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ALGEBRAIC INVARIANTS, MUTATION, AND
COMMENSURABILITY OF LINK COMPLEMENTS

ERIC CHESEBRO AND JASON DEBLOIS

We construct a family of hyperbolic link complements by gluing tangles
along totally geodesic four-punctured spheres, then investigate the commen-
surability relation among its members. Those with different volume are
incommensurable, distinguished by their scissors congruence classes. Mu-
tation produces arbitrarily large finite subfamilies of nonisometric mani-
folds with the same volume and scissors congruence class. Depending on
the choice of mutation, these manifolds may be commensurable or incom-
mensurable, distinguished in the latter case by cusp parameters. All have
trace field Q(i,

√
2); some have integral traces while others do not.

1. Introduction

Manifolds are commensurable if they have a common cover, of finite degree over
each. W. P. Thurston first studied the commensurability relation among hyperbolic
knot and link complements in S3, describing commensurable and incommensurable
examples in his notes [Thurston 1979, Chapter 6]. The families of chain link
complements [Neumann and Reid 1992], two-bridge knot complements [Reid and
Walsh 2008], and certain pretzel knot complements [Macasieb and Mattman 2008]
have since been further explored. Here we construct another infinite family of
hyperbolic link complements and explore the commensurability relation among its
members.

We compute the following invariants on members of our family. For 0<PSL2(C)

the trace field of M = H3/0 is the smallest field containing the traces of elements
of 0. If each such trace is an algebraic integer we say M has integral traces. The
cusp parameters of M , used in [Thurston 1979; Neumann and Reid 1992], are
algebraic invariants of the Euclidean structures on horospherical cross sections of
the cusps of M . The Bloch invariant [Neumann and Yang 1999] is determined by a
polyhedral decomposition.
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Theorem 1. For each n ∈ N, there is a link Ln ⊂ S3 such that Mn = S3
− Ln is

hyperbolic with trace field Q(i,
√

2) and integral traces. If m 6= n then Mm and Mn

are incommensurable, distinguished by their Bloch invariants and cusp parameters.

Having integral traces is commensurability-invariant [Maclachlan and Reid 2003,
§5.2], and the trace field is a commensurability invariant of link complements
[Maclachlan and Reid 2003, Corollary 4.2.2]. Commensurable manifolds have
Q-dependent Bloch invariants and PGL2(Q)-dependent cusp parameters, but the
Mn have neither (see Proposition 4.7 and Lemma 4.18).

Figure 1 depicts L2. The gray lines there indicate the presence of 2-spheres
that each meet L2 in four points, separating it left-to-right into a tangle S in the
three-ball B3, two copies of a tangle T ⊂ S2

× I , and the mirror image S of S. For
arbitrary n ∈ N, the link Ln is constructed analogously, using S, S, and n copies of
T . We number the corresponding 2-spheres for Ln as S(i) for 0≤ i ≤ n, so that S(0)

bounds S, S(n) bounds S, and S(i) bounds a copy of T with S(i−1) for 0< i ≤ n.
We also describe the commensurability relation among the complements of

links related to the Ln by mutation along the S(i): cutting along S(i) and regluing
by an order-two mapping class that preserves S(i) ∩ Ln and acts on it as an even
permutation. With Ln projected as in Figure 1, for each i we mark the points
of S(i) ∩ Ln by 2, 3, 4, and 1, reading top to bottom, and refer to a mutation
homeomorphism of S(i) by its permutation representation.

Below, for n ∈N and I ∈ {0, 1, 2}n+1 let L I be the link obtained from Ln by the
mutation (13)(24) (respectively, (12)(34)) along S(i), for each i such that the i-th
entry of I is 1 (respectively, 2). Write MI = S3

− L I for each such I .

Theorem 2. For n ∈ N and I = (a0, . . . , an) ∈ {0, 1}n+1, MI is commensurable to
Mn . For J = (b0, . . . , bn) ∈ {0, 1}n+1, MJ is isometric to MI if and only if either
bi = ai for each i ∈ {1, . . . , n− 1} or bi = an−i for each such i .

We will show in a future paper that Theorem 2 reflects the fact that Mn has a
hidden symmetry (see, for example, [Neumann and Reid 1992]) arising from a
hidden extension of the mutation (13)(24), an extension of a lift of (13)(24) over a
finite cover of (S2

× I )− T .

T1

T2

Figure 1. The link L2.
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Here we prove Theorem 2 more directly, identifying an orbifold On jointly
covered by Mn and the MI ; see Proposition 6.4. The key advantage of this approach
is that we can also prove the isometry classification above (see Proposition 6.6) using
the fact that On is minimal in the commensurability class of Mn (Corollary 6.5).

Corollary 6.5 is proved following an idea of Goodman, Heard, and Hodgson
[Goodman et al. 2008]. The key step, for each n, is to construct a tiling Tn of H3

by convex polyhedra that is canonical in the sense of [Goodman et al. 2008, §2].
See Theorem 4. This is of independent interest, as there are few infinite families
for which canonical tilings have been identified.

The mutation (12)(34) has a very different effect than (13)(24).

Theorem 3. For n ∈ N, let Ln = {L I | I ∈ {0, 2}n+1
}. Then:

(1) For each I ∈{0, 2}n+1
−{(0, . . . , 0)}, MI has the same volume, Bloch invariant,

and trace field as Mn , but has a nonintegral trace.

(2) There is a subfamily of Ln with at least n/2 mutually incommensurable mem-
bers, distinguished by their cusp parameters.

(3) There is a subfamily of Ln with n members which all share cusp parameters.

Remarks. 1. Mutation along 4-punctured spheres preserves hyperbolic volume
[Ruberman 1987], the trace field [Neumann and Reid 1991], and the Bloch in-
variant [Neumann 2011, Theorem 2.13]. While unaware of the Bloch invariant
reference we proved our case directly; see Proposition 7.2.

2. Ln = L(0,...,0), which accounts for the gap in statement (1) of the theorem.

3. Corollaries 7.4 and 7.5 describe the subfamilies from (2) and (3) above. We
do not know the commensurability relation among members of the latter
subfamily.

Theorems 2 and 3 comprise the first study (to our knowledge) of commensurabil-
ity among an infinite family of link complements related by mutation. Mutants have
a longstanding reputation for being difficult to distinguish, although the algorithm
of [Goodman et al. 2008] can now be used to check particular examples. (For
instance, the complement of the Kinoshita–Terasaka knot, 11n42 in the knot tables,
is incommensurable with that of its mutant, the Conway knot, 11n34.)

Theorem 2 further gives some evidence counter to the following conjecture of
Reid and Walsh [2008]: the commensurability class of a hyperbolic knot comple-
ment in S3 contains at most two others. This implies in particular that any hyperbolic
knot complement is incommensurable with all but two of its (nonisometric) mutants.

We now outline the remainder of the paper. We name the tangle complements
MS

.
= B3

− S and MT
.
= S2

× I − T , and note that MT is the double of MT0

.
=

MT ∩ (S2
× [0, 1/2]) across a single boundary component. Section 2 describes

hyperbolic structures with totally geodesic boundary on MS and MT0 as identification
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spaces of the regular ideal octahedron and the right-angled ideal cuboctahedron,
respectively.

The totally geodesic boundary ∂MS is isometric to the component of ∂MT0

contained in ∂MT , and the reflective symmetry of MT ensures that its totally
geodesic boundary components are orientation-reversing isometric. In forming Mn

we glue ∂B3
− S to S2

× {0} − T by a map isotopic to an isometry, so that the
separating four-punctured spheres F (i) = S(i)− T are totally geodesic in Mn for
0≤ i ≤ n. Section 3 describes this assembly.

Because the F (i) are totally geodesic, each copy of MS and MT in Mn inherits its
structure with totally geodesic boundary from the ambient hyperbolic structure. This
in turn makes it possible to compute the commensurability invariants of Theorem 1
on the Mn . We carry this out in Section 4. Few other link complements are known to
contain a surface that is totally geodesic without some topological constraint forcing
it so; see, for example, [Maclachlan and Reid 1991; Aitchison and Rubinstein
1997]. For related results see [Menasco and Reid 1992; Adams and Schoenfeld
2005; Leininger 2006; Adams et al. 2008].

Our method of construction owes a debt to one that Adams [1985] and Neumann
and Reid used to produce families of hyperbolic 3-manifolds, gluing together
manifolds with 3-punctured sphere boundary. (However unlike the 4-punctured
sphere, a 3-punctured sphere is totally geodesic in any hyperbolic 3-manifold that
contains it [Adams 1985, Theorem 3.1].) The work of Neumann and Reid (see
[Maclachlan and Reid 2003, §5.6]) can be can be combined with an argument like
the one in Proposition 4.2 to show that for each imaginary biquadratic extension k
of Q, there are infinitely many commensurability classes of hyperbolic 3-manifolds
with trace field k.

In every hyperbolic 4-punctured sphere, each mutation determines a homeo-
morphism properly isotopic to an isometry [Ruberman 1987]. In Section 5 we
describe the isometries determined by (13)(24) and (12)(34) and the hyperbolic
structures on mutants of the Mn . We prove Theorem 2 in Section 6 and Theorem 3
in Section 7.

2. A pair of tangles

This section is devoted to describing hyperbolic structures with totally geodesic
boundary on the complements of the tangles S, in B3, and T0, in S2

× I , depicted
in Figure 2. For a manifold M with boundary, we refer by a tangle in M to a pair
(M, T ), where T is the image of a disjoint union of circles and closed intervals,
embedded in M by a map taking each circle into the interior of M and restricting
on each interval to a proper embedding.
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Figure 2. Tangles S and T0, labeled with Wirtinger generators.

We will prove there is a homeomorphism taking B3
− S to a hyperbolic manifold

with totally geodesic boundary which is an identification space of an ideal octahedron
by pairing certain faces. This was previously known, and it follows from results in
[Paoluzzi and Zimmermann 1996] upon taking a geometric limit, but we do not
know a reference for a direct proof. We also prove there is a homeomorphism taking
S2
× I −T0 to a certain identification space of the right-angled ideal cuboctahedron.

As far as we are aware, this description was not previously known.
We prove existence of homeomorphisms using faithful representations, from the

fundamental groups of tangle complements onto Kleinian groups generated by face
pairings. Our main tools drawing connections between the geometric, algebraic, and
topological objects involved are Lemma 2.1, which relates a hyperbolic 3-manifold
with totally geodesic boundary produced by pairing some faces of a right-angled
polyhedron to the Kleinian group generated by the face-pairing isometries, and
Lemma 2.6, which describes a homeomorphism from a pared manifold M and the
convex core of H3/0, where 0 is a Kleinian group isomorphic to π1(M).

In the remainder of the paper, we will let H3
= {(z, t) | z ∈ C, t ∈ (0,∞)},

the upper half-space model of hyperbolic space, equipped with the complete Rie-
mannian metric of constant sectional curvature −1. In this model, the group of
orientation-preserving isometries, PSL2(C), acts by extending its action by Möbius
transformations on the ideal boundary or sphere at infinity C∪ {∞}.

The horosphere of height t centered at ∞ is C× {t} ⊂ H3. This inherits the
Euclidean metric, scaled by 1/t , from the ambient hyperbolic metric. For v∈C×{0},
a horosphere centered at v is a Euclidean sphere in C×R centered at a point in
H3 and tangent to C×{0} at (v, 0). It is a standard fact that isometries of H3 take
horospheres to horospheres.

A hyperplane of H3 is a totally geodesic subspace of the form `×R+ for a line
`⊂C, or the intersection with H3 of a Euclidean sphere centered at a point in C×{0}.
A half-space is the closure of a component of the complement in H3 of a hyperplane,
and a polyhedron is the nonempty intersection of a collection of half-spaces with
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the property that the corresponding collection of defining hyperplanes is locally
finite. A face of a polyhedron is its intersection with one of its defining hyperplanes.
A polyhedron is right angled if its defining hyperplanes meet at right angles (if at
all) and ideal if any point at which more than two of its defining hyperplanes meet
is on the sphere at infinity. Such points are ideal vertices.

We say a polyhedron P⊂H3 is checkered if its set of faces is partitioned into
sets Si and Se of internal and external faces, respectively, so that each f ∈ Si

intersects only faces in Se and vice versa. For a face f of a checkered, right-angled
ideal polyhedron P, let H f be the geodesic hyperplane in H3 containing f and let
U f be the half-space bounded by H f that contains P. Let the expansion of P be

E(P)=
⋂
f ∈Si

U f .

The expansion E(P) is a polyhedron of infinite volume that contains P, and the
components of the frontier of P in E(P) are the external faces of P.

An internal face pairing for a checkered polyhedron P ⊂ H3 is a collection
{φ f | f ∈ Si } of isometries, such that for each f ∈ Si there exists f ′ ∈ Si with
φ f ( f )= f ′, φ f (P)∩ P= f ′, and φ f ′ = φ

−1
f . It is proper if f ′ 6= f for all f ∈ Si .

A proper internal face pairing determines a proper Isom(H3)-side-pairing of the
expansion E(P), in the sense of [Ratcliffe 1994, §10.1]. (In [Ratcliffe 1994], faces
are called sides.)

Given a proper internal face pairing {φ f } of a checkered polyhedron P, [Ratcliffe
1994, Theorem 10.1.2] implies the identification space E(P)/{φ f }, determined by
setting x ∼ φ f (x) for all f ∈Si and x ∈ f , is a hyperbolic manifold. The inclusion
P ↪→ E(P) induces an inclusion from MP

.
=P/{φ f } to E(P)/{φ f }. For each edge

e of each g ∈ Se, there is a unique f ∈ Si such that e ⊂ f ∩ g. Since f ′ = φ f ( f )
intersects a unique g′ ∈ Si along φ f (e), the internal face pairing for P determines
an edge pairing for the disjoint union of external faces of P. Thus MP

.
=P/{φ f } is

an isometrically embedded submanifold of E(P)/{φ f }, where ∂MP is the quotient
of the disjoint union of the external faces by the edge pairing induced by {φ f }.

Given an edge pair {e, e′} for ∂MP, the total angle around this edge in MP is the
sum of the dihedral angles for e and e′ in P. Therefore, if P is right angled, ∂MP

is totally geodesic.
If 0 is a Kleinian group, we refer to the convex core of H3/0 as C(0). This

is the convex submanifold of H3/0, minimal with respect to inclusion, with the
property that the inclusion-induced homomorphism π1C(0)→H3/0 is surjective.
(See [Morgan 1984] for background on Kleinian groups. The beginning of §6
therein covers convex cores.)

Lemma 2.1. Let P⊂H3 be a finite-sided, checkered right-angled ideal polyhedron,
with a proper internal face pairing {φ f | f ∈ Si }. Then 0 .

= 〈φ f | f ∈ Si 〉 is a free
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Kleinian group, and the inclusion P ↪→ H3 induces an isometry p : MP→ C(0).
If H is the hyperplane containing g ∈ Se then H → H3 induces an isometric
embedding of H/Stab0(H) to the component of ∂C(0) containing p(g).

Proof. We will continue to use some terminology and results from [Ratcliffe 1994].
With these hypotheses the inclusion P→ E(P) induces an isometric embedding
MP→ E(P)/{φ f }, and ∂MP is totally geodesic. If E(P)/{φ f } is complete as a
hyperbolic 3-manifold, then by Poincaré’s polyhedron theorem (see, for example,
[Ratcliffe 1994, Theorem 11.2.2]), 0 = 〈φ f | f ∈ Si 〉 is discrete and E(P) is a
fundamental domain for 0.

By [Ratcliffe 1994, Theorem 11.1.6], to show completeness it suffices to check
that the link of any cusp is a complete Euclidean surface. Let bvc={v0, v1, . . . , vn−1}

be an equivalence class of ideal vertices of P under the relation generated by
x ∼ φ f (x), f ∈ Si , enumerated so that for each j there exists f j ∈ Si with
φ f j (v j )= v j+1 (taken modulo n). In particular, v j is an ideal vertex of f j and also
of f ′j

.
= φ j−1( f j−1).

For each j , let B j be a horosphere centered at v j , chosen small enough that
B j∩B j ′ =∅ for j 6= j ′. Since P is right angled, B j∩P is a Euclidean rectangle for
each j . We may assume, by renumbering if necessary, that B0∩ f0 has the shortest
length of all the arcs B j ∩ f j . Then since φ0(B0)∩ f ′1 is parallel to φ0(B0)∩ f1 in
φ0(B0)∩ P, they have the same length: that of B0 ∩ f0. Since this is less than the
length of B1 ∩ f1, we have φ0(B0)⊂B1.

We may replace B1 by φ0(B0), then replace B2 with φ1(B1), and so on, yielding
a new collection of horospheres which are pairwise disjoint and have the additional
property that they are interchanged by the face pairings of P. Equivalence classes
of ideal vertices of E(P) are the same as those of P; thus this collection satisfies
the hypotheses of [Ratcliffe 1994, Theorem 11.1.4], and the link of bvc is complete.
It follows that E(P)/{φ f } is a complete hyperbolic 3-manifold.

Now by the polyhedron theorem, 0 is discrete and E(P) is a fundamental domain
for 0. It follows from a ping-pong argument that 0 is free, since the fact that P is
right angled implies that the hyperplanes containing its internal faces are mutually
disjoint. The inclusion E(P)→ H3 induces an isometry E(P)/{φ f } → H3/0, so
the inclusion P→ H3 induces an isometric embedding p : MP→ H3/0.

That p(MP)⊆ C(0) will follow from the fact that P is contained in the convex
hull of the limit set Hull(0) of 0, since this is well known to be the universal cover
of C(0). Fixed points of parabolic elements of 0 lie in Hull(0), so since P is the
convex hull of its ideal vertices we show that it is in Hull(0) by observing that
each such vertex is a parabolic fixed point of 0. Indeed, if {v0, v1, . . . , vn−1} is an
equivalence class of ideal vertices enumerated as we described above, then v0 is
fixed by φ fn−1 ◦ · · · ◦φ f1 ◦φ f0 ∈ 0.
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Since p(MP) has totally geodesic boundary it is convex (see [Canary et al. 2006,
Corollary I.1.3.7]). Thus if p(MP) carries π1(H

3/0) then C(0)⊆ p(MP). To show
this we use the nearest-point retraction r : E(P)→P to produce a homeomorphism
MP ∪∂MP (∂MP × [0,∞))→ H3/0 that restricts to p on MP. The closure of
each component of E(P) − P intersects P in a unique g ∈ Se, and the map
x 7→ (r(x), d(x, r(x))) determines a homeomorphism to g×[0,∞). The inverses
of these homeomorphisms, taken over the disjoint union of all g ∈ Se, combine to
induce the map in question.

The two paragraphs above combine to prove that C(0)= p(MP). In particular,
C(0) has totally geodesic boundary, so its preimage in H3 under the universal
cover is a disjoint union of geodesic planes. Since p takes g ∈ Se to ∂C(0), the
hyperplane H containing g is a component of the preimage of ∂C(0). The final
claim of the lemma follows. �

Corollary 2.2. Let P1 be the regular ideal octahedron in H3, embedded as indicated
in Figure 3, and checkered by declaring the face A to be external. The collection
{s±1, t±1

} is an internal face pairing for P1, where

s=

(
1 0
−1 1

)
and t=

(
2i 2− i
i 1− i

)
.

