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NONFIBERED L-SPACE KNOTS

TYE LIDMAN AND LIAM WATSON

We construct an infinite family of knots in rational homology spheres with
irreducible, nonfibered complements, for which every nonlongitudinal fill-
ing is an L-space.

The Heegaard Floer homology of a rational homology three-sphere Y is an
abelian group ĤF(Y ) satisfying rk ĤF(Y )≥ |H1(Y ;Z)| [Ozsváth and Szabó 2004].
When equality is realized in this bound Y is called an L-space and any knot in Y
admitting a nontrivial L-space surgery is called an L-space knot [Ozsváth and Szabó
2005]. A result of Ghiggini [2008] and Ni [2007] shows that L-space knots in
the three-sphere must be fibered. Since manifolds with finite fundamental group
provide examples of L-spaces,1 this result implies that a knot K in S3 admitting
a finite filling must be fibered. This observation should be compared with other
restrictions related to finite fillings such as the Cyclic Surgery Theorem [Culler
et al. 1987] and its extensions [Boyer and Zhang 2001].

The restriction to knots in S3 is not necessary. It is shown in [Boileau et al.
2012] that a primitive knot2 in an irreducible L-space admitting a nontrivial L-space
surgery must be fibered. Irreducibility of the complement is required: removing
an unknot from an embedded three-ball in any L-space produces a nonfibered
manifold with nontrivial L-space fillings. Even in the general setting of knots in
rational homology spheres with irreducible complements fibered is not a necessary
condition:

Theorem 1. There exist infinitely many irreducible, nonfibered knot complements
such that all nonlongitudinal Dehn fillings are L-spaces. Moreover, these examples
arise as knots in manifolds with finite fundamental group.

Lidman was supported by a UCLA Dissertation Year Fellowship. Watson was partially supported by
an NSERC Postdoctoral Fellowship.
MSC2010: 57M27.
Keywords: Heegaard Floer homology, L-space, fibration.

1Ozsváth and Szabó [2005] have shown that manifolds admitting elliptic geometry are L-spaces;
Perelman’s Geometrization Theorem (see [Kleiner and Lott 2008], for example) implies that three-
manifolds with finite fundamental group admit elliptic geometry.

2Recall that a knot K is primitive in Y if [K ] ∈ H1(Y ;Z) is a generator.
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In particular, our examples are nonprimitive knots in L-spaces.
Before turning to the construction, we fix some terminology. Fibrations will

always be locally trivial surface bundles over a circle and we say the total space
fibers. To avoid confusion, we will refer to Seifert fibrations as Seifert structures;
these are foliations of a manifold by circles. The base orbifold is the leaf space of
such a foliation, where the (possibly empty) collection of cone points records the
multiplicities of the exceptional fibers in the Seifert structure. A circle bundle is a
Seifert structure for which there are no exceptional fibers.

Given a three-manifold M with torus boundary, a slope α is a primitive class in
H1(∂M;Z)/{±1}. We use M(α) to denote Dehn filling along α. If ∂M = T1 ∪ T2,
for tori Ti , then we denote α-filling on T1 (respectively T2) by M(α,−) (respectively
M(−, α)). When M admits a Seifert structure, the slope given by a regular fiber
in the boundary is called the fiber slope. For background on Seifert structures
and Dehn filling we refer the reader to [Boyer 2002]. A key fact is that Dehn
filling a Seifert manifold with torus boundary along any slope α other than the fiber
slope results in a Seifert manifold with a possible additional singular fiber. The
multiplicity of this new fiber is 1(α, ϕ), the distance between the slopes α and φ
[Heil 1974].

Finally, for knots in rational homology three-spheres recall that there is a preferred
slope given by the rational longitude. This slope is characterized by the property
that some number of like-oriented parallel copies in the boundary of the knot
complement bounds a properly embedded surface. We will refer to this slope as
the longitude. Note that an oriented three-manifold M with torus boundary for
which H1(M;Q)∼=Q always arises (nonuniquely) as the complement of a knot in
a rational homology three-sphere.

1. The twisted I-bundle over the Klein bottle

Let N denote the twisted I -bundle over the Klein bottle. As this orientable three-
manifold with torus boundary plays a central role in our construction we will study
its construction in depth.

