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TAUT FOLIATIONS
AND THE ACTION OF THE FUNDAMENTAL GROUP

ON LEAF SPACES AND UNIVERSAL CIRCLES

YOSUKE KANO

Let F be a leafwise hyperbolic taut foliation of a closed 3-manifold M and let
L be the leaf space of the pullback of F to the universal cover of M. We show
that if F has branching, then the natural action of π1(M) on L is faithful.
We also show that if F has a finite branch locus B whose stabilizer acts on
B nontrivially, then the stabilizer is an infinite cyclic group generated by an
indivisible element of π1(M).

1. Introduction

Unless otherwise specified, we assume throughout this article that M is a closed
oriented 3-manifold and F a codimension-one transversely oriented, leafwise hy-
perbolic, taut foliation of M . Here we say that F is leafwise hyperbolic if there is
a transversely continuous leafwise Riemannian metric on M where the leaves are
locally isometric to the hyperbolic plane, and that F is taut if there is a loop in M
which intersects every leaf of F transversely. Note that by [Candel 1993], if M is
irreducible and atoroidal, then every taut foliation of M is leafwise hyperbolic.

Leafwise hyperbolic taut foliations have been extensively investigated by many
people in connection with the theory of 3-manifolds (see, for example, Calegari’s
book [2007]). One of the most powerful methods of analyzing the structure of
such foliations is to consider canonical actions of π1(M) on 1-manifolds naturally
associated with F. Two kinds of such 1-manifolds are known. The first one, denoted
L , is the leaf space of F̃, where F̃ is the pullback of F to the universal cover M̃ of
M . The action of π1(M) on M̃ induces an action of π1(M) on L . In the sequel we
refer to it as the natural action. The second one is a universal circle. By unifying
circles at infinity of all the leaves of a given F̃, Thurston [1998] (see also [Calegari
and Dunfield 2003]) constructs a universal circle with a canonical π1(M) action.
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We say that F has branching if L is non-Hausdorff. The first result of this article
is the following:

Theorem 3.2. If F has branching, then the natural action on L is faithful.

This result is obtained from an investigation of both actions of π1(M) on the
leaf space and on the universal circle (see Section 3). Notice that the hypothesis
that F has branching is indispensable. In fact, just consider a surface bundle over
S1 foliated by fibers. Notice also that, by Theorem 7.10 of [Calegari and Dunfield
2003], any taut foliation can be modified by suitable Denjoy-like insertions so that
the natural action associated with the resulting foliation becomes faithful. In the
case where the foliation is leafwise hyperbolic and has branching, our result is
stronger in that we assure faithfulness without performing any modifications.

Next we consider the stabilizer of a branch locus of F. We call a subset B of L
a branch locus if B contains at least two points and can be expressed in the form
B= limt→0 νt for some interval {νt ∈ L | 0< t <ε} embedded in L . Furthermore, if
the parameter t of the interval is incompatible (resp. compatible) with the orientation
of L , we call B a positive (resp. negative) branch locus. (Note that L has a natural
orientation induced from the transverse orientation of F̃.) Branch loci have been
studied, for example, in [Fenley 1998; Shields 2002]. For a branch locus B we
define the stabilizer of B by Stab(B)= {α ∈ π1(M) | α(B)= B}.

In the case where a branch locus B is finite, we obtain the following results about
the action of Stab(B) on B (see Section 5 for details).

Theorem 5.2. Let B be a finite branch locus of L. If an element of Stab(B) fixes
some point of B then it fixes all the points of B.

We remark that for Anosov foliations, Theorem D of [Fenley 1998] contains
results related to this theorem.

Let π : M̃→ M be the covering projection. For a leaf λ of F̃, we denote by λ
the projected leaf π(λ) of F.

Theorem 5.3. Let B be a branch locus of L. Then,

(1) if Stab(B) is trivial, λ is diffeomorphic to a plane, and

(2) if B is finite and Stab(B) is nontrivial, λ is diffeomorphic to a cylinder

for any λ ∈ B.

Theorem 5.6. Let B be a finite branch locus of L with a nontrivial stabilizer. Then
the stabilizer Stab(B) is isomorphic to Z.

We say that α ∈ π1(M) is divisible if there is some β ∈ π1(M) and an integer
k ≥ 2 such that α = βk . Otherwise we say α is indivisible.

Theorem 5.7. Let B be a finite branch locus of L such that Stab(B) acts on B
nontrivially. Then a generator of Stab(B) (∼= Z) is indivisible.
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For an oriented loop γ in M , we say that γ is tangentiable if γ is freely homotopic
to a leaf loop (a loop contained in a single leaf) of F, and that γ is positively
(resp. negatively) transversable if γ is freely homotopic to a loop positively (resp.
negatively) transverse to F. As a final topic of this article, we study relations
between the infiniteness of branch loci and the existence of a nontransversable leaf
loop in M (see Section 6). One of the results we obtain is the following:

Theorem 6.5. Suppose F has branching. If there is a noncontractible leaf loop in
M which is not freely homotopic to a loop transverse to F, then F has an infinite
branch locus.

This article is organized as follows. In Section 2, we briefly review the Calegari–
Dunfield construction of a universal circle. Using their construction, we prove the
faithfulness of the natural action of π1(M) on L in Section 3. In Section 4, we
introduce a notion of comparable sets and give several basic properties of such sets,
which are applied in Section 5 to the investigation of the structure of finite branch
loci and their stabilizers. In Section 6, we study how the nontransversability of leaf
loops in M is related to the infiniteness of branch loci in L .

2. Universal circles

The theory of universal circles was originally developed in [Thurston 1998], and
was written up carefully in [Calegari and Dunfield 2003]. In this section we briefly
recall the definition of a universal circle after the latter reference.

Let M , F and L be as in the introduction. Here the topology of L is the quotient
topology from M̃ ; that is, there is a canonical projection map q : M̃→ L sending a
point to the leaf containing it. The topology of L is the quotient topology from the
map q .