Let MS =P1/{s
±1, t±1

}, and let 0S = 〈s, t〉. Then the inclusion P1→H3 induces
an isometry pS : MS→ C(0S).

Proof. With the indicated embedding, P1 is a tile of the PSL2(O1)-invariant tessella-
tion T1 constructed in [Hatcher 1983]. Here O1 = Z[i] is the ring of integers of the

BX4

A @@I

X1

X2
���

X3
��	

∞
1

0

X2 X4

X1

X3
i

0

1+i

1

Figure 3. The regular ideal octahedron P1, and its expansion E(P1).
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Figure 4. The right-angled ideal cuboctahedron P2, and E(P2).

field Q(i). In particular, the face A shown on the left in Figure 3 has ideal vertices
0, 1, and∞, and all other ideal vertices of P1 have positive imaginary part.

Since A is external, the faces X1, X2, X3, and X4 of P1 indicated on the left in
Figure 3 are internal. Direct computation reveals that s takes X1 to X2, fixing the
ideal vertex they share, and t takes X3 to X4 so that the vertex they share goes to
the vertex shared by X4 and X2. Hence {s±1, t±1

} is an internal face pairing for P1.
The corollary now follows from Lemma 2.1. �

The external faces of P1 triangulate ∂MS , and their images under pS determine
a triangulation of ∂C(0S), which we will denote by 1S .

Corollary 2.3. Let P2 be the right-angled ideal cuboctahedron in H3, embedded
as indicated in Figure 4, and checkered by declaring triangular faces external. The
collection {f±1, g±1, h±1

} is an internal face pairing for P2, where

f =

(
1 0
−1 1

)
, g =

(
−1+i

√
2 1−2i

√
2

−2 3−i
√

2

)
, h=

(
2i
√

2 −3−i
√

2
−3+i

√
2 −3i

√
2

)
.

Let MT0 = P2/{f
±1, g±1, h±1

}, and let 0T0 = 〈f, g, h〉. The inclusion P2 → H3

induces an isometry pT0 : MT0 → C(0T0).

Proof. With the indicated embedding, P2 is a tile of the PSL2(O2)-invariant tes-
sellation T2 of H3 defined in [Hatcher 1983], where O2 = Z[i

√
2] is the ring of

integers of Q(i
√

2). In particular, the face C labeled in the figure has ideal vertices
0, 1, and∞.

Label the internal faces Yi as indicated on the left in Figure 4, and label the
square face opposite Yi as Y ′i . Direct computation reveals that f takes Y2 to Y1,
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fixing the ideal vertex they share, g takes Y3 to Y ′1, fixing the ideal vertex they
share, and h takes Y ′2 to Y ′3, taking the vertex they share to the opposite vertex on Y ′3.
Hence {f±1, g±1, h±1

} is an internal face pairing for P2. The corollary now follows
from Lemma 2.1. �

The external faces of P2 triangulate ∂MT0 . This has two components that we
will call ∂+MT0 and ∂−MT0 , with the latter triangulated by the letter-labeled faces
of Figure 4. Let ∂±C(0T0)= pT0(∂±MT0) and let 1±T0

refer to the triangulation for
∂±C(0T0) determined by the images under pT0 of the external faces of P2.

In the remainder of the paper, if g and h are elements of a group and G is a
subgroup, we let gh denote the conjugate of g by h, hgh−1, and Gh

= hGh−1. We
describe parabolic isometries p1, p2, and p3 which lie in 0S ∩0T0 :

p1 = s−1
= f−1

=

(
1 0
1 1

)
,

p2 = stst−2
= fg−1f−1h−1g =

(
−1 5

0 −1

)
,

p3 = (s
−1)tst = (g−1)g

−1f−1h
=

(
−14 25
−9 16

)
.

Since these are in PSL2(R), they stabilize the hyperplane H with boundary R∪{∞}.

Lemma 2.4. The polygon F of Figure 5 is a fundamental domain for the action of
3
.
= 〈p1, p2, p3〉< PSL2(R) on H, and F (0) =H/3 is a 4-punctured sphere. Also:

(1) 3= Stab0S (H)= Stab0T0
(H),

(2) the inclusion H ↪→ H3 induces an isometry ι(0)− : F (0) → ∂C(0S) and an
isometry ι(0)+ : F (0)→ ∂−C(0T0), and

(3) the triangulation of F pictured in Figure 5 projects to a triangulation 1F of
F (0) taken by ι(0)− and ι(0)+ , respectively, to 1S and 1−T0

.

Proof. With P1 and P2 embedded as prescribed in Figures 3 and 4, respectively,
their faces A and C coincide and lie in H as described in Figure 5. As noted in
the proofs of Corollaries 2.2 and 2.3, 0S-translates of P1 lie in the tessellation
T1 described in [Hatcher 1983], and 0T0-translates of P2 lie in T2. The Farey
tessellation is T1 ∩H = T2 ∩H, so this contains any 0S-translate of any face of
P1 and any 0T0-translate of any face of P2.

Let A′ be the external face of P1 which shares the ideal vertex 0 with A, and let
B ′ be the external face which shares the vertex∞ with A and 1+ i with B. Since t

takes X3 to X4, with the edge X3 ∩ B ′ taken to X4 ∩ A, it follows that t(B ′) lies in
H, abutting A along the geodesic between 1 and∞. Since t(B ′) is a Farey triangle
it has its other ideal vertex at 2. It follows similarly that g−1(E)= t(B ′) (where E
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1 20 3/2 5/3

(fg)−1(D)

A = C

s= f

= tst−2
g−1f−1h−1g

ts(B)=

(s−1)tst = (g−1)g
−1f−1h

Figure 5. A triangulated fundamental domain F for the action of
3 on H, and side pairings.

is as labeled in Figure 4), that ts(B)= (fg)−1(D), as indicated in Figure 5, and that
tst(A′)= g−1f−1h(F) has vertices at 3/2, 2, and 5/3.

Combinatorial considerations or direct calculation establish that s= f, tst−2
=

g−1f−1h−1g, and (s−1)tst = (g−1)g
−1f−1h, and that each stabilizes H and pairs edges

of F as indicated in Figure 5. By inspection the quotient is a 4-punctured sphere
F (0). By the polyhedron theorem F is a fundamental domain for the group that
they generate, which acts on H with quotient F (0). Since p1, p2, and p3 are easily
obtained from the edge pairings above and vice versa, it follows that

3= 〈s, tst−2, (s−1)tst〉 = 〈f, g−1f−1h−1g, (g−1)g
−1f−1h
〉.

Therefore F is a fundamental domain for 3, and H/3= F (0).
It is easy to see from its combinatorics that ∂MS is a four-punctured sphere,

as is the component of ∂MT0 containing C . Thus by Corollaries 2.2 and 2.3 the
same holds true for ∂C(0S) and the component of ∂C(0T0) containing the image
of C . Lemma 2.1 implies that ∂C(0S) is the image of H/Stab0S (H) under the
inclusion-induced map. Since it is clear from the above that 3< Stab0S (H), and
since H/3 is itself a four-punctured sphere, the conclusions of assertions (1) and (2)
above follow for 0S . A similar argument implies the same for 0T0 . The conclusions
of (3) follow from the description above of the triangulation of F. �

Remarks. 1. The parabolic elements of 3 fixing the ideal points 0,∞, and 5/3
of H are p1, p2, and p3. The final conjugacy class of parabolic elements in 3
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is represented by

p4 = p1p2p
−1
3 = (stst

−2)tst
−1
=

(
29 −45
20 −31

)
.

Evidently p1 and p3 are conjugate in 0S , as are p2 and p4. The combinatorial
considerations of Lemma 4.13 will show that C(0S) has exactly two cusps,
each of rank one, so every parabolic element of 0S is conjugate to one of p1

or p2.

2. There exists k ∈ PSL2(C), with order 2, which normalizes 0T0 :

(1) k=

(
i i−
√

2
0 −i

)
.

The action of k on the generators f, g, and h is given by

fk = gfg
−1
, gk = ffg

−1
, and hk = (h−1)fg

−1
.

If 0 is a Kleinian group and u ∈ Isom(H3), we write φu : C(0)→ C(0u) for
the restriction to C(0) of the isometry H3/0→ H3/0u induced by u. Since k

normalizes 0T0 , φk : C(0T0)→ C(0T0) is an orientation-preserving involution. The
elements pki , i ∈ {1, 2, 3}, all preserve the geodesic hyperplane k(H), which lies
over the line R− i

√
2 and contains an external face of P2 projecting to ∂+C(0T0).

The lemma below follows and, together with Lemma 2.4, completely describes
∂C(0T0).

Lemma 2.5. 3k
=Stab0T (k(H)), and the inclusion k(H)→H3 induces an isometry

from F ′ .= k(H)/3k to ∂+C(0T0).

It is easy to see that pk1 is conjugate in 0T0 to p3 and that pk2 = p−1
2 . The

combinatorial considerations of Lemma 4.14 will imply that MT0 has four cusps.
Hence, by Lemma 2.5, each of the cusps of C(0T0) joins ∂−C(0T0) to ∂+C(0T0),
and each parabolic in 0T0 is conjugate to exactly one pi , i ∈ {1, 2, 3, 4}.

Our second main tool in this section is Lemma 2.6. We refer to [Morgan 1984,
Definition 4.8] for the definition of a pared manifold.

Lemma 2.6. Let (M, P) be a pared manifold, and suppose that ρ : π1 M→ 0 <

PSL2(C) is a faithful representation onto a non-Fuchsian geometrically finite
Kleinian group 0, where C(0) has totally geodesic boundary. If ρ determines
a one-to-one correspondence between conjugacy classes of subgroups of π1(M)
corresponding to components of P and conjugacy classes of maximal parabolic
subgroups of 0, then ρ is induced by a homeomorphism of M − P to C(0).

This is well known to experts in Kleinian groups, but we do not know of a
reference for a written proof. It seems worth writing down as it may fail if C(0)
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does not have totally geodesic boundary (see [Canary and McCullough 2004] for a
thorough exploration of this phenomenon). The proof follows easily from results
in [Canary and McCullough 2004], for example, but requires introduction of the
characteristic submanifold machinery. Since this falls outside the scope of the rest
of the paper, we defer the proof to the Appendix.

Let (B3, S) be the tangle pictured on the left in Figure 2. Take a base point for
π1(B3

− S) on ∂(B3
− S) high above the projection plane, and let its Wirtinger

generators correspond in the usual way to labeled arcs of the diagram.

Proposition 2.7. There is a homeomorphism fS : B3
− S→ C(0S), such that

fS∗ : π1(B3
− S)→ 0S

is given by fS∗(a)= p−1
1 , fS∗(e)= p2, and fS∗(v)= p−1

3 .

Proof. Reducing a standard Wirtinger presentation for π1(B3
− S), we obtain

〈a, w, e | ewe−1a = awaw−1
〉 = 〈a, w, e | w(e−1aw)= (e−1aw)a〉.

Thus, taking b = e−1aw, one finds that π1(B3
− S) is freely generated by a and b.

By Lemma 2.1 and Corollary 2.2, 0S is free on the generators s and t. Hence,
the map fS∗ : π1(B3

− S) −→ 0S given by a 7→ s and b 7→ t is an isomorphism.
Notice that the subgroup of π1(B3

− S) corresponding to the 4-punctured sphere
∂B3
− ∂S is freely generated by a, v, and e. It is easily checked that

fS∗(v)=

(
16 −25
9 −14

)
= p−1

3 and fS∗(e) =
(
−1 5

0 −1

)
= p2.

The map fS∗ takes π1(∂B3
− S) isomorphically to 3. Since a, v, and e generate

π1(∂B3
−S) and their images in 0S generate3, Since any meridian of S is conjugate

in π1(B3
−S) to either a or e, and these are taken to p1 and p2, respectively, meridians

are taken to parabolic elements of 0S .
Now let N (S) be a small open tubular neighborhood of S in B3. Then B3

−N (S)
is a compact manifold with genus-2 boundary, and the pair (B3

− N (S), ∂N (S))
is a pared manifold. The proposition follows from Lemma 2.6, after noting that
(B3
− N (S))− ∂N (S) is homeomorphic to B3

− S. �

Let (S2
× I, T0) be the tangle pictured on the right side of Figure 2, where I is

oriented so that ∂−T0
.
= T0 ∩ S2

× {0} contains the endpoints labeled a, u, and v.
Take a base point for π1(S2

× I − T0) on S2
×{0} high above the projection plane

and let Wirtinger generators correspond to the labeled arcs of Figure 2.
The next proposition is the analog of Proposition 2.7 for T0.

Proposition 2.8. There is a homeomorphism fT0 : S2
× I − T0 −→ C(0T0) such

that
fT0∗ : π1(S2

× I − T0)−→ 0T0
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is given by fT0∗(a)= p−1
1 , fT0∗(e)= p2, and fT0∗(v)= p−1

3 .

Proof. (S2
× I − N (T0)) may be isotoped in S3 to a standard embedding of

a genus-3 handlebody. Thus π1(S2
× I − T0) is free on three generators. We

claim that the group is generated by a, e, and t . This follows after noticing that
v= y−1xy, where y = (ta)−1a(ta) and x = (azq)−1t (azq)= (ate)−1t (ate). (The
relation zq = te used in the last equality comes from the relationship between four
peripheral elements in a 4-punctured sphere group.) So far, we have established
that v, y ∈ 〈a, e, t〉. Now using the other punctured sphere relation, we have
u = a−1ev ∈ 〈a, e, t〉. Finally, z = yuy−1 and q = z−1te. Therefore a, e, and t
generate the group as claimed.

By Lemma 2.1 and Corollary 2.3, 0T0 is freely generated by f, g, and h. For
our purposes, a more convenient free generating set for 0T0 is {f, fgf−1, p2}. Note
that all of these generators are parabolic and peripheral, and conjugation by k

interchanges the first two and takes the third to its inverse. The representation of
π1(S2

×[0, 1/2] − T0) given by

a 7→ f, t 7→ fgf−1, e 7→ p2

is clearly faithful, and it is easily checked that v maps to p−1
3 . Because u = a−1ev

is mapped to p1p2p
−1
3 = p4, we conclude that meridians are mapped to parabolic

elements and that π1(S2
×{0}− ∂−T0) is taken to 3. The result now follows from

Lemma 2.6 as previously. �

There is a visible involution of S2
× I − T0 which is a rotation by π around a

circle in S2
×{1/2}. This involution exchanges the two boundary components. With

a proper choice of path between our basepoint and its image under this involution,
the corresponding action on π1(S2

× I − T0) is given by

a↔ t, e↔ e−1.

This commutes with the action of the element k defined in (1) on 0T0 , under the
representation fT0∗. Hence this involution is isotopic to the pullback of φk by fT0 .

Recall from Lemma 2.4 that 3= Stab0T0
(H), and from Lemma 2.5 that 3k

=

Stab0T0
(k(H)). By its definition in Proposition 2.8, it is clear that fT0∗ maps

π1(S2
×{0}− ∂−T0) isomorphically to 3. Since H projects to ∂−C(0T0), using the

involution equivariance of fT0 we obtain the corollary below.

Corollary 2.9. Let ∂+T0 = T0∩ S2
×{1}. Then fT0(S

2
×{0}− ∂−T0)= ∂−C(0T0),

and fT0(S
2
×{1}− ∂+T0)= ∂+C(0T0).

3. Combination

In this section, we will describe how to join copies of the tangles S and T0 to
construct links in S3 whose complements are uniformized by combinations of
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0S and 0T0 . The main tool in this section is a corollary of Maskit’s combination
theorem for free products with amalgamation [Maskit 1971]. Denote the convex
hull of the limit set for a Kleinian group 0 by Hull(0).

Definition 3.1. Kleinian groups 00 and 01 meet cute along a hyperplane K⊂ H3

if K= Hull(00)∩Hull(01) and Stab00(K)= Stab01(K).

The fact below follows easily from this definition, and accounts for its utility.

Fact. If 00 and 01 meet cute along K then Stab00(K) = 00 ∩ 01 = Stab01(K).
Furthermore, K divides H3 into B0 and B1 such that for i ∈ {0, 1}, if gi ∈ 0i

satisfies gi (B1−i )∩B1−i 6=∅, then gi ∈ 00 ∩01.

In general, if 2 is a subgroup of 0, the limit set of 2 is contained in that of 0,
and so the covering map H3/2→H3/0 maps C(2) into C(0)— we will call this
restriction the natural map C(2)→C(0). When 00 and 01 meet cute along K then
the natural map C(00 ∩01)→ C(0i ) restricts to an embedding of the 2-orbifold
K/(00 ∩01).

The lemma below is a geometric combination theorem for Kleinian groups which
meet cute along a hyperplane. It follows from Maskit’s combination theorem and
observations on the geometry of Kleinian groups that go back at least to J. Morgan’s
[1984] account of geometrization for Haken manifolds.

Lemma 3.2. Suppose 00 and 01 meet cute along a plane K. Let E = K/2,
where 2= 00 ∩01, and for i = 0, 1 let ιi : E→ C(0i ) be the natural embedding.
Then 〈00, 01〉 is a Kleinian group, and the inclusions 0i → 〈00, 01〉 determine an
isomorphism 00 ∗2 01→ 〈00, 01〉 as abstract groups. The natural maps C(0i )→

C(〈00, 01〉) determine an isometry C(00)∪ι1ι−1
0

C(01)→ C(〈00, 01〉).

In using Lemma 3.2, we often write C(00)∪E C(01) when the maps ιi are clear.

Proof. We will use Theorem 8.2 of [Morgan 1984], a version of Maskit’s combina-
tion theorem. Its hypotheses are satisfied by any 00 and 01 that meet cute along a
hyperplane K, as a consequence of the Fact above; the group-theoretic conclusions
follow. That the desired isometry exists follows from the remarks given below
Theorem 8.2 of [Morgan 1984], which have since been considerably fleshed out in
[Anderson and Canary 2001].

The function f̃ : H3
→ [0, 1] described in [Morgan 1984] is the harmonic

extension of the characteristic function of B0: f̃ (y) is the visual measure of the set
of vectors pointing from y toward B0. See [Anderson and Canary 2001, §2] for a
precise analytic definition. It is not hard to see that here K= f̃ −1

( 1
2

)
(see [Anderson

and Canary 2001, Proposition 2.2]), whence our E is Morgan’s X = f −1
( 1

2

)
.

Our ιi is Morgan’s pi , mapping to Ni = H3/0i for i ∈ {0, 1}. For each i , ιi (E)
is a convex core boundary component of Ni , so p0(N−) ∩ C(N0) = p0(E) and
p1(N+)∩C(N1)= p1(E), and the result follows from the equation at the bottom
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of [Morgan 1984, p. 76]. See [Anderson and Canary 2001, Proposition 5.2 and
remarks after 5.3] for related results. �

We first apply Lemma 3.2 to join C(0T0) to a copy of itself across ∂+C(0T0).
Recall from the discussion above Lemma 2.4 that we have defined H to be the
geodesic hyperplane of H3 with ideal boundary R ∪ {∞}. Let r ∈ Isom(H3) be
the reflection through H. This acts on C∪ {∞} by complex conjugation; thus if
q ∈ 0 < PSL2(C), then qr = q̄, where q̄ ∈ PSL2(C) is the element whose entries are
the conjugates of the entries of q. Hence, we let 0 denote 0r.