First consider the group G generated by f, g : R3
→ R3, where

f (x, y, z)= (x + 1, y, z),

g(x, y, z)= (−x, y+ 1,−z),

and consider the noncompact, orientable three-manifold N ◦ = R3/G. Note that
the z-component of R3 gives N ◦ the structure of a line bundle, the zero-section of
which is a Klein bottle; this is the unique line bundle over the Klein bottle with
orientable total space. By restricting the action of G to Ñ = R2

×
[
−

1
2 ,

1
2

]
⊂ R3

we obtain the twisted I -bundle over the Klein bottle N = Ñ/G.
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From this description two Seifert structures on N become apparent: the x- and
y-components of Ñ both determine foliations of N by circles. (This is essentially
the observation that the Klein bottle is foliated by circles in two ways.) The leaf
space of the foliation described by the x-components is a Möbius strip without cone
points. Denote a regular fiber in this Seifert structure by φ0. The base orbifold of
the foliation determined by y-components is D2(2, 2), with regular fiber denoted
φ1; this follows readily from a natural Heegaard decomposition which we now
describe.

From the preceding construction, a fundamental domain for N is obtained by
taking

[
−

1
2 ,

1
2

)2
×
[
−

1
2 ,

1
2

]
⊂ R3. Then given a disk D2 of radius less than 1

2 (and
centered at the origin of the xy-plane), the result of removing D2

×
[
−

1
2 ,

1
2

]
is

a genus-two handlebody. This gives rise to a Heegaard decomposition for N ; a
Heegaard diagram corresponding to this decomposition is described in Figure 1,
from which the fundamental group π1(N )= 〈a, b | a2b2

〉 may be calculated. Note
that since f g f g−1 is trivial in the group G, the homomorphism determined by a 7→
f g f −1 and b 7→ f g−1 is well-defined and gives an isomorphism G ∼= 〈a, b | a2b2

〉.
Further, by considering a separating disk decomposing the handlebody into solid

a b

K0

Figure 1. Two views of the Heegaard diagram for the twisted
I -bundle over the Klein bottle N . With a and b generating the
fundamental group of the genus-two handlebody, N is obtained by
attaching a handle along a curve in the boundary representing a2b2

so that φ0'ab and φ1'b2. On the left, an annulus in the boundary
with core representing the element φ0 ' ab may be used to find
the fundamental group of M , the complement of a regular fiber
in the interior of N , via HNN extension. On the right, the axis of
rotational symmetry shows that the hyperelliptic involution on the
handlebody induces a strong inversion on the pair (N , K0) where
K0 is a knot in N isotopic to a regular fiber φ0 in the interior of N .
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tori, it is immediate that N is the union of two solid tori along essential annuli in the
boundary. By fixing Seifert structures on each of these solid tori with base orbifolds
D2(2), these annuli are foliated by regular fibers. The identification along these
essential annuli therefore extends to a Seifert structure on N with base orbifold
D2(2, 2) as claimed.

Both Seifert structures induce foliations on the torus ∂N . Let φ0 and φ1 be regular
fibers in ∂N , and notice that 1(φ0, φ1)= 1. (These conventions are consistent with
[Boyer et al. 2013, Section 3].) The longitude of N is homotopic to the element ab
(this element has order two in the abelianization of π1(N )). That is, φ0 represents
the longitude of N . Any filling N (α) for which α 6= φ0, φ1 admits a pair of Seifert
structures with base orbifolds RP2(1(α, φ0)) and S2(2, 2,1(α, φ1)). We point out
that these manifolds always admit elliptic geometry [Scott 1983].

Now consider a knot K0 in N that is isotopic to a regular fiber φ0 in the interior
of N . Define M by removing a neighborhood of K0 from N ; by construction M
inherits a Seifert structure (the base orbifold is a punctured Möbius band). Now
∂M = T1 ∪ T2 where T2 denotes the boundary of a regular neighborhood of K0.

The fundamental group of M is presented by

π1(M)= 〈a, b, t | a2b2, [t, ab]〉.

To see this, consult Figure 1 and notice that M may be constructed by identifying
(disjoint neighborhoods of) each boundary component of the annulus with core
ab in ∂N . This gives rise to the HNN extension presented above. Notice that
M(−, µ)∼= N for any slope on T2 satisfying 1(µ, φ0)= 1. A preferred choice for
µ is given by a representative of the homotopy class of t in the above presentation.

A final observation pertains to a natural strong inversion on (N , K0) that descends
to an involution on M with one-dimensional fixed point set. Recall that a strong
inversion on (N , K0) is an orientation preserving involution on N that reverses
orientation on K0; such a symmetry is illustrated in Figure 1. The involution on
N is induced by the hyperelliptic involution on the genus-two handlebody since
the attaching curve is fixed (as a set) by this involution. A fundamental domain for
this involution is a three-ball, with one dimensional fixed point set. That is, N is

φ1
←−

φ0
−→

Figure 2. The branch set for the manifold M = M(−,−) with
branch sets for the fillings M(φ1,−)= N and M(φ0,−). Notice
that M(φ0,−) is reducible, containing an S2

× S1 summand.
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the twofold branched cover of a two-tangle; this is the leftmost tangle in Figure 2.
We leave the following step to the reader: the genus-two handlebody is the twofold
branched cover of a three-tangle, and attaching the handle closes one of the arcs
(the arc meeting the attaching curve) to an unknotted curve in the branch set. The
same construction may be applied to the complement of K0 in N , to see that M is
the twofold branched cover of a tangle in S2

× I . This tangle is shown in Figure 2.
Towards a proof of Theorem 1, our interest is in the family of manifolds

{M(−, α) | for any slope α with 1(α, φ0) > 1}.

