5 requires no transversality result for the ∂̄J operator since
we can get at least these two dimensions without any appeal to abstract Fredholm
theory. This does not make the transversality problem go away, however, since it is
still needed in proofs of invariance, and independence of choices. Moreover, when
one wishes to analyze higher-dimensional moduli spaces by adding marked points,
one needs the relevant dimension formulae to hold, although this can be handled
in many cases using the fact that J can be chosen to be integrable in these toric
situations. We should also mention that, even without the transversality assumption
mentioned here, we can obtain a weaker version of invariance, as we shall see later.

Contact homology for toric contact 5-manifolds. Let us consider the differential
graded algebra discussed above. We start with the set of critical points of a Morse
function as picked earlier. Since we are working with toric manifolds of Reeb type
in dimension 5 we actually know that the fixed points of the T 3-action are isolated,
hence the norm squared of the symplectic moment map on Z is a perfect Morse
function.

We are interested in the orbit structure of the T 3( p) action on M p.

Lemma 3.7. Consider the toric contact structure D p on M p, an S3-bundle over
S2. There are exactly four one-dimensional simple closed orbits under the action of
T 3( p). Moreover, these four orbits are Reeb orbits for all Reeb fields in the Sasaki
cone t+3 ( p), as well as for a Reeb vector field in con(M p, η p) that is arbitrarily
close to one in the Sasaki cone. Moreover, for a generic such Reeb vector field these
are the only closed orbits.

Proof. We have an exact sequence of groups,

{0} → T ( p)→ T 4
→ T 3( p)→ {0},

and we consider the action of T 3( p) on the level set given by (13) thought of as
T 4/T ( p). If z1 6= 0, then we can choose θ = θ1 of the standard T 4 angles. The
remaining T 3 orbit will be one-dimensional only if z2 = 0 and one of z3 or z4 is
zero. This gives two closed S1-orbits. On the other hand if z1 = 0, then we must
have z2 6= 0, so we choose θ = θ2, and as above this gives exactly the two close
orbits with either z3 or z4 vanishing. Clearly, any Reeb vector field in t+3 leaves
these Reeb orbits invariant, and since every Reeb vector field in the Sasaki cone is
arbitrarily close to a quasiregular one, the last statement follows from a result of
Bourgeois [2002]. �

Let t2( p) denote the Lie algebra of T 2( p). It is generated by the two vector
fields L p and R p. We have an exact sequence of Lie algebras

(23) {0} → t2( p)→ t4
ρ
→ g2( p)→ {0},
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where g2( p) is generated by the vector fields H 1 = ρ(H1) and H 3 = ρ(H3). We
have a toric symplectic orbifold

(24) (CP( p̄1, p̄2)×CP( p̄3, p̄4), ω p),

where the symplectic form is given by (15), and the torus G2( p) is generated by
the Lie algebra g2( p). The moment map

µ2 : CP( p̄1, p̄2)×CP( p̄3, p̄4)→ g2( p)∗

is given by µ2(z)= (|z1|
2, |z3|

2).

Proposition 3.8. The function f = |µ2|
2 is a perfect Morse function on the quotient

M p/S1
≈ CP( p̄1, p̄2)× CP( p̄3, p̄4) whose critical points are precisely the four

Reeb orbits of Lemma 3.7.

Proof. Since the critical points are isolated f is a Morse function, and Morse–Bott
functions that are the norm squared of a moment map are perfect [Lerman and
Tolman 1997]. It is easy to check directly (see also [Kirwan 1984, Lemma 3.1]),
using the relations

H1 ≡ aH2 mod g2( p), H3 ≡ bH4 mod g2( p),

for some a, b ∈ R, that f has precisely the four critical points

[1, 0]× [1, 0], [1, 0]× [0, 1], [0, 1]× [1, 0], [0, 1]× [0, 1],

and these correspond to the four Reeb orbits of Lemma 3.7. �

Theorem 3.9. In the case of circle reductions in dimension five, which have four
Reeb orbits fixed by the T 3-action, the differential in Morse–Bott contact homology
vanishes. Moreover, the elements of contact homology HC(D) are given by the
good Reeb orbits including multiplicity. More precisely, it is given by the homology
groups of each stratum of its orbit space. The degree of each generator is given
by (21).

Proof. By Proposition 3.5 there are no rigid holomorphic curves. So dCH vanishes.
But also by Proposition 3.8 |µ|22 is a perfect S1-invariant Morse function, and the
Morse–Smale–Witten differential ∂MSW vanishes as well. Thus, the full differential
(22) vanishes. It then follows that the elements of HC(D) are simply the chains
of the complex C∗, that is, good closed Reeb orbits including multiplicity. For
each period of the Reeb flow we get a different Reeb orbit, corresponding to some
critical point of f . Since f is perfect, these critical points correspond not just to
chains but to actual homology classes. The statement about the grading follows
from (21). �
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The next proposition, though not a general proof of invariance of contact homol-
ogy, does tell us that we do get an invariant in the world of S1-orbibundles, whose
bases admit a perfect Morse function.

Proposition 3.10. Let M be a quasiregular contact manifold, such that its quotient
by the Reeb vector field is a symplectic orbifold which admits a perfect Morse
function. Then if M ′ is contactomorphic to M , is quasiregular, and the quotient
by its Reeb vector field is also a symplectic orbifold which admits a perfect Morse
function, then the two contact homology algebras are isomorphic.

Proof. The conditions on M , M ′, and their bases ensure that all parts of the
differential vanish. Therefore we may construct a map between these two algebras
as in [Eliashberg et al. 2000] counting rigid curves in a symplectic cobordism
between M and M ′. The main difficulty is in seeing that this map is a chain map.
However, since the differentials vanish on both ends, the map is trivially a chain
map, hence the two contact homology algebras are isomorphic. �

The next proposition gives an nonequivalence statement about toric contact
manifolds of type (p1, p2, l, l).

Proposition 3.11. Let (p1, p2, l, l) and (p′1, p′2, l
′, l ′) be two admissible 4-tuples.

If p1+ p2 6= p′1+ p′2, then the corresponding contact manifolds cannot be contacto-
morphic.

The proof of Proposition 3.11 is essentially an index calculation in light of
Theorem 3.9. Let us first collect some information about the contact structures in
question in convenient coordinates. To compute the grading on contact homology
it is useful to consider a special case of the join construction [Boyer et al. 2007].
Since we can view our toric sphere bundles as quotients of S3

× S3 we have a
convenient way to compute indices. This is of particular interest for strata of positive
codimension, since the orbits in the codimension-zero stratum behave exactly as
in the regular case. To define the join construction we start with two quasiregular
contact manifolds, M1 and M2, with contact forms η1 and η2, and bases Z1 and Z2

with symplectic forms ω1 and ω2. Then the product M1×M2 is a T 2-bundle over
Z1×Z2. We take the quotient of M1×M2 by the action of the circle obtained by
gluing together Reeb orbits on each piece, that is,

(25) (z, w) 7→ (eik1θ z, e−ik2θw).

The admissibility conditions of Definition 2.4 are precisely the conditions that
guarantee that the quotient by this action is smooth in which case it yields a new
quasiregular contact manifold with base Z1 × Z2, contact form η1 + η2, contact
distribution given by D1 ⊕D2, and Reeb vector field Rη1 + Rη2 . This contact
structure is exactly the one coming from the principal circle bundle obtained by
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requiring that its curvature form is the pullback of the sum of the two symplectic
forms on each base space. We obtain new Reeb orbits as equivalence classes of
pairs of Reeb orbits, one from each of M1 and M2. When k1 and k2 are different
from 1, we have a similar contact manifold, except the curvature is given by pulling
back k1 and k2 multiples of the symplectic forms, namely dα=π∗(k2ω1+k1ω2). In
this case Reeb orbits in the new total space will correspond to pairs, one wrapping
k1 and the other wrapping k2 times (in addition to the multiplicity of the orbit
as a Reeb orbit in one of the three-spheres). In the following, M1 and M2 are
both standard three-spheres. Index calculations on three-dimensional spheres are
standard; however, we present the details in Lemma 3.12 for completeness and also
to illustrate the inherent role of the orbifold structure.