Lemma 3.3. Define

c=

(
1 i
√

2
0 1

)
.

Then 0T
.
=〈0T0, 0

c−2

T0
〉 is a Kleinian group, and there is an inclusion-induced isomor-

phism 0T0∗3k0c−2

T0
→0T and an isometry C(0T0)∪F ′C(0c−2

T0
)→C(0T ) determined

by the natural maps. Furthermore, c−2r normalizes 0T , and φc−2r : C(0T )→C(0T )

is an orientation-reversing involution fixing F ′ and exchanging its complementary
components.

Proof. Recall from Lemmas 2.4 and 2.5 that 3 and 3k are the stabilizers in 0T0

of the geodesic planes H and k(H), respectively, and that these planes project to
the components of ∂C(0T0). It follows that H and k(H) are components of the
boundary of Hull(0T0), so Hull(0T0) is contained in the region between them.

With c as defined in the statement of the lemma, note that c(H)= (R+i
√

2)×R+

and that ck(H)=H. Since Hull(0c
T0
) has boundary components c(H) and ck(H)=H,

and 3ck
= Stab0c

T0
(H) is invariant under conjugation by r, 0c

T0
and 0c

T0
meet cute

along H. Applying Lemma 3.2, we obtain an isomorphism 0c
T0
∗3ck0c

T0
→〈0c

T0
, 0c

T0
〉

and an isometry

C(0c
T0
)∪φc(F ′) C(0c

T0
)→ C(〈0c

T0
, 0c

T0
〉)

induced by the natural maps. It is clear that r normalizes 〈0c
T0
, 0c

T0
〉, exchanging

amalgamands, hence φr acts as an orientation-reversing involution of C(〈0c
T0
, 0c

T0
〉),

fixing F ′ and exchanging C(0c
T0
) with C(0c

T0
).

Observe that c̄= c−1. It follows that 0c
T0
= 0c−1

T0
, and hence 0T = 〈0

c
T0
, 0c

T0
〉
c−1

.
Conjugating the groups of the paragraph above by c−1, we obtain an inclusion-
induced isomorphism 0T0 ∗3k 0c−2

T0
→ 0T , and an isometry

C(0T0)∪F ′ C(0c−2

T0
)→ C(0T )

induced by the natural maps. Furthermore, c−1rc= c−2r normalizes 0T and induces
an orientation-reversing involution φc−2r, fixing F ′ and exchanging its sides. �



COMMENSURABILITY OF LINK COMPLEMENTS 357

If M is an oriented manifold with a boundary component F , the double of M
across F is M ∪F M , where M is a copy of M with orientation reversed, and the
gluing map F→ F ⊂ M is the identity map.

Corollary 3.4. There is an isometry pT : MT → C(0T ), where MT is the double
of MT0 across F ′, that is the natural map following pT0 from Corollary 2.3 on MT0 .

The advantage that 0T has over 0T0 for our purposes is that the components
of ∂C(0T ) are naturally orientation-reversing isometric, since they are exchanged
by φc−2r. Recall from Lemma 2.4 that 3 = Stab0T0

(H); thus by Lemma 3.3,
3 = Stab0T (H). We will again refer by i (0)+ to the natural map F (0) → C(0T ).
Then the lemma below follows from Lemma 3.3.

Lemma 3.5. Let F (1) = c−2H/3c−2
, and let φc−2 : F (0)→ F (1) and ι(1)− : F (1)→

C(0T ) be the natural maps. Then ∂C(0T )= ∂−C(0T )t∂+C(0T ), where ∂−C(0T )
.
= ι

(0)
+ (F

(0)) and ∂+C(0T )
.
= ι

(1)
− (F

(1)), and ι(1)− φc−2 = φc−2rι
(0)
+ .

C(0T ) is a geometric model for the double of (S2
× I, T0) across (S2

×{1}, ∂+T0).
Note that the double of S2

× I across S2
×{1} is again homeomorphic to S2

× I ,
by a map taking (p, t) ∈ S2

× I to (p, t/2) and (p, t) ∈ S2× I to (p, 1− t/2).

Definition 3.6. Let (S2
× I, T ) be the double of (S2

× I, T0) across (S2
×{1}, ∂+T0).

We will identify (S2
× I, T0)⊂ (S2

× I, T ) with its image under the map discussed
above, so that T0 = T ∩ S2

× [0, 1/2]. In particular, we have ∂−T = ∂−T0 =

T ∩ S2
×{0} and ∂+T0 = T ∩ S2

×{1/2}, and we will take ∂+T = T ∩ S2
×{1}.

The tangle (S2
× I, T ) is pictured in Figure 6, with T0 ⊂ T visible to the left

of the gray vertical line representing S2
× {1/2}. There is a mirror symmetry of

(S2
× I, T ), visible in the figure as reflection through the gray vertical line:

rT : (S2
× I, T )→ (S2

× I, T )

given by rT (p, x)= (p, 1− x), hence fixing (S2
×{1/2}, ∂+T0).

e

y

t

q

z

a

v

u

Figure 6. The tangle T ⊂ S2
× I with labeled Wirtinger generators

for T0.
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Proposition 3.7. There is a homeomorphism fT : S2
× I − T → C(0T ), which

restricts on S2
× [0, 1/2] − T0 to fT0 followed by the natural map, such that the

following diagram commutes:

S2
× I − T
rT
��

fT // C(0T )

φ
c−2r��

S2
× I − T

fT // C(0T ).

Furthermore, fT takes S2
×{0}−∂−T to ∂−C(0T ) and S2

×{1}−∂+T to ∂+C(0T ).

Proof. We define fT using the properties described in the statement of the proposi-
tion. Namely, we first require fT to restrict on S2

×[0, 1/2]− T0 to the homeomor-
phism fT0 defined in Proposition 2.8, followed by the natural map C(0T0)→C(0T ).
For x ∈ S2

×[1/2, 1]−T , we define fT (x)=φc−2r fT rT (x). The resulting map is well
defined, since rT fixes S2

×{1/2}−∂+T0 and φc−2r fixes F ′. It is a homeomorphism,
since rT , fT0 , and φc−2r are. By Corollary 2.9, fT0 takes S2

×{0}−∂−T0 to ∂−C(0T 0);
it therefore follows from the definitions and Lemma 3.5 that fT (S2

×{0}−∂−T )=
∂−C(0T ). The conclusion thus follows from the reflection equivariance of fT . �

Definitions 3.8. (1) Let j : (∂B3, ∂S)→ (S2
×{0}, ∂−T ) be the homeomorphism

such that (B3, S)∪ j (S2
× I, T ) is the tangle pictured in Figure 7.

(2) Define h : S2
×R→ S2

×R by h(p, x)= (p, x + 1), and with T ⊂ S2
× I ⊂

S2
×R, let T (i)

= hi−1(T ) (so T (1)
= T in particular). For n ∈ N, define

(S3, Ln)= (B3, S)∪ j

(
S2
×[0, n],

n⋃
i=1

T (i)
)
∪ jn (B

3, S).

For i ∈ {0, 1, . . . , n}, let S(i) be the image in (S3, Ln) of S2
×{i} ⊂ S2

×[0, n].
Above, (B3, S)= rS(B3, S), where rS is the reflective involution of S3 fixing
the boundary of an embedding of B3 and exchanging its sides, and jn =
rS j−1rT h−n+1

: (S(n), ∂+T (n))−→ (∂B3, ∂S).

(3) Using Figure 6 and taking T ⊂ S2
× I ⊂ S2

×R, label the points of S(0)∩Ln =

S2
× {0} ∩ T by 2, 3, 4, and 1 top-to-bottom, so that, for example, 2 is the

terminal point of the tangle string labeled e and 1 is the initial point of the
string labeled a. Label each point of S(i) ∩ Ln by its image under h−i .

Remark. With Wirtinger generators for π1(B3
− S) and π1(S2

× I −T ) as labeled
in Figures 2 and 6, we have j∗(a)= a, j∗(u)= u, and j∗(v)= v.

We now construct a geometric model of S3
− Ln .

Definitions 3.9. (1) For i ≥ 0, let 3(i) =3c−2i
and F (i) = c−2i (H)/3(i).

(2) For i ≥ 1, let 0(i)T = 0
c−2(i−1)

T , and define φi = φc−2(i−1) : C(0T )→ C(0(i)T ).
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Figure 7. S ∪ T .

The definitions above of F (0) and F (1) above agree with our previous definitions.
Also, 0(1)T = 0T , and since 0(i)T = c−2(i−1)0T c

2(i−1), Lemma 3.5 implies that

3(i−1)
= Stab

0
(i)
T
(c−2(i−1)(H)) and 3(i) = Stab

0
(i)
T
(c−2i (H)),

and the resulting natural maps ι(i−1)
+ : F (i−1)

→ C(0(i)T ) and ι(i)− : F (i)→ C(0(i)T )

map to the components of its totally geodesic boundary.

Proposition 3.10. For n ∈N, define Mn=C(0S)∪C(0(1)T )∪· · ·∪C(0(n)T )∪C(0S),
using gluing maps defined as follows:

ι
(0)
+ (ι

(0)
− )
−1
: ∂C(0S)→ ∂−C(0(1)T ),

ι
(i)
+ (ι

(i)
− )
−1
: ∂+C(0(i)T )→ ∂−C(0(i+1)

T ) for 1≤ i < n,

φrι
(0)
− φ
−1
n+1(ι

(n)
− )
−1
: ∂+C(0(n)T )→ ∂C(0S).

There is a homeomorphism fn : S3
− Ln→ Mn which restricts on B3

− S to fS , on
S2
×[i − 1, i] − T (i) to φi fT h−i+1 for 1≤ i ≤ n, and on B3

− S to φr fSrS .

Proof. We will use the description of fn above as its definition. Then, by Proposi-
tion 2.7 and the definitions, fn restricts on B3

− S and B3
− S to homeomorphisms

to C(0S) and C(0S), respectively. By Proposition 3.7 and definitions, for each
i between 1 and n it restricts on S2

× [i − 1, i] − T (i) to a homeomorphism to
C(0(i)T ). Thus in order to show that fn is a homeomorphism, we must only show
that it is well defined on the spheres S(i) − {1, 2, 3, 4} that separate these tangle
complements.

We first check the case i = 1, showing that fn is well defined on S(0)−{1, 2, 3, 4}.
Since T (1)

= T and 0(1)T = 0T , and h0 and φ1 are each the identity map, in this
case we must only show that on ∂B3

− ∂S, fT ◦ j = ι(0)+ (ι
(0)
− )
−1
◦ fS .

By their definitions above, fS and fT ◦ j induce the same isomorphism from
π1(∂B3

− ∂S) to 3 = 0S ∩ 0T . Recall from Lemma 2.4 and the remarks above
Lemma 3.5 that the ι(0)± are induced by the inclusions of3 into 0S and 0T . Therefore
at the level of fundamental group, (ι(0)+ (ι

(0)
− )
−1
◦ fS)∗ = ( fT ◦ j)∗. Since any

two homeomorphisms between 4-punctured spheres that induce the same map on
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fundamental groups are properly isotopic, we may isotope j so that fS and fT j
agree on S(0). The conclusion thus follows in this case.

For 1≤ i < n, we may use the fact that 0(i)T and 0(i+1)
T are conjugates of 0T to

obtain the following model descriptions for ι(i)
+

and ι(i)
−

:

(2) ι
(i)
+ = φi+1ι

(0)
+ φ
−1
i+1, ι

(i)
− = φi ι

(1)
− φ
−1
i .

Here ι(0)+ : F (0) → ∂−C(0T ) and ι(1)− : F (1) → ∂+C(0T ) are the natural maps of
Lemma 3.5. Using the reflection-invariance property described there, we thus obtain

(3) ι
(i)
+ (ι

(i)
− )
−1
= φi+1ι

(0)
+ (ι

(1)
− φ2)

−1φ−1
i = φi+1φ

−1
c−2r
φ−1

i .

Then, by the reflection-equivariance property of fT from Proposition 3.7, we have

ι
(i)
+ (ι

(i)
− )
−1
◦φi fT h−i+1

= φi+1φ
−1
c−2r

fT h−i+1
= φi+1 fT rT h−i+1.

It follows directly from the definitions that rT h−i+1
= h−i on S(i), whence fn is

well defined on S(i)−{1, 2, 3, 4} for 1≤ i < n.
To show fn is well defined on S(n) requires another definition chase, this time to

check
φr fSrS ◦ jn = φrι

(0)
− φ
−1
n+1(ι

(n)
− )
−1
◦φn fT h−n+1.

By Definitions 3.8(2), jn = rS j−1rT h−n+1; therefore, simplifying the left-hand side
above yields φr fS j−1rT h−n+1. On the other hand, using the model description
of ι(n)− from (2), the right-hand side above simplifies to φrι

(0)
− φ
−1
2 (ι

(1)
− )
−1 fT h−n+1.

The reflection-invariance property of Lemma 3.5 and an appeal to the case i = 0
establish the desired equation. �

Corollary 3.11. For 0 ≤ i < n, refer again by F (i) to the image of ι(i)+ (F
(i)) ⊂

C(0(i)T ) under its inclusion into Mn , and refer by F (n) to the image of ι(n)− (F
(n)).

For each i , F (i) is totally geodesic in Mn and fn(S(i)−{1, 2, 3, 4})= F (i).

This follows immediately from Proposition 3.10, since the maps ι(i)± are isometric
embeddings. The following proposition describes an algebraic model for Mn .

Proposition 3.12. For n ∈ N, define 0n = 〈0S, 0
(1)
T , . . . , 0

(n)
T , 0c−2n

S 〉. There is an
isometry Mn→H3/0n which restricts on C(0S) and each C(0(i)T ) to the natural
map, and on C(0S) to φn+1 followed by the natural map.

Proof. We first recall from Lemma 2.4 that the plane H with ideal boundary R∪{∞}

projects to ∂C(0S) under the quotient map H3
→ H3/0S , so it is a component of

∂ Hull(0S). Because the octahedron P1 is contained in Hull(0S) and all its ideal
vertices have nonnegative imaginary part, it follows that

Hull(0S)⊂ {z ∈ C | =z ≥ 0} ∪ {∞}.
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Similarly, from Lemma 3.5 and the positioning of P2 we find that

Hull(0T )⊂ {z ∈ C | 0≥ =z ≥−2
√

2} ∪ {∞}.

Then, inspecting the action of c on C∪ {∞}, we find that for each i ∈ N, any point
of Hull(0(i)T ) has imaginary part between −2(i − 1)

√
2 and −2i

√
2 for i ∈ N.

The following claim builds an inductive picture of a family of isometrically
embedded, codimension-0 submanifolds of Mn with totally geodesic boundary.

Claim. For 1 ≤ i ≤ n, define 0(i)− = 〈0S, 0
(1)
T , . . . , 0

(i)
T 〉. There is an isometry

C(0S)∪C(0(1)T )∪ · · · ∪C(0(i)T )→ C(0(i)− ), where the gluing maps for the domain
are as in Proposition 3.10, which restricts on C(0S) and each C(0( j)), j < i , to
the natural map. Furthermore:

(1) 3(i) = Stab0(i)− (c
−2n(H)), and the resulting natural map F (i) → ∂C(0(i)− )

factors as ι(i)− followed by the natural map C(0(i)T )→ C(0(i)− ).

(2) Hull(0(i)− )⊂ {z ∈ C | =z ≥−i
√

2} ∪ {∞}.

Proof of claim. We will prove the claim by induction. If it holds for some i < n,
then (1) and (2) above, together with the observations above the claim, imply that
0
(i)
− and 0(i+1)

T meet cute along c−2i (H). Then, by Lemma 3.2, the natural maps
determine an isometry C(0(i)− )∪C(0(i+1)

T )→ C(0(i+1)
− ), where by the inductive

hypothesis and the observation above Proposition 3.10, the gluing map for the
domain is ι(i)+ (ι

(i)
− )
−1 following the inverse of the natural map.

Furthermore, since C(0(i)− ) has a unique totally geodesic boundary component,
which is isometrically identified with ∂−C(0(i+1)

T ) in the isometry to C(0(i+1)
− )

described above, the unique totally geodesic boundary component of C(0(i+1)
− ) is the

isometric image of ∂+C(0(i+1)
T ). Therefore the observations above Proposition 3.10

imply that this boundary component is the image of ι(i+1)
− (F (i+1)) under the natural

map. Assertion (1) of the claim thus follows for 0(i+1)
− . It follows that Hull(0(i+1)

− )

is entirely on one side or the other of the boundary at infinity of c−2(i+1)(H). Since
0
(i+1)
T < 0

(i+1)
− , assertion (2) now follows.

By our definition of “natural map” above Lemma 3.2, the composition of the
natural map C(0( j)

T )→C(0(i)− ) with the natural map C(0(i)− )→C(0(i+1)
− ) is itself

natural, for j ≤ i . Hence if the claim holds for 0(i)− , i < n, it holds for 0(i+1)
− . The

claim will therefore hold by induction if it is true in the base case i = 1. But this
follows from the fact that 0S and 0(1)T meet cute along H. This follows in turn from
Lemmas 2.4 and 3.5, which establish that 3(0) = Stab0S (H)= Stab0T (H), and the
first paragraph of the proof. �

Using the claim, it now follows that 0(n)− and 0c−2n

S meet cute along c−2n(H);
hence a final application of Lemma 3.2 implies that the natural maps determine an
isometry C(0(n)− )∪C(0c−2n

S )→ C(0n). Since each of C(0(n)− ) and C(0c−2n

S ) has
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a unique boundary component, C(0n) is boundaryless and hence equal to H3/0n .
The conclusion of the proposition follows. �

The result below follows from Proposition 3.12, or, really, its proof.

Corollary 3.13. For fixed n and 0≤ i ≤ n, define

0
(i)
− =

〈
0S, 0

(1)
T , . . . , 0

(i)
T

〉
, 0

(i)
+ =

〈
0
(i+1)
T , . . . , 0

(n)
T , 0c−2n

S
〉
.

Then 0(i)+ and 0(i)− meet cute along c−2i (H) and the natural maps determine an
isometry C(0(i)− ) ∪C(0(i)+ )→ H3/0n . The isometry of Proposition 3.12 factors
through this map, so that the component of Mn − F (i) containing C(0S) is taken
isometrically to its image in C(0(i)− ).

In the remainder of the paper, we will frequently take the isometry above for
granted and refer to the components obtained by splitting Mn along F (i) by C(0(i)± ).

4. Invariants

4.1. Traces. If0⊂PSL2(C) is a discrete group, its trace field Q(tr0) is obtained by
adjoining to Q the traces of elements of 0. If the hyperbolic 3-manifold M =H3/0

has finite volume, Mostow rigidity implies that this is a topological invariant of
M . It follows from the local rigidity theorems of Garland and Prasad that in this
case the trace field is a number field; that is, a finite extension of Q. The trace field
is not generally an invariant of the commensurability class of M , however, and to
obtain one we pass to the invariant trace field k0. This is obtained by adjoining
to Q the traces of squares of elements of 0. When M is the complement of a
link in a Z2-homology sphere, its trace field and invariant trace field coincide (see
[Maclachlan and Reid 2003]).

