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REFLEXIVE OPERATOR ALGEBRAS ON BANACH SPACES

FLORENCE MERLEVÈDE, COSTEL PELIGRAD AND MAGDA PELIGRAD

In this paper we study the reflexivity of a unital strongly closed algebra of
operators with complemented invariant subspace lattice on a Banach space.
We prove that if such an algebra contains a complete Boolean algebra of
projections of finite uniform multiplicity and with the direct sum property,
then it is reflexive, i.e., it contains every operator that leaves invariant every
closed subspace in the invariant subspace lattice of the algebra. In particu-
lar, such algebras coincide with their bicommutant.

1. Introduction

Let A⊂ B(X) denote a strongly closed algebra of operators on the Banach space X.
Suppose that A has the property that each of its invariant subspaces has an invariant
complement. If A contains a complete Boolean algebra of projections of finite
uniform multiplicity and with the direct sum property as defined below, we prove
that A is reflexive in the sense that it contains all the operators which leave its
closed invariant subspaces invariant (Theorem 15). In particular such an algebra is
equal to its bicommutant A′′ (Corollary 22). The problem of whether a strongly
closed algebra of operators with complemented invariant subspace lattice is reflexive
started to be studied in the sixties. This problem is a generalization of the invariant
subspace problem in operator theory. Arveson [1967] introduced a technique for
studying the particular case of transitive algebras on Hilbert spaces, namely the
strongly closed algebras of operators on Hilbert spaces that have no nontrivial
closed invariant subspaces. He proved that every transitive algebra that contains a
maximal abelian von Neumann algebra coincides with the full algebra B(X) if X is
a complex Hilbert space. Douglas and Pearcy [1972] extended the result of Arveson
to the case of transitive operator algebras containing an abelian von Neumann
algebra of finite multiplicity. Hoover [1973] extended the result of Douglas and
Pearcy to the case of reductive operator algebras on Hilbert spaces that contain
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abelian von Neumann algebras of finite multiplicity. Hoover proved that every
reductive operator algebra (that is a strongly closed subalgebra for which every
closed invariant subspace is reducing) which contains an abelian von Neumann
algebra of finite multiplicity is self-adjoint. The transitive algebra result of Douglas
and Pearcy was generalized in [Önder and Orhon 1989] to the case of transitive
algebras on Banach spaces that contain a n-fold direct sum of a cyclic complete
Boolean algebra of projections. The case of operator algebras on Banach spaces
with complemented invariant subspace lattice was considered by Rosenthal and
Sourour [1977]. They proved that every strongly closed algebra of operators with
complemented invariant subspace lattice containing a complete Boolean algebra of
projections of uniform multiplicity one is reflexive.

In this paper we build upon the techniques introduced by Arveson and developed
in [Douglas and Pearcy 1972; Radjavi and Rosenthal 1973] for invariant subspaces
of operator algebras as well as Bade’s multiplicity theory of Boolean algebras
of projections [Bade 1955; 1959]. We also use the results of [Foguel 1959] and
[Tzafriri 1967] about the commutant of Boolean algebras of projections of finite
multiplicity.

2. Notation and preliminary results

2.1. Invariant subspaces of operator algebras. Let X be a complex Banach space
and B(X) the algebra of all bounded linear operators on X . We will denote by X (n)

the direct sum of n copies of X and, if S ⊂ B(X), we set

S(n) =
{
a⊕ a⊕ · · ·⊕ a ∈ B(X (n))

∣∣ a ∈ S
}
.

If S ⊂ B(Y ), where Y is a Banach space, we denote by Lat S the collection of all
closed linear subspaces of Y that are invariant under every element of S. If L is a
collection of closed linear subspaces of Y , we denote by alg L the (strongly closed)
algebra of operators on Y that leave every element of L invariant. An algebra
A ⊂ B(X) is called reflexive if algLat A = A.

In what follows all the subalgebras A ⊂ B(X) will be assumed to be strongly
closed and containing the identity operator I ∈ B(X).

Remark 1. Let A ⊂ B(X) be a strongly closed algebra with I ∈ A and b ∈ B(X).
If Lat A(n) ⊂ Lat b(n) for every n ∈ N, then b ∈ A.

Proof. Indeed, then for every finite set of elements {x1, x2, . . . , xn} ⊂ X we have
that K = {ax1⊕ ax2⊕ · · ·⊕ axn | a ∈ A} ∈ Lat A(n) and therefore K ∈ Lat b(n).
This means that b ∈ A, since A is strongly closed. �

Proposition 2. Let A ⊂ B(X) be a strongly closed algebra with complemented
invariant subspace lattice and with I ∈ A. Let q ∈ B(X) be a projection.
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(i) If q ∈ A, the algebra qAq ⊂ B(q X) has complemented invariant subspace
lattice and algLat(qAq)= q(algLat A)q.

