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In a previous paper, we generalized the almost-Schur lemma of De Lellis
and Topping for closed manifolds with nonnegative Ricci curvature to any
closed manifolds. In this paper, we generalize the above results to symmetric
(2, 0)-tensors and give the applications for r-th mean curvatures of closed
hypersurfaces in space forms and k scalar curvatures for closed locally con-
formally flat manifolds.

1. Introduction

Recall that an n-dimensional Riemannian manifold (M, g) is said to be Einstein if
its traceless Ricci tensor R̊ic= Ric−(R/n)g is identically zero. Here Ric and R
denote Ricci curvature and scalar curvature respectively. Schur’s lemma states that
the scalar curvature of an Einstein manifold of dimension n ≥ 3 must be constant.
De Lellis and Topping [2012] discussed the quantitative version, or the stability
of Schur’s lemma for closed manifolds, and proved the following almost-Schur
lemma, as they called it.

Theorem 1.1 [De Lellis and Topping 2012]. If (M, g) is a closed Riemannian
manifold of dimension n with nonnegative Ricci curvature n ≥ 3,

(1-1)
∫

M
(R− R)2 ≤ 4n(n−1)

(n−2)2

∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2

and, equivalently,

(1-2)
∫

M

∣∣∣∣Ric− R
n

g
∣∣∣∣2 ≤ n2

(n−2)2

∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2,

where R = (1/Vol M)
∫

M R dv is the average of R over M. Equality holds in (1-1)
or (1-2) if and only if M is Einstein.
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B. Andrews also obtained the above inequalities in an unpublished paper under
the assumption that the Ricci curvature is positive. De Lellis and Topping also
proved their estimates are sharp. First, the constants are optimal in (1-1) and (1-2)
[De Lellis and Topping 2012, Section 2]. Second, the curvature condition Ric≥ 0
cannot simply be dropped (see the examples in the proof of Propositions 2.1 and 2.2
in their paper). Without the condition of nonnegativity of the Ricci curvature, the
same type of inequalities as (1-1) and (1-2) cannot hold if the constants in these
inequalities only depend on the lower bound of the Ricci curvature.

In the case of closed manifolds without the hypothesis of nonnegativity of Ricci
curvature, we have:

Theorem 1.2 [Cheng 2013]. If (M, g) is a closed Riemannian manifold of dimen-
sion n ≥ 3, then

(1-3)
∫

M
(R− R)2 ≤ 4n(n−1)

(n−2)2

(
1+ nK

λ1

)∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2;

equivalently,

(1-4)
∫

M

∣∣∣∣Ric− R
n

g
∣∣∣∣2 ≤ n2

(n−2)2

[
1+ 4(n−1)K

nλ1

] ∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2,

where λ1 denotes the first nonzero eigenvalue of the Laplace operator on (M, g)
and K is a nonnegative constant such that the Ricci curvature of (M, g) satisfies
Ric≥−(n− 1)K .

Equality holds in (1-3) or (1-4) if and only if M is an Einstein manifold.

Observe that Theorem 1.1 is a particular case of Theorem 1.2 (K = 0). After
the work of De Lellis and Topping, in the case of dimension n = 3, 4, Y. Ge and
G. Wang [2012; 2011] proved that Theorem 1.1 holds under the weaker condition
of nonnegative scalar curvature. However, as pointed out in [De Lellis and Topping
2012], this is surely not possible for n ≥ 5; this can be shown using constructions
similar to the one in [De Lellis and Topping 2012, Section 3]. Also, Ge, Wang, and
Xia [Ge et al. 2013] proved the case of equalities in (1-1) and (1-2) by a different
method and generalized De Lellis and Topping’s inequalities for k-Einstein tensors
and Lovelock curvature.