Proposition 4.1. We have k(0S)=Q(i), k(0T )=Q(i
√

2), and k(Mn)=Q(i, i
√

2)
for all n ∈ N. In particular, Mn is not arithmetic for any n ∈ N.

Proof. Its definition in Corollary 2.2 immediately implies 0S < PSL2(Q(i)). The
description in Corollary 2.3, of0T0 , and Lemma 3.3 imply that 0T <PSL2(Q(i

√
2)).

Thus k0S ⊆ Q(i), and k0T ⊆ Q(i
√

2). That equality holds is clear upon noting
that Tr(h) = ±i

√
2 and Tr(t) = ±(1+ i). Since 0S and 0T are in 0n we have

Q(i, i
√

2)⊆ k(0n). For the other containment we note that c from Lemma 3.3 lies
in PSL2(Q(i

√
2)), and 0n is contained in the group generated by 0S , 0T , and c.

It is well known that any noncompact arithmetic manifold M has k(M)⊂Q(i
√

d )
for some d ∈N (see, for example, [Maclachlan and Reid 2003, Theorem 8.2.3]), so
Mn is not arithmetic. �

We say M = H3/0 has integral traces if for each γ ∈ 0, tr γ is an algebraic
integer. Otherwise we say Mn has a nonintegral trace. M has integral traces if and
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only if all manifolds commensurable to M do as well (see [Maclachlan and Reid
2003]).

Proposition 4.2. For each n, Mn has integral traces.

Proof. As in the proposition above, this follows from the fact that each 0n is
contained in the group generated by 0S , 0T , and c. It is easy to see that the entries
of the generators for 0S and 0T0 are algebraic integers. Since c has integral entries
as well, all elements of 0n have integral entries, and hence integral traces. �

Remark. Bass [1984] showed that if M = H3/0 where 0 has an element with a
nonintegral trace, there are closed essential surfaces in M associated to this trace.
We say that such surfaces are detected by the trace ring. For fixed n and 1≤ i ≤ n,
closed essential surfaces in Mn can be obtained by “tubing” S(i) through B3

− L(i)− .
More precisely, let Ni be a regular neighborhood of L(i)− in (B3, L(i)− )⊂ (S

3, Ln),
let Ai = Ni ∩ B3−Ni , and let

Ŝi = S(i)− (S(i) ∩Ni )∪ Ai .

Then Ŝi is a closed surface of genus 2 which is incompressible in Mn . We will show
below that certain mutants have nonintegral traces, and one easily finds surfaces
analogous to Ŝi in the mutants. It is interesting to note that although these surfaces
are present in all of these link complements, the trace ring does not detect any
closed surfaces in the Mn .

4.2. Scissors congruence and the Bloch invariant. In Proposition 4.7 we will
prove that the Bloch invariant distinguishes the commensurability class of Mm

from that of Mn for m 6= n. This is an invariant of a polyhedral decomposition
which by construction is invariant under scissors congruence: cutting the constituent
polyhedra apart and reassembling them in new ways. Its deep connection to algebraic
k-theory is what makes the Bloch invariant useful, though. For background and an
account of the connection to scissors congruence we refer the reader to [Dupont
2001] and [Neumann 1998], our main source for the expository material here.

Definition 4.3. For a field k⊂C, define the pre-Bloch group P(k) to be the quotient
of the free Z-module on k−{0, 1} by all instances of the following relations:

[x] − [y] +
[ y

x

]
−

[1−x−1

1−y−1

]
+

[1−x
1−y

]
= 0, x 6= y ∈ k−{0, 1},(4)

[z] =
[
1− 1

z

]
=

[ 1
1−z

]
=−

[1
z

]
=−

[ z
z−1

]
=−[1−z], z ∈ k−{0, 1}.(5)

There is a map δ : P(k)→ k∗ ∧ k∗ given by [z] 7→ 2(z ∧ (1− z)). (Here k∗ is
considered a Z-module with multiplication as the group operation and Z-action
given by a.x = xa , a ∈ Z.) The Bloch group is B(k)= ker δ.
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Remark. If k is algebraically closed, relation (4) above, called the five term relation,
implies (5). For instance, taking

√
z and

√
z−1 as x and y, respectively, in (4), then

interchanging their roles and summing the results yields [z] + [1/z] = 0.

For any ideal tetrahedron T in H3, there is an orientation-preserving isometry of
H3 taking its ideal vertices to 0, 1,∞, and a complex number z with nonnegative
imaginary part. Let the cross ratio parameter of T be [z] ∈ P(C). This is well
defined because any other isometry answering the description above fixes z or
replaces it by one of 1− 1/z or 1/(1− z).

For k ′⊂ k, inclusion induces a map P(k ′)→P(k). Although this is not injective
in general, a theorem of Borel that we record below implies that if k ′ is a number
field then B(k ′) does inject, modulo torsion. We offer this observation to excuse
occasional imprecision about the precise location of our invariants.

Definition 4.4. Let M = T1 ∪ · · · ∪ Tn be a triangulated complete, orientable
hyperbolic 3-manifold of finite volume (with or without boundary); that is, with
each Ti isometric to an ideal hyperbolic tetrahedron and Ti ∩ T j either empty, an
edge of each, or a face of each for i 6= j . Define the Bloch invariant of M as

β(M)= [z1] + [z2] + · · · + [zn] ∈ P(C),

where [zi ] is the cross ratio parameter of Ti for each i in {1, . . . , n}.

Remark. If ∂M = ∅ then β(M) ∈ B(C) by a geometric interpretation of the
Bloch invariant, and by work of Neumann and Yang [1999] it does not vary with
triangulation.

We will obtain a triangulation of Mn by subdividing the decomposition below.

Lemma 4.5. The members of S={P1,P2, c
−1P2, . . . , c

−2n+1P2, c
−2nrP1} project

under H3
→ H3/0n to the cells of an ideal polyhedral decomposition of Mn .

Proof. By Corollary 2.2, P1 projects under H3
→ H3/0S to an ideal polyhedral

decomposition of C(0S): it maps onto C(0S) with internal faces identified in pairs.
Corollary 2.3 implies the same for P2→ C(0T0) under H3

→ H3/0T0 , and hence
also for c−2rP2→ C(0c−2

T0
) (see the paragraph above Lemma 3.3).

It is easy to see that rP2 = cP2, for instance, by comparing sets of ideal vertices,
so c−2rP2 = c−1P2. Therefore Lemma 3.3 implies that P2 ∪ c

−1P2 projects to an
ideal polyhedral decomposition of C(0T ) under H3

→ H3/0T . In particular, this
projection identifies the external faces of P2 that map to F ′ with external faces of
c−1P2 pairwise, since their images are fixed by the doubling involution φc−2r.

It follows from the above that c−2(i−1)P2∪c
−2i+1P2 projects to a decomposition

of C(0(i)T ) for any i ∈N (recall Definitions 3.9), and from the first paragraph that the
same holds for c−2nrP1→ C(0c−2n

S ). By Proposition 3.12, it remains only to show
that the gluings producing Mn preserve induced triangulations of boundaries. These
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are defined in Proposition 3.10. Lemma 2.4(3) implies that ι(0)+ (ι
(0)
− )
−1 preserves

triangulations, and (3) does the same for ι(i)+ (ι
(i)
− )
−1 for 1≤ i ≤ n. They combine to

imply that the final map does as well. �

Lemma 4.6. Mn has Bloch invariant β1 − β̄1 + nβ2 ∈ B(Q(i, i
√

2)) for any n,
where β1 = 4[(1+ i)/2] ∈ P(Q(i)), β̄1 = 4[(1− i)/2], and β2 ∈ P(Q(i

√
2)).

Proof. We will produce a triangulation of Mn by subdividing the polyhedral
decomposition from Lemma 4.5. P1 divides into a collection of 4 tetrahedra by the
addition of a single edge γ joining the ideal vertices (1+ i)/2 and∞, and four
ideal triangular faces that share γ . One has ideal vertices 0, 1,∞, and (1+ i)/2 and
thus a parameter of [(1+ i)/2]. Since the others are its image under rotation about
γ they have identical cross ratio parameters. Their union projects to a triangulation
of C(0S) with Bloch invariant β1 = 4[(1+ i)/2].

Any ideal tetrahedron with its vertex set contained in that of P2 has cross ratio
parameter in P(Q(i

√
2)), since P2 has ideal vertices in Q(i

√
2)∪ {∞}. We leave

it to the reader to divide P2 into ideal tetrahedra in such a way that the resulting
division of square faces, each into two ideal triangles, is preserved by the face-
pairings that produce MT0 . Such a triangulation projects to one of C(0T0), and its
image under c−2r projects to one of C(0T0).

Above it is important to use c−2r and not c−1, since the face pairings of c−1P2

project it to C(0c−2

T0
). Recall that r is a reflection, extending to C as complex

conjugation. One checks using (5) that if a tetrahedron has cross ratio parameter [z]
then its mirror image has parameter −[z̄]. Since Q(i

√
2) is preserved by complex

conjugation, using the triangulations from the paragraph above gives C(0T ) a Bloch
invariant β2 ∈ P(Q(i

√
2)).

For each i with 1≤ i ≤ n, C(0(i)T ) inherits a triangulation with Bloch invariant
β2 from c−2(i−1)P2 ∪ c

−2i+1P2 = c−2(i−1)(P2 ∪ c
−1P2), and C(0S) inherits one

with invariant β̄1 from r(P1). Lemma 4.5 implies that these combine to triangulate
Mn , so its Bloch invariant is as described above. �

Below we record a standard formula for the Bloch–Wigner dilogarithm function
D2 : C−{0, 1}→R in terms of the dilogarithm, ψ(z)=

∑
∞

i=1(z
n/n2) (for |z|< 1):

D2(z)= =ψ(z)+ log|z| arg(1− z).

For z in the upper half plane, the ideal tetrahedron with ideal vertices 0, 1,∞, and
z has volume D2(z); note also that D2(z̄)=−D2(z). D2 determines a well-defined
functional on P(C), and this in turn produces the Borel regulator, Bk .

Theorem [Borel 1977]. For a number field k fix embeddings σ1, . . . , σr2 to C, one
representing each complex-conjugate pair. The map Bk : P(k)→ Rr2 extending
[z] 7→ (D2(σ1(z)), . . . , D2(σr2(z))) takes B(k) onto a lattice in Rr2 , with kernel
consisting entirely of torsion elements.
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We use the Borel regulator Bk to show that Bloch invariants distinguish the
commensurability class of Mm from that of Mn for m 6= n.

Proposition 4.7. For m 6= n, Mm is not commensurable with Mn .

Remark. We thank the referee on an earlier version of this paper for describing
the argument below. (Our original proof used cusp parameters; see Lemma 4.18.)

Proof. It is clear that k=Q(i, i
√

2) has two pairs of complex conjugate embeddings,
each determined by its action on i and i

√
2. We will take σ1 = idk , and σ2(i)= i ,

σ2(i
√

2)=−i
√

2, in defining the Borel regulator Bk on k. Since each σi restricts
on Q(i) to the identity, Bk takes each of β1 and −β̄1 to (v1, v1) ∈ R2, where v1 is
the volume of P1. On the other hand, Bk(β2)= 2(v2,−v2), where v2 = vol(P2).

For any n, a covering space M̃ → Mn of degree k has β(M̃) = kβ(Mn). This
is because the preimage in M̃ of each tetrahedron T from the triangulation of Mn

described in Lemma 4.6 is a nonoverlapping union of k isometric copies of T . Thus
if M̃→ Mm with degree p and M̃→ Mn with degree q it would follow that

p[β1− β̄1+mβ2] = q[β1− β̄1+ nβ2].

Applying Bk to each side of the equation above, we find that since (v1, v1) and
(v2,−v2) are linearly independent in R2 we must have p = q and m = n. �

4.3. Cusp parameters. Following Neumann and Reid [1992, §2.3], for a cusp of a
complete hyperbolic 3-manifold M we will call the cusp parameter the complex
modulus (or the conformal parameter) of a horospherical cusp cross section, a
Euclidean torus. Thurston [1979, Chapter 6] also used this invariant to distinguish
hyperbolic manifolds.

Definition 4.8. Let T =C/3 be a Euclidean torus, where3⊂C is a lattice. Define
the complex modulus of T as m(T )= α/β, where 3= 〈α, β〉.

Remark. The complex modulus is not really an invariant of a Euclidean torus;
rather, it is an invariant of a particular basis for π1. However, we have:

Lemma 4.9. The PGL2(Z)-orbit of the complex modulus is a similarity invariant
of Euclidean tori. The PGL2(Q)-orbit is a commensurability invariant.

Here we say T and T ′ are commensurable if T has a finite cover which is similar
to a cover of T ′.

Proof. The complex modulus is clearly scale-invariant.
Let T =C/3 be a Euclidean torus, where 3= 〈α, β〉. For a different generating

pair γ = pα+ qβ, δ = rα+ sβ the change-of-basis matrix

m=

(
p r
q s

)
∈ PSL2(Z)
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has an inverse there as well, since α and β are linear combinations of γ and δ.
Computing the modulus with γ and δ yields

pα+ qβ
rα+ sβ

=
p(α/β)+ q
r(α/β)+ s

=mT(m(T )).

If γ and λ generate a finite-index sublattice then, since they are linearly indepen-
dent, m has a nonzero determinant. This implies the commensurability-invariance
assertion. �

It will prove useful here to understand the complex modulus of a torus by
decomposing it into annuli using a family of parallel geodesics.

Definition 4.10. For a Euclidean annulus A with core of length ` and distance d
between geodesic boundary components, let the real modulus of A be m(A)= d/`.

If T = C/3, and 3= 〈α, β〉, then α and β determine isotopy classes of simple
closed geodesics on T with representatives which intersect once. These are the
projections to T of the line segments in C joining 0 to α and β, respectively. Below
let Aβ denote the Euclidean annulus with geodesic boundary obtained as the path
completion of the metric on T −β inherited from T .

Lemma 4.11. Let T =C/3 be a Euclidean torus, and suppose α, β is a generating
pair for 3. Decompose m(T ) into real and imaginary parts:

m(T )= τβ + i ·µβ,

where τβ = <(α/β) and µβ = =(α/β) ∈ R. Then τβ = (‖α‖/‖β‖) cos θ , where θ
is the angle between the geodesics α and β on T , and |µβ | = m(Aβ).

Proof. Write α = ‖α‖eiθ1 and β = ‖β‖eiθ2 . Then θ = θ1− θ2 is the angle between
the geodesics corresponding to α and β, and α/β = (‖α‖/‖β‖)eiθ . Writing eiθ

=

cos θ + i sin θ yields the first assertion immediately.
To establish the second, consider the strip Ãβ in C bounded by the line containing

0 and β and its translate by α, containing α and α+β. The quotient of Ãβ induced
by the action of β is the universal covering Ãβ → Aβ . The distance between
boundary components of Ãβ is ‖α‖|sin θ |, and the length of the core of Aβ is the
translation length of β, which is ‖β‖. �

Lemma 4.11 provides a convenient means for understanding the modulus of a
Euclidean torus in terms of “Fenchel–Nielsen” coordinates (µβ, τβ) associated to a
simple closed geodesic β. We regard µβ as a length parameter for the annulus Aβ ,
and τβ as a twist parameter.

Lemma 4.12. Suppose T is a Euclidean torus decomposed into annuli A1, . . . , An

by simple closed geodesics parallel to β. Then

|µβ | = m(A1)+m(A2)+ · · ·+m(An).
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Proof. By isotoping β if necessary, we may assume that it is one of the geodesics
determining the Ai ; hence Aβ= A1∪A2∪· · ·∪An . Then if α0 is an arc perpendicular
to ∂Aβ , joining one component to the other, for each i , α0∩Ai is an arc perpendicular
to ∂Ai joining one component to the other. This is because ∂Ai is parallel to β.
Since `(α0) =

∑
i `(α0 ∩ Ai ) and the core of each Ai has length `(β), the result

follows. �

The annuli we are concerned with arise as horospherical cross sections of the
cusps of MS and MT . Recall from Lemma 2.4 that Stab0S (H) is a group3 generated
by parabolic isometries p1, p2, and p3. Furthermore, as pointed out in Remark 1 on
page 351, p1 and p3 are conjugate in 0S , as are p2 and p4 = p1p2p

−1
3 . We asserted

there that C(0S) has two cusps, one corresponding to p1 and one to p2. This follows
from the lemma below.

In what follows, we let V1= {∞, 0, 1, i, 1+ i, (1+ i)/2}, the set of ideal vertices
of the ideal octahedron P1. Let {hv | v ∈V1} be a collection of horospheres invariant
under the action of the symmetry group of P1, such that hv is centered at v for
each v ∈ V1 and h∞ is at height 2.

Lemma 4.13. The projection to MS of
⋃
(hv∩P1) is a disjoint union of Euclidean

annuli A1 and A2 with geodesic boundary, such that pS(A1) is a horospherical
cross section of the cusp of C(0S) corresponding to p1, pS(A2) is a cross section of
the cusp corresponding to p2, and m(A1)= 1, m(A2)= 1/5.

Proof. Since h∞ is at height 2 and our embedding of P1 is as in Figure 3, h∞∩P1 is
a square with sides of length 1/2. Since the symmetry group of P1 acts transitively
on vertices, this holds for all hv∩P1, v ∈V1. We will call a side of hv∩P1 internal
if it is contained in an internal face of P1 and external otherwise. The face-pairing
s has the property that if v and v′ are ideal vertices of P1 and s(v) = v′, then
s(hv)= hv′ , and s(hv ∩ P1) abuts hv′ ∩ P1 along an internal side. The analogous
property holds for t.

Each of s and t identifies a pair of internal faces of P1, yielding MS . The isometry
pS of Corollary 2.2 is induced by the inclusion P1→ H3. Since p1 = s−1 fixes the
ideal vertex of P1 at 0, it identifies the opposite internal sides of h0 ∩ P1. This
square thus projects to a cusp cross section A1 of MS , mapped by pS to one of the
cusp of C(0S) corresponding to p1. This is depicted on the left side of Figure 8.

The other cusp cross section of MS , the annulus A2, is the identification space
of the collection

{hv ∩ P1 | v ∈ V1−{0}},

shown on the right side of Figure 8. In this figure, each square is the projection to
MS of hv ∩ P1 for the ideal vertex v, by which it is labeled. The combinatorics can
be verified by considering the action of s and t on V1.
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1

A2A1

0 ∞ 1+ i 1+i
2 i

Figure 8. Cross sections of the cusps of MS .

By assumption each square in Figure 8 has side length 1/2, and so the cores
of A1 and A2 have lengths 1/2 and 5/2, respectively. For any square in Figure 8,
a vertical side projects to an arc joining the distinct boundary components of the
corresponding Ai , hence the distance between them is 1/2. Thus it follows directly
from the definition that m(A1)= 1 and m(A2)= 1/5. �

The following lemma describes the moduli of the cusps of C(0T0). We asserted
below Lemma 2.5 that C(0T0) has four cusps, one corresponding to each pi , i ∈
{1, 2, 3, 4}, and each joining ∂−C(0T0) to ∂+C(0T0). This follows from Lemma 4.14.
Let V2 be the set of ideal vertices of P2, and consider a collection of horospheres
{hv | v ∈ V2}, invariant under the symmetry group of P2, such that hv is centered
at v for each v ∈ V and h∞ is at height 2.