Let us consider the contact structure on the quotient of the product of two
standard weighted three-spheres with weights p1, p2, p3, and p4. As before we take
k1 = gcd(p1, p2), k2 = gcd(p3, p4), and p̄i = pi/k1 for i = 1, 2, and p̄j = pj/k2

for j = 3, 4. We view this as a product of hypersurfaces in C4 with coordinates
(z1, z2, z3, z4), z j = x j + iyj , subject to the action (25). This manifold is the total
space of an orbibundle over an orbifold S2

× S2 with orbifold singularities at the
products of the north and south poles, and for the products of the north and south
poles with copies of S2. These singularities correspond to setting one or two of the
z j to 0. The Reeb vector field is given by

p1 y1∂x1 − x1 p1∂y1 + p2 y2∂x2 − p2x2∂y4 + p3 y3∂x3 − x3 p3∂y3 + p4 y4∂x4 − p4x4∂y4

and the contact distribution is given by the span of the vectors

−
1
p1

x2∂x1 +
1
p1

y2∂y1 +
1
p2

x1∂x2 −
1
p2

y1∂y2,(26)

−
1
p1

y2∂x1 −
1
p1

x2∂y1 +
1
p2

y1∂x2 +
1
p2

x1∂y2,(27)

−
1
p3

x4∂x3 +
1
p3

y4∂y3 +
1
p4

x3∂x4 −
1
p4

y3∂y4,(28)

−
1
p3

y4∂x3 −
1
p3

x4∂y3 +
1
p4

y3∂x4 +
1
p4

x3∂y4 .(29)

In the following we restrict ourselves to the case where p3 = p4 = k2. To get our
hands on an orbit in the quotient, we must, for each time around the fiber, pick
an appropriate circle out of the fiber of the torus bundle. It is easy to see that the
equivalence relation gives us a circle obtained by wrapping around the first circle
k2 times and around the second circle k1 times. Let us now parametrize the fiber.
We may choose a coordinate for a Reeb orbit by

γ (t)= (0, cos(k2 p̄2t)+ i sin(k2 p̄2t), 0, cos(p2t)+ i sin(p2t)).
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Now when t = 1/ p̄2 we have wrapped around the first orbit k2-times and the second
k1 times. Here the action is 1/p2. This is the smallest action since we have assumed
that p2 > p1. What about when the first orbit wraps around more than once in S3?
Let us see how to look at such an orbit. This corresponds to taking

(30) γ (t)=
(

cos(k2 p̄1t)+ i sin(k2 p̄1t), 0, 0, cos
(

p1

m
t
)
+ i sin

(
p1

m
t
))
,

where m is the multiplicity. Now when t = m/p1, we wrap around the first orbit
mk2 times and the second k1 times. As long as m <min{k2, p1} we do not enter a
higher-dimensional orbit space. Similar considerations remain true for z1 = 0. Let
us compute the Robbin–Salamon index of the orbits (30).

Lemma 3.12. The Robbin–Salamon indices of the orbits in (30) of multiplicity m
are given by

(31) 2k1m+ 2
⌊

mp2/p1
⌋
− 1, 2k1m+ 2

⌊
mp1/p2

⌋
− 1.

Proof. To do this we must choose a disk D with boundary γ . Such a disk can be
written explicitly. We begin by producing a disk in S3

× S3:

(32) (cos(θ), sin(θ)e2π ik2 p̄2t , cos(θ), sin(θ)e2π i p2t/m).

The above disk clearly has boundary γ (the boundary occurs when θ = π/2) and
we have θ ∈ [0, π/2]. To pull back the contact distribution we plug the coordinates
into (26)–(29):

−
1
p1

sin(θ) cos(2π ik2 p̄2t)∂x1+
1
p1

sin(θ) sin(2π ik2 p̄2t)∂y1+
1
p2

cos(θ)∂x2,(33)

−
1
p1

sin(θ) sin(2π ik2 p̄2t)∂x1−
1
p1

sin(θ) cos(2π ik2 p̄2t)∂y1+
1
p2

cos(θ)∂y2,(34)

−
1
p3

sin(θ) cos
(

2π i
p̄2t
m

)
∂x3+

1
p3

sin(θ) sin
(

2π i
p̄2t
m

)
∂y3+

1
p4

cos(θ)∂x4,(35)

−
1
p3

sin(θ) sin
(

2π i
p̄2t
m

)
∂x3−

1
p3

sin(θ) cos
(

2π i
p̄2t
m

)
∂y3+

1
p4

cos(θ)∂y4 .(36)

When θ = π/2, these four vectors become

1
p1
(− cos(2π ik2 p̄2t)∂x1 + sin(2π ik2 p̄2t)∂y1),

1
p1
(− sin(2π ik2 p̄2t)∂x1 − cos(2π ik2 p̄2t)∂y1),

1
p3

(
− cos

(
2π i

p2t
m

)
∂x3 + sin

(
2π i

p2t
m

)
∂y3

)
,

1
p3

(
− sin

(
2π i

p2t
m

)
∂x3 − cos

(
2π i

p2t
m

)
∂y3

)
.
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Disks for the other orbits mapping into branch divisors have a similar expression.
The key point is that we only see vectors corresponding to the coordinates which
have been set to zero. Now we can easily compute the Robbin–Salamon index of
these orbits. Recall that given a path of symplectic matrices, 8(t), a number t is
called a crossing if 8(t) has an eigenvalue equal to 1. To compute the Robbin–
Salamon index of a path of symplectic matrices on [0, T ] one computes

1
2 signature(0(0))+

∑
crossings t

t 6=0,T

signature(0(t))+ 1
2 signature(0(T )).

Here the crossing form is
ø(8̇(t)v, v)

restricted to the subspace on which 8 has eigenvalues equal to 1. In this case
at each crossing the crossing form is just ø(v, J0v), so this gives signature 2 on
each two-dimensional subspace consisting of eigenvectors with eigenvalue 1. At
crossings the vectors above spanning D above become −(1/p1)∂x1, −(1/p1)∂y1,
−(1/ l)∂x3, and −(1/ l)∂y3.

Recall that the linearized Reeb flow is of the form
e2π i p1t 0 0 0

0 e2π i p2t 0 0
0 0 e2π ik2t 0
0 0 0 e2π ik2t

 ,
and each complex block of the matrix looks like[

cos(2πpj t) − sin(2πpj t)
sin(2πpj t) cos(2πpj t)

]
.

The time derivative of each block looks like[
−2πpj sin(2πpj t) −2πpj cos(2πpj t)
2πpj cos(2πpj t) −2πpj sin(2πpj t)

]
.

At crossings these blocks become[
0 −2πpj

2πpj 0

]
.

The crossings which have the first two vectors as 1-eigenvectors occur at integers
multiples of 1/(k2 p1), and those for the second two occur at integer multiples of
k1m/k2. As we saw above the flow splits into two parts, that corresponding to the
first two coordinates and that corresponding to the second two. This means the
second part, for multiplicity m, is 2mk1. Now we add the normal part. For orbits
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of multiplicity m we get contribution 1+ 2bm/p1c. Therefore for multiplicity m
these orbits have Robbin–Salamon index

2k1m+ 2
⌊

mp2/p1
⌋
− 1,

and similarly, setting p2 to zero, we obtain

2k1m+ 2
⌊

mp1/p2
⌋
− 1. �

We shall label these orbits γm,i . With this information we can now prove
Proposition 3.11.

Proof of Proposition 3.11. The goal here is to distinguish contact structures. We
will show that given two 4-tuples as in Proposition 3.11 that the contact homology
algebras cannot be isomorphic. We know that (p2− 1)/p2 > (p1− 1)/p1; hence
the index of γ is 2(p1− 1). This tells us that we have p1− 1+ p2− 1 orbits of
index less than 2(p2− 1).

Theorem 3.9 gives us a complete picture of the contact homology of the manifolds
given by admissible 4-tuples up to knowing the Robbin–Salamon indices. Let us
spell this out in the case (p1, p2, k2, k2). In this case there are essentially two
different kinds of orbit spaces. We have two-dimensional orbit spaces which
project to two-spheres in the base, and we have copies of the whole manifold. The
two-dimensional orbits spaces consist of orbits having action k2m/pi for pi - m.
The four-dimensional orbit spaces consist of orbits of integer action. For each
two-dimensional orbit space, Sk2m/pi , we obtain exactly two orbits contributing to
contact homology with grading difference two. We denote these orbits γ̂m,i , and
γ̌mi corresponding to the maximum and minimum of the Morse function on Sk2m/pi .
For such orbits with action less than 1 we have grading

(37)
|γ̂m,i | = µRS(γm,i )+ 1

|γ̌m,i | = µRS(γm,i )− 1.

For each four-dimensional orbit space we have four generators for contact homology,
again corresponding to critical points. We label these

γ̂m, γ̌m, γ
s1
m , γ

s2
m

for the maximum, minimum, and two saddle points, respectively. With a choice of
disk D projecting to the spherical homology class 6 ∈ H2(Z,Q) we have

(38)
|γ̂m | = µRS(γm, D)+ 2, |γ̌m | = µRS(γm, D)− 2,

|γ s1
m | = µRS(γm, D), |γ s2

m | = µRS(γm, D).