On the other hand, there is a similar phenomenon in submanifold theory. In
differential geometry, a classical theorem states that a closed totally umbilical
surface in the Euclidean space R3 must be a round sphere S2 and thus its second
fundamental form A is a constant multiple of its metric. This theorem is also true
for hypersurfaces in Rn+1. It is interesting to discuss the stability of this theorem.
De Lellis and Müller [2005] obtained some L2 inequalities for closed surfaces in
R3 with universal constants. For convex hypersurfaces in Rn+1 we have:
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Theorem 1.3 [Perez 2011]. Let 6 be a smooth, closed and connected hypersurface
in Rn+1, n ≥ 2, with induced Riemannian metric g and nonnegative Ricci curvature.
Then

(1-5)
∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2 ≤ n

n−1

∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2

and, equivalently,

(1-6)
∫
6

(H − H)2 ≤ n
n−1

∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2,

where A and H = tr A denote the second fundamental form and the mean curvature
of 6, respectively, and H = (1/Voln 6)

∫
6

H. In particular, the above estimate
holds for smooth, closed hypersurfaces which are the boundary of a convex set in
Rn+1.

As pointed out in [De Lellis and Topping 2012], Perez’s theorem holds even
for closed hypersufaces with nonnegative Ricci curvature when the ambient space
is Einstein. Indeed, a slight modification of the proof of Theorem 1.3 gives the
following.

Theorem 1.4. Inequalities (1-5) and (1-6) hold under the same assumptions as in
Theorem 1.3 except that the ambient space (N n+1, g̃), n ≥ 2, is supposed to be an
Einstein manifold.

Regarding the conditions for equality in (1-5) and (1-6), we have:

Theorem 1.5 [Cheng and Zhou 2012]. Under the assumptions of Theorem 1.3,
equality holds in (1-5) or (1-6) if and only if 6 is a totally umbilical hypersurface,
that is, 6 is a distance sphere Sn in Rn+1.

We also studied the general case for hypersurfaces without a convexity hypothesis
(that is, A ≥ 0, which is equivalent to Ric≥ 0 when 6 is a closed hypersurface in
Rn+1). We mention the following result (more details in the reference given):

Theorem 1.6 [Cheng and Zhou 2012]. Let (N n+1, g̃) be an Einstein manifold,
n ≥ 2. Let 6 be a smooth, connected, oriented and closed hypersurface immersed
in N with induced metric g. Then

(1-7)
∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2 ≤ n

n−1

(
1+ K

λ1

)∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2

and, equivalently,

(1-8)
∫
6

(H − H)2 ≤ n
n−1

(
1+ nK

λ1

)∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2,
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where λ1 is the first nonzero eigenvalue of the Laplacian operator on 6, K ≥ 0 is a
nonnegative constant so that the Ricci curvature of 6 satisfies Ric≥−K .

When N n+1 is the Euclidean space Rn+1, the hyperbolic space Hn+1(−1), or the
closed hemisphere Sn+1

+ (1), equality holds in (1-7) and (1-8) if and only if 6 is a
totally umbilical hypersurface, that is, 6 is a distance sphere Sn in N n+1.

From [De Lellis and Topping 2012; Ge and Wang 2012; 2011; Ge et al. 2013;
Cheng 2013; Perez 2011; Cheng and Zhou 2012], we observe that the inequalities
mentioned above may be generalized to symmetric (2, 0) tensor fields. Applying
such unified inequalities for symmetric (2, 0) tensors, we may obtain inequalities
besides those in the papers mentioned above. For this purpose, we prove the
following.

Theorem 1.7. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2.
Let T be a symmetric (2, 0)-tensor field on M. If the divergence div T and the trace
B = tr T satisfy div T = c∇B, where c is a constant, then

(1-9) (nc− 1)2
∫

M
(B− B)2 ≤ n(n− 1)

(
1+ nK

λ1

)∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2

and, equivalently,

(1-10) (nc−1)2
∫

M

∣∣∣∣T− B
n

g
∣∣∣∣2≤[(nc−1)2+(n−1)

(
1+

nK
λ1

)]∫
M

∣∣∣∣T− B
n

g
∣∣∣∣2,

where B = (1/Vol M)
∫

M B dv denotes the average of B over M and λ1 and the
constant K ≥ 0 are as in Theorem 1.2.

Assume the Ricci curvature Ric of M is positive. If c 6= 1/n, statements (i), (ii)
and (iii) below are equivalent. If c = 1/n, then (i) and (ii) are equivalent.