Lemma 4.14. The projection of
⋃
(hv ∩ P2) to MT0 is a collection of disjoint

Euclidean annuli B j with geodesic boundary, j ∈ {1, 2, 3, 4}, such that pT0(B j )

is a cross section of the cusp of C(0T0) corresponding to p j ∈ 3, and m(B1) =

m(B3)=
√

2 and m(B2)= m(B4)=
√

2/5.

Proof. For v ∈ V2, we again call a side of hv ∩ P2 external if it is contained in an
external face of P2 and internal otherwise. Each cusp cross section of MT0 is the
projection of a subcollection of the hv ∩ P2, identified along their internal faces.
From Figure 4, we find that h∞ ∩ P2 is a Euclidean rectangle with two opposite
internal sides and two external. Since the symmetry group of P2 is transitive on its
set of ideal vertices, this holds for the other hv as well. It follows that each cusp
cross section of MT0 is a Euclidean annulus with geodesic boundary.

In Figure 9, the lower rectangles of each annulus DB j are labeled by vertices v
such that hv ∩ P2 projects to a subrectangle of the cross section of the cusp of MT0

whose image under pT0 corresponds p j . Then B j is the lower half of DB j . The
reasons for this picture will become clear after the current proof.

The isometries f, g, and h defined in Corollary 2.3 identify the internal sides
of P2 in pairs, yielding the manifold MT0 with totally geodesic boundary. The
parabolic p1 = f−1 fixes 0, identifying the internal sides of P2 sharing this ideal
vertex. Thus in MT0 , B1 consists of h0 ∩ P2 with its internal sides identified. The
description of the pi in terms of f, g, and h above Lemma 2.4 shows that p3 is a
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√
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√
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√
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Figure 9. Cross sections of the cusps of MT .

conjugate of g−1. Since g−1 fixes 1− i
√

2/2, identifying the internal edges of P2

which abut it, h1−i
√

2/2 projects to B3 in MT0 . This justifies the depictions of B1

and B3 in Figure 9.
Since p2 fixes∞, h∞ ∩ P2 projects to a subrectangle of B2. Since g takes the

internal side Y3 to Y ′1 and∞ to (1− i
√

2)/2, in B2 the projection of h∞∩P2 meets
the projection of h(1−i

√
2)/2 ∩ P2 along a side contained in the projection of Y3

to MT0 . Since the internal face of P2 meeting Y ′1 at (1− i
√

2)/2 is Y ′3, and this
is taken to Y ′2 by h−1, the rectangle meeting the projection of h(1−i

√
2)/2 in B2 on

the internal side opposite its intersection with h∞ is h
−i
√

2. Carrying this line of
argument to completion yields the depictions of B2 and B4 in the figure.

From Figure 4, we find that the internal sides of h∞∩ P2 have length
√

2/2 and
the external sides length 1/2. Since the symmetry group of P2 is transitive on its
ideal vertices, the same holds for each rectangle hv ∩ P2. Thus the cores of B1 and
B3 have length 1/2, and the cores of B2 and B4 have length 5/2. For any square
hv∩P2, an internal side projects to a perpendicular arc joining opposite sides of the
cusp cross section in MT0 containing hv ∩P2. The moduli are thus as described. �

By Corollary 3.4, pT0 : MT0 → C(0T0) determines a reflection-invariant map
from the double MT of MT0 across ∂+MT0 to C(0T ). Furthermore, as we remarked
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below Lemma 2.5, each cusp of C(0T0) joins one component of ∂C(0T0) to the
other. Therefore taking DB j ⊂ MT , j ∈ {1, 2, 3, 4}, to be the double of B j across
its component of intersection with ∂+MT0 , we have:

Lemma 4.15. For each j ∈ {1, 2, 3, 4}, the image in C(0T ) of DB j is a cross
section of the cusp corresponding to p j , and m(DB1) = m(DB3) = 2

√
2 and

m(DB2)= m(DB4)= 2
√

2/5.

It is a well-known consequence of the Margulis lemma that each cusp C of a
hyperbolic manifold M = H3/0 of finite volume is foliated by similar Euclidean
tori, the projections to M of horospheres in H3 centered at the fixed point of a
parabolic subgroup of 0 corresponding to C .

Definition 4.16. The parameter of a cusp C of a finite-volume complete hyperbolic
manifold is the complex modulus of a horospherical cross section of C .

By Lemma 4.9 the PSL2(Z) orbit of the cusp parameter is an invariant of the
cusp shape, the Euclidean similarity class of a cross section.

Proposition 4.17. For j = 1, 2, let T j be a cusp cross section of Mn containing the
annular cusp cross section A j of MS (see Lemma 4.13). Then m(T1)= i(2+4n

√
2),

and m(T2) is PGL2(Q)-equivalent to m(T1).

Remarks. 1. It is not hard to show that m(T2)= i(2+ 4n
√

2)/5, but this is not
necessary for our purposes and requires more work.

2. The cusps T1 and T2 are labeled in Figure 1.

Proof. By Proposition 3.10 Mn = C(0S)∪C(0(1)T )∪ · · · ∪C(0(n)T )∪C(0S), with
gluing maps that factor through the inclusion-induced isometries ι(i)± defined on
F (i) for 0≤ i ≤ n− 1, and final gluing φrι

(0)
− φ
−1
n+1(ι

(n)
− )
−1
: ∂+C(0(n)T )→ ∂C(0S).

For j ∈ {1, 2, 3, 4} and i ∈ N, define DB(i)j = φi ◦ pT (DB j )⊂ C(0(i)T ), with φi

as in Definitions 3.9. We also refer by DB(i)j to its image in C(0n) under the natural
map, or in Mn under inclusion. Let ∂±DB(i)j = DB(i)j ∩ ∂±C(0(i)T ).

By Lemma 4.13, pS(A1) is a cross section of the cusp of C(0S) corresponding to
p1, and by Lemma 4.15, DB(1)1 is a cross section of the cusp of C(0T ) corresponding
to p1. Lemma 2.4 thus implies that ι(0)+ (ι

(0)
− )
−1 takes one component of pS(∂A1) to

∂−DB(0)1 . In Remark 1 on page 351, we note that p1 and p3 are conjugate in 0S .
It follows that the other component of pS(∂A1) is a cross section of the cusp of
∂C(0S) corresponding to p3, so ι(0)+ (ι

(0)
− )
−1 takes this component to ∂−DB(1)3 .

The doubling involution of MT preserves DB j by construction, exchanging
its boundary components. Therefore by Corollary 3.4, φc−2r preserves pT (DB j )

and exchanges boundary components. It follows that ι(i)+ (ι
(i)
− )
−1 takes ∂+DB(i)j to

∂−DB(i+1)
j for each i between 1 and n− 1, upon recalling the identity (3):

ι
(i)
+ (ι

(i)
− )
−1
= φi+1ι

(0)
+ φ
−1
2 (ι

(1)
− )
−1φ−1

i = φi+1φc−2rφ
−1
i .



372 ERIC CHESEBRO AND JASON DEBLOIS

One finds that φrι
(0)
− φ
−1
n+1(ι

(n)
− )
−1 takes ∂+DB(n)1 t∂+DB(n)3 to the components of

φr ◦ pS(∂A1), arguing as above and applying (2). Therefore T1 is decomposed by
its intersection in Mn with the separating spheres F (i) into the following collection
of Euclidean annuli with geodesic boundary:

pS(A1)∪ DB(1)1 ∪ · · · ∪ DB(n)1 ∪φr ◦ pS(A1)∪ DB(n)3 ∪ · · · ∪ DB(1)3 .

Similarly, we find that T2 decomposes into the union of pS(A2), φr ◦ pS(A2), and
DB(i)j for 1 ≤ i ≤ n and j = 2, 4. We may take β1 to be the geodesic ∂−DB(1)1
on T1 and β2 = ∂−DB(1)2 ⊂ T2. Then we obtain the following from Lemma 4.12,
applying Lemmas 4.13 and 4.15:

=(m(T1))=±(2+ 4n
√

2), =(m(T2))=±
2+ 4n

√
2

5
.

We will show m(T1) and m(T2) have real part equal to 0 by describing geodesics
α j , j = 1, 2, which meet the β j once, perpendicularly. Let a1 be the arc in A1

which is the projection of the internal edges of h0 ∩ P1 (the vertical arcs on the
left-hand square in Figure 8). Recall that the internal edges of h0∩P1. In particular,
pS(∂a1) is the intersection of pS(A1) with the one-skeleton of the triangulation 1S

defined below Corollary 2.2.
Let b1 ⊂ B1 and b3 ⊂ B3 similarly be projections of internal edges of h0 ∩ P2

and h1−i
√

2/2∩P2, respectively (see Figure 9), and let db1 and db3 be the geodesic
arcs of DB1 and DB3 containing them. Let db(i)j = φi ◦ pT (db j ), and let ∂±db(i)j =

db(i)j ∩ ∂±DB(i)j , j = 1, 3 and i ∈ N. Let 1−T be the image of the triangulation 1−T0

defined below Corollary 2.3 under the inclusion MT0 → MT , and let 1+T be its
image under the doubling involution of MT . Then ∂±db(i)j is the intersection of
∂DB(i)j with the one-skeleton of φi (1

±

T ).
By Lemma 2.4, ι(0)+ (ι

(0)
− )
−1 preserves triangulations, and the discussion above

implies that the other gluing maps do as well. From Figure 5 it is apparent that the
cusps of F (0) corresponding to p1 and p3 each contain only one end of an edge
of the triangulation that F (0) inherits from the pictured fundamental domain F.
Therefore ι0(∂a1)= ∂−db(1)1 ∪ ∂−db(1)3 . It then follows as before that

α1 = pS(a1)∪ db(1)1 ∪ · · · ∪ db(n)1 ∪φr ◦ pS(a1)∪ db(n)3 ∪ · · · ∪ db(1)3

is a closed geodesic on T1 which meets β1 once, at right angles. Therefore by
Lemma 4.11 <(m(T1))= 0, so m(T1)= i(2+ 4n

√
2).

A similar argument will give m(T2). Let A2 be the collection of arcs in A2 which
are the projections of internal edges of the squares hv , v ∈V1−{0}. From Figure 8,
A2 consists of five arcs evenly spaced around A2, each joining one component of
∂A2 to the other and perpendicular to ∂A2 at each endpoint. For j = 2, 4, we define
a collection of arcs DB j ⊂ DB j analogously, and take DB(i)

j = φi ◦ pT (DB j ). Let
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∂±DB(i)
j = DB(i)

j ∩ ∂±DB(i)j , and note that the points of ∂±DB(i)
j are the points of

intersection of ∂DB(i)j with the one-skeleton of φi (1
±

T ).
For the same reasons as above, i (0)+ (i

(0)
− )
−1 takes pS(∂A2) to ∂−DB(1)

2 ∪∂−DB(1)
4 ,

and the other gluing maps take the ∂+DB(i)
j to ∂−DB(i+1)

j for the appropriate i
and j . Then the collection

pS(A2)∪ DB(1)
2 ∪ · · · ∪ DB(n)

2 ∪φr ◦ pS(A2)∪ DB(n)
4 ∪ · · · ∪ DB(1)

4

consists of a disjoint union of up to five closed geodesics, each meeting β2 perpen-
dicularly in at most five points.

Fix a component α2 of the collection above, let k be the intersection number of α2

with β2, and let T̃2 be the k-fold cover of T2 dual to α2. Then β2 lifts to T̃2, and any
lift intersects the preimage α̃2 of α once, perpendicularly. Computing the modulus
of T̃2 using this pair, we obtain ±k · i(2+ 4n

√
2)/5. This is PGL2(Q)-equivalent

to m(T1), so the result follows from Lemma 4.9. �

Lemma 4.18. Suppose z= i(m+n
√

2) is PGL2(Q)-equivalent to z′= i(m+n′
√

2),
where m, n, n′ ∈Q and m 6= 0. Then n′ =±n.

Remark. Since commensurable hyperbolic manifolds have commensurable cusps,
the collection of PGL2(Q)-orbits of cusp parameters is a commensurability invariant
(see Lemma 4.9). Thus Proposition 4.17 and Lemma 4.18 imply Proposition 4.7.

Proof. Suppose
(a

c
b
d

)
∈ PGL2(Q) takes z to z′. After clearing denominators (which

does not change the action by Möbius transformations), we may assume that
a, b, c, d ∈ Z. We have

ai(m+ n
√

2)+ b

ci(m+ n
√

2)+ d
= i(m+ n′

√
2).

Multiplying by the denominator on the left, and collecting the real and imaginary
parts, we find

m(a− d)+ (an− dn′)
√

2= 0, b+ c(m2
+ 2nn′)+ cm(n′+ n)

√
2= 0.

Since 1 and
√

2 are linearly independent over Q, the left-hand equation above
implies that m(a−d)= 0 and an−dn′ = 0. Since m 6= 0, the first equation implies
a = d . Then the second equation implies n = n′ unless a = d = 0. But in this case,
c 6= 0 since

(a
c

b
d

)
∈ PGL2(Q). Hence, using the coefficient of

√
2 in the right-hand

equation above, we find n′ =−n. �

5. Mutants

In the remaining sections, we will consider links obtained from Ln by mutation
along the separating spheres S(i), 0≤ i ≤ n, from Definitions 3.8(3).
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Definition 5.1. For marked points 1, 2, 3, 4 ∈ S2, a mutation of (S2, {1, 2, 3, 4}) is
a mapping class of order 2 which acts on {1, 2, 3, 4} by an even permutation.

Above a mapping class is the isotopy class, rel {1, 2, 3, 4}, of an orientation-
preserving self-homeomorphism of the pair (S2, {1, 2, 3, 4}). The set Mod0,4 of
such classes inherits the structure of a group from its bijection with the quotient of the
group of orientation-preserving homeomorphisms by its identity component. See,
for example, [Farb and Margalit 2012] for an introduction to the study of mapping
class groups; here we need only the following fact on recognizing mutations using
the symmetric group S4:

Proposition 5.2. The homomorphism θ : Mod0,4→ S4 that records the action on
{1, 2, 3, 4} takes the set of mutations bijectively to {(12)(34), (13)(24), (14)(23)}.

Proof. Here we will embed S2 as the unit sphere in R3 and take

{1, 2, 3, 4} =
{(
±1
√

2
,
±1
√

2
, 0
)
,

(
±1
√

2
,
∓1
√

2
, 0
)}
.

The definitions imply that θ takes any mutation into the subset of S4 listed above,
and the 180-degree rotations mx , m y , and mz in the three coordinate axes of R3

determine mutations of (S2, {1, 2, 3, 4}) taken by θ to each of its distinct elements.
The kernel of θ is the pure mapping class group PMod0,4. This group is free on

two generators: Dehn twists in essential simple closed curves α, β⊂ S2
−{1, 2, 3, 4}

that intersect exactly twice. See the beginning of [Farb and Margalit 2012, §4.2.4]
for a proof of this fact, and for the definition of a Dehn twist see [Farb and Margalit
2012, §3.1.1]. With S2 as above we can take α to be its intersection with the
xz-plane and β the intersection with the yz-plane; then it is clear that each of mx ,
m y , and mz takes each of α and β to itself. It follows that mx , m y , and mz centralize
PMod0,4 (see [Farb and Margalit 2012, Fact 3.8]).

For an arbitrary mutation m ∈Mod0,4 we have θ(m) = θ(mx), θ(m) = θ(m y),
or θ(m)= θ(mz). Assuming (without loss of generality) that the first case holds, it
follows that m = mx h for some h ∈ PMod0,4. Since m has order 2 we have:

id = m2
= (mx h)2 = m2

x h2
= h2.

Thus since PMod0,4 is a free group, h = id and m = mx . �

It is easy to see that every mutation of (S2, {1, 2, 3, 4}) is isotopic to the identity
as a self-homeomorphism of S2, so cutting S3 along a smoothly embedded copy
and regluing by a mutation recovers S3. This motivates:

Definition 5.3. For a link L ⊂ S3 and a smoothly embedded two-sphere S ⊂ S3

intersecting L in four points, let B± be the closures of the components of S3
−S and

T± = L ∩ B±. For a mutation m of (S, S ∩ L), we define (S3, L ′)= (B−, T−)∪m

(B+, T+) and say L ′ is obtained from L by mutation along S.
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The lemma below describes the change in projection from L to a link L ′ obtained
from it by mutation. Below we refer to mutations by their images under θ .

Lemma 5.4. For a link L projected to R2, if a two-sphere S ⊂ S3 intersects R2 in a
vertical line and L in four points, label them 2, 3, 4, and 1, reading top-to-bottom.
The link obtained by the mutation (13)(24) (respectively, (12)(34)) along S has
projection obtained by cutting L along S and inserting the braid on the left (resp.
right) of Figure 10.

Proof. We may assume L is arranged so that there is an axis in R2 intersecting
S perpendicularly, midway between points 3 and 4 and so that points 2 and 1 are
also equidistant from it. The 180-degree rotation in this axis restricts on S to an
involution acting on the marked points by the permutation (12)(34).

There is a homeomorphism R : S× I → S× I , which preserves slices S×{t}
and restricts on each to rotation by −180 · t degrees in the horizontal axis. This
interpolates between the identity, on S×{0}, and the inverse of (12)(34) on S×{1},
although it does not preserve marked points for 0< t < 1.

Let (B±, T±) be as in Definition 5.3, and let C be a collar of S in B− that is
small enough that it intersects T− in the collection of horizontal arcs {{ j}× I | j ∈
{1, 2, 3, 4}}. There is a homeomorphism h : B− ∪(12)(34) B+→ S3 defined as the
identity on B+ and the complement of C in B−, and as R on C . By the definition of
R, the image of T− ∩C under R is as pictured on the right-hand side of Figure 10,
thus the image of L ′ in S3 under h is as stated in the lemma.

Note that the braid on the left-hand side of Figure 10 is the conjugate of the braid
on the right by a left-handed half-twist exchanging the points 2 and 3. This reflects
the fact that the conjugate of (12)(34), by any homeomorphism of (S, {1, 2, 3, 4})
which exchanges 2 and 3 and fixes 1 and 4, is a mapping class of order 2 acting on
the marked points as (13)(24); hence such a conjugate is (13)(24). The conjugating
braid in Figure 10 tracks the marked points under an isotopy S× I → S taking the
simplest such conjugator to the identity. The conclusion for (13)(24) thus follows
as it did above for (12)(34). �

44

3

1

2

1

3

2

(13)(24) (12)(34)

Figure 10. The mutations as braids.