In (38) µRS(γm, D) = 2k2m〈corb
1 (Z), (6)〉. Moreover, for two-dimensional orbit

spaces with action greater than 1, by the catenation property of the Robbin–Salamon
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index, we may decompose the orbit into a part with biggest possible integer action
and a part with action smaller than 1. We then add the indices of these two orbits to
get the Robbin–Salamon index. Note that for these two-dimensional orbit spaces,
the tangential part of the flow is a loop, but the normal does not complete a loop;
this explains the appearance of the summand 1 in the above formulae. Note that,
here, the Robbin–Salamon index is nondecreasing with respect to action. Thus we
may count the number of orbits with index less than 1. This will give a count of
generators of contact homology of index less than 2(p1+ p2+2)−2. From the above
discussion there are p1− 1+ p2− 1 such orbits coming from lower-dimensional
orbit spaces, and then one coming from ǧ1. This gives exactly p1+ p2−1 orbits in
degree less than 2(p1+ p2+ 1). This proves Proposition 3.11. �

Proposition 3.11 applies directly to the Y p,q manifolds. In this case the invariant
is 2p− 1; note that it does not depend on q .

As an application let us use the preceding discussion to distinguish contact
structures on the toric contact 5-manifolds corresponding to the 4-tuple (1, 2k− 1,
l, l) for positive integers k and l such that the tuple (1, 2k− 1, l, l) is admissible.
Then we see that c1(D) = 2k − 2l. Let us fix the first Chern class of the contact
distribution and see what happens. We see then that we must have

k =
c1(D)+ 2l

2
.

Now using Proposition 3.11 we see that there are 2k − 1 generators in contact
homology of degree less than 4k+ 2.

A remark on the regular case. In the regular case the situation is somewhat simpler,
but, on the other hand, there is less information available at first glance. In this
case there is geometrically only one orbit space, Z itself. To get a handle on the
contact homology let us look at the case (k, k, k− c, k− c). This gives a regular
contact manifold with c1(D)= 2c times a generator. We choose a basis L1, L2 of
H2(Z,Z) so that L1 = x S1+ yS2, and L2 lifts to a class which evaluates to 0 under
π∗ø. Both x and y are chosen so that they give action 1 for a disk that projects to
L1. We define x and y as follows. Let m be the smallest number so that mk ≡−1
mod c. Then we define x = (km+ 1)/c and y = x −m. It is easy to see that x and
y satisfy the above properties. With these choices the grading for contact homology
for orbits of action N is given by

|γ̂ | = N (2x + 2y)+ 2, |γ̌ | = N (2x + 2y)− 2, |γ sj
N | = N (2x + 2y).

In this picture, for N = 1, γ̌ gives the smallest possible grading. By varying k,
we obtain infinitely many distinct contact structures whose contact distribution has
the same Chern class.
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Another way to distinguish contact structures. As described in [Eliashberg et al.
2000, §2.9.2], there is another situation where symplectic field theory can be used
to distinguish toric contact structures. The following theorem is a generalization to
smooth orbifolds of [Eliashberg et al. 2000, Proposition 2.9.4]:

Theorem 3.13. Suppose we have two simply connected quasiregular toric contact
manifolds of Reeb type in dimension five, such that each orbifold stratum is nonsin-
gular in the sense that its underlying space is a smooth submanifold. Suppose that
under the quotient of the Reeb action one of the base manifolds has an exceptional
sphere while the other does not, then these two manifolds are not contactomorphic.

Proof. We show that there is an odd element in the contact homology algebra of
one manifold specialized at a class which is not in the other for any specialization.
We assume here that all of the weights of the torus action are greater than 1 for
the manifold containing no exceptional spheres. As in [Eliashberg et al. 2000] the
potential specialized to the Poincaré dual of an exceptional divisor will give the
potential for a standard S3; but then for a chain which lifts to the volume form for
this 3-form there is always a holomorphic curve to kill it as a generator for homology
specialized at this three-class. Hence this homology contains no odd elements. Let
us consider first the case where the base is a manifold. We look at the manifold
containing no exceptional sphere. We must compute the Gromov–Witten potential
(see the Appendix for a brief description). Unfortunately it does not vanish, but for
any 2-classes the potential always vanishes. This is because the Gromov–Witten
invariant, GW0

A,k(α, . . . , α), is not equal to 0 for a two-dimensional class α only if

2k = 4+ 2c1(A)+ 2k− 6, i.e., c1(A)= 1.

But the weights make this impossible. Thus all coefficients for such curves vanish,
and the potential vanishes on Z, hence on M . So for a three-class in the contact man-
ifold obtained from integration over the fiber of a two-class, there is no holomorphic
curve to kill it. Hence specialized at such a three-class we have an odd generator
which does not exist in the presence of exceptional spheres. The orbifold case is
similar. The computation for the Gromov–Witten potential on the manifold with
the exceptional sphere follows from the divisor axiom. To see that the coefficients
for the Gromov–Witten potential vanish in the case where there is no exceptional
sphere we note the Gromov–Witten invariant is nonzero only if the first Chern class
evaluated on A is equal to one minus the degree shifting number of x, which in the
absence of exceptional spheres in the stratum in question is impossible. �

Remark 3.14. Since the base is four dimensional the results of [Hofer et al. 1997]
tell us that we can indeed use the dimension formula above for computation of the
Gromov–Witten invariants for the manifold case. To adjust for orbifold structure we
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use extra point conditions since all strata in this case are actually smooth manifolds
additionally endowed with orbifold structure.

4. The contact equivalence problem

It is the purpose of this section to prove the contact equivalence of certain toric
contact structures that are inequivalent as toric contact structures. To clarify this we
say that two toric contact structures D p and D p′ are equivalent as contact structures,
but inequivalent as toric contact structures, if there is a contactomorphism ϕ :

M p→M p′ such that ϕ∗D p=D p′ , but there is no T 3-equivariant contactomorphism.
Then their 3-tori correspond to distinct conjugacy classes of maximal tori in the
contactomorphism group [Lerman 2003b; Boyer 2013]. We remark that Theorems 1
and 2 are direct consequences of Theorem 4.11.

A complete answer to the equivalence problem appears to be quite difficult so
we restrict ourselves to certain special cases of contact structures that are Seifert
S1-bundles (orbibundles) over Hirzebruch surfaces which generally have a nontrivial
orbifold structure. In this case we show that certain T 3 equivariantly inequivalent
contact structures are actually T 2 equivariantly equivalent for some subgroup
T 2
⊂ T 3.

Orbifold Hirzebruch surfaces. In this section we study a special class of toric
contact structures on S3 bundles over S2 that can be realized as circle orbibundles
over orbifold Hirzebruch surfaces. Since the reduction method gives all examples
of such toric contact structures, it is important to make contact (no pun intended)
with examples that are known in the literature. Here we shall always assume that
the quadruple p is admissible.

When working with Hirzebruch surfaces, we often follow [Griffiths and Harris
1978] (but with slightly different notation) and represent Sn as the projectivized
bundle Sn = P(O(n)+ O)→ CP1 with fibers L = CP1 and sections E and F
with self-intersection numbers n and −n, respectively. The sections, which satisfy
E · E = n, E · L = 1, and L · L = 0, define divisors in Sn and determine a basis
for the Picard group Pic(Sn) ≈ H 2(Sn,Z) ≈ Z2. However, when working with
symplectic forms it is convenient to use a basis which appears for all admissible
complex structures. Thus, it is convenient to treat the even and odd Hirzebruch
surfaces separately. The even Hirzebruch surfaces S2n are diffeomorphic to S2

× S2,
so we define E0 = E − nL . Then we have

E0 · E0 = (E − nL) · (E − nL)= E · E − 2nE · L + L · L = 2n− 2n = 0.

In this case the Poincaré duals αL and αE0 are the standard area forms for the
two copies of S2. Similarly, the odd Hirzebruch surfaces S2n+1 are diffeomorphic
to CP2 blown up at a point which we denote by C̃P2. In this case we define
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E−1= E−(n+1)L which gives E−1 ·E−1=−1. So E−1 is an exceptional divisor.
Again the Poincaré duals αL and αE−1 represent the standard area forms on a fiber
and exceptional divisor, respectively.

