
Pacific
Journal of
Mathematics

FAMILIES AND SPRINGER’S CORRESPONDENCE

GEORGE LUSZTIG

Volume 267 No. 2 February 2014



PACIFIC JOURNAL OF MATHEMATICS
Vol. 267, No. 2, 2014

dx.doi.org/10.2140/pjm.2014.267.431

FAMILIES AND SPRINGER’S CORRESPONDENCE

GEORGE LUSZTIG

We establish a relationship between the known parametrization of a family
of irreducible representations of a Weyl group and Springer’s correspon-
dence.

Introduction

0.1. Let G be a connected reductive algebraic group over an algebraically closed
field k of characteristic p. Let W be the Weyl group of G; let IrrW be a set of
representatives for the isomorphism classes of irreducible representations of W over
Q̄l , an algebraic closure of the field of l-adic numbers (l is a fixed prime number
other than p).

Now IrrW is partitioned into subsets called families as in [Lusztig 1979b, § 9;
1984a, 4.2]. Moreover to each family F in IrrW , a certain set XF, a pairing
{ , } : XF × XF→ Q̄l , and an imbedding F→ XF was canonically attached in
[Lusztig 1979b; 1984a, Chapter 4]. (The set XF with the pairing { , }, which can
be viewed as a nonabelian analogue of a symplectic vector space, plays a key role
in the classification of unipotent representations of a finite Chevalley group [Lusztig
1984a] and in that of unipotent character sheaves on G.) In [Lusztig 1979b; 1984a]
it is shown that XF = M(GF) where GF is a certain finite group associated to
F and, for any finite group 0, M(0) is the set of all pairs (g, ρ) where g is an
element of 0 defined up to conjugacy and ρ is an irreducible representation over
Q̄l (up to isomorphism) of the centralizer of g in 0; moreover { , } is given by the
“nonabelian Fourier transform matrix” of [Lusztig 1979b, § 4] for GF.

In the remainder of this paper we assume that p is not a bad prime for G. In this
case a uniform definition of the group GF was proposed in [Lusztig 1984a, 13.1]
in terms of special unipotent classes in G and the Springer correspondence, but
the fact that this leads to a group isomorphic to GF as defined in [Lusztig 1984a,
Chapter 4] was stated in [Lusztig 1984a, (13.1.3)] without proof. One of the aims
of this paper is to supply the missing proof.
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To state the results of this paper we need some definitions. For E ∈ IrrW let
aE ∈ N, bE ∈ N be as in [Lusztig 1984a, 4.1]. As noted in [Lusztig 1979a], for
E ∈ IrrW we have

(a) aE ≤ bE ;

we say that E is special if aE = bE .
For g ∈ G let ZG(g) or Z(g) be the centralizer of g in G and let AG(g) or A(g)

be the group of connected components of Z(g). Let C be a unipotent conjugacy
class in G and let u ∈C . Let Bu be the variety of Borel subgroups of G that contain
u; this is a nonempty variety of dimension, say, eC . The conjugation action of Z(u)
on Bu induces an action of A(u) on Su := H 2eC (Bu, Q̄l). Now W acts on Su by
Springer’s representation [Springer 1976]; however here we adopt the definition
of the W -action on Su given in [Lusztig 1984b] which differs from Springer’s
original definition by tensoring by sign. The W -action on Su commutes with the
A(u)-action. Hence we have canonically Su = ⊕E∈IrrW E ⊗ VE (as W × A(u)-
modules) where VE are finite dimensional Q̄l-vector spaces with A(u)-action. Let
IrrC W = {E ∈ IrrW ;VE 6= 0}; this set does not depend on the choice of u in C . By
[Springer 1976], the sets IrrC W (for C variable) form a partition of IrrW ; also, if
E ∈ IrrC W then VE is an irreducible A(u)-module and, if E 6= E ′ in IrrC W , then
the A(u)-modules VE ,VE ′ are not isomorphic. By [Borho and MacPherson 1981]
we have

(b) eC ≤ bE for any E ∈ IrrC W,

and the equality bE = eC holds for exactly one E ∈ IrrC W which we denote by EC

(for this E , VE is the unit representation of A(u)).
Following [Lusztig 1984a, (13.1.1)] we say that C is special if EC is special.

(This concept was introduced in [Lusztig 1979a, § 9] although the word “special”
was not used there.) From (b) we see that C is special if and only if aEC = eC .

Now assume that C is special. We denote by F⊂ IrrW the family that contains
EC . (Note that C 7→ F is a bijection from the set of special unipotent classes in G
to the set of families in IrrW .) We set Irr∗C W = {E ∈ IrrC W ; E ∈ F} and

K(u)= {a ∈ A(u); a acts trivially on VE for any E ∈ Irr∗C W }.

This is a normal subgroup of A(u). We set Ā(u)= A(u)/K(u), a quotient group
of A(u). Now, for any E ∈ Irr∗C W , VE is naturally an (irreducible) Ā(u)-module.
Another definition of Ā(u) is given in [Lusztig 1984a, (13.1.1)]. In that definition
Irr∗C W is replaced by {E ∈ IrrC W ; aE = eC} and K(u), Ā(u) are defined as above
but in terms of this modified Irr∗C W . However the two definitions are equivalent in
view of the following result.
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Proposition 0.2. Assume that C is special. Let E ∈ IrrC W .

(a) We have aE ≤ eC .

(b) We have aE = eC if and only if E ∈ F.

This follows from [Lusztig 1992, 10.9]. Note that (a) was stated without proof in
[Lusztig 1984a, (13.1.2)] (the proof I had in mind at the time of [Lusztig 1984a]
was combinatorial).

0.3. The following result is equivalent to a result stated without proof in [Lusztig
1984a, (13.1.3)].

Theorem 0.4. Let C be a special unipotent class of G, let u ∈ C and let F be the
family that contains EC . Then we have canonically XF = M( Ā(u)) so that the
pairing { , } on XF coincides with the pairing { , } on M( Ā(u)). Hence GF can be
taken to be Ā(u).

This is equivalent to the corresponding statement in the case where G is adjoint,
which reduces immediately to the case where G is adjoint simple. It is then
enough to prove the theorem for one G in each isogeny class of semisimple, almost
simple algebraic groups; this will be done in Section 3 after some combinatorial
preliminaries in Sections 1 and 2. The proof uses the explicit description of the
Springer correspondence: for type An,G2 in [Springer 1976]; for type Bn,Cn, Dn

in [Shoji 1979a; 1979b] (as an algorithm) and in [Lusztig 1984b] (by a closed
formula); for type F4 in [Shoji 1980]; for type En in [Alvis and Lusztig 1982;
Spaltenstein 1982].

An immediate consequence of (the proof of) Theorem 0.4 is the following result
which answers a question of R. Bezrukavnikov and which plays a role in [Losev
and Ostrik 2012].

Corollary 0.5. In the setup of Theorem 0.4 let E ∈ Irr∗C W and let VE be the
corresponding A(u)-module viewed as an (irreducible) Ā(u)-module. The image of
E under the canonical imbedding F→ XF = M( Ā(u)) is represented by the pair
(1,VE) ∈ M( Ā(u)). Conversely, if E ∈ F and the image of E under F→ XF =

M( Ā(u)) is represented by the pair (1, ρ) ∈ M( Ā(u)) where ρ is an irreducible
representation of Ā(u), then E ∈ Irr∗C W and ρ ∼= VE .