376 ERIC CHESEBRO AND JASON DEBLOIS

The numbering of marked points from Lemma 5.4 and Figure 10 agrees with
the numbering of the S(i)∩ Ln from Definitions 3.8(3). This, in turn, was chosen to
agree with the numbering of parabolics of 3 from Lemma 2.4. To be more precise:

Let S be the sphere obtained by compactifying each cusp of F (0) =H/3 with a
single point. Label each new point with a number between 1 and 4, according to the
parabolic pi corresponding to the cusp it compactifies. With the points of S(0) ∩ Ln

numbered as in Definitions 3.8(3), it follows from Proposition 2.8 that the restriction
of fT (as in Proposition 3.7) to S(0)− T extends to a map S(0)→ S that preserves
numbering. Corollary 3.11 and the definition of F (i) (see Definitions 3.9) now
imply that for each i between 0 and n, φc2i ◦ ι−1

i ◦ fn extends to a homeomorphism
S(i)→ S that takes marked points to marked points preserving numbering.

By [Ruberman 1987, Theorem 2.2], each mutation of (S, {1, 2, 3, 4}) is realized
by an isometry of F (0); that is, there exists an isometry of F (0) whose extension
to (S, {1, 2, 3, 4}) represents the mutation mapping class. The following lemma
identifies lifts to PSL2(R) of the isometries realizing (13)(24) and (12)(34).

Lemma 5.5. Define

m1 =

(
−3 5
−2 3

)
, m2 =

(
0

√
5

−1/
√

5 0

)
.

Each of m1 and m2 normalizes 3 (from Lemma 2.4), and the induced isometries
φm1 and φm2 of F (0) realize (13)(24) and (12)(34), respectively.

Proof. Since each of m1 and m2 has trace equal to zero, it has order 2 in PSL2(C).
Their actions by conjugation on the generators p1, p2, and p3 for 3 defined above
Lemma 2.4 are given by

pm1
1 = p−1

3 , pm1
2 = p−1

4 , pm2
1 = p2, pm2

3 = p
p−1

1
4 ,

as may be verified by direct computation. Here p4 = p1p2p
−1
3 is as described in

Remark 1 on page 351. Therefore m1 and m2 normalize 3 and induce isometries
φm1 and φm2 , respectively, of F (0) = C(3).

Each of φm1 and φm2 has order 2, since m1 and m2 have order 2, and their
extensions to S act on the set of marked points as described in the statement of the
lemma. Its conclusion therefore follows from Proposition 5.2. �

Corollary 5.6. For j = 1, 2 and i ∈ Z, let m(i)j = c−2im jc
2i . Each of m(i)1 and m

(i)
2

normalizes 3(i) (from Definitions 3.9), and the induced isometries of F (i) realize
(13)(24) and (12)(34), respectively.

Lemma 5.4 gives a prescription for describing links obtained from Ln by the
mutations (13)(24) and (12)(34). The result below describes hyperbolic manifolds
to which their complements are homeomorphic, analogous to Proposition 3.10.
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3

2

4

1

Figure 11. The tangle S admits an order-2 rotational symmetry
which restricts to the mutation (13)(24) on its boundary.

Proposition 5.7. For I = (a0, a1, . . . , an)∈ {0, 1, 2}n+1, let L I be the link obtained
from Ln by the following prescription: for 0 ≤ i ≤ n, if ai = 0, do not mutate
along S(i); if ai = 1, mutate by (13)(24); and if ai = 2, mutate by (12)(34). Let
MI = C(0S)∪C(0(1)T )∪ · · · ∪C(0(n)T )∪C(0S), where for each i such that ai = 0
the gluing is as in Proposition 3.10, and otherwise is given by

ι
(i)
+ φm(i)

j
(ι
(i)
− )
−1 for 0≤ i < n, where ai = j ∈ {1, 2}, and

φrι
(0)
− φc2nφ

m
(n)
j
(ι
(n)
− )
−1 if an = j ∈ {1, 2}.

Then there is a homeomorphism f I : S3
− L I → MI whose restriction to each

complementary component of the collection {S(i)} agrees with that of fn .

Proposition 5.7 follows immediately from Proposition 3.10 and Corollary 5.6.
Below we note a couple of “obvious” isometry relations on the {MI }.

Lemma 5.8. For fixed (a1, . . . , an) ∈ {0, 1, 2}n let I0 = (0, a1, . . . , an) and I1 =

(1, a1, . . . , an). MI0 is isometric to MI1 .

Proof. It is evident from Figure 11 that the mutation (13)(24) extends to a homeo-
morphism on B3

− S. Thus (S3, L I0) is homeomorphic to (S3, L I1), and the result
follows from Mostow rigidity. �

Lemma 5.9. For I = (a0, a1, . . . , an) ∈ {0, 1, 2}n+1, let Ī = (an, an−1, . . . , a0).
There is an orientation-reversing isometry MI → M Ī that, for each i ∈ {1, . . . , n},
takes the image of C(0(i)T ) in MI to the image of C(0(n−i)

T ) in M Ī .

Proof. It is straightforward to check that the braids in Figure 10 are isotopic
(in S2

× I ) to their mirror images. Therefore, there is an orientation-reversing
homeomorphism L I → L Ī . By composing this homeomorphism with f −1

I and f Ī
we get a homeomorphism MI → M Ī . The result follows by Mostow rigidity. �
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Below we describe the change effected at the level of Kleinian groups by cutting
a hyperbolic manifold along an embedded, separating totally geodesic surface and
regluing by an isometry.

Lemma 5.10. Suppose 00 and 01 meet cute along a plane K, and take2=00∩01,
E = K/2, and ι0 and ι1 as in Lemma 3.2. If n normalizes 2 and preserves
components of H3

−K, then 〈00, 0
n
1〉 is a Kleinian group, and there is an isometry

C(00)∪ι1φ−1
n ι−1

0
C(01)→ C(〈00, 0

n
1〉)

which restricts on C(00) to the natural map, and on C(01) to φn : C(01)→ C(0n
1)

followed by the natural map.

Proof. Since n normalizes2, it preserves K; hence our hypotheses ensure that00 and
0n

1 meet cute along K, and Lemma 3.2 applies. Thus 〈00, 0
n
1〉 is a Kleinian group,

and in particular, the natural maps C(00)→C(〈00, 0
n
1〉) and C(0n

1)→C(〈00, 0
n
1〉)

determine an isometry

C(00)∪nι1ι−1
0

C(0n
1)→ C(〈00, 0

n
1〉).

Here we are using nι1 : E→C(0n
1) to refer to the natural map. It is now an exercise

in definition-chasing to show that nι1 ◦φn = φn ◦ ι1, whence the map

C(00)∪ι1φ−1
n ι−1

0
C(01)→ C(00)∪nι1ι−1

0
C(0n

1),

defined as the identity on C(00) and φn on C(01), is well defined. The lemma
follows. �

Since m1 and m2 have order 2, φmi = φ
−1
mi

for i = 1, 2. Lemma 5.10 thus
yields the result below, which describes how the algebraic model for Mn from
Proposition 3.12 changes under mutation.

Proposition 5.11. For I = (a0, a1, . . . , an) ∈ {0, 1, 2}n+1 let qi+1 = m
(0)
a0 · · ·m

(i)
ai

for 0 ≤ i ≤ n, with m
( j)
0 := id, and m

( j)
1 and m

( j)
2 as in Corollary 5.6 for every j .

Define

0I =
〈
0S,

(
0
(1)
T

)q1
, . . . ,

(
0
(n)
T

)qn
,
(
0c−2n

S
)qn+1

〉
.

There is an isometry MI → C(0I ) that restricts on C(0S) to the natural map, and
on C(0(i)T ) to φqi ◦φi followed by the natural map, for 1≤ i ≤ n.

The proof of Proposition 5.11 follows the inductive approach of that of Proposition
3.12, but at each stage appeals to Lemma 5.10 for instructions on how to change
the construction. We will not write the details, as it is very similar.
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6. Commensurable mutants

Here we show that Mn is commensurable to each of its mutants by (13)(24) and
with this fact classify the MI up to isometry for I ∈ {0, 1}n+1, proving Theorem 2.
In the process, we show that our polyhedral decomposition of Mn is “canonical”
in the sense of [Goodman et al. 2008, §2]; that is, produced by a construction
of Epstein and Penner [1988]. This allows us to identify the commensurator for
0n and the minimal orbifold quotient of Mn . In practice, it is a challenge to find
Epstein–Penner decompositions, commensurators, and commensurator quotients.
Infinite families where these are known are rare.

Below, let B0 be the open half-ball in H3 bounded by the Euclidean hemisphere
of unit radius centered at 0 ∈ C, and let B j = c− j (B0), where c is as defined in
Lemma 3.3. Recall that we have defined H as the geodesic hyperplane of H3 with
ideal boundary R∪ {∞}. If w and z are complex numbers, we will take wH+ z to
be the hyperplane with ideal boundary (wR+ z)∪ {∞}.

Definitions 6.1. (1) Let f0 be obtained by first reflecting in iH and then in iH+1/2.

(2) Let b0 be obtained by first reflecting in H+ i/2 and then in ∂B0.

(3) For j ≥ 0, let a j be obtained by reflecting in iH+ 1/2 and then in ∂B j .

Since iH and iH+1/2 are parallel and share the ideal point∞, f0 is a parabolic
isometry fixing ∞. H+ i/2 meets ∂B0 at an angle of π/3, so b0 is an elliptic
isometry of order 3 rotating around the geodesic of intersection. For the same
reason, ai is elliptic of order 3, rotating around the geodesic iH+ 1/2∩ ∂Bi , for
each i ≥ 0.

Lemma 6.2. Let Gn be the group generated by reflections in the face of Pn , where

Pn =
{
(z, t) ∈ H3

| 0≤<(z)≤ 1/2,−n
√

2≤ =(z)≤ 1/2
}
−

n⋃
k=0

Bk .

Then Gn contains ai for 0 ≤ i ≤ 2n, as well as f0 and b0, and On
.
= H3/Gn is a

one-cusped hyperbolic orbifold.

Proof. By its definition, Pn is cut out by H+ i/2, iH, iH+ 1/2, H− n · i
√

2, and
the ∂Bk , 0≤ k ≤ n. It is not hard to show directly that the dihedral angle between
any two of these planes that intersect is an integer submultiple of π , whence by the
Poincaré polyhedron theorem Gn is discrete and H3/Gn is an orbifold isometric to
Pn with mirrored sides (see [Ratcliffe 1994, Theorem 13.5.1]). In particular, since
Pn has a single ideal point H3/Gn has one cusp.

One finds that Gn contains f0, b0, and the ai , for 0≤ i ≤ n, by direct appeal to
Definitions 6.1. It remains to establish that Gn contains ai for n < i ≤ 2n. Note
that H− n · i

√
2 is the image of H under c−n , so reflection in H− n · i

√
2 is given
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by c−nrcn , where r is the reflection through H. By the property of r observed above
Lemma 3.3, conjugating an element x∈ PSL2(C) by reflection in H−n · i

√
2 gives

(6) c−nrcnxc−nrcn
= c−2n x̄c2n.

We further observe that c conjugates ai to ai−1 for i≥1, since c(iH+1/2)= iH+1/2
and c(Bi )=Bi−1, and we note that ā0 = a0. Thus:

(7) ciaic−i = ā0 = a0 = ciaic
−i
⇒ c−2i āic

2i
= ai .

For 0≤ i ≤ n, it follows that the conjugate of ai by reflection in H− n · i
√

2 is

c−2n āic
2n
= c−2(n−i)aic

2(n−i)
= a2n−i ∈ Gn.

Therefore Gn contains ai for n ≤ i ≤ 2n as well, and the lemma is proved. �

Since H meets both ∂B0 and iH+ 1/2 at right angles, it does the same for
the fixed geodesic of a0 and is therefore preserved by a0. In fact, the following
description of a0 ∈ PSL2(C) is easily obtained from its definition:

a0 =

(
0 1
−1 1

)
.

In particular, a0 acts on the ideal points of P1∩P2 by 0 7→ 1 7→∞ 7→ 0. Similarly,
it is easy to see that f0(z, t)= (z+ 1, t).

Then the face pairings f (defined in Corollary 2.3) and s (defined in Corollary 2.2),
which are equal, are obtained from f0 by conjugating by a0:

(8) s= f = a0f0a
−1
0 .

One may use similar analyses to establish the following:

(9) t= f0a0b0, g = (a−1
0 a1)f

−1
0 (a−1

0 a1)
−1, h= a1a0f

−1
0 a1.

The main group-theoretic fact of this section extends these observations.

Proposition 6.3. For each n ∈ N, Gn contains 0n and m
(i)
1 for 0≤ i ≤ n.

Proof. We recall from Proposition 3.12 that 0n = 〈0S, 0
(1)
T , . . . , 0

(n)
T , 0c−2n

S 〉, where
by Definitions 3.9(2), 0(i)T

.
= 0c−2(i−1)

T for each i between 1 and n. Furthermore, by
Lemma 3.3, 0T = 〈0T0, 0

c−2

T0
〉.

It is a direct consequence of the descriptions (8) and (9) that 0S < Gn and
0T0 < Gn . Furthermore, since f0 commutes with c and f̄0 = f0, (7) implies, for
instance, that

c−2 f̄c2
= c−2(ā0 f̄0ā

−1
0 )c2

= a2f0a
−1
2 ∈ 0n,

since ā0 = a0 and c−2a0c2
= a2. Using the same strategy, we find

c−2ḡc2
= (a−1

2 a1)f
−1
0 (a−1

2 a1)
−1
∈ Gn and c−2h̄c2

= a1a2f
−1
0 a1 ∈ Gn.
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Thus Gn contains 0T =0
(1)
T . Since conjugation by c−1 takes ai to ai+1, and ai ∈0n

for each i between 0 and 2n, it follows from the descriptions above and in (8) and
(9) that 0(i)T < Gn , for 1≤ i ≤ n. Finally the relation (6) immediately implies that
0c−2n

S < Gn , and we have established that 0n < Gn .
To show that Gn contains the elements m

( j)
1 for each j between 0 and n, we

observe that the element obtained by reflecting first in ∂B0 and then in iH is the
rotation of order 2 described by

( 0 −1
1 0

)
. This is well known to generate PSL2(Z),

along with a0. Since m1 ∈ PSL2(Z), it follows that m1 ∈ G.
We note that c−2 j preserves iH and takes B0 to B2 j , and that B2 j intersects Pn ,

for j ≤ n/2, and intersects its image under reflection in H−n · i
√

2 for n/2≤ j ≤ n.
Thus for each j between 0 and n, the rotation obtained by reflecting first in ∂B2 j

and then in iH is contained in Gn . If m1 is expressed as a word in the two elements
described in the paragraph above, then c−2 jm1c

2 j is expressed as the same word in
a2 j and the rotation obtained from ∂B2 j as above. The lemma follows. �

It is now easy to prove the first part of Theorem 2, that the complement of each
link obtained from Ln using only the mutation (13)(24) is commensurable to Mn .

Proposition 6.4. Mn branched covers On , as does MI for any I ∈ {0, 1}n+1. Hence
these are commensurable.

Proof. Since Gn is a discrete reflection group, it is enough to show that 0I ⊂ Gn .
This is immediate from Propositions 5.11 and 6.3. �

To finish the proof of Theorem 2 we need an isometry classification of the link
complements that fall under the purview of Proposition 6.4. Our first step is to
show that Gn is the commensurator of 0n .

The commensurator of a Kleinian group 0 is the group

Comm(0)= {g ∈ Isom(H3) | [0 : g0g−1
]<∞}.

It follows easily from the definition that since 0n is a finite-index subgroup of Gn ,
Gn is contained in Comm(0n). Since 0n is nonarithmetic (by Proposition 4.1), by
a famous theorem of Margulis [1991, (1) Theorem] Comm(0n) is discrete.

Let O ′n be the hyperbolic orbifold H3/Comm(0n). Since Gn < Comm(0n), O ′n
is finitely covered by On . Recall from Lemma 6.2 that On , and therefore also O ′n ,
has exactly one cusp. It is our goal to show that Gn = Comm(0n); hence On = O ′n .

We use the strategy of [Goodman et al. 2008]. Recall the hyperboloid model for
H3. The Lorentz inner product on R4 is the indefinite bilinear form

〈v,w〉 = v1w1+ v2w2+ v3w3− v4w4.

We let H3
= {v | 〈v, v〉 = −1, v4 > 0} and equip TvH3 with the Riemannian

metric determined by the Lorentz inner product. The positive light cone is the set
L+ = {v | 〈v, v〉 = 0, v4 ≥ 0}. The ideal point of H3 represented by v ∈ L+ is the
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set [v] of scalar multiples of v in L+−{0}. Isom(H3) is the group of matrices in
GL4(R) which act on R4 preserving the Lorentz inner product and the sign of the
last coordinate, hence acting on H3 by isometries. Those in Isom+(H3)⊂ Isom(H3)

preserve orientation on H3.
For v ∈ L+−{0} the set Hv = {w ∈H3

| 〈v,w〉 =−1} is a horosphere centered at
the ideal point [v]. If α ∈ R+ then Hαv is a horosphere centered at [αv] = [v], and
if α ≤ 1 then Hv is contained in the horoball {w | 〈αv,w〉 ≥ −1} determined by αv.
This determines a bijective correspondence between vectors in L+ and horospheres
in H3, so we call the vectors in L+ horospherical vectors.

We use the hyperboloid model to construct certain canonical tilings of H3 as-
sociated to Mn as in [Epstein and Penner 1988]. First, choose a horospherical
vector v ∈ L+ fixed by a peripheral element of 0n , so that under the covering
map H3

→ O ′n the horosphere Hv projects to a cross section of the cusp. Then
Vn = Comm(0n) ·v is Comm(0n)-invariant and determines a Comm(0n)-invariant
set of horospheres. The convex hull of Vn in R4 is called the Epstein–Penner convex
hull; we denote it as Cn . Epstein and Penner show that ∂Cn consists of a countable
set of 3-dimensional faces Fi , where each Fi is a finite-sided Euclidean polyhedron
in R4. Furthermore, this decomposition of ∂Cn projects along straight lines through
the origin to a Comm(0n)-invariant tiling Tn of H3 by ideal polyhedra [Epstein and
Penner 1988, Proposition 3.5 and Theorem 3.6]. We refer to the tiling so obtained
as a canonical tiling. (It is easy to see that a different choice for the vector v yields a
convex hull which differs from Cn by multiplication by a positive scalar. Therefore
it projects to the same canonical tiling as Cn .)

Consider the group of symmetries Sym(Tn) < Isom(H3). Given that Tn is
Comm(0n)-invariant we have that Comm(Tn) < Sym(Tn). On the other hand,
Sym(Tn) is discrete [Goodman et al. 2008, Lemma 2.1] and since 0n is nonar-
ithmetic Comm(0n) is the maximal discrete group containing 0n . Therefore
Sym(Tn)= Comm(0n). Below we will first identify the tiling Tn and then show
that Gn = Sym(Tn).

Theorem 4. With S as in Lemma 4.5, Tn = 0n ·
⋃
{P ∈ S} is the canonical tiling

for Comm(0n).