(i) Equality holds in (1-9) and in (1-10).

(ii) T = (B/n)g on M.

(iii) T = (B/n)g on M.

Take K = 0 in Theorem 1.7. We obtain corresponding inequalities with universal
constants.

Theorem 1.8. Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2
with nonnegative Ricci curvature. With the same notation as in Theorem 1.7, we
have

(1-11) (nc− 1)2
∫

M
(B− B)2 ≤ n(n− 1)

∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2
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and, equivalently,

(1-12) (nc− 1)2
∫

M

∣∣∣∣T − B
n

g
∣∣∣∣2 ≤ [(nc− 1)2+ 1]

∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2.

Assume the Ricci curvature Ric of M is positive. If c 6= 1/n, statements (i), (ii) and
(iii) below are equivalent. If c = 1/n, then (i) and (ii) are equivalent.

(i) Equality holds in (1-11) and (1-12).

(ii) T = (B/n)g on M.

(iii) T = (B/n)g on M.

It is a known fact that, for (Mn, g), n ≥ 2, if T = (B/n)g and div T = c∇B
with constant c 6= 1/n, then B is constant on M and thus T is a constant multiple
of its metric g (see Proposition 2.1). Theorems 1.7 and 1.8 discuss the stability
and rigidity of this fact for closed manifolds. Especially, take T = Ric, A, etc. in
Theorems 1.7 and 1.8. We obtain the corresponding inequalities mentioned before
1.7. In this paper, we obtain two other applications as follows.

First we deal with r -th mean curvatures of closed hypersurfaces in space forms.
Assume (6, g) is a connected oriented closed hypersurface immersed in a space
form with induced metric g. Associated with the second fundamental form A
of 6, we have r-th mean curvatures Hr of 6 and the Newton transformations
Pr , 0 ≤ r ≤ n, (see their definition and related notation in Section 4). Since
Reilly [1973] introduced them, there has been much work in studying high-order
r -mean curvatures (see, for instance, [Rosenberg 1993; Barbosa and Colares 1997;
Cheng and Rosenberg 2005; Alías et al. 2006]). It can be verified that if the
Newton transformations Pr satisfy Pr = (tr Pr/n)g on 6, 6 has constant r -th mean
curvature and thus Pr is a constant multiple of its metric g (see Proposition 2.1 and
Section 4). In this paper, we discuss the stability of this fact.

In addition, although it is true that a closed immersed totally umbilical hypersur-
face 6 (that is, 6 satisfies P1 = (tr P1/n)g) in Rn+1 must be a round sphere Sn ,
it is unknown, to the best of our knowledge, if it is true that a closed immersed
hypersurface 6 satisfying Pr = (tr Pr/n)g in Rn+1 must be a round sphere Sn for
r ≥ 2. When 6 is embedded, Ros [1988; 1987] showed that the round spheres
are the only closed embedded hypersurfaces with constant r-th mean curvature
in Rn+1, 2≤ r ≤ n (recall that the Alexandrov theorem says [Aleksandrov 1958]
that the round spheres are the only closed embedded hypersurfaces in Rn+1 with
constant mean curvature). Hence the round spheres are the only closed embedded
hypersurfaces in Rn+1 with Pr = (tr Pr/n)g, 2≤ r ≤ n.

In Section 4, we prove the following.
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Theorem 1.9. Let (N n+1
a , g̃) be a space form with constant sectional curvature a,

n≥ 2. Assume that6 is a smooth connected oriented closed hypersurface immersed
in N with induced metric g. Then, for 2≤ r ≤ n,

(1-13) (n− r)2
∫
6

(sr − s̄r )
2
≤ n(n− 1)

(
1+ nK

λ1

)∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2

and, equivalently,

(1-14)
∫
6

∣∣∣∣Pr −
(n−r)s̄r

n
g
∣∣∣∣2 ≤ n

[
1+ (n−1)K

λ1

] ∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2,

where sr = tr Pr = (
n
r )Hr , s̄r = (1/Vol6)

∫
6

sr dv, and λ1 and the constant K ≥ 0
are as in Theorem 1.6. Moreover:

(1) If the Ricci curvature Ric of6 is positive, these three statements are equivalent:

(i) Equality holds in (1-13) and (1-14).
(ii) Pr = ((n− r)sr/n)g holds on 6.