As mentioned previously the orbifolds that we encounter are of the form (X,1),
where X is a smooth algebraic variety and 1 is a branch divisor. Specifically we
are interested in the orbifolds (Sn,1), where 1 =

∑
i (1− 1/m j )Dj and Di are

Weil divisors on Sn . We refer to the pair (Sn,1) as an orbifold Hirzebruch surface.
We now wish to compute the orbifold canonical divisor in this situation. Since we
are working with Q-divisors, we can express the result in terms of E0 even though
it is an honest divisor only on even Hirzebruch surfaces.

Lemma 4.1. Let (Sn,1) be an orbifold Hirzebruch surface such that E and F are
branch divisors, both with ramification index m. Then the orbifold canonical divisor
of (Sn,1m) is

K orb
(Sn,1m)

=−
2
m

E − 2m−n
m

L =− 2
m

E0− 2L .

Hence (Sn,1m) is a log del Pezzo surface (Fano) if and only if 2m > n.

Proof. We know [Griffiths and Harris 1978, p. 519] that the canonical divisor KSn

of Sn is given by KSn =−2E+ (n−2)L =−2E0−2L , and the orbifold canonical
divisor K orb

Sn,1m
satisfies (see [Boyer and Galicki 2008, p. 127])

K orb
Sn,1m

= KSn +

(
1− 1

m

)
(E + F).

Now the divisor E has self-intersection n, and the divisor F has self-intersection
−n, and since they both have intersection 1 with the fiber L , we have (E+F)= 2E0.
Putting this together gives the formula.

The orbifold (Sn,1m) is log del Pezzo if and only if the orbifold anticanonical
divisor −K orb

(Sn,1m)
is ample, and this happens if and only if 2m > n by Nakai’s

criterion since E and L are effective. �

Toric contact structures on S2× S3. The toric contact structures we describe here
are not the most general, but are obtained by setting p= ( j, 2k− j, l, l). That is, we
consider contact structures of the form Dj,2k− j,l,l where the pair (k, l) is fixed with
k≥ l, and j=1, . . . , k. Now since p∈A we also have gcd( j, l)=gcd(2k− j, l)=1.
We denote the set of j =1, . . . , k such that p= ( j, 2k− j, l, l) is admissible by JA=

JA(k, l). The first Chern class of this contact structure is c1(Dj,2k− j,l,l)= 2(k− l)γ
where γ is a generator of H 2(M p,Z) ≈ Z. So in this case M p is S2

× S3. The
infinitesimal generator of the circle action is L p = j H1+ (2k− j)H2− l H3− l H4.
Note that this case includes the Y p,q as a special case, namely, p = k = l and
q = k− j . So Y p,q is Dp−q,p+q,p,p with p > q and gcd(p, q)= 1.
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We want to find a suitable Reeb vector field in the Sasaki cone, so we try
Rj,k,l = (2k− j)H1+ j H2+l H3+l H4 which clearly satisfies the positivity condition
η0(R) > 0. The T 2 action generated by L p and Rj,k,l is

z 7→ (ei((2k− j)φ+ jθ)z1, ei( jφ+(2k− j)θ)z2, eil(φ−θ)z3, eil(φ−θ)z4).

Making the substitutions ψ = φ− θ and χ = jψ + 2kθ gives the action

(39) z 7→ (ei(2(k− j)ψ+χ)z1, eiχ z2, eilψ z3, eilψ z4).

We define gj = gcd(l, 2(k − j)) and write 2(k − j) = n j gj and l = m j gj . Then
gcd(m j , n j )= 1.

Theorem 4.2. Consider the contact manifold (S2
×S3,Dj,2k− j,l,l) where 1≤ j ≤ k

satisfies gcd( j, l)= gcd(2k− j, l)= 1. Then we have

(1) The quotient space by the circle action generated by the Reeb vector field
R = (2k − j)H1 + j H2 + l H3 + l H4 is the Kähler orbifold (Sn j ,1;ωk,l, j )

where Sn j is a Hirzebruch surface, 1 is the branch divisor,

(40) 1=
(

1− 1
m j

)
(E + F),

and ωk,l, j is an orbifold symplectic form satisfying π∗ωk,l, j = dηk,l, j , where
ηk,l, j is the contact 1-form representing Dj,2k− j,l,l whose Reeb vector field
is R.

(2) The orbifold structure is trivial (1=∅) if and only if l divides 2(k− j).

Proof. For (1) the idea, in the spirit of GIT quotient equals symplectic quotient
[Kirwan 1984; Ness 1984], is to identify the symplectic quotient µ−1(0)/T 2 with
a Hirzebruch surface as an analytic subspace of CP1

×CP2.
After shifting by a constant vector a= (a1, a2) the moment map of the T 2 action

(39) is

(41) µ(z)= (2(k− j)|z1|
2
+ l|z3|

2
+ l|z4|

2
− a1, |z1|

2
+ |z2|

2
− a2).

We need to choose the constant vector a so that 0 is a regular value of µ for all
integers j and l such that 0< j ≤ k and 0< l ≤ k. Alternatively, it suffices to show
that the T 2 action on µ−1(0) defined by (39) is locally free. This will be true if we
choose a1, a2 > 0 and a1 > 2(k− j)a2. Following [Audin 1994] it is convenient to
work with the corresponding C∗×C∗ action on C2

\ {0}×C2
\ {0} given by

(42) z 7→ (τ n j ζ z1, ζ z2, τ
m j z3, τ

m j z4),

where τ, ζ ∈ C∗. From this we see that the action is free if z1z2 6= 0 and locally
free with isotropy group Zm j on the two divisors obtained by setting z1 = 0 and
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z2 = 0, respectively. It is not difficult to see [Lafontaine 1981] that (z1 = 0)= E
and (z2 = 0)= F .

We have a commutative diagram

(43)

C2
\ {0}×C2

\ {0}

π ′′

!!

µ−1(0)? _oo

π ′

��

ρ

%%
Mk,l, j ,

πyy
Zk,l, j

and we want to identify the quotient space Zk,l, j . We know from the general
theory (see [Boyer and Galicki 2008, Chapter 7]) that Zk,l, j is a projective alge-
braic orbifold with an orbifold Kähler structure. Viewing Zk,l, j as the C∗ × C∗

quotient by the map π ′′ of diagram (43), we can identify Zk,l, j with a subvariety
of CP1

× CP2 as in [Hirzebruch 1951; Lafontaine 1981] as follows. If we de-
fine homogeneous coordinates in CP1

×CP2 by setting (w1, w2) = (z3, z4) and
(y1, y2, y3)= (z

m j
2 zn j

3 , zm j
2 zn j

4 , zm j
1 ), we see that Zk,l, j is represented by the equation

(44) w
n j
1 y2 = w

n j
2 y1.

As an algebraic variety this identifies Zk,l, j with the hypersurface in CP1
×CP2

defined by (44) which is the original definition of the Hirzebruch surface Sn j .
However, the two divisors in Sn j defined by E = (y3 = zm j

1 = 0) and F = (z2 =

0(y1 = y2 = 0)) are both m j -fold branch covers with isotropy group Zm j . Thus, we
have an orbifold structure on Sn j given by (40) which is trivial if and only if m j = 1
which happens if and only if l divides 2(k− j).

Furthermore, it follows from the orbifold Boothby–Wang theorem [Boyer and
Galicki 2000b] that Zk,l, j has an orbifold Kähler form ωk,l, j that satisfies π∗ωk,l, j =

dηk,l, j . This proves (1). For (2) we note that the orbifold structure is trivial if and
only if m j = 1 which happens if and only if gj = l divides 2(k− j). �

Notice that on subsets of JA(k, l) where gj is independent of j , the ramification
index m j is also independent of j , so the underlying orbifolds are the same. Thus,
it is convenient to view gj as a map g : JA(k, l)→{1, . . . , l}, and we are interested
in the level sets of this map. So we decompose JA(k, l) into the level sets of g and
then further decompose the level sets according to whether n j is odd or even, that
is, we define

g−1(i)even = { j ∈ JA(k, l) | gj = i, n j is even},

g−1(i)odd = { j ∈ JA(k, l) | gj = i, n j is odd}.
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We can then decompose the admissible set as a disjoint union

(45) JA(k, l)=
l⊔

i=1

g−1(i)even t g−1(i)odd.

We wish to compute the symplectic form on the base orbifold.

Lemma 4.3. Let j ∈ g−1(i)even ⊂ JA(k, l) for a fixed i ∈ {1, . . . , l} with g−1(i)even

6=∅. Then the symplectic form ωk,l,i on the quotient (Sn j ,1i ) is independent of j
and satisfies

[ωk,l,i ] = iαE0 + kαL .