For λ,µ ∈ L we write λ<µ if there is an oriented path in M̃ from λ to µ which
is positively transverse to F̃. We say that λ and µ are comparable if either λ≤ µ
or λ ≥ µ. For a leaf λ of F̃, the endpoint map e : Tpλ− {0} → S1∞(λ) from the
tangent space of λ at p to the ideal boundary of λ takes a vector v to the endpoint
at infinity of the geodesic ray γ with γ (0)= p and γ ′(0)= v. The circle bundle at
infinity is the disjoint union E∞ =

⋃
λ∈L S1∞(λ) with the finest topology such that

the endpoint map e : T F̃ \ (zero section)→ E∞ is continuous. A continuous map
φ : X→ Y between oriented 1-manifolds homeomorphic to S1 is monotone if it is
of mapping degree one and if the preimage of any point of Y is contractible. A gap
of φ is the interior in X of such a preimage. The core of φ is the complement of
the union of gaps.

Definition 2.1. A universal circle S1
univ for F is a circle together with a homomor-

phism ρuniv :π1(M)→Homeo+(S1
univ) and a family of monotone maps φλ : S1

univ→
S1∞(λ), λ ∈ F̃, satisfying the following conditions:
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1. For every α ∈ π1(M), the following diagram commutes:

S1
univ

ρuniv(α)−−−−→ S1
univ

φλ

y φα(λ)

y
S1∞(λ)

α−−−→ S1∞(α(λ)).

2. If λ and µ are incomparable, then the core of φλ is contained in the closure of
a single gap of φµ and vice versa.

Calegari and Dunfield’s construction for a universal circle is as follows. Let
I = [0, 1] be the unit interval. A marker for F is a continuous map m : I×R+→ M̃
with the following properties:

• For each s ∈ I , the image m(s×R+) is a geodesic ray in a leaf of F̃. We call
these the horizontal rays of m.

• For each t ∈ R+, the image m(I × t) is transverse to F̃ and of length smaller
than some constant depending only on F̃.

We use the interval notation [λ,µ] to represent the oriented image of an injective
continuous map c : I→ L such that c(0)= λ and c(1)=µ. We call this the interval
from λ to µ. Here, notice that the orientation of such an interval is induced from
that of I (not from that of L).

Let J = [λ,µ] be an interval in L and let m be a marker which intersects only
leaves of F̃|J . Then the endpoints of the horizontal rays of m form an interval in
E∞|J which is transverse to the circle fibers. By abuse of notation we refer to such
an interval as a marker.

For each ν ∈ J , the intersection of S1∞(ν) with the union of all markers is dense
in S1∞(ν). If two markers m1,m2 in E∞|J are not disjoint, their union m1 ∪m2 is
also an interval transverse to the circle fibers. It follows that a maximal such union
of markers is still an interval. Again by abuse of notation we call such an interval a
marker.

A continuous section τ : J → E∞|J is admissible if the image of τ does not
cross (but might run into) any marker. The leftmost section τ(p, J ) : J → E∞|J
starting at p ∈ S1∞(λ) is an admissible section which is clockwisemost among all
such sections if the order of J is compatible with that of L , and anticlockwisemost
otherwise. Here, the meaning of “(anti-)clockwisemost” is the following: Consider
the universal cover Ẽ∞|J ∼= R× J of E∞|J and take a lift p̃ ∈ R× J of p. Then,
we say that τ is clockwisemost (resp. anticlockwisemost) if for any admissible
section τ ′ the lifts τ̃ , τ̃ ′ of τ, τ ′ to R× J based at p̃ satisfy τ̃ (ν) ≤ τ̃ ′(ν) (resp.
τ̃ ′(ν)≤ τ̃ (ν)) for any ν ∈ J . For any p the leftmost section starting at p exists.

Let B = limt→0 νt be a branch locus and let µ1, µ2 ∈ B. For each t > 0, let
αt = [µ1, νt ] and βt = [νt , µ2]. Then, we can define a map rt : S1∞(µ1)→ S1∞(µ2)
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by rt(p)= τ(τ (p, αt)(νt), βt)(µ2). As t tends to 0, rt converges to a constant map.
We denote the image of the constant map by r(µ1, µ2) ∈ S1∞(µ2).

Definition 2.2. We call r(µ1, µ2) the turning point from µ1 to µ2.

Given a pair λ,µ ∈ L , we define a geodesic spine from λ to µ to be a disjoint
union of finitely many intervals [ν̂i−1, ν̌i ], 1 ≤ i ≤ n, in L (some of them may
degenerate to singletons), with the following properties:

(1) ν̂0 = λ and ν̌n = µ,

(2) ν̌i and ν̂i belong to a common branch locus for each 1≤ i ≤ n− 1, and

(3) n is minimal under the conditions (1) and (2).

Note that a geodesic spine connecting any two points in L exists and is unique.
Geodesic spines have been extensively used in [Barbot 1996; 1998; Fenley 2003;
Roberts et al. 2003].

For a point p in S1∞(λ), the special section σp : L→ E∞ at p is defined as follows.
First, set σp(λ) = p. Next, pick any point µ ∈ L . We define σp(µ) as follows:
When µ is comparable with λ, then σp is defined on [λ,µ] to be the leftmost section
starting at p. When µ is incomparable with λ, let

∐n
i=1[ν̂i−1, ν̌i ] (n > 1) be the

geodesic spine from λ to µ. We then put r = r(ν̌n−1, ν̂n−1) ∈ S1∞(ν̂n−1) and define
σp on the interval [ν̂n−1, ν̌n] by σp = σr . This completes the definition of σp.

Let S be the union of the special sections σp as p varies over all points in all
circles S1∞(λ) of points λ in L . By [Calegari and Dunfield 2003, Lemma 6.25],
the set S admits a natural circular order. The universal circle S1

univ will be derived
from S as a quotient of the order completion of S with respect to the circular order.
Remark that limits of special sections are also sections, hence that any element of
S1

univ is represented by a section L→ E∞.