Proof. We choose matrices

M=


2 1 0 1 0 –1 –2 –1 1 –1 –1 1
0 1 2 1 –2 –1 0 –1 –1 1 1 –1
0
√

2 0 –
√

2 0
√

2 0 –
√

2 –
√

2 –
√

2
√

2
√

2

2 2 2 2 2 2 2 2 2 2 2 2

, N=


√

2 0 0 –
√

2 0 0
0
√

2 0 0 –
√

2 0
0 0

√
2 0 0 –

√
2

√
2
√

2
√

2
√

2
√

2
√

2

.
For X = M, N , let xi be the i-th column of X . Each xi below lies in L+ and so
represents an ideal point of H3. We will call PX the convex hull in H3 of the [xi ].
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Our M and N are such that PM is a right-angled ideal cuboctahedron and PN a
regular ideal octahedron, and, furthermore:

• For X = M, N , each member of Isom(PX ) fixes (0, 0, 0, 1)T ∈H3 and the set
of columns of X is Isom(PX )-invariant.

• There exists h ∈ Isom+(H3) with h(n1) = m1, h(n2) = m9, and h(n3) = m4,
so that h(PN )∩ PM is the face (m1,m9,m4) with ideal vertices at [m1], [m9],
and [m4].

Let P1= h(PN ) and P2=PM . There is an isometry p from the upper half-space
to the hyperboloid model taking Pi (as in Corollaries 2.2 and 2.3) to Pi as above
for i = 1, 2, and∞ to the center [m1] of the horosphere Hm1 . We again refer by
S to the image under p of the set S from Lemma 4.5. Also, p conjugates each of
the isometries we’ve used thus far in our constructions to elements of GL4(R), to
which we’ll refer by the same names.

From the explicit description in Lemma 6.2 it is clear that [m1] is a parabolic fixed
point of Gn . Since Gn is discrete, each element fixing [m1] actually fixes m1, so
the orbit Vn = Gn.m1 is a Gn-invariant collection of horospherical vectors bijective
to the set of parabolic fixed points of Gn . Since On =H3/Gn has one cusp and the
same holds for O ′n=H3/Comm(0n), it follows that Vn is also Comm(0n)-invariant.

Lemma 4.5 implies that 0n.
⋃
{P ∈ S} is a 0n-invariant tiling of H3. We claim

that it is identical to the canonical tiling Tn , the projection to H3 of the boundary of
the convex hull of Vn in R4. Note that Tn is also 0n-invariant, since it is Gn-invariant
by construction and 0n < Gn .

We will use [Goodman et al. 2008, Proposition 6.1] to prove the claim. The
proposition requires for each element of S that the horospherical vectors representing
its vertices be coplanar in R4, and that the angle between this plane and the plane
determined by each neighboring tile be convex. Equivalently, if v1, . . . , vk ∈ Vn

represent the ideal vertices of an element of S and w ∈ Vn−{v1, . . . , vk} represents
a vertex of a neighboring tile, then there exists a vector n ∈ R4 such that

(1) (coplanarity) n · vi = 1 for every i = 1, . . . , k, and

(2) (convex angles) n ·w > 1.

(See the proof of [Goodman et al. 2008, Proposition 6.1].) Observe that these
conditions are invariant under Isom(H3), for if n · v = α and A ∈ Isom(H3) then
(nA−1) · Av = α.

For each member P of S, we note that the subset of Vn representing the set
of ideal points of P contains m1 and is Isom(P)-invariant. This is because the
members of S all share the ideal vertex [m1], and the stabilizer in Gn of any P ∈ S

acts transitively on its set of ideal vertices. (The latter assertion can be proved
by directly examining Pn ∩ P, for Pn as in Lemma 6.2.) In particular, the ideal
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vertices of P1 are represented in Vn by {h(ni )}
6
i=1 and those of P2 by {mi }

12
i=1, by

the properties bulleted above.
Take n = (0, 0, 0, 1/2)T . Then n · mi = 1 for i = 1, . . . , 12, so the mi are

coplanar. The ni (and hence also the h(ni )) are also coplanar, since
√

2n · ni = 1
for i = 1, . . . , 6 and the same n. Coplanarity follows for the other elements of
S, since, for example, {c−1(mi )}

12
i=1 is an Isom(c−1(P2))-invariant collection of

horospherical vectors containing m1 = c−1(m1) and representing the ideal vertices
of c−1(P2).

Consider all pairs (Q,PX ) where X ∈ {M, N } and Q is a regular ideal octahedron
or cuboctahedron which meets PX in a face. Choose horospherical vectors for Q to
agree with those chosen for PX and to be Isom(Q)-invariant. Since the convexity
condition (2) is invariant under isometries, to finish the proof it suffices to check
this condition for each possible pair (Q,PX ).

If Q is a cuboctahedron adjacent to PM sharing the triangular face (m1,m9,m4)

then w = (7, 1,−5
√

2, 10)T is a horospherical vector for Q which is not shared
by PM . We have n ·w = 5 > 1. If Q is a cuboctahedron adjacent to PM sharing
the square face (m1,m2,m3,m4) then w = (3, 5,−

√
2, 6)T is a horospherical

vector for Q which is not shared by PM . We have n · w = 3 > 1. If Q is an
octahedron adjacent to PN sharing the face (n1, n2, n3) then w=

√
2(1, 2, 2, 3)T is

a horospherical vector for Q which is not shared by PN . We have
√

2n ·w = 3> 1.
By construction, P1 = h(PN ) is an octahedron intersecting PM in (m1,m9,m4).
For w = h(n1)= (2+ 2

√
2, 0,−2− 2

√
2, 4+ 4

√
2)T we have n ·w = 2+

√
2> 1.

With coplanarity and convex angles thus established, [Goodman et al. 2008,
Proposition 6.1] implies that 0n.

⋃
{P ∈ S} implies the claim; hence the result. �

By construction Gn is a subgroup of the symmetry group for Tn . We complete
the proof that Gn = Comm(0n) below, showing that it is the full symmetry group.

Corollary 6.5. Gn is the commensurator of 0n and On is the minimal orbifold
quotient of Mn . If I ∈ {0, 1}n+1, then Comm(0I ) = Gn and On is the minimal
quotient of MI .

Proof. Proposition 6.4 implies Comm(0I ) = Comm(0n). Take x ∈ Comm(0n).
We want to show that x ∈ Gn . Recall that c−nrcn

∈ Gn exchanges P1 and c−2nrP1.
Therefore the octahedral tiles of Tn lie in a single Gn-orbit, and we may assume
that x fixes P1.

Recall, for instance from Corollary 2.2, that P1 is checkered and its face A
spanned by the vertices 0, 1, and∞ is external, with A = P1 ∩P2. We have that
a0, b0 ∈ Isom(P1)∩Gn . The internal faces of P1 are paired by elements of 0S , so
every internal face of P1 meets an octahedron in Tn . Since P2 is a cuboctahedron,
x(A) must be an external face of P1.
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It follows immediately from the definitions of a0 and b0 that 〈a0, b0〉 acts tran-
sitively on the external faces of P1. Hence after multiplying by an element of
〈a0, b0〉< Gn , we may assume that x(A)= A. By construction it is clear that Gn

contains the stabilizer of A in Isom(P1), so we have x ∈ Gn as desired. �

The second half of Theorem 2 follows from the isometry classification below.

Proposition 6.6. Suppose I = (0, a1 . . . , an−1, 0) and J = (0, b1, . . . , bn−1, 0) are
elements of {0, 1}n+1. MI is isometric to MJ if and only if J = I or J = Ī .

Remark. We have assumed that the first and last entries of I and J are all zero to
make the proposition easier to state. By Lemma 5.8, changing the first or last entry
of either I or J to “1” yields another isometric manifold.

Proof. Any two distinct tiles of Tn which meet the interior of the fundamental
domain Pn from Lemma 6.2 have distinct Gn-orbits. On the other hand, any tile
that does not is contained in the orbit of one that does. It follows that Gn has a
unique orbit of octahedral tiles (that of P1) and exactly n of cuboctahedral tiles,
those of P2, c

−1(P2), . . . , c
−n+1(P2), since Pn has an open subset in each of these

and is contained in their union.
The planes c−i (H) meet the interior of Pn for i ∈ {0, 1, . . . , n− 1}, so their Gn-

orbits are also distinct. We note that the Gn-orbit of H is distinct from that of iH

since H contains points of the interior of Pn but iH contains a face. Since iH∩ Pn

is contained in an internal face of P1 and H∩ Pn in an external face, it follows that
the Gn-orbit of an internal face of P1 is distinct from that of an external face.

For I as in the hypothesis, it follows, as in Lemma 4.5, that the members of

SI = {P1,P2, c
−1P2, q2c

−2P2, . . . , qnc
−2n+1P2, qnc

−2nrP1}

project to a polyhedral decomposition of MI , where the qi are as defined in
Proposition 5.11. (In particular, q1=1 and qn+1=qn , since I has first and last entries
equal to 0.) This is because qi (c

−2(i−1)P2 ∪ c
−2i+1P2) projects to a decomposition

of C((0(i)T )
qi ) for each i (see the proof of Lemma 4.5), and φm1 preserves the

triangulation 1F of Lemma 2.4. Therefore SI is in bijective correspondence with
the set of 0I -orbits of the top-dimensional tiles of Tn .

Clearly qi (c
−2(i−1)P2) is Gn-equivalent to c−2(i−1)P2 for each i between 1 and

n, and qi (c
−2i+1P2) to c−2i+1P2. The reflection u through H−n · i

√
2, also in Gn ,

exchanges P1 with c−2nrP1 and c−i P2 with c−2n+i+1P2 for each i between 0 and
2n− 1. It follows that each Gn-orbit of top-dimensional tiles of Tn is the union of
exactly two 0I -orbits.

Now suppose for some J as in the hypothesis that there is an isometry MJ→MI .
This lifts to x ∈ Isom(H3) with the property that 0x

J = 0I . Since 0I and 0J

are each finite-index subgroups of Gn they are commensurable, by definition x ∈

Comm(0J )= Gn . By the above, xP1 is 0I -equivalent to one of P1 or qnc
−2nrP1.



386 ERIC CHESEBRO AND JASON DEBLOIS

The reflection isometry of Lemma 5.9 determines ρ ∈ Isom(H3) that conjugates
0I to 0 Ī and takes qnc

−2nrP1 into the 0 Ī -orbit of P1, so replacing x by ρx (and I
by Ī ) if necessary, we may ensure that there exists γ ∈ 0I with γ xP1 = P1. By
the above γ x takes internal faces of P1 to internal faces. Because it conjugates
0J to 0I and P1 is contained in a fundamental domain for each, γ x preserves the
internal face-pairings induced by the projections to MI and to MJ .

It follows from Proposition 5.11 that each of these is the pairing described in
Corollary 2.2. The combinatorial description there implies that γ x preserves the
pairs {X1, X2} and {X3, X4} (see Figure 3), so it is either the identity or 180-degree
rotation in the axis joining the ideal vertex 0 (the “intersection” X1 ∩ X2 on the
sphere at infinity) to 1+ i = X3 ∩ X4. However the latter map does not preserve
equivalence classes of the ideal vertices of X3 and X4 under face pairing, so γ x= 1.
It follows that x ∈ 0I , so 0J = 0I .

We claim, however, that if J 6= I then 0J 6= 0I . The key fact here is that 0m1
T0
6=

0T0 : for instance, the face (fg)−1(Y ′2) of (fg)−1(P2) is taken by (fg)−1hfg ∈ 0T0 to
(fg)−1(Y ′3) (see the proof of Corollary 2.3), but (fg)−1(Y ′2) = m1g

−1(Y ′1) is taken
by m1g

−1m−1
1 ∈ 0

m1
T0

to m1g
−1(Y3). (This description follows from the fact that m1

preserves the polygon F from Lemma 2.4, acting on it as a rotation exchanging
g−1(E) with (fg)−1(D).) In fact, this further implies that no group 0 containing
0T0 also contains 0m1

T0
, as long as the natural map C(0T0)→ C(0) is embedding.

If J 6= I then for the minimal i such that bi 6= ai we have 0w
T0
< 0I and

(0
m1
T0
)w < 0J , where w = qic

−2(i−1) (see Proposition 5.11). The claim, and hence
also the result, thus follows from Proposition 5.11 and Lemma 3.3. �

7. Incommensurable mutants

Lemma 5.5 might lead one to suspect that the mutations (13)(24) and (12)(34) of
F (0) act very differently at the level of Kleinian groups. Indeed, it follows from
Proposition 7.1 below, together with Proposition 4.2, that S3

− Ln is incommensu-
rable with the complement of any link obtained from it by the mutation (12)(34)
along a subcollection of the S(i). In fact, we consider it likely that no two such
mutants are commensurable unless they are isometric.

We lack the tools to fully prove this assertion — mutants are notoriously difficult
to distinguish — but in this section we will describe large families of mutants whose
members have different cusp parameters and are mutually incommensurable. We
begin with traces, however. By [Neumann and Reid 1991] the MI all have trace
field Q(i,

√
2).

Proposition 7.1. For fixed n and any I = (a0, . . . , an) ∈ {0, 1, 2}n+1 such that
ai = 2 for some i , 0I has a nonintegral trace.

Proof. Suppose I = (a0, . . . , an) ∈ {0, 1, 2}n+1 satisfies the hypothesis, and fix i0
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with ai0 = 2. By Proposition 5.11, if i0 = 1 then 0I contains the following matrix:

tm2gm
−1
2 =

(
1
5(−2+ 12

√
2+ 31i + 4i

√
2) −2+

√
2+ 21i + 2i

√
2

1
5(−1+ 7

√
2+ 16i + 2i

√
2) −1+

√
2+ 11i + i

√
2

)
.

(Recall from Corollary 5.6 that m(0)2 =m2.) The trace of tm2gm
−1
2 is not an algebraic

integer, since the ring of integers of Q(i,
√

2) is Z[i,
√

2]. If i0= n then 0I contains
a conjugate of ḡm2t̄m

−1
2 = (m2ḡ)−1(tm2gm−1

2 )m2ḡ.
In all other cases, Proposition 5.11 implies that 0I contains an element with the

same trace as the following matrix:

h̄(m2hm
−1
2 )=

(
−2i
√

2 −3+ i
√

2
−3− i

√
2 3i

√
2

)(
−3i
√

2 15− 5i
√

2
1
5(3+ i

√
2) 2i

√
2

)
=

(
−71/5 −20− 30i

√
2

18
5 (−2+ 3i

√
2) 55

)
.

The trace of this matrix is evidently not an algebraic integer. �

For fixed n and any I ∈ {0, 1, 2}n+1, since Mn and MI decompose along totally
geodesic surfaces into isometric pieces, they have the same volume. (In fact,
[Ruberman 1987, Theorem 1.3] asserts that hyperbolic volume is always invariant
under mutation.) It would follow from the classical “Dehn invariant sufficiency”
conjecture that any two hyperbolic manifolds with the same volume are scissors
congruent (again see [Neumann 1998], for instance). In our situation we will verify
this explicitly.

Proposition 7.2. For fixed n and any I ∈ {0, 1, 2}n+1, Mn and MI have the same
Bloch invariant.

Proof. Recall from Lemma 2.4 that F (0) inherits a triangulation 1F from the
fundamental domain F for the action of 3 on H pictured in Figure 5. From the
figure, one finds that 1F has six edges, each a geodesic arc joining cusps of F . For
example, the geodesic joining 0 and∞ projects to an edge which joins cusp 1 to
cusp 2. Of the other five edges, one joins 3 to 4, two join 2 to 4, and for each of 2
and 4 there is an edge joining it to itself.

Since m1 ∈ PSL2(Z) it preserves the Farey tessellation of H, which restricts on
F to the triangulation pictured in Figure 5. Therefore φm1 preserves 1F . On the
other hand, since φm2 exchanges 1 with 2 and 3 with 4 it does not preserve 1F . For
instance, if e is the edge joining 2 to itself then φm2(e) joins 1 to itself.

Fix I = (a0, . . . , an) ∈ {0, 1, 2}n+1 and suppose ai = 2 for some 0 < i <
n. The gluing map C(0(i)T )→ C(0(i+1)

T ) factors through φm(i)
2
: F (i) → F (i) by

Proposition 5.7. This is conjugate to φm2 by the inverse of φi+1 from Definitions 3.9,
so the gluing does not preserve the triangulations of F (i) induced by its intersections
with external faces of the cuboctahedra on either side (see Lemma 2.4(3)). The cases
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Figure 12. Interpolating between 1F , on the left, and φm2(1F ).

i = 0 and i = n are analogous, and show that if ai = 2 for any i then the division of
MI into octahedra and cuboctahedra is not a true ideal polyhedral decomposition.

It is possible to rectify this by gluing “flat” tetrahedra between copies of C(0S)

and/or C(0T ) joined by the mutation φm2 . If T is a flat tetrahedron glued to, say,
C(0S) along two adjacent triangles in ∂C(0S), then C(0S)∪T is homeomorphic
to C(0S), but in the induced triangulation of the boundary, the edge separating
the triangles along which T is glued has been replaced by an edge joining their
two opposite vertices. See [Neumann and Yang 1999, §4] for a more thorough
exposition.

Figure 12 illustrates a process by which 1F may be changed to its image under
φm2 by a sequence of moves on edges. The edges of 1F are pictured on the left in
bold. Moving left to right, at each stage two edges are replaced by edges transverse
to them and disjoint from the remaining edges. After three such moves, the original
triangulation has been changed to its image under φm2 .

Now suppose I = (a1, . . . , an) ∈ {0, 1, 2}n+1. For each i < n such that ai = 2,
replace C(0(i+1)

T ) by its union with 6 flat tetrahedra, glued successively along
∂−C(0(i+1)

T ), to realize the change of triangulations illustrated in Figure 12. The
result is homeomorphic to C(0(i+1)

T ), since adding a flat tetrahedron does not
change the homeomorphism type, but the gluing induced by φmi+1

2
now preserves

the triangulation. The case i = n is similar, but C(0S) is changed instead.
It follows from the above that the Bloch invariant β(MI ) may be calculated

using the resulting polyhedral decomposition. This differs from the original by the
addition of the cross ratio parameters of the flat tetrahedra. Each of these is equal
to 2, since the triangulation of F is a projection of the Farey tessellation of H. But
in the Bloch group, 2 · [2] = 0 is a consequence of the relation [z] = [z/(z− 1)].
Since the number of flat tetrahedra is a multiple of 6, the sum of their cross ratio
parameters contributes nothing to the Bloch invariant. �

The following proposition tracks the change of cusp parameters under mutation.
To simplify our task, we restrict our attention to complements of links obtained by
mutating only with (12)(34) along a subcollection of the S(i) and note in passing
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that since those obtained by mutating only with (13)(24) are commensurable with
Mn , their cusp parameters are PGL2(Q)-equivalent to those of Mn .

Proposition 7.3. For I = (t0, t1, . . . , tn) ∈ {0, 2}n+1 and j ∈ {0, 1, . . . , n}, define

c j =

j∑
k=0

tk
2

(mod 2).

Let T1 be a cross section of the cusp of MI such that T1 ∩ C(0S) = pS(A1) (as
defined in Lemma 4.13), and let T2 be a cross section of the cusp of MI with
T2 ∩C(0S)= pS(A2). Up to the action of PGL2(Q), their complex moduli are:

m(T1)= i
[

1+ 2
n∑

j=1

2
√

2
5c j−1
+

1
5cn

]
,

m(T2)= i
[

1
5
+ 2

n∑
j=1

2
√

2
5(1−c j−1)

+
1

5(1−cn)

]
.