Proof. We know that corb
1 (Sn j ) = (2/mi )αE0 + 2αL and this must pull back to

2(k − l)γ . So π∗αE0 = mi kγ and π∗αL = −lγ . Now the class [ωk,l,i ] must
transcend to 0 on S2

× S3. So writing [ω] = aαE0 +bαL and using imi = l, we see
that

0= aπ∗αE + bπ∗αL = (ami k− bl)γ = mi (ak− bi)γ.

So taking a = i and b = k gives the result. �

Lemma 4.4. Let j ∈ g−1(i)odd ⊂ JA(k, l) for a fixed i ∈ {1, . . . , l} with g−1(i)odd

6= ∅. Then i is even and the symplectic form ωk,l,i on the quotient (Sn j ,1i ) is
independent of j and satisfies

[ωk,l,i ] = iαE−1 +

(
k+ i

2

)
αL .

Proof. First i must be even since i = gj = gcd(l, 2(k − j)) and n j = 2(k − j)/ i
is odd. The remainder of the proof is the same as that of Lemma 4.3, except for
odd Hirzebruch surfaces we express the symplectic class in term of the exceptional
divisor E−1 = E0−

1
2 L . �

Whenever possible we would like to determine the cardinalities #g−1(i)even and
#g−1(i)odd. First, as seen above, g−1(i)odd is empty when i is odd. Moreover, if
g−1(l) is not empty, then 1l =∅, so the orbifold structure is trivial.

The following lemma is taken from [Karshon 2003].

Lemma 4.5. (1) #g−1(l)even =

⌈k
l

⌉
. (2) #g−1(l)odd =

⌈2k−l
2l

⌉
.

Example 4.6. One obtains the Y p,q of [Gauntlett et al. 2004a] as a special case of
Theorem 4.2 by putting k = l = p and defining q = k− j . The contact structures
are then Dp−q,p+q,p,p, and the admissibility conditions boil down to gcd(q, p)= 1.
Clearly, we have c1(Dp−q,p+q,p,p)= 0. When p is odd we have gj = 1, m j = p,
and Sn j = S2q , whereas if p is even we have gj = 2, m j = p/2 and Sn j = Sq with q
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odd. So here we have only two nonempty level sets of the map g, namely,

(46) JA(p, p)=

{
g−1(1)even, if p is odd,

g−1(2)odd if p is even.

Since the only admissibility condition is gcd(q, p)= 1 and p > q , we see that the
cardinality #JA(p, p)= φ(p), where φ is the well-known Euler phi function. For
the orbifold canonical divisor Lemma 4.1 gives

K orb
(S2q ,1)

=−
2
p

E −
2(p− q)

p
L =− 2

p
E0− 2L ,(47)

K orb
(Sq ,1)

=−
4
p

E −
2(p− q)

p
L =− 4

p
E−1− 2 p+1

p
L ,(48)

so these are all log del Pezzo surfaces. The cohomology class of the corresponding
symplectic forms is

[ωp,p,1] = αE0 + pαL

on the even orbifold Hirzebruch surface (S2q ,1) with ramification index m1 = p
when p is odd. For even p we have

[ωp,p,2] = 2αE−1 + (p+ 1)αL

on the odd orbifold Hirzebruch surface (Sq ,1) with ramification index m2 = p/2.
Note that in both cases there are precisely φ(p) values taken on by q . Note also that
p= 2 implies q = 1 only, and that m2= 1, so we have a trivial orbifold structure on
(S1,∅)= C̃P2. A relation between the Y p,q toric contact structures and Hirzebruch
surfaces was noted by Abreu [2010].

Except for the Y p,q case of Example 4.6, we do not have a general formula for
the cardinalities #g−1(i) for i 6= l. Specific cases, of course, are easy to work out.

Example 4.7. Consider the case (k, l)= (9, 8). We compute JA(9, 8). The possible
values of j are all odd with j ≤ 9, and these all satisfy gcd(8, 18− j)= 1. Next,
we determine gj = gcd(8, 2(9− j)) and n j = 2(9− j)/g. So we have g−1(8)even =

{ j = 1, 9} with a trivial orbifold (m8 = 1) on the Hirzebruch surfaces S2 and S0,
respectively. We also have g−1(8)odd = { j = 5} with a trivial orbifold on S1, and
g−1(4)odd = { j = 3, 7} with m4 = 2 on the odd Hirzebruch surfaces S3 and S1,
respectively. Notice that the cardinalities of g−1(8)even and g−1(8)odd agree with
Lemma 4.5. In total we have #JA(9, 8)= 5.

Toric contact structures on X∞. For X∞ we consider p= ( j, 2k− j+1, l, l) with
0< j ≤ k. Here we have c1(Dj,2k− j+1,l,l)=

(
2(k− l)+1

)
γ . We consider the Reeb

vector field R∞j,k,l = (2k− j+1)H1+ j H2+l H3+l H4, which is clearly positive. The
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T 2 action generated by this vector field and L p= j H1+(2k− j+1)H2−l H3−l H4 is

z 7→ (ei((2k− j+1)φ+ jθ)z1, ei( jφ+(2k− j+1)θ)z2, eil(φ−θ)z3, eil(φ−θ)z4).

Making the substitutions ψ = φ− θ and χ = jψ + (2k+ 1)θ gives the action

(49) z 7→ (e(i(2k−2 j+1)ψ+χ)z1, eiχ z2, eilψ z3, eilψ z4).

Similarly to the previous section, we define gj = gcd(l, 2k− 2 j + 1) and write
2k− 2 j + 1= n j gj and l = m j gj . Then gcd(m j , n j )= 1.

Theorem 4.8. Consider the contact manifold (X∞,Dj,2k− j+1,l,l) where 1≤ j ≤ k
satisfies gcd( j, l)= gcd(2k− j + 1, l)= 1. Then we have

(1) The quotient space by the circle action generated by the Reeb vector field
R = (2k− j +1)H1+ j H2+ l H3+ l H4 is the Kähler orbifold (Sn j ,1;ωk,l, j )

where Sn j is an odd Hirzebruch surface, 1 is the branch divisor, with

(50) 1=
(

1− 1
m j

)
(z1 = 0)+

(
1− 1

m j

)
(z2 = 0),

and ωk,l, j is an orbifold symplectic form satisfying π∗ωk,l, j = dηk,l, j , where
ηk,l, j is the contact 1-form representing Dj,2k− j+1,l,l whose Reeb vector field
is R. Here the integers l, gj , n j , and m j are all odd.

(2) The orbifold structure is trivial (1=∅) if and only if l divides 2k− j + 1.

Proof. The proof is essentially the same as that of Theorem 4.2. The details are left
to the reader. �

We denote the set of j = 1, . . . , k such that p= ( j, 2k− j+1, l, l) is admissible
by J∞A = J∞A (k, l). Since the integers gj and n j are both odd for all j ∈ JA(k, l),
the map g maps the set JA(k, l) to the set of positive odd integers less than or equal
to l. Thus, we have

(51) J∞A (k, l)=
l⊔

odd i=1

g−1(i).

Similarly to Lemmas 4.3, 4.4, and 4.5 we find the following.

Lemma 4.9. Let j ∈ g−1(i) ⊂ J∞A (k, l). Then the symplectic form ωk,l,i on the
quotient Sn j is independent of j and satisfies

[ωk,l,i ] = iαE−1 +

(
k+ i+1

2

)
αL .

Furthermore, #g−1(l)= d(2k− l + 1)/2le.
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Example 4.10. We consider the analogue on X∞ of Example 4.6, so (k, l) =
(p, p) with p odd and j = p− q. The contact structure is Dp−q,p+q+1,p,p with
c1(Dp−q,p+q+1,p,p)= 1. The admissibility conditions are gcd(q, p)= 1= gcd(q+
1, p). The function g satisfies gj = gcd(2q + 1, p). If p is prime then the set of
admissible q is {1, . . . , p−2}, and g= 1 except when q = (p−1)/2 in which case
g = p. The latter is smooth and corresponds to the trivial orbifold (S0,∅). This
has symplectic class

[ωp,p] = pαE−1 +
3p+1

2
αL ,

whereas the p− 3 elements in g−1(1) have symplectic class

[ωp,p] = αE−1 + (p+ 1)αL .

For a case when p is not prime consider p = 9. Then J∞A (9, 9) = {2, 5, 8}
which corresponds to q = 7, 4, 1. We see that g−1(9)= {5} giving the smooth first
Hirzebruch surface (S1,∅) with symplectic class [ω9,9,9] = 9αE−1 + 14αL , while
g−1(3)= {2, 8} giving the orbifold Hirzebruch surfaces (S5,1) with m2 = 3, and
(S1,1) with m8 = 3, respectively, with symplectic class [ω9,9,3] = 3αE−1 + 11αL .