(ii) If q ∈ A′, where A′ denotes the commutant of A, the strong operator closure
qAqso

⊂ B(q X) is an algebra with complemented invariant subspace lattice.

Proof. We prove first (i). Clearly, qAq is a strongly closed subalgebra of B(q X)
whose unit is q. Let L ⊂ q X , L ∈ Lat(qAq). We define L̃ = Aq L , the closure
being taken in X . Then, obviously, L̃ ∈ Lat A and, therefore L̃ has a complement
L̃c in Lat A. Since q ∈ A, we have q L̃ ⊂ L̃ , also q L̃c

⊂ L̃c and q L̃c
∈ Lat(qAq).

Moreover, it is immediate that q L̃ and q L̃c are closed linear subspaces of q X such
that

q L̃ ⊕ q L̃c
= q X.

On the other hand we have L ⊂ q L̃ = q Aq L ⊂ qAq L ⊂ L = L . Hence

q L̃ = L .

It follows that L is complemented in Lat(qAq) and so qAq has complemented
invariant subspace lattice. Let now b ∈ algLat A and L ∈ Lat(qAq). By the above
argument, there exists L̃ ∈ Lat A such that L = q L̃ . Hence bL̃ ⊂ L̃ . Therefore,
since q L̃ = L ⊂ L̃ it follows that qbq L ⊂ L , so qbq ∈ algLat(qAq). Conversely,
let c ∈ algLat(qAq) and let c̃ ∈ B(X) be the extension of c to X that equals 0 on
(I −q)X . Then, it is straightforward to show that c̃ ∈ algLat A and c= qc̃q and so
the proof is completed.

To establish (ii), let K ∈ Lat(qAq). Since q ∈ A′, it follows that K ∈ Lat A and
therefore K has a complement K c

∈ Lat A. Then, clearly K c
∩q X ∈ Lat(qAq) and

K + K c
∩ q X = q X . �

We will also need the following:

Lemma 3. Let A ⊂ B(X) be an algebra with complemented invariant subspace
lattice and let K ∈Lat A. If p∈ A′ is the projection on K and t1, t2, . . . , tn ∈ (p Ap)′,
for some n ∈ N, then the subspace

0{t1,t2,...,tn;p} =
{

x ⊕ t1x ⊕ t2x ⊕ · · ·⊕ tnx
∣∣ x ∈ pX

}
∈ Lat A(n+1)

is complemented in Lat A(n+1).

Proof. Since A has complemented invariant subspace lattice and pX = K ∈ Lat A,
it follows that the subspace (1− p)X = (pX)c = K c belongs to Lat A. It is then
clear that (pX)c⊕ X (n) is a complement of 0{t1,t2,...,tn;p} in Lat A(n+1). �

Remark 4. Let I ∈ A⊂ B(X) be a strongly closed subalgebra with complemented
invariant subspace lattice. If A is reflexive, then A′′ = A where A′′ denotes the
bicommutant of A.



454 FLORENCE MERLEVÈDE, COSTEL PELIGRAD AND MAGDA PELIGRAD

Proof. If a ∈ A′′, then, in particular, a commutes with every projection on an
invariant subspace of A. Therefore a ∈ algLat A = A. �

The following concept is defined in [Radjavi and Rosenthal 1973, §8.2], for
instance.

Definition 5. Let A ⊂ B(X) be a subalgebra. A linear operator T defined on a not
necessarily closed linear subspace P ⊂ X is called a graph transformation for A if
there exist finitely many linear operators T1, T2, . . . , Tl , all defined on P , such that{

x ⊕ T x ⊕ T1x ⊕ T2x ⊕ · · ·⊕ Tl x
∣∣ x ∈ P

}
∈ Lat A(l+2).

Remark 6. Let K ∈ Lat A(n), n ∈ N. Define

K0 =
{

x ∈ X (n−1) ∣∣ 0⊕ x ∈ K
}
∈ Lat A(n−1).

Then, if K0 is complemented in Lat A(n−1) with complement K c
0 it follows that there

exist graph transformations for A: T1, T2, . . . , Tn−1, defined on a linear subspace,
P ⊂ X , such that(

X ⊕ K c
0
)
∩ K =

{
x ⊕ T1x ⊕ T2x ⊕ · · ·⊕ Tn−1x

∣∣ x ∈ P
}
.