3. Faithfulness of the action

We now show that if F has branching, the natural action of π1(M) on the leaf space
L is faithful.

As explained in Section 2, every element σ of S1
univ can be described as a section

σ : L→ E∞ =⋃λ∈L S1∞(λ) and that the maps φλ : S1
univ→ S1∞(λ) are defined by

φλ(σ ) = σ(λ). For a point x in S1∞(λ), we define a (possibly degenerate) closed
interval Ix in S1

univ by Ix = {σ ∈ S1
univ | σ(λ)= x}. Then, for any x the interval Ix

is nonempty because the special section σx at x belongs to Ix . From the definition
of a turning point, we have the following fact: If µ1, µ2 are in a branch locus and
if z is in S1∞(µ2), then φµ1(σz)= r(µ2, µ1); that is, σz ∈ Ir(µ2,µ1).

Let λ ∈ L and α ∈ π1(M) be such that α(λ)= λ. Then α, as the restriction of a
covering transformation of M̃ to λ, induces an isometry of the hyperbolic plane λ,
(hence also a projective transformation of S1∞(λ)). We notice that this isometry is a
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hyperbolic element (meaning that its trace is greater than 2). In fact, since it has no
fixed points in λ, it is not elliptic. If it were parabolic, then it would yield in M a
noncontractible loop whose length can be made arbitrarily small, contradicting the
compactness of M .

The following is a key lemma.

Lemma 3.1. Let B = limt→0 νt be a branch locus of L. If α ∈ π1(M) fixes two
distinct points µ1 and µ2 in B and also fixes the interval {νt | 0< t < ε} pointwise,
then α is trivial in π1(M).

Proof. Suppose α is nontrivial. Let p1, q1 ∈ S1∞(µ1) and p2, q2 ∈ S1∞(µ2) be the
fixed points of α, and let r1 ∈ S1∞(µ1) be the turning point from µ2 to µ1. Without
loss of generality, we assume that p1 6= r1. Note that by construction of the universal
circle, the special sections σpi and σqi in S1

univ are fixed by ρuniv(α) for i = 1, 2;
therefore the images φνt (σpi ) and φνt (σqi ) are fixed by α for any t ∈ (0, ε).

We claim that if t is sufficiently close to 0, then φνt (σp1) and φνt (Ir1) are disjoint
in S1∞(νt). Take two distinct points x and y in S1∞(µ1)− {p1, r1} so that the 4-
tuple (p1, x, r1, y) lies in circular order. Because of the density of markers, for
sufficiently small t > 0 the 4-tuple (σp1(νt), σx(νt), σr1(νt), σy(νt)) lies in S1∞(νt)

also in circular order. Let Kt be the closed interval in S1∞(νt) with boundary points
σx(νt) and σy(νt) and containing σr1(νt). Since Ir1 contains σr1 but not σp1, σx and
σy , and since special sections cannot cross, φνt (Ir1) is contained in Kt . In particular,
φνt (σp1) and φνt (Ir1) are disjoint. This shows the claim.

For t sufficiently close to 0, the two points σp2(νt) and σq2(νt) are distinct. Since
both σp2 and σq2 pass through the turning point r1 from µ2 to µ1, it follows that
φµ1(σp2)= φµ1(σq2)= r1; that is, σp2 and σq2 are contained in Ir1 . Therefore the 3
points σp1(νt), σp2(νt) and σq2(νt) are also mutually distinct. Thus, we find at least
3 fixed points of α in S1∞(νt), contradicting the fact that α is a nontrivial orientation
preserving isometry of the hyperbolic plane νt . �

Now, the first main result of this article is the following:

Theorem 3.2. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. If F has branching, then the natural action
of π1(M) on the leaf space of F̃ is faithful.

Proof. This is a direct consequence of Lemma 3.1. �

4. Comparable sets

In this section we do not assume leafwise hyperbolicity of F. For α ∈ π1(M), we
define the comparable set Cα for α to be the subset of L consisting of points λ
such that λ and α(λ) are comparable. Below we collect some basic properties of
comparable sets.
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Obviously, α(Cα)= Cα, Cα = Cα−1 and Cα ⊂ Cαk for every k > 0.
We say that F has one-sided branching in the positive (resp. negative) direction

if L has positive (resp. negative) branch loci but has no negative (resp. positive)
ones. If L has both positive loci and negative loci, then we say F has two-sided
branching.

Lemma 4.1. Let F have one-sided branching in the positive direction, and let
α ∈ π1(M). Suppose λ and µ are points in L such that λ is a common lower bound
of µ and α(µ), meaning that λ≤ µ and λ≤ α(µ). Then λ ∈ Cα.

Proof. Since the natural action preserves the order of L , the inequality λ≤µ implies
α(λ) ≤ α(µ). Thus, by the hypothesis, α(µ) is a common upper bound of λ and
α(λ). Since F has no branching in the negative direction, it follows that λ and α(λ)
are comparable. �

From this lemma we see the following fact: Let F and α be as above. Then,
there is λ ∈ L such that {µ ∈ L | µ < λ} ⊂ Cα.

Lemma 4.2. Let α ∈ π1(M) and let λ,µ ∈ Cα. Then the geodesic spine γ from λ

to µ is entirely contained in Cα . Furthermore, if γ is written as γ =∐n
i=1[ν̂i−1, ν̌i ]

(ν̂0 = λ, ν̌n = µ) by using a union of intervals, then ν̌i , ν̂i are fixed by α for each
1≤ i ≤ n− 1.

Proof. Without loss of generality we may assume that λ≤ ν̌1. We may also assume
that α(λ)≤ λ, because if α−1(λ)≤ λ we may just consider α−1 instead of α.

We first treat the case when n= 1 (that is, the case when λ and µ are comparable).
Suppose ν /∈ Cα for some ν ∈ [λ,µ]. Then we have ν ∈ [α(λ), µ] and α(ν) ∈
[α(λ), α(µ)]. Since ν and α(ν) are incomparable, it follows that µ and α(µ) are
also incomparable, which is a contradiction. Therefore, we have [λ,µ] ⊂ Cα.