Equivalent contact structures. Here we show that certain inequivalent toric contact
structures are equivalent as contact structures. The proof uses the fact that the
identity map (Sn,1m)→ (Sn,∅) is a Galois cover, and combines this with the
work of Karshon [1999; 2003] for the smooth case.

Theorem 4.11. Consider the toric contact structures (S2
× S3,Dj,2k− j,l,l) and

(X∞,Dj,2k− j+1,l,l) of Theorems 4.2 and 4.8, respectively.

(1) For each fixed 1≤ i ≤ l, the contact structures Dj,2k− j,l,l are T 2-equivariantly
isomorphic for all j ∈ g−1(i)even, and the contactomorphism group

Con(Dj,2k− j,l,l)

has at least #g−1(i)even conjugacy classes of maximal tori of dimension three.

(2) For each fixed 1≤ i ≤ l, the contact structures Dj,2k− j,l,l are T 2-equivariantly
isomorphic for all j ∈ g−1(i)odd, and the contactomorphism group

Con(Dj,2k− j,l,l)

has at least #g−1(i)odd conjugacy classes of maximal tori of dimension three.

(3) For each fixed 1≤ i≤ l, the contact structures Dj,2k− j+1,l,l are T 2-equivariantly
isomorphic for all j ∈ g−1(i) ⊂ J∞A (k, l), and the contactomorphism group
Con(Dj,2k− j+1,l,l) has at least #g−1(i) conjugacy classes of maximal tori of
dimension three.
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(4) The T 2-equivariantly isomorphic contact structures given in (1)–(3) are not
T 3-equivariantly isomorphic.

Proof. The proofs of (1)–(3) are quite analogous, so we give the details for (1) only.
By Theorem 4.2 the contact structure is the orbifold Boothby–Wang construction
over the symplectic orbifold (Sn j , ωk,l, j ) and by Lemma 4.3 the form ωk,l, j only
depends on gj = i . Then for each j ∈ g−1(i)even we consider the Galois cover
1ln j : (Sn j ,1mi )→ (Sn j ,∅) with n j even, and both spaces having the same Kähler
form, namely ωk,l,i of Lemma 4.3. Now Karshon [2003] shows that (Sn j ,∅) and
(Snj ′

,∅) are S1-equivariantly symplectomorphic with the same symplectic form
ωk,l,i (but not the same Kähler structure) as long as 0 ≤ j ′ = j − 2r for some
nonnegative integer r . We denote such a symplectomorphism by K . Now we have
a commutative diagram,

(52)

(Sn j ,1mi )
Ki
//

1lnj
��

(Snj ′
,1mi )

(Sn j ,∅)
K
// (Snj ′

,∅),

1l−1
nj ′

OO

which defines the upper horizontal arrow Ki and shows that it too is an S1-equivariant
symplectomorphism. We claim that Ki is also an orbifold diffeomorphism. This
follows from Lemma 4.12. But then, as shown in [Lerman 2003b; Boyer 2013],
this symplectomorphism lifts to a T 2-equivariant contactomorphism.

Here, and hereafter, by g−1(i)we mean any of the three sets g−1(i)even, g−1(i)odd,
or g−1(i)⊂ J∞A (k, l). Since our contact structures are independent of j ∈ g−1(i)
up to isomorphism, we now denote the contact structures of items (1), (2), and (3)
by Dk,l,i,e, Dk,l,i,o, and Dk,l,i,∞, respectively. To prove (4) we first notice that as
in [Karshon 2003] the orbifold symplectomorphism Ki is only S1-equivariant, not
T 2-equivariant. So the corresponding 2-tori belong to different conjugacy classes
in the group Ham((B,1mi ), ωk,l,i ) of Hamiltonian symplectomorphisms, where B

is the symplectic orbifold ((S2
× S2,1mi )ωk,l,i ) or ((X∞,1mi )ωk,l,i ) as the case

may be. But then by [Boyer 2013, Theorem 6.4] these lift to nonconjugate 3-tori in
Con(Dk,l,i,e). Hence, the contact structures Dj,2k− j,l,l for different j ∈ g−1(i) are
inequivalent as toric contact structures. The same holds for Dj,2k− j+1,l,l . �

Lemma 4.12. The Karshon symplectomorphism K of diagram (52) leaves the
divisors (z1 = 0) and (z2 = 0) invariant.

Proof. The T 2 action on any orbifold Hirzebruch surface (Sn,1m) can be taken as

(53) ([w1, w2]× [y1, y2, y3]) 7→ ([τw1, w2]× [τ
n y1, y2, ρy3]),

where, as in the proof of Theorem 4.2, the coordinates are (w1, w2) = (z3, z4)

and (y1, y2, y3) = (zm
2 zn

3, zm
2 zn

4, zm
1 ). By Proposition 4.1 of [Karshon 1999] K is
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an S1-equivariant symplectomorphism, where the S1 is that generated by ρ, and
the fixed point set of this action is the disjoint union (z1 = 0) t (z2 = 0). By
Proposition 4.3 of the same work, K also intertwines the two S1 moment maps.
But in both cases these are represented by µS(z)= |z1|

2. So the divisors (z1 = 0)
and (z2 = 0) are left invariant separately by K . �

Remark 4.13. Using the Delzant theorem for symplectic orbifolds in [Lerman and
Tolman 1997], it is straightforward to construct the labeled polytope corresponding
to the symplectic orbifold ((Sn,1m), ωk,l,i ). It is the labeled Hirzebruch trapezoid
shown here (with label m on the two vertical axes):

(0, k+ 1
2 ni)

B
B
B
B
B
BB

slope −n

(0, 0) (i, 0)

(i, k− 1
2 ni)

◦

◦ ◦

◦

m

m

The Galois cover 1lSn : (Sn,1m)→ (Sn,∅) induces a map on this Hirzebruch
trapezoid that simply removes the labels on the vertical edges. This implies that
the corresponding Karshon graphs [1999] are the same. Hence, Theorem 4.1 of
[Karshon 1999] easily generalizes to the types of orbifolds considered here, and
the symplectomorphism Ki in diagram (52) can be constructed directly from this.

Inequivalence of contact structures. As discussed previously the inequivalence
of contact structures is detected first by the first Chern class c1(D) and then by
contact homology. The contact structures Dj,2k− j,l,l and Dj,2k− j+1,l,l are clearly
inequivalent since they live on different manifolds, so adopting Proposition 3.11 to
our current notation we have

Theorem 4.14. The contact structuresDj,2k− j,l,l andDj ′,2k′− j ′,l ′,l ′ , andDj,2k− j+1,l,l

and Dj ′,2k′− j ′+1,l ′,l ′ are inequivalent if k ′ 6= k.

Remark 4.15. Unfortunately, combining Theorems 4.11 and 4.14 does not answer
our equivalence problem completely even in our restrictive cases. For example,
it would be nice to know that the Dj,2k− j,l,l are all contact equivalent as j runs
through all admissible values from 1 to k. However, our equivalence statement in
Theorem 4.11 only assures equivalence on the level sets of the map g, that is, if we
fix i ∈ {1, . . . , l}, then Dj,2k− j,l,l are equivalent for all j ∈ g−1(i). Nevertheless,
this is enough to give a complete answer to the equivalence problem for the Y p,q of
[Gauntlett et al. 2004a] which in our notation is Dp−q,p+q,p,p. See Corollary 5.5.
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The general case with vanishing first Chern class c1(D) was studied in [Cvetič
et al. 2005; Martelli and Sparks 2005] where it was shown that all the toric contact
structures admit a compatible Sasaki–Einstein metric. These depend on three param-
eters a, b, and c with values in Z+ which in our notation is given by Da,b,c,a+b−c.
Except for the subclass Y p,q these fall outside of the scope of our analysis.

Another statement of contact inequivalence is obtained as an immediate conse-
quence of Theorem 3.13, namely:

Corollary 4.16. The contact structures on S2
× S3 described by items (1) and (2)

of Theorem 4.11 are inequivalent.

5. Applications to Sasakian geometry

In this final section we give some pertinent applications of our results to Sasakian
geometry. Recall the contact Delzant-type result [Boyer and Galicki 2000a] that
every toric contact structure of Reeb type admits a compatible Sasakian structure.

Sasaki cones and the Sasaki bouquet. Since we are dealing with toric geometry,
the Sasaki cones in this paper all have dimension three. So it follows from [Boyer
and Galicki 2008, Theorem 8.1.14] that all our Sasakian structures must be either
positive or indefinite. Our first result says that all our Sasaki cones have a positive
Sasakian structure.