0.6. Corollary 0.5 has the following interpretation. Let Y be a (unipotent) character
sheaf on G whose restriction to the regular semisimple elements is 6= 0; assume
that in the usual parametrization of unipotent character sheaves by

⊔
F′ XF′ , Y cor-

responds to (1, ρ) ∈ M( Ā(u)) where C is the special unipotent class corresponding
to a family F, u ∈ C and ρ is an irreducible representation of Ā(u). Then Y |C is
(up to shift) the irreducible local system on C defined by ρ.



434 GEORGE LUSZTIG

0.7. Notation. If A, B are subsets of N we denote by A ∪̇ B the union of A and B
regarded as a multiset (each element of A∩ B appears twice). For any set X, we
denote by P(X) the set of subsets of X viewed as an F2-vector space with sum given
by the symmetric difference. If X 6=∅ we note that {∅,X} is a line in P(X) and
we set P̄(X)=P(X)/{∅,X}, Pev(X)= {L ∈P(X); |L| = 0 mod 2}; let P̄ev(X) be
the image of Pev(X) under the obvious map P(X)→ P̄(X) (thus P̄ev(X)= P̄(X)

if |X| is odd and P̄ev(X) is a hyperplane in P̄(X) if |X| is even). Now if X 6=∅, the
assignment L , L ′ 7→ |L ∩ L ′| mod 2 defines a symplectic form on Pev(X) which
induces a nondegenerate symplectic form ( , ) on P̄ev(X) via the obvious linear
map Pev(X)→ P̄ev(X).

For g ∈ G let gs and gω be the semisimple and unipotent parts of g.
For z ∈ 1

2 Z we set bzc = z if z ∈ Z and bzc = z− 1
2 if z ∈ Z+ 1

2 .

Errata to [Lusztig 1984a]. On page 86, on line −6 delete “b′ < b” and on line
−4 before “In the language. . . ” insert “The array above is regarded as identical to
the array obtained by interchanging its two rows.”

On page 343, line −5, after “respect to M” insert “and where the group GF

defined in terms of (u′,M) is isomorphic to the group GF defined in terms of
(u,G)”.

Erratum to [Lusztig 1984b]. In the definition of Aα, Bα in [Lusztig 1984b, 11.5],
the condition I ∈ α should be replaced by I ∈ α′ and the condition I ∈ α′ should
be replaced by I ∈ α.

1. Combinatorics

1.1. Let N be an even integer ≥ 0. Let a := (a0, a1, a2, . . . , aN ) ∈ NN+1 be
such that a0 ≤ a1 ≤ a2 ≤ · · · ≤ aN , a0 < a2 < a4 < · · · , a1 < a3 < a5 < · · · .
Let J = {i ∈ [0, N ]; ai appears exactly once in a}. We have J = {i0, i1, . . . , i2M}

where M ∈ N and i0 < i1 < · · ·< i2M satisfy is = s mod 2 for s ∈ [0, 2M]. Hence
for any s ∈ [0, 2M − 1] we have is+1 = is + 2ms + 1 for some ms ∈ N. Let
E be the set of b := (b0, b1, b2, . . . , bN ) ∈ NN+1 such that b0 < b2 < b4 < · · · ,
b1 < b3 < b5 < · · · and such that [b] = [a] (we denote by [b], [a] the multisets
{b0, b1, . . . , bN }, {a0, a1, . . . , aN }). We have a ∈ E. For b ∈ E we set

b̂ = (b̂0, b̂1, b̂2, . . . , b̂N )

= (b0, b1+ 1, b2+ 1, b3+ 2, b4+ 2, . . . , bN−1+ N/2, bN + N/2).

Let [b̂] be the multiset {b̂0, b̂1, b̂2, . . . , b̂N }. For s ∈ {1, 3, . . . , 2M − 1} we define
a{s} = (a{s}0 , a{s}1 , a{s}2 , . . . , a{s}N ) ∈ E by

(a{s}is
, a{s}is+1, a{s}is+2, a{s}is+3, . . . , a{s}is+2ms

, a{s}is+2ms+1)

= (ais+1, ais , ais+3, ais+2, . . . , ais+2ms+1, ais+2ms )
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and a{s}i = ai if i ∈ [0, N ]− [is, is+1]. More generally, for X ⊂ {1, 3, . . . , 2M − 1}
we define aX

= (aX
0 , aX

1 , aX
2 , . . . , aX

N ) ∈ E by aX
i = a{s}i if s ∈ X , i ∈ [is, is+1], and

aX
i = ai for all other i ∈ [0, N ]. Note that [âX ] = [â]. Conversely, we have the

following result.

Lemma 1.2. Let b ∈ E be such that [b̂] = [â]. There exists X ⊂ {1, 3, . . . , 2M−1}
such that b = aX .

The proof is given in 1.3–1.5.

1.3. We argue by induction on M . We have

a = (y1 = y1 < y2 = y2 < · · ·< yr = yr < ai0 < . . . )

for some r . Since [b] = [a], we must have

(b0, b2, b4, . . . )= (y1, y2, . . . , yr , . . . ), (b1, b3, b5, . . . )= (y1, y2, . . . , yr , . . . ).

Thus,

(a) bi = ai for i < i0.

We have a = (· · ·< ai2M < y′1 = y′1 < y′2 = y′2 < · · ·< y′r ′ = y′r ′) for some r ′. Since
[b] = [a], we must have

(b0, b2, b4, . . . )= (. . . , y′1, y′2, . . . , y′r ′), (b1, b3, b5, . . . )= (. . . , y′1, y′2, . . . , y′r ′).

Thus,

(b) bi = ai for i > i2M .

If M = 0 we see that b = a and there is nothing further to prove. In the rest of the
proof we assume that M ≥ 1.

1.4. From 1.3 we see that

(a0, a1, a2, . . . , ai2M )= (. . . , ai2M−1 < x1 = x1 < x2 = x2 < · · ·< xq = xq < ai2M )

(for some q) has the same entries as (b0, b1, b2, . . . , bi2M ) (in some order). Hence
the pair

(. . . , bi2M−5, bi2M−3, bi2M−1), (. . . , bi2M−4, bi2M−2, bi2M )

must have one of the following four forms.

(. . . , ai2M−1, x1, x2, . . . , xq), (. . . , x1, x2, . . . , xq , ai2M ),

(. . . , x1, x2, . . . , xq , ai2M ), (. . . , ai2M−1, x1, x2, . . . , xq),

(. . . , x1, x2, . . . , xq), (. . . , ai2M−1, x1, x2, . . . , xq , ai2M ),

(. . . , ai2M−1, x1, x2, . . . , xq , ai2M ), (. . . , x1, x2, . . . , xq).



436 GEORGE LUSZTIG

Hence (. . . , bi2M−2, bi2M−1, bi2M ) must have one of the following four forms.

(I) (. . . , ai2M−1, x1, x1, x2, x2, . . . , xq , xq , ai2M ),

(II) (. . . , x1, ai2M−1, x2, x1, x3, x2, . . . , xq , xq−1, ai2M , xq),

(III) (. . . , ai2M−1, z, x1, x1, x2, x2, . . . , xq , xq , ai2M ),

(IV) (. . . , ai2M−1, z′, x1, z′′, x2, x1, x3, x2, . . . , xq , xq−1, ai2M , xq),

where ai2M−1 > z, ai2M−1 > z′′≥ z′ and all entries in . . . are<ai2M−1 . Correspondingly,
(. . . , b̂i2M−2, b̂i2M−1, b̂i2M ) must have one of the following four forms.