Next, we assume n ≥ 2. We claim that α(ν̌1)= ν̌1 and α(ν̂1)= ν̂1. Note that

[α(λ), λ] ∪ γ = [α(λ), ν̌1] ∪
( n∐

i=2

[ν̂i−1, ν̌i ]
)

is the geodesic spine from α(λ) to µ, and that

α(γ )= [α(λ), α(ν̌1)] ∪
( n∐

i=2

[α(ν̂i−1), α(ν̌i )]
)

is the geodesic spine from α(λ) to α(µ). Then the reader can work through the
several possibilities (α(ν̌1) < ν̌1, α(ν̌1) > ν̌1, or α(ν̌1) and ν̌1 are incomparable) to
deduce that any point ν ∈ ∐n

i=2[ν̂i−1, ν̌i ] is incomparable with α(ν), contrary
to the hypothesis that µ ∈ Cα. Similarly, if α(ν̂1) 6= ν̂1, we also obtain that∐n

i=2[ν̂i−1, ν̌i ]∩Cα =∅, and therefore µ /∈Cα , which is a contradiction. The claim
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is proven. Since λ, ν̌1 ∈ Cα, by arguing just as in the case of n = 1 we have that
[λ, ν̌1] ⊂ Cα. Now, since ν̂1 ∈ Cα, the induction on n proves the lemma. �

Lemma 4.3. Let α ∈ π1(M) and let B be an α-invariant branch locus. If {νt }0<t<ε

is an embedded interval such that B = limt→0 νt , then there exists 0< ε′ < ε such
that νt is in Cα for any t ∈ (0, ε′).
Proof. Let {νt }0<t<ε be an embedded interval as described above. Then we have
α(B)= limt→0 α(νt). Since B=α(B), the two intervals {νt }0<t<ε and {α(νt)}0<t<ε

are both asymptotic to B from the same direction as t tends to 0. This with the fact
that L is a 1-manifold implies that the two intervals coincide near B. Thus, the
conclusion of the lemma follows. �

Proposition 4.4. For any α ∈ π1(M), Cα is connected and open.

Proof. First, we will show connectedness. Let λ and µ be any points in Cα, and
γ =∐n

i=1[ν̂i−1, ν̌i ] (ν̂0=λ, ν̌n=µ) the geodesic spine from λ to µ. By Lemma 4.2,
we have that γ ⊂ Cα , and that ν̌i and ν̂i are fixed by α for each 1≤ i ≤ n−1. Now
let Bi (1≤ i ≤ n− 1) denote the branch locus which contains both ν̌i and ν̂i . Then
Bi is α-invariant. Therefore, by Lemma 4.3, there is an interval {νi

t }0<t<ε ⊂ Cα
such that Bi = limt→0 ν

i
t . It follows that ν̌i and ν̂i can be joined by a path in

{νi
t }0<t<ε ⊂ Cα, hence that λ and µ can be joined by some path.
Next, we will prove openness. Let λ be any point in Cα. If α(λ) 6= λ then

the open interval bounded by α−1(λ) and α(λ) is contained in Cα and contains λ.
Thus, λ is an interior point of Cα. If α(λ)= λ, take any point µ ∈ L with λ < µ.
Then the interval [λ,µ] is mapped by α orientation preservingly onto the interval
[λ, α(µ)]. Since L is an oriented 1-manifold, there must exist ν ∈ (λ, µ] such that
[λ, ν) is contained in [λ,µ] ∩ [λ, α(µ)]. This implies that [λ, ν) is contained in
Cα . Similarly, we can find η < λ such that (η, λ] is contained in Cα . Consequently,
we have λ ∈ (η, ν)⊂ Cα , which means λ is an interior point of Cα . This proves the
proposition. �

Here we give some definitions. For a geodesic spine γ =∐n
i=1[ν̂i−1, ν̌i ], we call

n the length of γ and denote it by l(γ ). Let λ,µ ∈ L . As in [Barbot 1998], we
set d(λ, µ)= l(γ )− 1, where γ is the geodesic spine from λ to µ. Moreover, we
define the fundamental axis Aα of α by Aα = {λ ∈ L | d(λ, α(λ)) is even}. Notice
that Cα = {λ ∈ L | d(λ, α(λ))= 0}, and therefore, Cα ⊂ Aα.

Proposition 4.5. Let α ∈ π1(M). Suppose there is λ ∈ L such that d(λ, α(λ)) is
nonzero and even. Then Cαk =∅ for any k > 0.

Proof. Let γ be the geodesic spine joining λ to α(λ). Since d(λ, α(λ)) is even
and since α preserves the orientation on L , there are no nontrivial overlappings
in composing k geodesic spines γ, α(γ ), . . . , αk−1(γ ) successively, and the result
γ ∪ α(γ ) ∪ · · · ∪ αk−1(γ ) is the geodesic spine from λ to αk(λ). Then we have
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d(λ, αk(λ)) = kd(λ, α(λ)), and therefore d(λ, αk(λ)) is nonzero and even. By
Corollary 2.20 of [Barbot 1998], αk fixes no points, and stabilizes no branch loci.

By Proposition 2.10 of the same reference, we have that A = ⋃i∈Z α
i (γ ) is

the fundamental axis of αk . Then A can be expressed as a union of intervals
A=∐i∈Z[µi , νi ] where νi and µi+1 belong to a common branch locus. By [Barbot
1998, Corollary 2.11], there is an integer m 6=0 such that αk([µi , νi ])=[µi+m, νi+m].
Since d(µ, αk(µ))= m 6= 0 for any µ ∈ A, it follows that µ /∈ Cαk . Therefore, we
have Cαk =∅, because Cαk ⊂ A. �

Lemma 4.6. Let α ∈ π1(M) and λ ∈ L be such that λ /∈ Cα and that λ ∈ Cαk for
some k > 1. Let γ = ∐n

i=1[ν̂i−1, ν̌i ] (ν̂0 = λ, ν̌n = α(λ)) be the geodesic spine
from λ to α(λ). Then α(ν̌m)= ν̂m and αk(ν̌m)= ν̌m where m = l(γ )/2 (which is an
integer by the above proposition).