(iii) Pr = ((n− r)s̄r/n)g holds on 6.

(2) If 6 is embedded in the Euclidean space Rn+1 and the Ricci curvature Ric of
6 is positive, equality holds in (1-13) and (1-14) if and only if 6 is a round
sphere Sn+1 in Rn+1.

Taking K = 0 in Theorem 1.9, we obtain the following inequalities.

Theorem 1.10. Besides the same assumptions as in Theorem 1.9, assume that 6
has nonnegative Ricci curvature. Then, for 2≤ r ≤ n,

(1-15) (n− r)2
∫
6

(sr − s̄r )
2
≤ n(n− 1)

∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2

and, equivalently,

(1-16)
∫
6

∣∣∣∣Pr −
(n−r)s̄r

n
g
∣∣∣∣2 ≤ n

∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2.

Second, we consider the k-scalar curvatures of locally conformally flat closed
manifolds (see their definition in Section 5). Since they were first introduced in
[Viaclovsky 2000], k-scalar curvatures have been much studied; see, for instance,
[Guan 2002; Viaclovsky 2006]. When M is locally conformally flat, we obtain an
almost-Schur type lemma for k-scalar curvatures, k ≥ 2, as follows.

Theorem 1.11. Let (Mn, g) be an n-dimensional closed locally conformally flat
manifold, n ≥ 3. Then, for 2≤ k ≤ n, the k-scalar curvature σk(Sg) and the Newton
transformation Tk associated with the Schouten tensor Sg satisfy
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(1-17) (n− k)2
∫

M
(σk(Sg)− σ k(Sg))

2

≤ n(n− 1)
(

1+ nK
λ1

)∫
M

∣∣∣∣Tk −
(n−k)σk(Sg)

n
g
∣∣∣∣2

and, equivalently,

(1-18)
∫

M

∣∣∣∣Tk−
(n− k)σ k(Sg)

n
g
∣∣∣∣2≤ n

[
1+ (n−1)K

λ1

] ∫
M

∣∣∣∣Tk−
(n− k)σk(g)

n
g
∣∣∣∣2,

where σ k(Sg)= (1/Vol M)
∫

M σk(Sg) dv and λ1 and the constant K ≥ 0 are as in
Theorem 1.2.

If the Ricci curvature Ric of M is positive, these three statements are equivalent:

(i) Equality holds in (1-17) and (1-18).

(ii) Tk = ((n− k)σk(Sg)/n)g on M.

(iii) Tk = ((n− k)σ k(Sg)/n)g on M.

As for Theorem 1.10, taking K = 0 in Theorem 1.11, one obtains the correspond-
ing inequalities with the universal constants.

The rest of this paper is organized as follows. In Section 2, we prove Theorems
1.7 and 1.8. In Section 3, we recall the definitions of the Newton transformation
and the r-th symmetric function associated with a symmetric endomorphism of
an n-dimensional vector space. In Section 4, we prove Theorem 1.9 by applying
Theorem 1.7. In Section 5, we prove Theorem 1.11 by applying Theorem 1.7.

2. Proof of theorems on symmetric (2, 0)-tensors

First we give some notation. Assume (M, g) is an n-dimensional closed, that is,
compact and without boundary, Riemannian manifold. Let ∇ denote the Levi-Civita
connection on (M, g) and also the induced connections on tensor bundles on M .
Let T denote a symmetric (2, 0)-tensor field on M . Let tr denote the trace of
a tensor. B = tr T = T i

i = gi j Ti j denotes the trace of T . Hereafter we use the
Einstein summation convention. Denote by B = (1/Vol M)

∫
M B the average of B

over M and set T̊ = T − (B/n)g. Denote by div the divergence of a tensor field.
For T , div T = tr∇T is a (1, 0)-tensor. Under the local coordinates {xi } on M ,
div T = gi j (∇i T jk) dxk , where ∇i T jk = (∇∂i T )(∂ j , ∂k).