(I) (. . . , ai2M−1+h−q, x1+h−q, x1+h−q+1, x2+h−q+1, x2+h−q+2,
. . . , xq + h− 1, xq + h, ai2M + h),

(II) (. . . , x1+h−q, ai2M−1+h−q, x2+h−q+1, x1+h−q+1, x3+h−q+2,
x2+ h− q + 1, . . . , xq + h− 1, xq−1+ h− 1, ai2M + h, xq + h),

(III) (. . . , ai2M−1+h−q−1, z+h−q, x1+h−q, x1+h−q+1, x2+h−q+1,
x2+ h− q + 2, . . . , xq + h− 1, xq + h, ai2M + h),

(IV) (. . . , ai2M−1+h−q−1, z′+h−q−1, x1+h−q, z′′+h−q, x2+h−q+1,
x1+ h−q+ 1, x3+ h−q+ 2, x2+ h−q+ 1, . . . , xq + h− 1, xq−1+ h− 1,
ai2M + h, xq + h),

where h = i2M/2 and in cases (III) and (IV), ai2M−1 + h − q is not an entry of
(. . . , b̂i2M−2, b̂i2M−1, b̂i2M ).

Since (. . . , âi2M−2, âi2M−1, âi2M ) is given by (I) we see that ai2M−1 + h− q is an
entry of (. . . , âi2M−2, âi2M−1, âi2M ). Using (b) in 1.3 we see that

{. . . , âi2M−2, âi2M−1, âi2M } = (. . . , bi2M−2, bi2M−1, bi2M )

as multisets. We see that cases (III) and (IV) cannot arise. Hence we must be in
case (I) or (II). Thus we have either

(a) (bi2M−1, bi2M−1+1, . . . , bi2M−2, bi2M−1, bi2M )

= (ai2M−1, ai2M−1+1, . . . , ai2M−2, ai2M−1, ai2M )

or

(b) (bi2M−1, bi2M−1+1, . . . , bi2M−2, bi2M−1, bi2M )

= (ai2M−1+1, ai2M−1, ai2M−1+3, ai2M−1+2, . . . , ai2M , ai2M−1).

1.5. Let a′ = (a0, a1, a2, . . . , ai2M−1−1), b′ = (b0, b1, b2, . . . , bi2M−1−1),

â′ = (a0, a1+ 1, a2+ 1, a3+ 2, a4+ 2, . . . , ai2M−1−1+ (i2M−1− 1)/2),

b̂′ = (b0, b1+ 1, b2+ 1, b3+ 2, b4+ 2, . . . , bi2M−1−1+ (i2M−1− 1)/2),

From [b̂] = [â], (b) in 1.3 and (a)+(b) in 1.4 we see that the multiset formed by
the entries of â′ coincides with the multiset formed by the entries of b̂′. Using
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the induction hypothesis we see that there exists X ′ ⊂ {1, 3, . . . , 2M − 3} such
that b′ = a′X

′

where a′X
′

is defined in terms of a′, X ′ in the same way as aX was
defined (see 1.1) in terms of a, X . We set X = X ′ if we are in case (a) of 1.4 and
X = X ′ ∪ {2M − 1} if we are in case (b). Then we have b = aX (see again (a) and
(b) in 1.4), as required. This completes the proof of 1.2.

1.6. We shall use the notation of 1.1. Let T be the set of all unordered pairs (A,B)
where A,B are subsets of {0, 1, 2, . . . } and A ∪̇B= (a0, a1, a2, . . . , aN ) as multi-
sets. For example, setting A∅= (a0, a2, a4, . . . , aN ) and B∅= (a1, a3, . . . , aN−1),
we have (A∅,B∅) ∈ T. For any subset a of J we consider

Aa = ((J− a)∩A∅)∪ (a∩B∅)∪ (A∅ ∩B∅),

Ba = ((J− a)∩B∅)∪ (a∩A∅)∪ (A∅ ∩B∅).

Then (Aa,Ba) ∈ T and the map a 7→ (Aa,Ba) induces a bijection P̄(J) ↔ T.
(Note that if a=∅ then (Aa,Ba) agrees with the earlier definition of (A∅,B∅).)

Let T′ be the set of all (A,B) ∈ T such that |A| = |A∅| and |B| = |B∅|.
Let P(J)0 be the subspace of Pev(J) spanned by the 2-element subsets

{ai0, ai1}, {ai2, ai3}, . . . , {ai2M−2, ai2M−1}

of J. Let P(J)1 be the subspace of Pev(J) spanned by the 2-element subsets

{ai1, ai2}, {ai3, ai4}, . . . , {ai2M−1, ai2M }

of J.
Let P̄(J)0 and P̄(J)1 be the images of P(J)0 and P(J)1 under the obvious map

P(J)→ P̄(J). Then:

(a) P̄(J)0 and P̄(J)1 are opposed Lagrangian subspaces of the symplectic vector
space P̄(J), ( , ) (see 0.7); hence ( , ) defines an identification

P̄(J)0 = P̄(J)∗1,

where P̄(J)∗1 is the vector space dual to P̄(J)1.

LetT0 andT1 be the subsets ofT corresponding to P̄(J)0 and P̄(J)1, respectively,
under the bijection P̄(J)↔ T. Note that T0 ⊂ T′, T1 ⊂ T′, and |T0| = |T1| = 2M .

For any X ⊂ {1, 3, . . . , 2M − 1} we set aX =
⋃

s∈X {ais , ais+1} ∈ P(J). Then
(AaX ,BaX ) ∈ T1 is related to aX in 1.1 as follows:

AaX = {a
X
0 , aX

2 , aX
4 , . . . , aX

N }, BaX = {a
X
1 , aX

3 , . . . , aX
N−1}.
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1.7. We shall use the notation of 1.1. Let T be the set of all ordered pairs
(A, B) where A is a subset of {0, 1, 2, . . . }, B is a subset of {1, 2, 3, . . . }, A
contains no consecutive integers, B contains no consecutive integers, and A ∪̇ B =
(â0, â1, â2, . . . , âN ) as multisets. For example, setting A∅ = (â0, â2, â4, . . . , âN )

and B∅ = (â1, â3, . . . , âN−1), we have (A∅, B∅) ∈ T .
For any (A, B)∈ T we define (A−, B−) as follows: A− consists of x0< x1−1<

x2−2< · · ·< x p− p where x0 < x1 < · · ·< x p are the elements of A; B− consists
of y1− 1< y2− 2< · · ·< yq − q where y1 < y2 < · · ·< yq are the elements of B.

We can enumerate the elements of T as in [Lusztig 1984b, 11.5]. Let J be the
set of all c ∈ N such that c appears exactly once in the sequence

(â0, â1, â2, . . . , âN )=(a0, a1+1, a2+1, a3+2, a4+2, . . . , aN−1+N/2, aN+N/2).