Proof. Let γ j be the geodesic spine from λ to α j (λ), and let δ0 and δ1 be the
geodesic spines from λ to ν̌m , and from ν̂m to α(λ), respectively. By reversing the
transverse orientation of F if necessary, we can assume that ν̌m and ν̂m belong to a
common positive branch locus.

First, we show that ν̌m /∈ Cα. Suppose on the contrary that ν̌m ∈ Cα. Note that
the length of the geodesic spine α(δ0) joining α(λ) to α(ν̌m) is l(γ )/2. So if ν̌m

and α(ν̌m) are comparable, the intersection γ ∩ α(δ0) must coincide with δ1 as a
set. In particular, α(δ0) cannot contain ν̌m . Therefore ν̌m > α(ν̌m). See Figure 1.
Then ν̌m > α

k−1(ν̌m), and we have

γk = δ0 ∪ [ν̌m, α
k−1(ν̌m)] ∪αk−1(δ1).

Since γk passes through αk−1(ν̌m) and αk−1(ν̂m), it follows that λ and αk(λ) are
incomparable, which contradicts the choice of λ.

ν̌m ν̂m

λ α(λ)
α(ν̌m)

α(ν̌m)

α(δ0)

α(δ0)

Figure 1. α(δ0) is shown as a broken line in the case ν̌m ∈Cα , and
as a dotted line in the case α(ν̌m) ∈ (ν̂m, ν̌m+1].
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Next, we show that α(ν̌m) /∈ (ν̂m, ν̌m+1]. Suppose not. Then α(ν̌m) is in the
interval (ν̂m, ν̌m+1]; that is, the branch locus obtained from the embedded interval
(ν̂m, α(ν̌m)) contains α(ν̂m). It follows that ν̂m and α(ν̂m) are comparable. See
Figure 1. Since we are assuming that ν̌m and ν̂m belong to a common positive
branch locus, we have ν̂m < α(ν̂m). Then ν̂m < α

k−1(ν̂m), and therefore

γk = δ0 ∪ [ν̂m, α
k−1(ν̂m)] ∪αk−1(δ1).

Since γk passes through ν̌m and ν̂m , it follows that λ and αk(λ) are incomparable,
which is a contradiction.

Finally, we consider other cases. If α(ν̌m) 6= ν̂m , we have

l(α j+1(γ )−α j (γ )) > l(γ )/2 for all 0≤ j < k.

Therefore, we have

1< l(γ1) < l(γ2) < · · ·< l(γk)= 1.

This contradiction shows that α(ν̌m)= ν̂m . In particular, α(ν̌m) is nonseparated from
ν̌m on the negative side. So αk(ν̌m) is also nonseparated from ν̌m on the negative
side. We also have that αk(ν̌m)= ν̌m . Otherwise, γk = δ0∪αk(δ0), and therefore γk

passes through ν̌m and αk(ν̌m), which belong the common branch locus. It follows
that λ /∈ Cαk , which is a contradiction. �

5. Branch loci and their stabilizers

In this section we focus on a branch locus of the leaf space L . We consider the case
where a branch locus is a finite set and clarify the structure of the stabilizer of such
a locus.

Lemma 5.1. Let B be a finite branch locus and let α ∈ Stab(B). If ρuniv(α) has a
fixed point in S1

univ, then α fixes B pointwise.

Proof. Let α ∈ Stab(B) be a nontrivial element satisfying the hypothesis of the
lemma, and let λ be any point of B. Then, since B is finite, there exists some k ∈N

such that αk(λ)= λ. Notice here that αk is nontrivial in π1(M), because by tautness
of F and by Novikov’s theorem [1965] our manifold M is aspherical and hence
has no torsion in π1(M) (see [Hempel 1976, Corollary 9.9]).

Now, let us suppose by contradiction that α(λ) 6= λ. Let r ∈ S1∞(λ) be the
turning point from α(λ) to λ and let p ∈ S1∞(λ) be one of the two fixed points
of αk which is different from r . Then the special section σp in S1

univ is fixed by
ρuniv(α

k). This with the hypothesis that ρuniv(α) has a fixed point implies that
σp must be fixed by ρuniv(α) itself. So we have ρuniv(α)(σp) ∈ Ip. On the other
hand, since α(p) ∈ S1∞(α(λ)), it follows from the definition of turning point that
ρuniv(α)(σp)= σα(p) ∈ Ir . This is a contradiction because Ip and Ir are disjoint. �
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Theorem 5.2. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. Suppose F has a finite branch locus B. If
an element of Stab(B) fixes some point of B then it fixes all the points of B.

Proof. Let λ be the α-fixed point in B, and let p, q ∈ S1∞(λ) be the fixed points of α.
Then σp, σq ∈ S1

univ are fixed by ρuniv(α). The result follows from Lemma 5.1. �

The next result gives information on topological types of leaves in a finite branch
locus.

Theorem 5.3. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. Let B be a branch locus of L. Then,

(1) if Stab(B) is trivial, λ is diffeomorphic to a plane, and

(2) if B is finite and if Stab(B) is nontrivial, λ is diffeomorphic to a cylinder,

for any λ ∈ B.

Proof. Let λ ∈ B. Since F is taut, by Novikov’s theorem the inclusion map of each
leaf of F into M is π1-injective. So, if λ is not a plane, there exists a nontrivial
element α ∈ π1(M) such that α(λ)= λ. This α must belong to Stab(B), showing
the first statement of the theorem.

To prove the second statement, suppose that B is finite and that Stab(B) is
nontrivial. Then, we can first observe that λ is not a plane. In fact, let γ be any
nontrivial element of Stab(B). Since B is finite, γ n(λ)= λ for some n ∈N. By the
same argument as in the proof of Lemma 5.1 we see that γ n nontrivial in π1(M).
This shows the observation.