Proof. Straightforward. �

2.2. Boolean algebras of projections in Banach spaces and spectral operators.
Let B be a complete Boolean algebra of projections in a (complex) Banach space X
(as defined for instance in [Bade 1955] or in [Dunford and Schwartz 1988, Chap-
ter XVII]). It is known [Stone 1949] that there exists an extremally disconnected
compact Hausdorff topological space� (that is a compact Hausdorff space in which
the closure of every open set in it is open), such that B is equivalent as a Boolean
algebra with the Boolean algebra of open and closed subsets of �. We will denote
by 6 the collection of Borel sets of �. Such a compact Hausdorff space is called a
Stonean space.

The following remark collects some results about the complete Boolean algebras
of projections in Banach spaces that will be used in this paper.

Remark 7. (i) If B is a complete Boolean algebra of projections, then there is a
regular countably additive spectral measure E in X defined on the family of
Borel sets in � such that the mapping

S( f )=
∫
�

f (w) E(dw)

is a continuous isomorphism of the algebra C(�) of continuous functions on
� onto the uniformly closed algebra of operators, B, generated by B.

(ii) The algebra B coincides with the strongly closed algebra generated by B and
consists of spectral operators of scalar type.
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(iii) The range of E is precisely the Boolean algebra B.

(iv) B is norm bounded.

Proof. (i) and (iii) follow from [Dunford and Schwartz 1988, Lemma XVII.3.9].
Point (ii) is Corollary XVII.3.17 of the same reference, and (iv) follows from [Bade
1955, Theorem 2.2]. �

Let B⊂ B(X) be a complete Boolean algebra of projections that contains the
identity projection I ∈ B(X). We say that I ∈B has multiplicity k, k ∈ N, if there
are x1, x2, . . . , xk ∈ X such that lin {exi | e ∈B, 1≤ i ≤ k} = X and no subset of X
of cardinality less than k has this property [Bade 1959, Definition 3.2]. The Boolean
algebra B is said to be of uniform multiplicity k if every projection e ∈B, e 6= 0
has multiplicity k. For each i , 1 ≤ i ≤ k, define M(xi ) = lin{exi | e ∈ B}. Here,
lin{exi | e ∈B} denotes the closed linear subspace of X spanned by {exi | e ∈B}.

The next remark collects some known results from [Bade 1959] (see also [Dunford
and Schwartz 1988]).

Remark 8. Let B be a complete Boolean algebra of finite uniform multiplicity n,
n ∈ N, and let {x1, . . . , xn} be a set of vectors such that

lin{exi | e ∈B, 1≤ i ≤ n} = X.

(i) There are x∗i ∈ X∗, i = 1, 2, . . . , n, where X∗ is the dual Banach space of X ,
such that each of the measures µi (δ) = x∗i E(δ)xi , i ∈ {1, 2, . . . , n}, δ ∈ 6
vanishes on sets of first category of� and µi (σ ) 6= 0 if σ has nonempty interior.
The measures µi are equivalent and x∗i (M(x j ))= {0} for i 6= j .

(ii) There exists a continuous injective linear map V of X onto a dense linear
subspace L ⊂

∑n
i=1 L1(�,6,µi ) such that if V (x)= f =

∑
fi , then:

(a) x∗i E(δ)x =
∫
δ

fi (ω)µi (dω),

for δ ∈6. In particular, V (xi )= 0⊕· · ·⊕χ�⊕· · ·⊕ 0, where χ� = 1 is
in the i-th place in the direct sum.

(b) x = lim
m→∞

n∑
i=1

S( fiχδm
)xi ,

where χδm
is the characteristic function of

δm =
{
ω
∣∣ | fi (ω)| ≤ m, i = 1, 2, . . . , n

}
.

(iii) The linear space L is a Banach space when endowed with the norm

‖ f ‖0 = max
1≤i≤n

‖ fi‖1+‖V
−1( f )‖,

and V is a Banach space isomorphism between X and (L , ‖ · ‖0).
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Proof. Points (i) and (ii) follow from [Bade 1959, Lemma 5.1 and Theorem 5.2]
(see also [Dunford and Schwartz 1988, Theorem XVIII.3.19]). The proof of (iii) is
immediate. �

A function f is called E-essentially bounded if

inf
E(δ)=1

sup
ω∈δ

| f (ω)|

is finite [Dunford and Schwartz 1988, Definition 7].
Denote by EB(�,6) the set of all E-essentially bounded 6-measurable func-

tions.