A nonempty subset I of J is said to be an interval if it is of the form {i, i + 1,
i + 2, . . . , j} with i − 1 /∈ J, j + 1 /∈ J and with i 6= 0. Let I be the set of intervals
of J . For any s ∈ {1, 3, . . . , 2M−1}, the set Is := {âis , âis+1, âis+2, . . . , âis+2ms+1}

is either a single interval or a union of intervals I 1
s t I 2

s t . . .t I ts
s (ts ≥ 2) where

âis ∈ I 1
s , âis+2ms+1 ∈ I ts

s , |I 1
s |, |I

ts
s | are odd, |I h

s | are even for h ∈ [2, ts −1] and any
element in I e

s is < than any element in I e′
s for e < e′. Let Is be the set of all I ∈ I

such that I ⊂ Is . Let H be the set of all c ∈ J such that c does not belong to any
interval. For any subset α ⊂ I we consider

Aα =
⋃

I∈I−α

(I ∩ A∅)∪
⋃
I∈α
(I ∩ B∅)∪ (H ∩ A∅)∪ (A∅ ∩ B∅),

Bα =
⋃

I∈I−α

(I ∩ B∅)∪
⋃
I∈α
(I ∩ A∅)∪ (H ∩ B∅)∪ (A∅ ∩ B∅).

Then (Aα, Bα) ∈ T and the map α 7→ (Aα, Bα) is a bijection P(I)↔ T . (Note
that if α =∅ then (Aα, Bα) agrees with the earlier definition of (A∅, B∅).)

Let T ′ = {(A, B) ∈ T ; |A| = |A∅|, |B| = |B∅|}, T1 = {(A, B) ∈ T ′; A− ∪̇ B− =
A−∅ ∪̇ B−∅ }. Let P(I)′ and P(I)1 be the subsets of P(I) corresponding to T ′ and
T1 under the bijection P(I)↔ T .

Now let X be a subset of {1, 3, . . . , 2M − 1}. Let αX =
⋃

s∈X Is ∈P(I). From
the definitions we see that

(a) A−αX
= AaX , B−αX

=BaX

(in the notation of 1.6). In particular we have (AαX , BαX ) ∈ T1. Thus |T1| ≥ 2M .
Using Lemma 1.2 we see that

(b) |T1| = 2M and T1 =
{
(AαX , BαX ); X ⊂ {1, 3, . . . , 2M − 1}

}
.

Using (a) and (b) we deduce:

(c) The map T1→ T1 given by (A, B) 7→ (A−, B−) is a bijection.
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2. Combinatorics (continued)

2.1. Let N ∈ N. Let

a := (a0, a1, a2, . . . , aN ) ∈ NN+1

be such that a0 ≤ a1 ≤ a2 ≤ · · · ≤ aN , a0 < a2 < a4 < · · · , a1 < a3 < a5 < · · · and
such that the set J := {i ∈ [0, N ]; ai appears exactly once in a} is nonempty. Now
J consists ofµ+1 elements i0< i1< · · ·< iµ, whereµ∈N, µ= N mod 2. We have
is = s mod 2 for s ∈ [0, µ]. Hence for any s ∈ [0, µ−1] we have is+1= is+2ms+1
for some ms ∈ N. Let E be the set of b := (b0, b1, b2, . . . , bN ) ∈ NN+1 such that
b0 < b2 < b4 < · · · , b1 < b3 < b5 < · · · and such that [b] = [a] (we denote by
[b], [a] the multisets {b0, b1, . . . , bN }, {a0, a1, . . . , aN }). We have a ∈E. For b ∈E

we set

b̊ = (b̊0, b̊1, b̊2, . . . , b̊N )= (b0, b1, b2+ 1, b3+ 1, b4+ 2, b5+ 2, . . . ) ∈ NN+1.

Let [b̊] be the multiset {b̊0, b̊1, b̊2, . . . , b̊N }. For any s ∈ [0, µ− 1] ∈ 2N we define
a{s} = (a{s}0 , a{s}1 , a{s}2 , . . . , a{s}N ) ∈ E by

(a{s}is
, a{s}is+1, a{s}is+2, a{s}is+3, . . . , a{s}is+2ms

, a{s}is+2ms+1)

= (ais+1, ais , ais+3, ais+2, . . . , ais+2ms+1, ais+2ms )

and a{s}i =ai if i ∈[0, N ]−[is, is+1]. More generally, for a subset X of [0, µ−1]∩2N

we define aX
= (aX

0 , aX
1 , aX

2 , . . . , aX
N ) ∈ E by aX

i = a{s}i if s ∈ X , i ∈ [is, is+1], and
aX

i = ai for all other i ∈ [0, N ]. Note that [åX
] = [å]. Conversely:

Lemma 2.2. Let b ∈E be such that [b̊] = [å]. Then there exists X ⊂ [0, µ−1]∩2N

such that b = aX .

The proof is given in 2.3–2.5.

2.3. We argue by induction on µ. By the argument in 1.3 we have

bi = ai for i < i0,(a)

bi = ai for i > iµ.(b)

If µ= 0 we see that b = a and there is nothing further to prove. In the rest of the
proof we assume that µ≥ 1.

2.4. From 2.3 we see that (ai0, ai0+1, . . . , aN )= (ai0 < x1 = x1 < x2 = x2 < · · ·<

x p = x p < ai1 < . . . ) (for some p) has the same entries as (bi0, bi0+1, . . . , bN ) (in
some order). Hence the pair (bi0, bi0+2, bi0+4, . . . ), (bi0+1, bi0+3, bi0+5, . . . ) must
have one of the following four forms.

(ai0, x1, x2, . . . , x p, . . . ), (x1, x2, . . . , x p, ai1, . . . ),
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(x1, x2, . . . , x p, ai1, . . . ), (ai0, x1, x2, . . . , x p, . . . ),

(ai0, x1, x2, . . . , x p, ai1, . . . ), (x1, x2, . . . , x p, . . . ),

(x1, x2, . . . , x p, . . . ), (ai0, x1, x2, . . . , x p, ai1, . . . ).

Hence (bi0, bi0+1, bi0+2, . . . , bN ) must have one of the following four forms.

(I) (ai0, x1, x1, x2, x2, . . . , x p, x p, ai1, . . . ),

(II) (x1, ai0, x2, x1, x3, x2, . . . , x p, x p−1, ai1, x p, . . . ),

(III) (ai0, x1, x1, x2, x2, . . . , x p, x p, z, ai1, . . . ),

(IV) (x1, ai0, x2, x1, x3, x2, . . . , x p, x p−1, z′, x p, z′′, ai1, . . . ),

where ai1 < z, ai1 < z′ ≤ z′′ and all entries in . . . are > ai1 . Correspondingly,
(b̊i0, b̊i0+1, b̊i0+2, . . . , b̊N ) must have one of the following four forms.