Now, by way of contradiction, let us assume λ is not a cylinder, either. Then,
again by π1-injectivity of the inclusion λ→ M , we can find elements α, β ∈ π1(M)
generating a free subgroup of rank 2 such that α(λ) = β(λ) = λ. These two
elements are hyperbolic as isometries of λ and having no common fixed point on
S1∞(λ). Let µ be another leaf in B, and let r ∈ S1∞(λ) be the turning point from
µ to λ. By exchanging α and β if necessary, we may assume α(r) 6= r . Then,
αk(r) 6= αl(r) for any k 6= l ∈ Z. Pick a point s ∈ S1∞(µ) and consider the special
section σs at s. Then, ρuniv(α

k)(σs)= σαk(s) is the special section at αk(s). Since
σαk(s)(λ) = φλ ◦ ρuniv(α

k)(σs) = αk ◦ φλ(σs) = αk(r), it follows that αk(r) is the
turning point from αk(µ) to λ. In particular, αk(µ) 6= αl(µ) for k 6= l; hence, B
contains infinitely many elements αk(µ), k ∈Z, contradicting the finiteness of B. �

Remark 5.4. The author does not know whether or not there exists a branch locus
which has a trivial stabilizer.

Proposition 5.5. Let B = {λ1, . . . , λn} be a finite branch locus which has a non-
trivial stabilizer and let r j

i ∈ S1∞(λi ) be the turning point from λ j to λi . Then there
exists 1≤ k ≤ n such that the set of turning points {r j

k | j 6= k} is a single point in
S1∞(λk).
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Proof. By Theorem 5.3, each λi is a cylindrical leaf. Let γ be a generator of
Stab(λ1)= {α ∈ π1(M) | α(λ1)= λ1}. By Theorem 5.2, γ fixes all points in B. Let
pi , qi ∈ S1∞(λi ) be the fixed points of γ acting on S1∞(λi ). Note that r j

i ∈ {pi , qi }
for any i, j . Otherwise, B cannot be finite by the same argument as in the proof of
Theorem 5.3.

We suppose that {r j
1 | j 6= 1} = {p1, q1}. After renumbering the indices if

necessary, we can assume that r j
1 = p1 for 2≤ j < n1 and r j

1 = q1 for n1 ≤ j ≤ n,
where 3≤n1≤n. Then, we claim that r j

n1=r1
n1

for 1≤ j <n1. In fact, let 2≤ j <n1,
and take 4 points x, y, z, w as follows: x, y are in S1∞(λ1)−{p1, q1} such that the
4-tuple (p1, x, q1, y) is circularly ordered, z ∈ S1∞(λ j ) and w ∈ S1∞(λn1)− {r1

n1
}.

Then, σz ∈ Ip1 , σw ∈ Iq1 and the 4-tuple (Ip1, σx , Iq1, σy) is circularly ordered in
S1

univ. Furthermore, σx , σy ∈ Ir1
n1

and σw /∈ Ir1
n1

. It follows that σz ∈ Ir1
n1

; that is, r1
n1

is the turning point from λ j to λn1 . This proves the claim.
Now, if {r j

n1 | j 6= n1} = {r1
n1
} we can put k = n1. Otherwise, by renumbering

the indices again, we can assume that r j
n1 = r1

n1
= pn1 for 1 ≤ j < n2 ( j 6= n1),

and r j
n1 = qn1 for n2 ≤ j ≤ n, where n1 < n2 ≤ n. Similarly, we have r j

n2 = r1
n2

for
1≤ j < n2. Since B is finite, we can find a desired k after repeating this process
finitely many times. �

Theorem 5.6. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. Let B be a finite branch locus of L with a
nontrivial stabilizer. Then the stabilizer Stab(B) is isomorphic to Z.

Proof. Let B = {λ1, . . . , λn}, and let r j
i ∈ S1∞(λi ) be the turning point from λ j to

λi for i 6= j . By Proposition 5.5, without loss of generality we can assume that
{r j

1 | j 6= 1} is a single point. Let γ be a generator of Stab(λ1).
Now, if Stab(B) acts on B trivially, then each α ∈ Stab(B) fixes λ1. It follows

that there exists an integer k such that α = γ k ; that is, γ is a generator of Stab(B).
So we assume that Stab(B) acts on B nontrivially. By Theorem 5.2, γ fixes

every point λi in B. Let pi , qi ∈ S1∞(λi ) be the fixed points of γ acting on S1∞(λi ).
Put Stab(B)(λ1)= {α(λ1) | α ∈ Stab(B)} = {λ1, . . . , λm} where 1< m ≤ n. Since
the natural action preserves the set of turning points, {r j

i | 1≤ j ≤ n, j 6= i} is also
a single point for any i ≤ m. Let us denote this single point by pi . It follows that
the subset {σpi | 1≤ i ≤ m} of S1

univ is kept invariant by homeomorphisms ρuniv(α)

for α ∈ Stab(B). After renumbering indices if necessary, we can assume that the
m-tuple (σp1, . . . , σpm ) is circularly ordered in S1

univ. Let β ∈ Stab(B) be such that
ρuniv(β)(σp1)= σp2 ; that is, β(λ1)= λ2. Since ρuniv(β) preserves the circular order
on S1

univ, we have β(λi )= λi+1 where the indices i are taken modulo m.
Now, since βγβ−1(λ1) = λ1, it follows that βγβ−1 = γ k for some k 6= 0.

Moreover, there is l 6=0 such that βm=γ l . It follows that βkm=γ kl=βγ lβ−1=βm ;
that is, β(k−1)m is trivial. If k 6= 1, β is a torsion element in π1(M), which is a
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contradiction. Therefore k = 1 and we have that γ and β commute. Since π1(M)
is torsion-free, the subgroup 〈γ, β | γ lβ−m〉 must be isomorphic to Z. It follows
that there is δ ∈ π1(M) such that γ = δi and β = δ j where i 6= 0 and j 6= 0. Let α
be any element in Stab(B). Then α(λ1)= λi for some 1≤ i ≤m. By the choice of
γ and β, we have that α can be represented as a word in γ and β, and hence in δ.
It follows that Stab(B) is isomorphic to Z. �

We say that α ∈ π1(M) is infinitely divisible if for any integer `, there are k > `
and β ∈ π1(M) such that α = βk .