Corollary 5.1. Every toric contact structure on an S3-bundle over S2 can be real-
ized as an orbifold fibration over CP( p̄1, p̄2)×CP( p̄3, p̄4) for some quadruple of
positive integers (p1, p2, p3, p4) satisfying gcd(pi , pj )= 1 for i = 1, 2 and j = 3, 4
and (p1, p2, p3, p4)= (k p̄1, k p̄2, l p̄3, l p̄4). Thus, every toric contact structure on
an S3-bundle over S2 admits a ray of positive Sasakian structures in its Sasaki cone.
Moreover, the subspace of positive Sasakian structures is open in the Sasaki cone.

Proof. The first statement follows from Lemmas 2.2 and 2.5, while the second
statement follows from the fact that the base orbifold CP( p̄1, p̄2)×CP( p̄3, p̄4)

is log del Pezzo. The last statement follows from the fact that having a positive
representative of the basic first Chern class c1(FR) is an open condition. �

Proposition 5.2. Consider the toric contact structure Dj,2k− j,l,l on S2
× S3 and the

toric contact structure Dj,2k− j+1,l,l on X∞. Choose the Reeb vector field R =
(2k− j)H1+ j H2+l H3+l H4 on (S2

×S3,Dj,2k− j+1,l,l) and R= (2k− j+1)H1+

j H2+l H3+l H4 on (X∞,Dj,2k− j+1,l,l). Then the corresponding Sasakian structure
is positive if and only if l > k− j in the former case, and 2l > 2(k− j)+ 1 in the
latter case. In particular, if l ≤ k− j (or 2l > 2(k− j)+ 1), then the toric contact
structure Dj,2k− j,l,l (or Dj,2k− j+1,l,l) has both a positive and indefinite Sasakian
structure in its Sasaki cone.
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Proof. First we note as mentioned above that any Sasakian structure in a Sasaki
cone of dimension greater than one is either positive or indefinite. By Corollary 5.1
any toric contact structure on an S3-bundle over S2 has a positive Sasakian structure,
and we see that Lemma 4.1 states that (Sn j ,1m j ) is log del Pezzo if and only if
2m > n. For Dj,2k− j,l,l this becomes 2l = 2m j gj > n j gj = 2(k− j), whereas for
Dj,2k− j+1,l,l it is 2l = 2m j gj > ngj = 2k−2 j+1. The last result then follows from
the fact that a quasiregular Sasakian structure is positive if and only if its orbifold
quotient is log Fano [Boyer and Galicki 2008, Chapter 7]. �

Concerning Sasaki bouquets we note that actually more is true than is proven
in Theorem 4.11. Since the base orbifolds (Sn j ,1mi ) have the same symplectic
form ωk,l,i for all j ∈ g−1(i), this lifts to a contactomorphism ϕ : Dj,2k− j,l,l →

Dj ′,2k− j ′,l,l such that ϕ∗ηj ′,2k− j ′,l,l = ηj,2k− j,l,l . Since the reduction process carries
a preferred complex structure J along with it, the different indices j represent
different transverse complex structures J . So by using the contactomorphisms ϕ
for each admissible j , we have the following.

Corollary 5.3. The contact structures Dk,l,i,e and Dk,l,i,o on S2
× S3 and Dk,l,i,∞

on X∞ each admit a Sasaki bouquet BN of toric Sasakian structures with N =
#g−1(i). Furthermore, the intersection

⋂
j κ(D, Jj ) of all the Sasaki cones is an

open subset of the Lie algebra t2 of a two-dimensional torus.

Example 5.4. Consider the contact structure D12,8,2,o on S2
× S3. The admissible

j ’s are j = 1, 3, 5, 7 and gj = 2 for all j . So Theorem 4.11(ii) gives a T 2-equivariant
contact equivalence of the T 3-equivariantly inequivalent toric contact structures

D1,23,8,8 ≈D3,21,8,8 ≈D5,19,8,8 ≈D7,17,8,8.

This implies that the number of conjugacy classes n(D12,8,2,o, 3) of 3-tori in
Con(D12,8,2,o) is at least 4. Furthermore, by Theorem 4.2(3) the induced Sasakian
metrics are positive for D5,19,8,8 and D7,17,8,8, whereas they are indefinite for the
remaining two.

Another contact structure with the same first Chern class as D12,8,2,o, namely
c1 = 8γ , is D14,10,2,o. This consists of the two T 3-equivariantly inequivalent toric
contact structures D1,27,10,10 and D7,21,10,10, but only for the latter is the induced
Sasakian structure positive. In this case we have n(D14,10,2,o, 3)≥ 2. Moreover, it
follows from Theorem 4.14 that the contact structures D12,8,2,o and D14,10,2,o are
inequivalent.

As mentioned previously there is one subclass of contact structures on S2
× S3

where a complete solution to the equivalence problem can be obtained, and they
are all known to admit extremal (actually Sasaki–Einstein) metrics.
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Corollary 5.5. The contact structures Y p,q and Y p′,q ′ on S2
× S3 are inequivalent

if and only if p′ 6= p. Furthermore, the isotopy class of the contact structures
defined by Y p,1 admits a φ(p)-bouquet Bφ(p)(Y p,q) such that each of the φ(p)
Sasaki cones admits a unique Sasaki–Einstein metric. Moreover, these Einstein
metrics are nonisometric as Riemannian metrics.

Proof. Applying Theorem 4.11 to Example 4.6 shows that Y p,q is contactomorphic
to Y p,1 for all admissible q . But Abreu and Macarini [2012] show that the underlying
contact structures of Y p,1 and Y p′,1 are inequivalent if p′ 6= p. (This also follows
from Proposition 3.11.) By Corollary 5.3 there are precisely φ(p) Sasaki cones in
the bouquet. The fact that there is a Sasaki–Einstein metric in the Sasaki cone for
each Y p,q was first shown in [Gauntlett et al. 2004a] while its uniqueness in the
Sasaki cone is proved in [Cho et al. 2008].

To prove the last statement, suppose to the contrary that the Sasaki–Einstein
metrics gq and gq ′ are isometric, that is, there is a diffeomorphism ψ of S2

× S3

such that ψ∗gq ′ = gq . Then by a theorem of Tanno [1970] (see also [Boyer and
Galicki 2008, Lemma 8.1.17]) the transformed Sasakian structure Sψ is either Sq

itself or its conjugate Sasakian structure Sc
q = (−Rq ,−ηq ,−8q , gq). In either case

ψ is a contactomorphism from Y p,q to Y p,q ′ satisfying

ψ−1
◦8q ′ ◦ψ =±8q .

But this implies that the corresponding 3-tori are conjugate, which contradicts
Theorem 4.11(4). �

Example 5.6. The analogues of the Y p,q’s on the nontrivial bundle X∞ are de-
scribed in Example 4.10. For simplicity we consider only the case when p is
an odd prime, in which case there are p − 3 admissible values for q, namely
1, . . . , (p− 1)/2− 1, (p− 1)/2+ 1, . . . , p− 2. These inequivalent toric structures
are T 2-equivariantly equivalent contact structures by Theorem 4.11(3) and their
induced Sasakian structures are all positive by Theorem 4.8(3). Moreover, the
contactomorphism group of this contact structure has at least p− 3 maximal tori of
dimension three.

Some remarks concerning extremal Sasakian structures. As with Kähler geome-
try it is of interest to determine the most preferred Sasakian metrics, and as in Kähler
geometry it seems reasonable to study the critical points of the (now transverse)
Calabi functional [Boyer et al. 2008; 2009]. In [Boyer 2011b] the first author
described bouquets of extremal Sasakian structures on S3-bundles over S2, and the
existence of extremal Sasakian metrics on X∞ was proven. It is not our intention
here to delve much further into the existence of such extremal Sasakian structures,
but rather to discuss briefly their relation to our current work.

Corollary 5.3 gives a partial generalization of Theorems 4.1 and 4.2 of [Boyer
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2011b]. In this reference it was shown that when the quotient by the Reeb vector
field is a smooth manifold, each Sasaki cone in a bouquet admits an extremal
Sasakian metric. This follows from well-known work of Calabi. It would be
interesting to generalize this to the orbifold case by generalizing the method of
[Ghigi and Kollár 2007] to extremal metrics.

As with toric symplectic structures, all toric contact structures of Reeb type
admit a compatible Sasakian metric [Boyer and Galicki 2000a]. Furthermore, in
our present situation we have:

Corollary 5.7. Every toric contact structure on an S3 bundle over S2 admits ex-
tremal Sasakian metrics with positive Ricci curvature.