(I) (ai0 + h, x1 + h, x1 + h + 1, x2 + h + 1, x2 + h + 2, . . . , x p + h + p − 1,
x p + h+ p, ai1 + h+ p, . . . ),

(II) (x1+h, ai0+h, x2+h+1, x1+h+1, x3+h+2, x2+h+2, . . . , x p+h+ p−1,
x p−1+ h+ p− 1, ai1 + h+ p, x p + h+ p, . . . ),

(III) (ai0+h, x1+h, x1+h+1, x2+h+1, x2+h+2, . . . , x p+h+ p−1, x p+h+ p,
z+ p, ai1 + h+ p+ 1, . . . ),

(IV) (x1+h, ai0+h, x2+h+1, x1+h+1, x3+h+2, x2+h+2, . . . , x p+h+ p−1,
x p−1+h+ p−1, z′+h+ p, x p+h+ p, z′′+h+ p+1, ai1+h+ p+1, . . . ),

where h = i0/2 and in cases (III) and (IV) ai1 + h+ p is not an entry of (b̊i0, b̊i0+1,

b̊i0+2, . . . ).
Since (åi0, åi0+1, åi0+2, . . . ) is given by (I) we see that ai1 + h+ p is an entry of

(åi0, åi0+1, åi0+2, . . . ). Using 2.3 we see that

{åi0, åi0+1, åi0+2, . . . } = {b̊i0, b̊i0+1, b̊i0+2, . . . }

as multisets. We see that cases (III) and (IV) cannot arise. Hence we must be in
case (I) or (II). Thus we have either

(a) (bi0, bi0+1, bi0+2, . . . , bi1)= (ai0, ai0+1, ai0+2, . . . , ai1)

or

(b) (bi0, bi0+1, bi0+2, . . . , bi1)= (ai0+1, ai0, ai0+3, ai0+2, . . . , ai1, ai1−1).

From 2.3 and (a)+(b) we see that if µ= 1 then Lemma 2.2 holds. Thus in the rest
of the proof we can assume that µ≥ 2.
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2.5. Let a′ = (ai1+1, ai1+2, . . . , aN ), b′ = (bi1+1, bi1+2, . . . , bN ),

å′ = (ai1+1, ai1+2, ai1+3+ 1, ai1+4+ 1, ai1+5+ 2, ai1+6+ 2, . . . ),

b̊′ = (bi1+1, bi1+2, bi1+3+ 1, bi1+4+ 1, bi1+5+ 2, bi1+6+ 2, . . . ).

From [b̊] = [å], (a) in 2.3 and (a)+(b) in 2.4 we see that the multiset formed by
the entries of å′ coincides with the multiset formed by the entries of b̊′. Using the
induction hypothesis we see that there exists X ′⊂[2, µ−1]∩2N such that b′= a′X

′

where a′X
′

is defined in terms of a′, X ′ in the same way as aX (see 2.1) was defined
in terms of a, X . We set X = X ′ if we are in case (a) of 2.4 and X = {0}∪ X ′ if we
are in case (b). Then we have b = aX (see again (a) and (b) of 2.4), as required.
This completes the proof of Lemma 2.2.

2.6. We shall use the notation of 2.1. Let T be the set of all unordered pairs
(A,B) where A,B are subsets of {0, 1, 2, . . . } and A ∪̇B= (a0, a1, a2, . . . , aN )

as multisets. For example, setting

A∅ = {ai ; i ∈ [0, N ] ∩ 2N} and B∅ = {ai ; i ∈ [0, N ] ∩ (2N+ 1)},

we have (A∅,B∅) ∈ T. For any subset a of J we consider

Aa = ((J− a)∩A∅)∪ (a∩B∅)∪ (A∅ ∩B∅),

Ba = ((J− a)∩B∅)∪ (a∩A∅)∪ (A∅ ∩B∅).

Then (Aa,Ba)= (AJ−a,AJ−a) ∈T and the map a 7→ (Aa,Ba) induces a bijection
P̄(J)↔ T. (Note that if a=∅ then (Aa,Ba) agrees with the earlier definition of
(A∅,B∅).)

Let T′ be the set of all (A,B) ∈ T such that |A| = |A∅| and |B| = |B∅|. Let
P(J)1 be the subspace of P(J) spanned by the following 2-element subsets of J:

{ai1, ai2}, {ai3, ai4}, . . . , {aiµ−2, aiµ−1} if N is odd,

{ai1, ai2}, {ai3, ai4}, . . . , {aiµ−1, aiµ} if N is even.

Let P(J)0 be the subspace of P(J) spanned by the following 2-element subsets of J:

{ai0, ai1}, {ai2, ai3}, . . . , {aiµ−1, aiµ} if N is odd,

{ai0, ai1}, {ai2, ai3}, . . . , {aiµ−2, aiµ−1} if N is even.

Let P̄(J)0 and P̄(J)1 be the images of P(J)0 and P(J)1 under the obvious map
P(J)→ P̄(J). Then:

(a) P̄(J)0 and P̄(J)1 are opposed Lagrangian subspaces of the symplectic vector
space P̄ev(J), ( , ) (see 0.7); hence ( , ) defines an identification P̄(J)1 =

P̄(J)∗0, where P̄(J)∗0 is the vector space dual to P̄(J)0.
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Let T0 and T1 be the subsets of T corresponding to P̄(J)0 and P̄(J)1 under the
bijection P̄(J)↔ T. Note that T0 ⊂ T′,T1 ⊂ T′, |T0| = |T1| = 2bµ/2c.

For any X ⊂ [0, µ − 1] ∩ 2N we set aX =
⋃

s∈X {ais , ais+1} ∈ P(J). Then
(AaX ,BaX ) is related to aX in 2.1 as follows:

AaX = {a
X
i ; i ∈ [0, N ] ∩ 2N},BaX = {a

X
i ; i ∈ [0, N ] ∩ (2N+ 1)}.

2.7. We shall use the notation of 2.1. Let T be the set of all unordered pairs
(A, B) where A is a subset of {0, 1, 2, . . . }, B is a subset of {1, 2, 3, . . . }, A
contains no consecutive integers, B contains no consecutive integers, and A ∪̇ B =
(å0, å1, å2, . . . , åN ) as multisets. For example, setting

A∅ = {åi ; i ∈ [0, N ] ∩ 2N} and B∅ = (åi ; i ∈ [0, N ] ∩ (2N+ 1)},

we have (A∅, B∅) ∈ T .
For any (A, B)∈ T we define (A−, B−) as follows: A− consists of x1< x2−1<

x3− 2 < · · · < x p − p+ 1 where x1 < x2 < · · · < x p are the elements of A; B−

consists of y1< y2−1< · · ·< yq−q+1 where y1< y2< · · ·< yq are the elements
of B.

We can enumerate the elements of T as in [Lusztig 1984b, 11.5]. Let J be the
set of all c ∈ N such that c appears exactly once in the sequence

(å0, å1, å2, . . . , åN )= (a0, a1, a2+ 1, a3+ 1, a4+ 2, a5+ 2, . . . ).

A nonempty subset I of J is said to be an interval if it is of the form {i, i + 1,
i + 2, . . . , j} with i − 1 /∈ J, j + 1 /∈ J . Let I be the set of intervals of J . For
any s ∈ [0, µ− 1] ∩ 2N, the set Is := {åis , åis+1, åis+2, . . . , åis+2ms+1} is either a
single interval or a union of intervals I 1

s t I 2
s t . . . t I ts

s (ts ≥ 2) where åis ∈ I 1
s ,

åis+2ms+1 ∈ I ts
s , |I 1

s |, |I
ts
s | are odd, |I h

s | are even for h ∈ [2, ts − 1] and any element
in I e

s is < than any element in I e′
s for e < e′. Let Is be the set of all I ∈ I such

that I ⊂ Is . For any subset α ⊂ I we consider

Aα =
⋃

I∈I−α

(I ∩ A∅)∪
⋃
I∈α
(I ∩ B∅)∪ (A∅ ∩ B∅),

Bα =
⋃

I∈I−α

(I ∩ B∅)∪
⋃
I∈α
(I ∩ A∅)∪ (A∅ ∩ B∅).