Theorem 5.7. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M. Let B be a finite branch locus of L such that
Stab(B) acts on B nontrivially. Then a generator of Stab(B) (∼= Z) is indivisible.

Proof. Let B = {λ1, . . . , λn}. By Theorem 5.6, Stab(B) is generated by some single
element α. We assume by contradiction that α is divisible. Since M is aspherical (as
was noted in the proof of Lemma 5.1), π1(M) has no infinitely divisible elements
(see [Friedl 2011, Theorem 4.1]). Hence, there exists an indivisible element β in
π1(M) such that α = βk for some k > 1.

Note that since β /∈ Stab(B), the points λi ∈ B and β(λi ) ∈ β(B) are distinct for
any i . Moreover, we see that they are incomparable for any i . In fact, if λi and
β(λi ) were comparable, say, λi < β(λi ), then λi < β

k(λi )= α(λi ), contradicting
the assumption that α ∈ Stab(B).

Let {νt }0<t<ε be an embedded interval such that B = limt→0 νt . Since B is
α-invariant, it follows from Lemma 4.3 that there is some ν ∈ {νt }0<t<ε such that
ν ∈ Cα = Cβk . We can (and do) take such ν so that ν also satisfies that ν /∈ Cβ . Let∐l

i=1[ν̂i−1, ν̌i ] (l > 1) be the geodesic spine joining ν to β(ν). By the choice of ν
and by Lemma 4.6, we have βk(ν̌m)= ν̌m where m = l/2. It follows that ρuniv(β

k)

has a fixed point in S1
univ. By Lemma 5.1, βk = α fixes all points in B, which is

a contradiction to the hypothesis, as α generates Stab(B) and Stab(B) acts on B
nontrivially. �

Remark 5.8. The author does not know whether or not there is a finite branch locus
B such that Stab(B) acts on B trivially and is generated by a divisible element.

We will give an example of a tautly foliated compact 3-manifold admitting a
finite branch locus whose stabilizer acts on the locus nontrivially. We remark that a
recipe how to construct such a locus has already been provided in [Calegari and
Dunfield 2003, Example 3.7], and our construction follows it.

Example 5.9. Let P = D2 \ (E1 ∪ E2) be the unit disk in C with two open disks
removed, where E1, E2 are disks centered in − 1

2 ,
1
2 with radius 1

4 respectively. Put
S0 = ∂D2, S1 = ∂E1 and S2 = ∂E2. On P we consider a standard singular foliation
G (see Figure 2) satisfying the following properties:
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Figure 2. A singular foliation G of P .

(1) G has the origin as its unique singular point, which is of saddle type.

(2) G is transverse to ∂P .

(3) All leaves of G (except the 4 separatrices) are compact.

(4) G is symmetric with respect to both the x-axis and y-axis.

(5) The holonomy maps h1 : S1 \
{− 1

4

}→ S0 and h2 : S2 \
{1

4

}→ S0 of G are
given by

h1
( 1

4 e2π iθ − 1
2

)= eπ i(θ+ 1
2 ) if 0< θ < 1,

h2
( 1

4 e2π iθ + 1
2

)= eπ iθ if − 1
2 < θ <

1
2 .

Let (P ′,G′) be a copy of (P,G), and let c : P→ P ′ be the map induced by the
identity. We construct a double 6 = P ∪ P ′ using diffeomorphisms gi : Si → c(Si )

(for i = 0, 1, 2) to glue Si to c(Si ), where c−1 ◦ g0 is given by

c−1 ◦ g0(e2π iθ )= e2π i(θ+α)

for some α ∈R−Q, and c−1◦gi is the antipodal map of Si for i = 1, 2. Since h1, h2

preserve rational (with respect to θ ) points in S1, S2 and S0, it follows that G and G′
induce a singular foliation G′′ of 6 with two saddle singularities and without any
saddle connection. By construction, the homeomorphism ρ of 6 which is defined
to be the rotation by π in both P and P ′ preserves G′′.

Fix a hyperbolic structure on 6. Then each leaf of G′′ except the singular points
and the separatrices is isotopic to a unique embedded geodesic, and the closure of
the union of these geodesics constitutes a geodesic lamination, say, λ, on 6. Note
that the two complementary regions Q1 and Q2 to λ are ideal open squares. There
exists a λ-preserving homeomorphism ψ of 6 isotopic to ρ. Let M be the mapping
torus of ψ , that is, M = 6× [0, 1]/(s, 1) ∼ (ψ(s), 0). Then λ induces a surface
lamination 3 of M whose complementary regions Ri are Qi -bundles over S1 for
i = 1, 2. Denote by pi : Ri → S1 the bundle projection.
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Now we extend 3 to a foliation F of M by filling Ri (for i = 1, 2) with leaves
diffeomorphic to Qi as follows. Denote the boundary components of Ri by Ci1 and
Ci2, which are open cylinders. Let γi be an oriented loop in Ri such that pi |γi is a
diffeomorphism onto S1. Then the composition γ 2

i = γi ∗ γi is freely homotopic to
a leaf loop γi j of Ci j which is a generator of π1(Ci j ). We foliate Ri as a product
by leaves isotopic to the fibers Qi so that the holonomy along γi1 is contracting
and the holonomy along γi2 is expanding. Then the resulting foliation F is taut and
has two-sided branching, and each end of a lift of γi to M̃ gives a branch locus
consisting of two points. Let αi be an element in π1(M) whose conjugacy class
corresponds with the free homotopy class of γi . Then αi belongs to the stabilizer
of some branch locus and acts on the locus nontrivially, as desired.