The following fact, already mentioned in the introduction, can be proved directly
by noting that T = (B/n)g implies div T =∇B/n.

Proposition 2.1. Assume (Mn, g), n ≥ 2, is a connected Riemannian manifold of
dimension n. If T = (B/n)g and div T = c∇B, where c 6= 1/n is a constant, then
B = const on M and T is a constant multiple of its metric g.
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The argument of Theorem 1.7 is similar to that of Theorem 1.2 (that is, [Cheng
2013, Theorem 1.2]) and, in the case of K = 0, that of Theorem 1.1 (that is,
[De Lellis and Topping 2012, Theorem 0.1]).

Proof of Theorem 1.7. Obviously, it suffices to prove the case c 6= 1/n. By the
assumption div T = c∇B,

(2-1) div T̊ = div T − div
( B

n
g
)
= div T − ∇B

n
=

nc−1
n
∇B.

Let f be the unique solution of the following Poisson equation on M :

(2-2) 1 f = B− B,
∫

M
f = 0.

By (2-1), (2-2), and Stokes’ formula,

(2-3)
∫

M
(B− B)2 =

∫
M
(B− B)1 f =−

∫
M
〈∇B,∇ f 〉

= −
n

nc− 1

∫
M
〈div T̊ ,∇ f 〉

=
n

nc− 1

∫
M
〈T̊ ,∇2 f 〉

=
n

nc− 1

∫
M
〈T̊ ,∇2 f −

1
n
(1 f )g〉

≤
n

|nc− 1|

(∫
M
|T̊|2

)1/2[∫
M
|∇

2 f −
1
n
(1 f )g|2

]1/2

=
n

|nc− 1|

(∫
M
|T̊|2

)1/2[∫
M
|∇

2 f |2−
1
n

∫
M
(1 f )2

]1/2

.

Recall the Bochner formula

1
21|∇ f |2 = |∇2 f |2+Ric(∇ f,∇ f )+〈∇ f,∇(1 f )〉,

and integrate it. By Stokes’ formula, we have

(2-4)
∫

M
|∇

2 f |2 =
∫

M
(1 f )2−

∫
M

Ric(∇ f,∇ f ).

By (2-3) and (2-4),

(2-5)
∫

M
(B−B)2≤

n
|nc−1|

(∫
M
|T̊|2

)1/2[n−1
n

∫
M
(1 f )2−

∫
M

Ric(∇ f,∇ f )
]1/2

.

By (2-2), f ≡ 0 if and only if B − B ≡ 0 on M . In this case, (1-9) and (1-10)
obviously hold. In the following we only consider that f is not identically zero.
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Since the Ricci curvature has Ric≥−(n− 1)K on M ,

(2-6)
∫

M
Ric(∇ f,∇ f )≥−(n− 1)K

∫
M
|∇ f |2.

By (2-6), (2-5) turns into

(2-7)
∫

M
(B−B)2≤ n

|nc−1|

(∫
M
|T̊ |2

)1/2[
n−1

n

∫
M
(1 f )2+(n−1)K

∫
M
|∇ f |2

]1/2

.

Since the first nonzero eigenvalue λ1 of the Laplace operator on M satisfies

λ1 = inf
{∫

M |∇ϕ|
2∫

M ϕ
2 : ϕ ∈ C∞(M) is not identically zero and

∫
M
ϕ = 0

}
and ∫

M
|∇ f |2 =−

∫
M

f1 f =−
∫

M
f (B− B)

≤

(∫
M

f 2
)1/2[∫

M
(B− B)2

]1/2

≤

(∫
M |∇ f |2

λ1

)1/2[∫
M
(B− B)2

]1/2

,

we have

(2-8)
∫

M
|∇ f |2 ≤

1
λ1

∫
M
(B− B)2.