Then (Aα, Bα) ∈ T and the map α 7→ (Aα, Bα) is a bijection P̄(I)↔ T . (Note
that if α =∅ then (Aα, Bα) agrees with the earlier definition of (A∅, B∅).)

Let
T ′ = {(A, B) ∈ T ; |A| = |A∅|, |B| = |B∅|},

T1 = {(A, B) ∈ T ′; A− ∪̇ B− = A−∅ ∪̇ B−∅ }.

Let P̄(I)′ and P̄(I)1 be the subsets of P̄(I) corresponding to T ′ and T1 under the
bijection P̄(I)↔ T .
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Now let X be a subset of [0, µ− 1] ∩ 2N. Let αX =
⋃

s∈X
Is ∈ P(I). From the

definitions we see that

(a) A−αX
= AaX , B−αX

=BaX

(in the notation of 2.6). In particular we have (AαX , BαX ) ∈ T1. Thus |T1| ≥ 2bµ/2c.
Using Lemma 2.2 we see that

(b) |T1| = 2bµ/2c and T1 =
{
(AαX , BαX ); X ⊂ [0, µ− 1] ∩ 2N

}
.

Using (a) and (b) we deduce:

(c) The map T1→ T1 given by (A, B) 7→ (A−, B−) is a bijection.

3. Proof of Theorem 0.4 and of Corollary 0.5

3.1. If G is simple adjoint of type An , n ≥ 1, then Theorem 0.4 and Corollary 0.5
are obvious: we have A(u)= {1}, Ā(u)= {1}.

3.2. Assume that G = Sp2n(k) where n ≥ 2. Let N be a sufficiently large even
integer. Now u : k2n

→ k2n has ie Jordan blocks of size e (e = 1, 2, 3, . . . ). Here
i1, i3, i5, . . . are even. Let 1 = {e ∈ {2, 4, 6, . . . }; ie ≥ 1}. Then A(u) can be
identified in the standard way with P(1). Hence the group of characters Â(u) of
A(u) (which may be canonically identified with the F2-vector space dual to P(1))
may be also canonically identified with P(1) itself (so that the basis given by the
one-element subsets of 1 is self-dual).

To the partition 1i1+2i2+3i3+· · · of 2n we associate a pair (A, B) as in [Lusztig
1984b, 11.6] (with N , 2m replaced by 2n, N ). We have A = (â0, â2, â4, . . . , âN ),
B= (â1, â3, . . . , âN−1), where â0≤ â1≤ â2≤ · · ·≤ âN is obtained from a sequence
a0≤a1≤a2≤· · ·≤aN as in 1.1. (Here we use that C is special.) Now the definitions
and results in Section 1 are applicable. As in [Lusztig 1984a, 4.5] the family F is
in canonical bijection with T′ in 1.6.

We arrange the intervals in I in increasing order I(1), I(2), . . . , I( f ) (any element
in I(1) is smaller than any element in I(2), etc.). We arrange the elements of 1
in increasing order e1 < e2 < · · · < e f ′ ; then f = f ′ and we have a bijection
I ↔ 1, I(h) ↔ eh; moreover we have |I(h)| = ieh for h ∈ [1, f ]; see [Lusztig
1984b, 11.6]. Using this bijection we see that A(u) and Â(u) are identified with
the F2-vector space P(I) with basis given by the one-element subsets of I. Let
π : P(I)→ P(I)∗1 (the dual of P(I)1 in 1.7) be the (surjective) F2-linear map
which to X ⊂ I associates the linear form L 7→ |X ∩ L| mod 2 on P(I)1. We will
show that

(a) kerπ = K(u), with K(u) as in 0.1.
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We identify IrrC W with T ′ (see 1.7) via the restriction of the bijection in [Lusztig
1984b, (12.2.4)] (we also use the description of the Springer correspondence in
[Lusztig 1984b, 12.3]). Under this identification the subset Irr∗C W of IrrC W be-
comes the subset T1 (see 1.7) of T ′. Via the identification P(I)′↔ T ′ in 1.7 and
Â(u)↔P(I) (see above), the map E 7→VE from T ′ to Â(u) becomes the obvious
imbedding P(I)′→P(I) (we use again [Lusztig 1984b, 12.3]). By definition, K(u)
is the set of all X ∈P(I) such that for any L ∈P(I)1 we have |X ∩ L| = 0 mod 2.
Thus, (a) holds.

Using (a) we have canonically Ā(u)=P(I)∗1 via π . We define an F2-linear map
P(I)1 → P̄(J)1 (see 1.6) by Is 7→ {ais , ais+1} for s ∈ {1, 3, . . . , 2M − 1} (Is as
in 1.7). This is an isomorphism; it corresponds to the bijection 1.7(c) under the
identification T1↔P(I)1 in 1.7 and the identification T1↔ P̄(J)1 in 1.6. Hence
we can identify P(I)∗1 with P̄(J)∗1 and with P̄(J)0 (see 1.6(a)). We obtain an
identification Ā(u)= P̄(J)0.

By [Lusztig 1984a, 4.5] we have XF = P̄(J). Using 1.6(a) we see that P̄(J)=

M(P̄(J)0) = M( Ā(u)) canonically so that Theorem 0.4 holds in our case. From
the arguments above we see that in our case Corollary 0.5 follows from 1.7(c).

3.3. Assume that G=SOn(k)where n≥7. Let N be a sufficiently large integer such
that N = n mod 2. Now u : kn

→ kn has ie Jordan blocks of size e (e= 1, 2, 3, . . . ).
Here i2, i4, i6, . . . are even. Let 1 = {e ∈ {1, 3, 5, . . . }; ie ≥ 1}. If 1 = ∅ then
A(u)= {1}, Ā(u)= {1} and GF = {1} so that the result is trivial.

In the remainder of this subsection we assume that 1 6=∅. Then A(u) can be
identified in the standard way with the F2-subspace Pev(1) of P(1) and the group
of characters Â(u) of A(u) (which may be canonically identified with the F2-vector
space dual to A(u)) becomes P̄(1); the obvious pairing A(u)× Â(u)→ F2 is
induced by the inner product L , L ′ 7→ |L ∩ L ′| mod 2 on P(1).

To the partition 1i1+2i2+3i3+· · · of n we associate a pair (A, B) as in [Lusztig
1984b, 11.7] (with N ,M replaced by n, N ). We have A = {åi ; i ∈ [0, N ] ∩ 2N},
B = (åi ; i ∈ [0, N ] ∩ (2N+ 1)} where å0 ≤ å1 ≤ å2 ≤ · · · ≤ åN is obtained from a
sequence a0 ≤ a1 ≤ a2 ≤ · · · ≤ aN as in 2.1. (Here we use that C is special.) Now
the definitions and results in §2 are applicable. As in [Lusztig 1984a, 4.5] (if N is
even) or [Lusztig 1984a, 4.6] (if N is odd) the family F is in canonical bijection
with T′ in 2.6.