6. Loops and actions

Given a loop in a tautly foliated manifold (M,F), it is natural to ask whether it is
transversable, or tangentiable, to F. In this section, we observe that these properties
of loops are expressed completely in the language of the natural action. Furthermore,
we consider relations between such properties and the branching phenomenon of F̃.

We do not need to assume leafwise hyperbolicity in the first two propositions
below.

Proposition 6.1. Let γ be a loop in M , and α an element in π1(M, p) whose con-
jugacy class corresponds with the free homotopy class of γ . Then, γ is tangentiable
if and only if the action of α on L has a fixed point. Similarly, γ is positively (resp.
negatively) transversable if and only if there is a point λ in L such that α(λ) > λ
(resp. α(λ) < λ).

Proof. Let λ be a leaf of F̃ and suppose that the deck transformation α leaves λ
invariant. Take any point x in λ and join x to α(x) by a path in λ. Then it projects
down to a leaf loop in M freely homotopic to α. Conversely, suppose γ is a leaf
loop in M . Join the base point p to a point of γ by a path c. Then, the loop
c ∗ γ ∗ c−1 represents an element of π1(M, p) conjugate to α. Obviously it has a
fixed point, hence so does α. The claim on transversability is also shown easily. �

We remark here that π1(M) can have an element which is neither tangentiable
nor transversable. Such an element exists if and only if F has two-sided branching.
This fact is due to Barbot, and also follows from Lemma 4.1 and Proposition 4.5.
(Notice that if F has two-sided branching, there are λ,µ ∈ L such that d(λ, µ) is
nonzero and even. Then by the tautness of F, we can find ν ∈ L which satisfies
d(µ, ν)= 0, d(λ, ν)= d(λ, µ), and α(λ)= ν for some α ∈ π1(M).)

Proposition 6.2. Let α ∈ π1(M). Suppose there are points λ,µ ∈ L such that
α(λ) > λ and α(µ) < µ. Then there exists a point ν ∈ L such that α(ν) = ν.
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Moreover, if λ and µ are incomparable, then such ν can be found in some branch
locus.

Proof. If λ and µ are comparable, then the conclusion follows immediately from
the intermediate value theorem. If λ and µ are incomparable, then the conclusion
follows from Lemma 4.2. �

This proposition means that if a loop in M is both positively and negatively
transversable to F, then it is tangentiable to F.

In the following we assume leafwise hyperbolicity and observe that tangentiability
and/or transversability of loops in M and the infiniteness of branch loci are closely
related.

Theorem 6.3. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M with one-sided branching. Suppose that
there is a noncontractible leaf loop γ in M which is not transversable. Then every
branch locus of L is an infinite set.

Proof. Suppose that there exists a finite (say, positive) branch locus B={λ1, . . . , λn}.
Let α be an element in π1(M) whose conjugacy class corresponds with the free
homotopy class of γ . By Proposition 6.1, α has a fixed point in L , and for each
µ∈ L if µ is not fixed by α then µ /∈Cα . Let ν be a fixed point of α. By Lemma 4.1,
for every η with η ≤ ν, we have η ∈ Cα, and therefore α(η) = η. By replacing
B with β(B) for some β ∈ π1(M) if necessary, we can assume that λ1 ≤ ν and
therefore α(λ1) = λ1. This implies in particular that B is α-invariant. Since B
is finite, by Theorem 5.2 we have α(λi ) = λi for any 1 ≤ i ≤ n. By Lemma 3.1,
α must be trivial, which is a contradiction. �

Corollary 6.4. Let M be a closed oriented 3-manifold, and F a transversely ori-
ented leafwise hyperbolic taut foliation of M with every leaf dense. Suppose that
there is noncontractible leaf loop γ in M which is not transversable. Then every
branch locus of L is an infinite set.

Proof. Suppose there is a finite branch locus B. Let α ∈ π1(M) be as in the proof
of the preceding theorem. By Proposition 4.4, there is an embedded open interval
I ⊂ L such that I is contained in Cα. Since every leaf of F is dense, there is
β ∈ π1(M) such that β(B)∩ I 6=∅. Then the same argument as in Theorem 6.3
shows the conclusion. �

Theorem 6.5. Let M be a closed oriented 3-manifold, and F a transversely oriented
leafwise hyperbolic taut foliation of M with branching. Suppose that there is a
noncontractible leaf loop γ in M which is not transversable. Then L has an infinite
branch locus.
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Proof. Let α be as in Theorem 6.3. Then α has a fixed point ν ∈ L , and for each
µ ∈ L if µ is not fixed by α then µ /∈ Cα. Without loss of generality, we assume
that F has a positive branch locus.

We claim that there exist some ν ′ > ν such that ν ′ and α(ν ′) are incomparable.
Put L ′ = {µ | µ > ν}. Notice that α(L ′) = L ′. Then we can observe that L ′ is a
submanifold of L with one-sided branching in the positive direction and contains
at least one branch locus. For, by the tautness of F we can find a positive branch
locus B ′ in L and β ∈ π1(M) such that β(ν) is a common lower bound of all points
in B ′; that is, β−1(B ′)⊂ L ′. If α fixes all leaves in L ′, then by applying Lemma 3.1
to a branch locus in L ′ we obtain that α is trivial in π1(M), which contradicts the
hypothesis that α is represented by a noncontractible loop. Therefore, there exists
some ν ′ ∈ L which is not fixed by α. Since such ν ′ does not belong to Cα , the claim
is shown.

Since ν < ν ′ and α(ν)= ν, it follows that ν is a common lower bound for ν ′ and
α(ν ′). Thus, the fact that ν ′ and α(ν ′) are incomparable implies that there is a unique
λ ∈ (ν, ν ′] such that µ ∈ [ν, ν ′] is fixed by α if and only if µ ∈ [ν, λ). Evidently,
λ belongs to some α-invariant branch locus, say, B. Also note that ρuniv(α) has a
fixed point because α fixes a point in L . We now show B is infinite. Suppose not.
Then, by Lemma 5.1, all leaves in B are α-fixed, contradicting α(λ) 6= λ. �
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