Substitute (2-8) into (2-7) and note that K ≥ 0. We have

(2-9)
∫

M
(B− B)2

≤
n

|nc− 1|

(∫
M
|T̊|2

)1/2[n− 1
n

∫
M
(B− B)2+

(
(n− 1)K
λ1

)∫
M
(B− B)2

]1/2

=
n1/2(n− 1)1/2

|nc− 1|

(
1+

nK
λ1

)1/2[∫
M
|T̊ |2

]1/2[∫
M
(B− B)2

]1/2

,

which implies that

(2-10)
∫

M
(B− B)2 ≤ n(n−1)

(nc−1)2
(

1+ nK
λ1

) ∫
M
|T̊ |2.

Thus we have inequality (1-9):

(nc− 1)2
∫

M
(B− B)2 ≤ n(n− 1)

(
1+ nK

λ1

)∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2.
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From the identity

|T − (B/n)g|2 = |T − (B/n)g|2+ (1/n)(B− B)2,

we obtain (1-10):

(nc− 1)2
∫

M

∣∣∣∣T − B
n

g
∣∣∣∣2 ≤ [(nc− 1)2+ (n− 1)

(
1+ nK

λ1

)]∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2.

Now, assuming positivity of the Ricci curvature Ric of M , we may prove the case
of equalities in (1-9) and (1-10). Obviously, if T = (B/n)g on M , the equalities
in (1-9) and (1-10) hold. On the other hand, suppose the equality in (1-9) (or,
equivalently, (1-10)) holds. If c = 1/n, it is obvious that T = (B/n)g on M . If
c 6= 1/n, we may take K = 0. By the proof of (1-9), the equality in (1-9) holds if
and only if

(1) Ric(∇ f,∇ f )= 0 on M and

(2) T − B/ng and ∇2 f − 1/n(1 f )g are linearly dependent.

Note that Ric > 0 and (1) holds. ∇ f ≡ 0 on M must hold. Then f ≡ 0. Thus
B = B on M . By (1-9), we obtain that T = (B/n)g on M . Hence conclusions (i)
and (ii) are equivalent. Obviously (iii) implies (ii). When c 6= 1/n, if (ii) holds, by
the above argument, (ii) implies B = B on M . Thus (iii) also holds. �

Corollary 2.2. Besides the assumptions and notation of Theorem 1.7, suppose the
constant c satisfies c 6= 1/n. Then

(2-11)
∫

M
(B− B)2 ≤ C(K d2)

∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2

and

(2-12)
∫

M

∣∣∣∣T − B
n

g
∣∣∣∣2 ≤ C (K d2)

∫
M

∣∣∣∣T − B
n

g
∣∣∣∣2,

where d denotes the diameter of M and C(K d2) and C (K d2) are constants only
depending on K d2.

Proof. When Ric ≥ −(n − 1)K , where the constant K > 0, Li and Yau [1980]
proved that the first nonzero eigenvalue λ1 has the lower bound

λ1 ≥ α =
1

(n− 1)d2 exp[1+
√

1+ 4(n− 1)2K d2]
,

where d denotes the diameter of M . So
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K
λ1
≤

K
α
= (n− 1)K d2 exp[1+

√
1+ 4(n− 1)2K d2 ].

By Theorem 1.7, we obtain inequality (2-11) with the constant

C(K d2) =
n(n− 1)
(nc− 1)2

(
1+ n(n− 1)K d2 exp[1+

√
1+ 4(n− 1)2K d2 ]

)
.

Inequality (2-11) implies (2-12). �

Remark 2.3. There are other lower estimates α of λ1 using the diameter d and
negative lower bound −(n− 1)K of the Ricci curvature (see, for example, [Kalka
et al. 1997]). Hence we may have other values of constants C(K d2) and C (K d2).

3. Newton transformations and the r-th elementary symmetric function

Let σr : R
r
→ R denote the elementary symmetric function in Rn given by

σr (x1, . . . , xn)=
∑

i1<···<ir

xi1 · · · xir , 1≤ r ≤ n.

Let V be an n-dimensional vector space and A : V→ V be a symmetric linear trans-
formation. If η1, . . . , ηn are the eigenvalues of A corresponding to the orthonormal
eigenvectors {ei }, i = 1, . . . , n, respectively, define the r-th symmetric functions
σr (A) associated with A by

(3-1)
σ0(A)= 1,

σr (A)= σr (η1, . . . , ηn), 1≤ r ≤ n.