We arrange the intervals in I in increasing order I(1), I(2), . . . , I( f ) (any element
in I(1) is smaller than any element in I(2), etc.). We arrange the elements of 1
in increasing order e1 < e2 < · · · < e f ′ ; then f = f ′ and we have a bijection
I↔1, I(h)↔ eh ; moreover we have |I(h)| = ieh for h ∈ [1, f ]; see [Lusztig 1984b,
11.7]. Using this bijection we see that A(u) is identified with Pev(I) and Â(u) is
identified with P̄(I). For any X ∈Pev(I), the assignment L 7→ |X ∩ L| mod 2 can
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be viewed as an element of P̄(I)∗1 (the dual space of P̄(I)1 in 2.7 which by 2.7(b)
is an F2-vector space of dimension 2bµ/2c). This induces a (surjective) F2-linear
map π : Pev(I)→ P̄(I)∗1. We will show that

(a) kerπ = K(u), with K(u) as in 0.1.

We identify IrrC W with T ′ (see 2.7) via the restriction of the bijection in [Lusztig
1984b, (13.2.5)] if N is odd or [ibid., (13.2.6)] if N is even (we also use the
description of the Springer correspondence in [Lusztig 1984b, 13.3]). Under this
identification the subset Irr∗C W of IrrC W becomes the subset T1 (see 2.7) of T ′.
Via the identification P̄(I)′↔ T ′ in 2.7 and Â(u)↔ P̄(I) (see above), the map
E 7→VE from T ′ to Â(u) becomes the obvious imbedding P̄(I)0→ P̄(I) (we use
again [ibid., 13.3]). By definition, K(u) is the set of all X ∈Pev(I) such that for any
L ∈P(I) representing a vector in P̄(I)1 we have |X∩L|=0 mod 2. Thus, (a) holds.

Using (a) we have canonically Ā(u)= P̄(I)∗1 via π . We have an F2-linear map
P̄(I)1→ P̄(J)0 (see 2.6) induced by Is 7→ {ais , ais+1} for s ∈ [0, µ− 1] ∩ 2N (Is

as in 2.7). This is an isomorphism; it corresponds to the bijection 2.7(c) under
the identification T1 ↔ P̄(I)1 in 2.7 and the identification T1 ↔ P̄(J)0 in 2.6.
Hence we can identify P̄(I)∗1 with P̄(J)∗0 and with P̄(J)1 (see 2.6(a)). We obtain
an identification Ā(u)= P̄(J)1.

By [Lusztig 1984a, 4.6] we have XF = P̄ev(J). Using 2.6(a) we see that
P̄(J)= M(P̄(J)1)= M( Ā(u)) canonically so that Theorem 0.4 holds in our case.
From the arguments above we see that in our case Corollary 0.5 follows from 2.7(c).

3.4. In 3.5–3.9 we consider the case where G is simple adjoint of exceptional type.
In each case we list the elements of the set IrrC W for each special unipotent class
C of G; an element e of IrrC W − Irr∗C W is listed as [e]. (The notation for the
various C is as in [Spaltenstein 1985]; the notation for the objects of IrrW is as
in [Spaltenstein 1985] (for type En) and as in [Lusztig 1984a, 4.10] for type F4.)
In each case the structure of A(u), Ā(u) (for u ∈ C) is indicated; here Sn denotes
the symmetric group in n letters. The order in which we list the objects in IrrC W
corresponds to the following order of the irreducible representations of A(u)= Sn:

1, ε (n = 2),
1, r, ε (n = 3,G 6= G2),
1, r (n = 3,G = G2),
1, λ1, λ2, σ (n = 4),
1, ν, λ1, ν ′, λ2, λ3 (n = 5),

in the notation of [Lusztig 1984a, 4.3]. Now Theorem 0.4 and Corollary 0.5 follow
in our case from the tables in 3.5–3.9 and the definitions in [Lusztig 1984a, 4.8–4.13].
(In those tables Sn is the symmetric group in n letters.)
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3.5. Assume that G is of type E8.
IrrE8 W = {10}; A(u)= {1}, Ā(u)= {1}.
IrrE8(a1)W = {81}; A(u)= {1}, Ā(u)= {1}.
IrrE8(a2)W = {352}; A(u)= {1}, Ā(u)= {1}.
IrrE7 A1 W = {1123, 288}; A(u)= S2, Ā(u)= S2.
IrrD8 W = {2104, 1607}; A(u)= S2, Ā(u)= S2.
IrrE7(a1)A1 W = {5605, [508]}; A(u)= S2, Ā(u)= {1}.
IrrE7(a1)W = {5676}; A(u)= {1}, Ā(u)= {1}.
IrrD8(a1)W = {7006, 3008}; A(u)= S2, Ā(u)= S2.
IrrE7(a2)A1 W = {14007, 10089, 5619}; A(u)= S3, Ā(u)= S3.
IrrA8 W = {14008, 157510, 35014}; A(u)= S3, Ā(u)= S3.
IrrD7(a1)W = {32409, [105010]}; A(u)= S2, Ā(u)= {1}.
IrrD8(a3)W = {224010, [17512], 84013}; A(u)= S3, Ā(u)= S2.
IrrD6 A1 W = {226810, 129613}; A(u)= S2, Ā(u)= S2.
IrrE6(a1)A1 W = {409611, 409612}; A(u)= S2, Ā(u)= S2.
IrrE6 W = {52512}; A(u)= {1}, Ā(u)= {1}.
IrrD7(a2)W = {420012, 336013}; A(u)= S2, Ā(u)= S2.
IrrE6(a1)W = {280013, 210016}; A(u)= S2, Ā(u)= S2.
IrrD5 A2 W = {453613, [84014]}; A(u)= S2, Ā(u)= {1}.
IrrD6(a1)A1 W = {607514, [70016]}; A(u)= S2, Ā(u)= {1}.
IrrA6 A1 W = {283514}; A(u)= {1}, Ā(u)= {1}.
IrrA6 W = {420015}; A(u)= {1}, Ā(u)= {1}.
IrrD6(a1)W = {560015, 240017}; A(u)= S2, Ā(u)= S2.
Irr2A4 W ={448016,453618,567018,140020,168022,7032}; A(u)= S5, Ā(u)= S5.
IrrD5 W = {210020}; A(u)= {1}, Ā(u)= {1}.
Irr(A5 A1)′′W = {560021, 240023}; A(u)= S2, Ā(u)= S2.
IrrD4 A2 W = {420015, [16824]}; A(u)= S2, Ā(u)= {1}.
IrrA4 A2 A1 W = {283522}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A2 W = {453623}; A(u)= {1}, Ā(u)= {1}.
IrrD5(a1)W = {280025, 210028}; A(u)= S2, Ā(u)= S2.
IrrA42A1 W = {420024, 336025}; A(u)= S2, Ā(u)= S2.
IrrD4 W = {52536}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A1 W = {409626, 409627}; A(u)= S2, Ā(u)= S2.
IrrA4 W = {226830, 129633}; A(u)= S2, Ā(u)= S2.
IrrD4(a1)A2 = {224028, 84031}; A(u)= S2, Ā(u)= S2.
IrrA3 A2 W = {324031, [97232]}; A(u)= S2, Ā(u)= {1}.
IrrD4(a1)A1 W = {140032, 157534, 35038}; A(u)= S3, Ā(u)= S3.
IrrD4(a1)W = {140037, 100839, 5649}; A(u)= S3, Ā(u)= S3.
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Irr2A2 W = {70042, 30044}; A(u)= S2, Ā(u)= S2.
IrrA3 W = {56746}; A(u)= {1}, Ā(u)= {1}.
IrrA22A1 W = {56047}; A(u)= {1}, Ā(u)= {1}.
IrrA2 A1 W = {21052, 16055}; A(u)= S2, Ā(u)= S2.
IrrA2 W = {11263, 2868}; A(u)= S2, Ā(u)= S2.
Irr2A1 W = {3574}; A(u)= {1}, Ā(u)= {1}.
IrrA1 W = {891}; A(u)= {1}, Ā(u)= {1}.
Irr∅W = {1120}; A(u)= {1}, Ā(u)= {1}.