Notice that each manifold in this set admits a Seifert structure with base orbifold a
Möbius band with a single cone point of order 1(α, φ0). Since M(φ1, α) admits
a Seifert structure with base orbifold S2(2, 2, n) it follows that M(−, α) is the
complement of a knot in an elliptic manifold for all α.

2. The proof of Theorem 1

Let M be the complement of K0 in the twisted I -bundle over the Klein bottle N .
We assume all of the notation introduced in the previous section.

Lemma 2. Fix a slope α on T2 with 1(α, φ0)= p. Then

M(φ0, α)=


S2
×S1 # S2

×S1 if p = 0,
S2
×S1 # L(p, q) if p > 1,

S2
×S1 if p = 1.

Proof. Since π1(M)∼= 〈a, b, t | a2b2, [t, ab]〉 and φ0 ' ab, we have that

π1(M(φ0,−))∼= 〈a, b, t | a2b2, [t, ab]〉/〈〈ab〉〉 ∼= 〈a, b, t | ab〉.

In other words, π1(M(φ0,−))∼= Z ∗Z. If α = pµ+ qφ0, then

π1(M(φ0, α))∼= 〈a, b, t | ab〉/〈〈t p(ab)q〉〉 ∼= Z ∗Z/p.

By Whitehead’s proof of Kneser’s conjecture [Whitehead 1958], M(φ0, α) is a
connect-sum of closed manifolds Y1 and Y2 with π1(Y1) ∼= Z and π1(Y2) ∼= Z/p.
Geometrization now establishes the lemma. �

Remark 3. Alternatively, Lemma 2 follows from considering M(φ0,−) as the
double branched cover of a tangle as in Figure 2. The unknotted component gives
rise to the S2

× S1 summand. Dehn filling corresponds to attaching a rational tangle,
which (ignoring the unknotted component) produces a two-bridge link and exhibits
the lens space connect-summand.

Proposition 4. For any α on T2 with 1(α, φ0) > 1, the manifold M(−, α) does not
fiber over the circle.
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Proof. Suppose that M(−, α) fibers. Since φ0 is the longitude, this is the only
filling that extends the fibration on M(−, α) as any other filling of M(−, α) results
in a rational homology sphere. By Lemma 2, M(φ0, α) ∼= S2

×S1 # L(p, q) for
p = 1(φ0, α) ≥ 2. Since M(φ0, α) is fibered and π2(M(φ0, α)) 6= 0, the fiber
surface F must also have π2(F) 6= 0 by the long exact sequence for a fibration.
Hence F must be S2 or RP2. However, π1(M(φ0, α)) is not the fundamental group
of such a fibration, since it does not admit a surjective homomorphism onto Z with
finite kernel. �

Proof of Theorem 1. Fix α with 1(α, φ0) ≥ 2. As the fiber slope of the Seifert
structure on M(−, α) is the longitude, all nonlongitudinal fillings will extend the
Seifert structure, yielding a base orbifold RP2 with two cone points. By [Boyer
et al. 2013, Proposition 5], such manifolds are always L-spaces. Proposition 4
shows that M(−, α) is not fibered. Furthermore, M(−, α) is irreducible, since the
only orientable, reducible Seifert manifolds are S2

× S1 and RP3 # RP3 (and in
particular, are closed). Finally, M(−, α) is the complement of a knot in an elliptic
manifold as observed in Section 1. �

Remark 5. Further examples may be constructed in an analogous way by removing
a regular fiber from any manifold which has a Seifert structure with base orbifold
RP2 with any positive number of singular fibers. It is also possible to construct
examples, in a similar manner, admitting Sol geometry. The main observation is
that every Sol rational homology sphere is an L-space [Boyer et al. 2013, Theorem
2]. Since every such L-space arises by identifying two twisted I -bundles along
the boundary tori, one may consider the complement of the knot K0 in one of the
twisted I -bundles. In this setting, our construction goes through almost verbatim,
having noticed that the obvious essential torus must be horizontal to the purported
fibration of the exterior of K0.

Question 6. All of our examples relied on the presence of an essential annulus,
and have nonhyperbolic exterior. Do there exist examples of hyperbolic, nonfibered
knots for which every nonlongitudinal surgery is an L-space?
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