Proof. By Corollary 5.1 every toric contact structure on an S3 bundle over S2 can
be realized as an orbifold fibration over a product of weighted projective spaces
CP( p̄1, p̄2)× CP( p̄3, p̄4) and have positive Sasakian structures. By a result of
Bryant [2001] all weighted projective spaces admit Bochner-flat metrics and these
are extremal [David and Gauduchon 2006], and the product of extremal Kähler
metrics is extremal. So these extremal Kähler orbifold metrics lift to extremal
Sasakian metrics [Boyer et al. 2008] which, since CP( p̄1, p̄2)× CP( p̄3, p̄4) is
log del Pezzo, will have a deformation to a Sasakian metric with positive Ricci
curvature by [Boyer and Galicki 2008, Theorem 7.5.31]. Moreover, it follows from
a theorem of Calabi [1985] that the toric symmetry is retained by these metrics. �

Corollary 5.7 implies that each Sasaki cone in every Sasaki bouquet BN of toric
contact structures on an S3 bundle over S2 admits extremal Sasakian metrics of
positive Ricci curvature. Since the moment cone of any S3 bundle over S2 has
exactly four facets, recent results of Legendre [2011a; 2011b] show that every toric
contact structure on an S3 bundle over S2 admits at least one and at most seven
distinct rays in the Sasaki cone consisting of Sasakian structures whose metrics
have constant scalar curvature. Moreover, she shows that for the Wang–Ziller
manifolds M1,1

k,l with k > 5l there exist two distinct rays in the Sasaki cone whose
Sasakian metrics have constant scalar curvature. This corresponds to the case
( p̄1, p̄2)= 1= ( p̄3, p̄4) of Lemma 2.5.

An interesting question which appears to be unanswered at this time is whether
any Sasaki cones on these toric contact structures are exhausted by extremal Sasaki
metrics. There are only a few known cases where this occurs, namely, the standard
CR structure on the spheres S2n+1 [Boyer et al. 2008], the Heisenberg group
[Boyer 2009], and T 2-invariant contact structures of Reeb type on S3-bundles
over Riemann surfaces [Boyer and Tønnesen-Friedman 2014; 2013] with genus
1≤ g≤4. However, when g=0 we suspect that by using the admissible construction
method of [Boyer and Tønnesen-Friedman 2014] the subclass of Sasaki structures
considered here will each have an extremal representative.
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Appendix: Orbifold Gromov–Witten invariants

In this appendix, for the convenience of the reader, we lay out some framework and
definitions for Gromov–Witten invariants and the so-called Gromov–Witten potential
for compact symplectic manifolds and orbifolds. In this paper we only consider the
genus-0 invariants. The Gromov–Witten invariants that we are interested in occur
in the base orbifold Z of an orbibundle π : M→ Z with dim(M)= 5. Hence we
are in the semipositive case and we can define the Gromov–Witten invariants as in
[McDuff and Salamon 2004]. Our version of Gromov–Witten theory for symplectic
orbifolds comes from [Chen and Ruan 2002]. The main difference here is that
our marked points, and hence our cohomology classes taken as arguments for the
invariant, have constraints determining in which orbifold stratum the curves in
question lie. This is an issue since generally some homology classes may live in
several strata.

Roughly speaking a Gromov–Witten invariant is a count of rigid J-holomorphic
curves representing a homology class A ∈ H2(M,Z)/(torsion) in general position
with marked points in a symplectic manifold M for which the marked points are
mapped into the Poincaré duals of certain cohomology classes. For example we
may ask how many spheres (or lines) intersect two generic points in CPn . In this
case we have two marked points, a top cohomology class, and for A the class of a
line, [L].

To make this precise let (M, ω) be a compact symplectic manifold, and let J be
an ω-compatible almost-complex structure. Consider the moduli space

MA
0,k(M, J )

of genus-0 stable J-holomorphic curves into M representing the class A and assume
here that we have regularity of the relevant linearized Cauchy–Riemann operator for
the class A, either via some circumstances or by some sort of abstract perturbation
argument. Note also that when we discuss Gromov–Witten theory for compact
symplectic manifolds we will consider only somewhere injective curves. We define
maps

evj :M
A
0,k(M, J )→ M and ev :MA

0,k(M, J )→ M×k

by evaluation at the marked points.
By semipositivity the evaluation map represents a submanifold of M×k of di-

mension
2n+〈2c1(M), A〉+ 2k+ 6.

Now we define the Gromov–Witten invariant as a homomorphism

GWM
A,k : H

∗(M)⊗k
⊗ H∗(MA

0,k(M.J ))→Q



EQUIVALENCE PROBLEM FOR CONTACT STRUCTURES ON S3-BUNDLES OVER S2 319

encoded formally as the integral

GWM
A,k(α1, . . . , αk) :=

∫
MA

0,k(M.J )
ev∗1α1 ∪ · · · ∪ ev∗kαk ∪π

∗
[MA

0,k(M.J )].

This is the definition for manifolds. This definition can be used without the
semipositivity condition as long as there is a construction of an appropriate object
on which to integrate. Since we will be working in dimension four this will not be
an issue.

To extend this definition to orbifolds, there are issues with the definitions of
J-holomorphic curves, since the idea of a map between orbifolds can be a rather
sticky issue. We content ourselves here with knowing that we have a notion of
a good map, and we will defer to [Chen and Ruan 2002; 2004] for the analytic
setup. With that said, we still must extend the definition above so that it makes
sense in a stratified space. We should also note that the orbifold cohomology of
Chen and Ruan is not the same as the orbifold cohomology mentioned earlier.
This cohomology is simply a way to organize how various classes interact with
the stratification of the orbifold. As in the manifold case we start with a compact
symplectic orbifold, Z, and pick a compatible almost-complex structure, J . We then
consider moduli spaces of (genus-0) J-holomorphic orbicurves into M representing
a homology class A ∈ H2(Z,Q). But we now need to consider a new piece of data
which organizes the intersection data so that it is compatible with the stratification.
The extra data will be defined by a k-tuple x, of orbifold strata, (Z1, . . . ,Zk). The
length k of x should coincide with the number of marked points. We will write
such a moduli space as

MA
0,k(Z, J, x),

and require that the evaluation takes the j -th marked point into Zj . The compactifi-
cation is similar to the manifold case, and consists of stable maps with the obvious
adjustments, the caveat being that we must choose our lift to an orbicurve. After
an appropriate construction of cycles as in the manifold case, Chen and Ruan use
a virtual cycle construction, so we can define this invariant as in the smooth case
above, but we integrate over (the compactification of) MA

0,k(Z, J, x). We will write
these invariants

GWZ
A,k,x(α1, . . . , αk).

Another key difference is that this moduli space differs from the predicted
dimension in the smooth case by a factor of −2ι(x), the so-called degree shifting
number. (Again, for the definition see [Chen and Ruan 2002].) The Gromov–Witten
invariants satisfy a list of axioms developed by Kontsevich and Manin [1994; 1997].
We will not list all of the axioms, but will mention only some which are used in the
text. We use the orbifold notation; for a manifold we would just delete x from the
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notation, setting ι(x)= 0.

(i) Effective: GWZ
A,k,x(α1, . . . , αn)= 0 as long as ω(A) < 0.

(ii) Grading: GWZ
A,k,x(α1, . . . , αn) 6= 0 only if∑

j

deg(αj )= dim(Z)+ 2c1(A)+ 2k− 6− 2ι(x).

(iii) Divisor: Let x j
= x with the j-th component removed. Suppose that for each

component xi of x, if xi is mapped into the orbifold singular locus, that stratum
is nonsingular as a variety. If deg(αn)= 2 then

GWZ
A,k,x(α1, . . . , αn)=

(∫
A
αn

)
GWZ

A,k−1,xn (α1, . . . , αn−1).

Now we are in a position to define the Gromov–Witten potential. This is a
generating function which gives a formal power series whose coefficients give
Gromov–Witten invariants. It is a way to organize all the information from these
invariants into one big package. We give the definition here for the manifold case.
Pick a basis of H 2(M), a1, . . . , an , for a vector t and a cohomology class a, and
write a := at =

∑
i ti ai .

Definition A.8. Let (M, ω) and J be as above. Define the genus-0 Gromov–Witten
Potential as

f (at)=
∑

A

∑
k

1
k!

GWM
A,k(at , . . . , at)zc1(A).

The corresponding formula for orbifolds is obtained by accounting for the vector x.
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