3.6. Assume that G is adjoint of type E7.
IrrE7 W = {10}; A(u)= {1}, Ā(u)= {1}.
IrrE7(a1)W = {71}; A(u)= {1}, Ā(u)= {1}.
IrrE7(a2)W = {272}; A(u)= {1}, Ā(u)= {1}.
IrrD6 A1 W = {563, 216}; A(u)= S2, Ā(u)= S2.
IrrE6 W = {213}; A(u)= {1}, Ā(u)= {1}.
IrrE6(a1)W = {1204, 1055}; A(u)= S2, Ā(u)= S2.
IrrD6(a1)A1 W = {1895, [157]}; A(u)= S2, Ā(u)= {1}.
IrrD6(a1)W = {2106}; A(u)= {1}, Ā(u)= {1}.
IrrA6 W = {1056}; A(u)= {1}, Ā(u)= {1}.
IrrD5 A1 W = {1686}; A(u)= {1}, Ā(u)= {1}.
IrrD5 W = {1897}; A(u)= {1}, Ā(u)= {1}.
IrrD6(a2)A1 W = {3157, 2809, 3513}; A(u)= S3, Ā(u)= S3.
Irr(A5 A1)′ = {4058, 18910}; A(u)= S2, Ā(u)= S2.
IrrD5(a1)A1 W = {3789}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A2 W = {21010}; A(u)= {1}, Ā(u)= {1}.
IrrD5(a1)W = {42010, 33611}; A(u)= S2, Ā(u)= S2.
IrrA′′5 W = {10512}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A1 W = {51211, 51212}; A(u)= S2, Ā(u)= S2.
IrrD4 W = {10515}; A(u)= {1}, Ā(u)= {1}.
IrrA4 W = {42013, 33614}; A(u)= S2, Ā(u)= S2.
IrrA3 A2 A1 W = {21013}; A(u)= {1}, Ā(u)= {1}.
IrrA3 A2 W = {37814, [8415]}; A(u)= S2, Ā(u)= {1}.
IrrD4(a1)A1 W = {40515, 18917}; A(u)= S2, Ā(u)= S2.
IrrD4(a1)W = {31516, 28018, 3522}; A(u)= S3, Ā(u)= S3.
Irr(A3 A1)′′W = {18920}; A(u)= {1}, Ā(u)= {1}.
Irr2A2 W = {16821}; A(u)= {1}, Ā(u)= {1}.
IrrA23A1 W = {10521}; A(u)= {1}, Ā(u)= {1}.
IrrA3 W = {21021}; A(u)= {1}, Ā(u)= {1}.
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IrrA22A1 W = {18922}; A(u)= {1}, Ā(u)= {1}.
IrrA2 A1 W = {12025, 10526}; A(u)= S2, Ā(u)= S2.
Irr3A′′1 W = {2136}; A(u)= {1}, Ā(u)= {1}.
IrrA2 W = {5630, 2133}; A(u)= S2, Ā(u)= S2.
Irr2A1 W = {2737}; A(u)= {1}, Ā(u)= {1}.
IrrA1 W = {746}; A(u)= {1}, Ā(u)= {1}.
Irr∅W = {163}; A(u)= {1}, Ā(u)= {1}.

3.7. Assume that G is adjoint of type E6.
IrrE6 W = {10}; A(u)= {1}, Ā(u)= {1}.
IrrE6(a1)W = {61}; A(u)= {1}, Ā(u)= {1}.
IrrD5 W = {202}; A(u)= {1}, Ā(u)= {1}.
IrrA5 A1 W = {303, 155}; A(u)= S2, Ā(u)= S2.
IrrD5(a1)W = {644}; A(u)= {1}, Ā(u)= {1}.
IrrA4 A1 W = {605}; A(u)= {1}, Ā(u)= {1}.
IrrA4 W = {816}; A(u)= {1}, Ā(u)= {1}.
IrrD4 W = {246}; A(u)= {1}, Ā(u)= {1}.
IrrD4(a1)W = {807, 908, 2010}; A(u)= S3, Ā(u)= S3.
Irr2A2 W = {2412}; A(u)= {1}, Ā(u)= {1}.
IrrA3 W = {8110}; A(u)= {1}, Ā(u)= {1}.
IrrA22A1 W = {6011}; A(u)= {1}, Ā(u)= {1}.
IrrA2 A1w = {6413}; A(u)= {1}, Ā(u)= {1}.
IrrA2 W = {3015, 1517}; A(u)= S2, Ā(u)= S2.
Irr2A1 W = {2020}; A(u)= {1}, Ā(u)= {1}.
IrrA1 W = {625}; A(u)= {1}, Ā(u)= {1}.
Irr∅W = {136}; A(u)= {1}, Ā(u)= {1}.

3.8. Assume that G is of type F4.
IrrF4 W = {11}; A(u)= {1}, Ā(u)= {1}.
IrrF4(a1)W = {42, 23}; A(u)= S2, Ā(u)= S2.
IrrF4(a2)W = {91}; A(u)= {1}, Ā(u)= {1}.
IrrB3 W = {81}; A(u)= {1}, Ā(u)= {1}.
IrrC3 W = {83}; A(u)= {1}, Ā(u)= {1}.
IrrF4(a3)W = {121, 93, 62, 13}; A(u)= S4, Ā(u)= S4.
Irr Ã2

W = {82}; A(u)= {1}, Ā(u)= {1}.
IrrA2 W = {84, [12]}; A(u)= S2, Ā(u)= {1}.
IrrA1 Ã1

W = {94}; A(u)= {1}, Ā(u)= {1}.
Irr Ã1

W = {45, 22}; A(u)= S2, Ā(u)= S2.
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Irr∅W = {14}; A(u)= {1}, Ā(u)= {1}.

3.9. Assume that G is of type G2.
IrrG2 W is the unit representation; A(u)= {1}, Ā(u)= {1}.
IrrG2(a1)W consists of the reflection representation and the one dimensional

representation on which the reflection with respect to a long (resp. short) simple
coroot acts nontrivially (resp. trivially); A(u)= S3, Ā(u)= S3.

Irr∅W = {sgn}; A(u)= {1}, Ā(u)= {1}.

3.10. This completes the proof of Theorem 0.4 and that of Corollary 0.5.
We note that the definition of GF given in [Lusztig 1984a] (for type Cn, Bn) is

P̄(J)1 (in the setup of 3.2) and P̄(J)0 (in the setup of 3.3) which is noncanonically
isomorphic to Ā(u), unlike the definition adopted here that is, P̄(J)0 (in the setup
of 3.2) and P̄(J)1 (in the setup of 3.3) which makes GF canonically isomorphic to
Ā(u).
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