Proof. To simplify notation, we will identify Ak with pS(Ak) and view Ak ⊂C(0S)

for k = 1, 2. Recall the decomposition of MI , along the surfaces F ( j), into a union
of isometric copies of C(0S) and C(0T ) as described in Proposition 5.7:

C(0S)∪C(0(1)T )∪ · · · ∪C(0(n)T )∪C(0S)→ MI .

We will denote by l j the gluing map supplied by Proposition 5.7, taking ∂+C(0( j)
T )

to ∂−C(0( j+1)
T ) when 1 ≤ j < n. The map l0 takes ∂C(0S) to ∂−C(0(1)T ), and

ln : ∂+C(0(n)T )→ ∂C(0S).
For 1≤ j ≤ n and k ∈ {1, 2, 3, 4} we take DB( j)

k = φ j ◦ pT (DBk) as in the proof
of Proposition 4.17. DBk is defined above Lemma 4.15, which implies that DB( j)

k
is an annular cross section of the cusp of C(0( j)

T ) corresponding to pc
−2 j

k . Each of
T1 and T2 meets each of the C(0( j)

T ) in a collection of cusp cross sections parallel
to a subcollection of the DB( j)

k , k ∈ {1, 2, 3, 4}. Similarly, each of T1 ∩C(0S) and
T2 ∩C(0S) is parallel to one of the cross sections A1 or A2.

By the proof of Proposition 4.17, for 1≤ j < n, if t j = 0 then l j = ι
( j)
+ (ι

( j)
− )
−1

takes ∂+DB( j)
k to ∂−DB( j+1)

k for each k ∈ {1, 2, 3, 4}. However if t j = 2 then l j acts
on the indices k by the permutation (12)(34), since it uses φ( j)

m2 . Likewise if t0 = 0
then l0(∂Ak)= ∂−DB(1)k t ∂−DB(1)k+2 for k = 1, 2, by the proof of Proposition 4.17;
hence if t0 = 2, then l0(∂Ak)= ∂−DB(1)3−k t ∂−DB(1)5−k . A similar dichotomy holds
for ln .

Remark. The definitions of the annular cusp cross sections in Lemmas 4.13
and 4.14 depended on a particular collection of horospheres centered at the ideal
vertices of P1 and P2. These give rise to a particular collection of horospherical
cross sections of the cusps of F (0), which is not preserved by φm2 .
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It is more accurate to say, for example, that when t j = 2 and 1 ≤ j < n,
l j (∂+DB( j)

1 ) is a cusp cross section of ∂−C(0( j+1)
T ) parallel (and therefore similar)

to ∂−DB( j+1)
2 . Since the modulus is unaffected by similarities, we have largely

ignored this distinction above and will continue to do so below.

Claim. For each j ∈ {1, . . . , n},

T1 ∩C(0( j)
T )=

{
DB( j)

1 ∪ DB( j)
3 if c j−1 = 0,

DB( j)
2 ∪ DB( j)

4 if c j−1 = 1.

Furthermore, T1 ∩C(0S)= A1 if cn = 0 and A2 if cn = 1.

Proof of claim. This is proved by induction on j . In the base case j = 1, since
c0 = t0/2 and T1 ∩C(0S)= A1, the conclusion in this case follows directly from
the dichotomy in the behavior of l0 recorded above the claim.

Suppose now that the claim holds for some j < n, and note that therefore
T1 ∩ M ( j)

T has components DB( j)
k and DB( j)

k′ , where k, k ′ ∈ {1, 2, 3, 4} have the
same parity, which is opposite that of c j−1. By definition, c j has the opposite
parity from c j−1 if and only if t j=2. Writing l j (∂+DB( j)

k )=∂−DB( j+1)
k′′ , the above

implies that k ′′ has parity opposite that of k if and only if t j = 2. A similar assertion
holds for k ′, and the claim follows for j + 1.

By induction, the claim holds for each j ≤ n. The final statement in the claim
follows by an argument that mimics the one used in the inductive step. �

The moduli of A1, A2, A1, and A2 are described in Lemma 4.13, and those of the
DB(i)j are described in Lemma 4.15. Using these descriptions and Lemma 4.12, the
claim above shows that the imaginary part of m(T1) is as described in the statement
of the proposition. The description of the imaginary part of m(T2) follows similarly.

Now recall the definitions of the arcs a1 and db( j)
k for 1 ≤ j ≤ n and k = 1, 3,

and the collections of arcs A2 and DB
( j)
k for 1 ≤ j ≤ n and k = 2, 4, from the

proof of Proposition 4.17. For our purposes here, we additionally define A1 to be a
collection of five arcs evenly spaced around A1, each perpendicular to ∂A1 at each
of its endpoints, such that a1 ∈A1. We analogously define D B

( j)
k as a collection

of evenly spaced arcs in DB( j)
k containing db( j)

k for 1≤ j ≤ n and k = 1, 3.

Claim. If t0 = 0 then l0(∂Ak) = ∂−DB(1)
k ∪ ∂−DB(1)

k+2 for k = 1, 2, and if t0 = 2
then l0(∂Ak)= ∂−DB(1)

3−k ∪ ∂−DB(1)
5−k . Similarly, for 1≤ j ≤ n− 1,

l j (∂+DB
( j)
k )= ∂−DB

( j+1)
k for k = 1, 2, 3, 4, if t j = 0,

l j (∂+DB
( j)
k )=

{
∂−DB

( j+1)
3−k for k = 1, 2,

∂−DB
( j+1)
7−k for k = 3, 4,

if t j = 2.
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Also, if tn = 0 then l−1
n (∂Ak) = ∂+DB(n)

k ∪ ∂+DB(n)
k+2 for k = 1, 2, and if tn = 2

then l−1
n (∂Ak)= ∂+DB(n)

3−k ∪ ∂−DB(n)
5−k .

In the discussion above the first claim, we recorded the analogous dichotomy
to that of the claim above for the action of the gluing maps l j on boundaries of
annular cusp cross sections. The substance of this claim is thus that the gluing maps
preserve arc endpoints.

Proof of claim. Suppose first that t j = 0, so by its definition l j = ι
( j)
+ (ι

( j)
− )
−1. The

proof of Proposition 4.17 directly addresses the cases of A2, A2, and DB
( j)
k , where

k = 2 or 4. In the remaining case of A1, the definition implies that ∂A1 consists
of ten points, five evenly spaced around each component of ∂A1, with each such
collection containing a point of ∂a1. Also by definition, ∂−DB(1)

k is a collection
of five points spaced evenly around ∂−DB(1)k , one of which is ∂−db(1)k for k = 1, 3.
By the proof of Proposition 4.17, ι(0)+ (ι

(0)
− )
−1 takes ∂a1 to ∂−db(1)1 ∪ ∂−db(1)3 ; hence

the entire collection ∂A1 is taken to ∂−DB(1)
1 ∪ ∂−DB(1)

3 since ι(0)+ (ι
(0)
− )
−1 is an

isometry. The remaining cases when t j = 0, j ≥ 1, follow similarly.
To illustrate the case t j = 2 we focus on the subcase 1 ≤ j < n. When t0 = 2,

l j takes ∂+DB( j)
1 to ∂−DB( j+1)

2 , for example. The crucial observation here is that
l0(∂+db( j)

1 ) is in ∂−DB( j+1)
2 . This holds because by definition, ∂+db( j)

1 is a point
in the edge of the triangulation 1T which exits the ideal vertex 1. (This is the
top edge in Figure 12.) Although φm2 does not preserve 1T , it preserves this
edge, exchanging its endpoints at 1 and 2. Since ∂−DB

( j+1)
2 has a point in each

edge which exits 2, it contains φm2(∂+db( j)
1 ). Since the points of ∂+DB

( j)
1 are

evenly spaced around ∂+DB( j)
1 and the same is true for ∂−DB

( j+1)
2 , it follows that

l0(∂+DB
( j)
1 )= ∂−DB

( j+1)
2 .

Since φm2 takes the edge of 1T to itself and exchanges its endpoints, we have
l0(∂+db( j)

3 ) ∈ ∂−DB
( j+1)
4 in this case. Then it follows from “even-spacedness”

that l0(∂+DB
( j)
3 )= ∂−DB

( j+1)
4 . The same argument implies that ∂−db( j+1)

1 lies
in l0(∂+DB

( j+1)
2 ) and therefore that l0(∂+DB

( j)
2 )= ∂−DB

( j+1)
1 , and similarly that

l0(∂+DB( j)
4 ) = ∂−DB

( j+1)
3 . The same sequence of observations, applied to ∂Ak

and ∂Ak , k = 1, 2, completes the claim. �

The second claim implies that the set

A1 ∪A2 ∪
⋃
j,k

DB
( j)
k ∪A1 ∪A2

consists of a disjoint union of closed geodesics, some in T1 and some in T2, each
meeting any of the geodesics F ( j)

∩ T1 or F ( j)
∩ T2 perpendicularly in up to five

points. That m(T1) and m(T2) have real part equal to 0 (up to the action of PGL2(Q))
now follows as in the proof of Proposition 4.17. �
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Proposition 7.3 allows us to describe arbitrarily large subfamilies of the MI which
have PGL2(Q)-inequivalent cusp parameters and hence are not commensurable.

Corollary 7.4. For 0≤ k ≤ n, let Ik = (t0, t1, . . . , tn) be defined by ti = 0 for i 6= k,
and tk = 2. The cusp parameters of MIk are not PGL2(Q)-equivalent to those of
MIk′

for k 6= k ′, when both are less than (n+ 1)/2.

Proof. By Proposition 7.3, the cusps of MIk have moduli described as

m(T1)= i
[ 6

5 +
4
5(n+ 4k)

√
2
]
, m(T2)= i

[ 6
5 +

4
5(5n− 4k)

√
2
]
.

Since m(T1) and m(T2) are both of the form described in Lemma 4.18 for any k,
if the cusp parameters of MIk are equivalent to those of MIk′

, then one of the two
following cases holds:

n+ 4k = n+ 4k ′, and 5n− 4k = 5n− 4k ′,

n+ 4k = 5n− 4k ′, and 5n− 4k = n+ 4k ′,

In the first case, k = k ′, and in the second, k ′ = n − k. Thus as long as k and
k ′ < (n+ 1)/2 are unequal, their cusp parameters are as well. �

There are also arbitrarily large subfamilies which share cusp parameters, even
among complements of links obtained by mutating only with (12)(34). We do not
know if these are commensurable, although we suspect they are not.

Corollary 7.5. For 0≤k<n, let Ik= (t0, . . . , tn) be defined by ti =0 for i 6=k, k+1,
and tk = tk+1 = 2. For each k, the cusp parameters of MIk are

m(T1)= i
[
2+ 4

(
n− 4

5

)√
2
]
, m(T2)= i

[ 2
5 +

4
5(n+ 4)

√
2
]
,

up to the action of PGL2(Q).

Corollaries 7.4 and 7.5 prove parts (2) and (3), respectively, of Theorem 3.

Appendix: Proof of Lemma 2.6

Following Morgan [1984], we define a pared manifold to be a pair (M, P), where
M is a compact, orientable, irreducible 3-manifold with nonempty boundary which
is not a 3-ball, and P ⊆ ∂M is the union of a collection of disjoint incompressible
annuli and tori satisfying the following properties:

• Every noncyclic abelian subgroup of π1 M is conjugate into the fundamental
group of a component of P .

• Every map φ : (S1
× I, S1

× ∂ I )→ (M, P) which induces an injection on
fundamental groups is homotopic as a map of pairs to a map ψ such that
ψ(S1

× I )⊂ P .



COMMENSURABILITY OF LINK COMPLEMENTS 393

This definition describes the topology of the compact manifold obtained by trun-
cating the cusps of the convex core of a geometrically finite hyperbolic 3-manifold by
open horoball neighborhoods. Indeed, Corollary 6.10 of [Morgan 1984] asserts that
if (M, P) is obtained in this way, where P consists of the collection of boundaries
of the truncating horoball neighborhoods, then (M, P) is a pared manifold.

Lemma 2.6 asserts that if (M, P) has the pared homotopy type of a geometrically
finite hyperbolic manifold H3/0 where 0 is not Fuchsian and ∂C(0) is totally
geodesic, then M− P is homeomorphic to C(0). The key point of the proof is that
the geometric conditions on 0 ensure that (M, P) is an acylindrical pared manifold.
Then Johannson’s theorem [Johannson 1979], that pared homotopy equivalences
between acylindrical pared manifolds are homotopic to pared homeomorphisms,
applies. We expand on this below.

It is worth noting that Lemma 2.6 fails in more general circumstances. The
memoir [Canary and McCullough 2004] gives examples of this; Example 1.4.5,
for instance, describes homotopy-equivalent non-Fuchsian geometrically finite
manifolds with incompressible convex core boundary which are not homeomorphic.
That work is devoted to understanding the ways in which homotopy equivalences
of hyperbolic 3-manifolds can fail to be homotopic to homeomorphisms, and
Lemma 2.6 follows quickly from results therein.

The treatment of Canary and McCullough itself uses the theory of characteristic
submanifolds of manifolds with boundary pattern developed in [Johannson 1979].
The characteristic submanifold of a manifold with boundary pattern is a maximal
collection of disjoint codimension-zero submanifolds, each an interval bundle or
Seifert-fibered space embedded reasonably with respect to the boundary pattern.
Rather than attempting to establish all of the notation necessary to define this
formally, we refer the interested reader to the two works just cited. Here we simply
transcribe the relevant theorem of [Canary and McCullough 2004], which strongly
restricts the topology of the characteristic submanifold of a pared manifold with
boundary pattern determined by the pared locus.

For the purposes of Lemma 2.6 we exclude from consideration certain pared
manifolds which never arise from convex cores of geometrically finite hyperbolic
3-manifolds. We say (M, P) is elementary if it is homeomorphic to one of (T 2

× I,
T 2
×{0}), (A2

× I, A2
×{0}), or (A2

× I,∅), where T 2 and A2 denote the torus and
annulus, respectively; otherwise (M, P) is nonelementary. Define ∂0 M := M − P .
We say an annulus properly embedded in M − P is essential in (M, P) if it is
incompressible and boundary-incompressible in M − P . For a codimension-0
submanifold V embedded in M , we denote by Fr(V ) the frontier of V (that is, its
topological boundary in M), and note that Fr(V )= ∂V − (V ∩ ∂M). With notation
thus established, the following theorem combines the definition of the characteristic
submanifold with [Canary and McCullough 2004, Theorem 5.3.4].
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Theorem. Let (M, P) be a nonelementary pared manifold with ∂0 M incompress-
ible. Select the fibering of the characteristic submanifold so that no component is
an I -bundle over an annulus or Möbius band.

(1) Suppose V is a component of the characteristic submanifold which is an
I -bundle over a surface B. Then each component of the associated ∂ I -bundle
is contained in ∂0 M , each component of the associated I -bundle over ∂B is
either a component of P or a properly embedded essential annulus, and B has
negative Euler characteristic.

(2) A Seifert-fibered component V of the characteristic submanifold is homeomor-
phic either to T 2

× I or to a solid torus. If V is T 2
× I then one component of

T 2
× ∂ I lies in P and the other components of V ∩ ∂M are annuli in ∂0 M. If

V is a solid torus, then V ∩ ∂M has at least one component, each an annulus
either containing a component of P or contained in ∂0 M. In either case, each
component of the frontier Fr(V ) of V in M is a properly embedded essential
annulus.

The characteristic submanifold contains regular neighborhoods of all compo-
nents of P.

The key claim in the proof of Lemma 2.6 is a further restriction on the character-
istic submanifold of (M, P), in the case that M is obtained from the convex core
of a non-Fuchsian geometrically finite manifold with totally geodesic convex core
boundary by removing horoball neighborhoods of the cusps. P is the union of the
boundaries of these neighborhoods.

Claim. (M, P) as above is nonelementary, and ∂0 M is incompressible. The
characteristic submanifold of (M, P) consists only of (Seifert-fibered) regular
neighborhoods of the components of P , each of whose boundary has a unique
component of intersection with ∂M.

We prove the claim below, but assuming it for now, the proof of Lemma 3
proceeds as follows. A representation as given in the statement of the lemma
induces a pared homotopy equivalence between (M, P) and the pared manifold
(N , Q) obtained by truncating C(0)with open horoball neighborhoods. Since C(0)
has totally geodesic convex core boundary, (N , Q) is as described by the claim;
hence (M, P) is as well (see [Canary and McCullough 2004, Theorem 2.11.1],
for example). Johansson’s classification theorem (see [Canary and McCullough
2004, Theorem 2.9.10]) implies that the original pared homotopy equivalence is
homotopic to one which maps the complement of the characteristic submanifold
of (M, P) homeomorphically to the complement of the characteristic submanifold
of (N , Q). It follows from the claim that these are homeomorphic to M − P and
N − Q, respectively, and the lemma follows.
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Proof of claim. As was mentioned above, the elementary pared manifolds do not
arise from geometrically finite hyperbolic manifolds. Since (M, P) is obtained
from the convex core of a geometrically finite manifold with totally geodesic convex
core boundary, the following are known not to occur:

(1) A compressing disk for ∂0 M . (By definition ∂0 M lifts to a geodesic hyperplane
in H3, hence the induced map π1∂M0→ π1 M is injective.)

(2) An accidental parabolic: an essential annulus properly embedded in M with
one boundary component in P and one in ∂0 M , which is not parallel to P .
(Every essential curve on ∂0 M that is not boundary-parallel is homotopic to a
geodesic, but an element of π1(M) corresponding to an accidental parabolic
has translation length 0.)

(3) A cylinder; that is, a properly embedded essential annulus in M − P . (The
double DM of M across ∂0 M is a hyperbolic manifold, but the double of a
cylinder in M would be an essential torus in DM .)

We show that if the characteristic manifold has any components other than those
listed in the claim then at least one of the above facts cannot hold.

For a component V of the characteristic submanifold which is an I -bundle over
a surface B, at least one component of the associated I -bundle over ∂B must be
properly embedded, since otherwise we would have M = V and it is well known
that an I -bundle over a surface does not admit a hyperbolic structure with totally
geodesic convex core boundary unless the convex core is a Fuchsian surface. But
this annulus violates (2) or (3). Thus there are no I -bundle components of the
characteristic submanifold.

If V is a Seifert-fibered component of the characteristic submanifold homeo-
morphic to T 2

× I , then one component of ∂V is a torus P1 ⊂ P , and all other
components of ∂V ∩ ∂M are annuli in ∂0 M . If this second class is nonempty then
each component of Fr(V ) is an essential annulus properly embedded in M − P ,
contradicting fact (3). Thus ∂V ∩ ∂M = P1 and V is a regular neighborhood of P1.

If V is a solid torus and V ∩ ∂M contains a component of P , then a similar
argument shows that this is the unique component of ∂V ∩ ∂M , so in this case V
is a regular neighborhood of an annular component of P . If, on the other hand,
V ∩∂M does not contain any components of P , then it has at least two components,
for otherwise a meridional disk of V determines a boundary compression of the
annulus Fr(V ) in M − P . But then any component of Fr(V ) violates fact (3). �
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