For convenience of notation, we simply denote σr (A) by σr if there is no confusion.
The Newton transformations Pr :V→V associated with A, 0≤ r ≤n are defined by

P0 = I,

Pr =

r∑
j=0

(−1) jσr− j A j
= σr I − σr−1 A+ · · ·+ (−1)r Ar , r = 1, . . . , n.

By definition, Pr = σr I − APr−1, Pn = 0. It was proved in [Reilly 1973] that Pr

has the following basic properties:

(i) Pr (ei )=
∂σr+1

∂ηi
ei .

(ii) tr(Pr )= (n− r)σr .

(iii) tr(APr )= (r + 1)σr+1.

Clearly, each Pr corresponds to a symmetric (2, 0)-tensor on V , still denoted by Pr .
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4. High-order mean curvatures of hypersurfaces in space forms

Assume (N , g̃) is an (n+ 1)-dimensional Riemannian manifold, n ≥ 2. Suppose
(6, g) is a smooth connected oriented closed hypersurface immersed in (N , g̃) with
induced metric g. Let ν denote the outward unit normal to 6, and A = (hi j ), the
second fundamental form A : Tp6⊗s Tp6→R, defined by A(X, Y )=−〈∇̃X Y, ν〉,
where X, Y ∈ Tp6, p ∈6, and ∇̃ denotes the Levi-Civita connection of (N , g̃). A
determines an equivalent (1, 1)-tensor, called the shape operator A of

6 : Tp6→ Tp6,

given by AX = ∇̃Xν. 6 is called totally umbilical if A is a multiple of its metric
g at every point of 6, that is, A = (tr A/n)g on 6. Now we recall the definition
of r -th mean curvatures of a hypersurface, which was introduced in [Reilly 1973];
compare [Rosenberg 1993].

Let ηi , i = 1, . . . , n denote the principle curvatures of 6 at p, which are the
eigenvalues of A at p corresponding to the orthonormal eigenvectors {ei }, i =
1. . . . , n, respectively. By Section 3, we have the r-th symmetric functions σr (A)
associated with A, denoted by sr = σr (A), and the Newton transformations Pr

associated with A at p, 0≤ r ≤ n.

Definition 4.1. The r-th mean curvature Hr of 6 at p is defined by sr = (
n
r )Hr ,

0≤ r ≤ n.

For instance, H1 = s1/n = H/n (in this paper, we also call H = tr A the mean
curvature of 6, consistent with earlier papers [Perez 2011; Cheng and Zhou 2012],
among others). Hn is the Gauss–Kronecker curvature. When the ambient space N
is a space form N n+1

a with constant sectional curvature a,

Ric= (n− 1)aI + H A− A2,

R = tr Ric= n(n− 1)c+ H 2
− |A|2 = n(n− 1)a+ 2s2.

Hence H2 is, modulo a constant, the scalar curvature of 6.

Lemma 4.2 ([Reilly 1973]; cf. [Rosenberg 1993; Alías et al. 2006]). When the
ambient space is a space form N n+1

a , we have div Pr = 0, for 0≤ r ≤ n.

Proof of Theorem 1.9. By Section 3, tr Pr = (n−r)sr . Denote s̄r = (1/Vol6)
∫
6

sr .
By Lemma 4.2, div Pr = 0. Take T = Pr and B = (n− r)sr in Theorem 1.7. Then

(n− r)2
∫
6

(sr − s̄r )
2
≤ n(n− 1)

(
1+ nK

λ1

)∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2;

equivalently,∫
6

∣∣∣∣Pr −
(n−r)s̄r

n
g
∣∣∣∣2 ≤ n

(
1+ (n−1)K

λ1

)∫
6

∣∣∣∣Pr −
(n−r)sr

n
g
∣∣∣∣2,
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which are (1-13) and (1-14), respectively.
Now we prove conclusions (1) and (2) in Theorem 1.9. If the Ricci curvature

of 6 is positive, by Theorem 1.7, conclusion (1) holds and sr = s̄r is constant
on 6. If 6 is also embedded in Rn+1, by a theorem of Ros [1987] stating that a
closed embedded hypersurface in Rn+1 with constant r -th mean curvature must be
a distance sphere Sn+1, 2≤ r ≤ n, we obtain conclusion (2). �

Remark 4.3. If r = 1, P1 = s1 I − A= H I − A. P1 is equivalent to the symmetric
(2, 0)-tensor P1 = Hg− A. So (1-13) turns into

(4-1)
∫
6

(H − H)2 ≤ n
n−1

(
1+ nK

λ1

)∫
6

∣∣∣∣Hg− A− (n−1)H
n

g
∣∣∣∣2

=
n

n−1

(
1+ nK

λ1

)∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2.

In particular, if K = 0,

(4-2)
∫
6

(H − H)2 ≤ n
n−1

∫
6

∣∣∣∣A− H
n

g
∣∣∣∣2.

Equations (4-1) and (4-2) are (1-8) and (1-6), respectively, which were proved in
[Cheng and Zhou 2012] and [Perez 2011], respectively, if6 is a closed hypersurface
immersed in an Einstein manifold. This is because div P1 = 0 even if the ambient
space is Einstein.

When r = 2, we have 2s2 = R− n(n− 1)a,

P2 = s2 I − s1 A+ s0 A2
=

R− (n− 2)(n− 1)a
2

I −Ric,

and, by direct computation,

P2−
(n− 2)s2

n
g =

R
n

I −Ric .

As a symmetric (2, 0)-tensor, P2 = (R/n)g−Ric. Hence (1-13) turns into∫
6

(s2− s̄2)
2
≤

n(n−1)
(n−2)2

(
1+ nK

λ1

)∫
6

∣∣∣∣P2−
(n−2)s2

n
g
∣∣∣∣2,

which is

(4-3)
∫
6

(R− R)2 ≤ 4n(n−1)
(n−2)2

(
1+ nK

λ1

)∫
6

∣∣∣∣Ric− R
n

g
∣∣∣∣2.

Equation (4-3) was proved in [Cheng 2013], and, in the case of K = 0, in [De Lellis
and Topping 2012].

If r = n, (1-13) is trivial.



338 XU CHENG

5. k-scalar curvature of locally conformal flat manifolds

We first recall the definition of the k-scalar curvatures of a Riemannian manifold,
introduced in [Viaclovsky 2000]. If (Mn, g) is an n-dimensional Riemannian
manifold, n ≥ 3, the Schouten tensor of M is

Sg =
1

n−2

(
Ric− 1

2(n−1)
Rg
)
.

By definition, Sg : T M→ T M is a symmetric (1, 1)-tensor field. By Section 3, we
have the symmetric k-th function σk(Sg) and the Newton transformations Tk(Sg)=

Tk associated with Sg, 1≤ k ≤ n. We call σk(Sg) the k-scalar curvatures of M

Lemma 5.1 [Viaclovsky 2000]. If (M, g) is locally conformally flat, then, for
1≤ k ≤ n, div Tk(Sg)= 0.

Because of Lemma 5.1, we can applying Theorem 1.7 to Tk(Sg) to obtain
Theorem 1.11.

Remark 5.2. When k = 1, σ1(Sg)= tr Sg = R/(2(n− 1)) and T1 = σ1(Sg)I − Sg.
As a symmetric (2, 0)-tensor, T1 =−(1/(n− 2))(Ric−Rg/2). Hence (1-17) turns
into (1-3), ∫

M
(R− R)2 ≤ 4n(n−1)

(n−2)2

(
1+ nK

λ1

)∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2,

and, in particular, if K = 0, (1-17) turns into (1-1),∫
M
(R− R)2 ≤ 4n(n−1)

(n−2)2

∫
M

∣∣∣∣Ric− R
n

g
∣∣∣∣2.

Equations (1-3) and (1-1) were proved in [Cheng 2013] and [De Lellis and Topping
2012], respectively, without the hypothesis that M is locally conformally flat. The
reason is that div T1 = 0 (the contracted second Bianchi identity) holds on any
Riemannian manifold.
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