Lemma 9. With the notations in Remark 8, if ϕ ∈ EB(�,6), then the opera-
tor Mϕ( f ) = ϕ f is a well defined, bounded operator on (L , ‖ · ‖0) and Mϕ =

V S(ϕ)V−1. Here ϕ f = ϕ f1⊕ϕ f2⊕ · · ·⊕ϕ fn . Thus

V BV−1
=
{

Mϕ

∣∣ ϕ ∈ EB(�,6)
}
.

Proof. Let f ∈ L and x= S(ϕ)V−1( f ). Then, according to point (a) in Remark 8 (ii),
if g = V (x), we have x∗i S(χδ)x =

∫
δ

gi (w)µi (dw) for every Borel set δ ∈6. On
the other hand,

x∗i S(χδ)x = x∗i S(χδ)S(ϕ)V
−1( f )= x∗i S(χδϕ)V

−1( f )=
∫
δ

ϕ(w) fi (w)µi (dw).

Hence gi = ϕ fi µi -a.e., so g = ϕ f a.e. and the proof is completed. �

In [Dieudonné 1956] is presented an example of a Boolean algebra of projections,
B, such that every nonzero projection e ∈B has multiplicity 2. However, for no
choice of x1, x2 ∈ X or e∈B, e 6= 0 is eX the algebraic sum of M(ex1) and M(ex2).
In the rest of this paper we will consider only Boolean algebras of finite uniform
multiplicity with the direct sum property:

Definition 10. We say that the complete Boolean algebra B of uniform multiplicity
k has the direct sum property if X is the algebraic (and therefore, Banach) direct
sum of M(xi ), 1≤ i ≤ k.

A particular case of a Boolean algebra of uniform multiplicity k with the direct
sum property is the k-fold direct sum of k copies of a cyclic Boolean algebra of
projections. Other examples are presented in [Foguel 1959].

Lemma 11. Suppose that B is a complete Boolean algebra of projections of uniform
multiplicity k with the direct sum property. Then, for every ε > 0 there exist e ∈B,
e= E(ρ), and ρ ∈6 withµl(ρ

c)<ε for every 1≤ l≤k (where ρc is the complement
of ρ) such that for every {ϕi j | 1 ≤ i, j ≤ k} ⊂ EB(�,6), the matrix [ϕi jχρ] is a
bounded linear operator on (L , ‖ · ‖0) and [ϕi jχρ] belongs to the commutant B′

of B.



REFLEXIVE OPERATOR ALGEBRAS ON BANACH SPACES 457

Proof. Since the measures µl , 1 ≤ l ≤ k are equivalent, let hml = dµm/dµl ,
1 ≤ m, l ≤ k be the corresponding Radon Nikodym derivative. Let ε > 0 be
arbitrary. Fix 1 ≤ m, l ≤ k. Then, since

⋃
∞

n=1 {1/n ≤ hml ≤ n} = �, there is a
n ∈N such that µl({1/n ≤ hml ≤ n}c) < ε/k2. Therefore there is a n ∈N such that
µl({1/n ≤ hml ≤ n}c) < ε for every 1≤m, l ≤ k. Let ρ = {1/n ≤ hml ≤ n} ∈6. It
is easy to see that for every Borel subset σ ⊂ρ we have µi (σ )/n≤µ j (σ )≤ nµi (σ )

for all 1 ≤ i, j ≤ k. Hence all the spaces Mχρ
L1(µi ) = χρL1(µi ), 1 ≤ i ≤ k, are

equal as sets and mutually isomorphic as Banach spaces. Then, clearly,

χρL = χρL1(µ1)⊕χρL1(µ2)⊕ · · ·⊕χρL1(µk).

Since B has the direct sum property, we also have

E(ρ)X = E(ρ)M(x1)⊕ · · ·⊕ E(ρ)M(xk)

and the lemma follows. �

For the definition and basic facts about spectral operators on Banach spaces
we refer to [Dunford and Schwartz 1988]. We will need the following result,
which follows from [Tzafriri 1967, Theorem 2] and [Foguel 1959, Lemma 2.1 and
Theorem 2.3].

Remark 12. Let T ∈ B(X) and let B be a complete Boolean algebra of projections
in X , of uniform multiplicity k, k ∈ N. If T commutes with the strongly closed
algebra B generated by B, then there exists an increasing sequence of projections
{em = E(χδm

) | m ∈ N} ⊂ B such that {em} converges strongly to the identity
I ∈ B(X) and T em is a spectral operator of finite type for every m. Moreover, if
T ∈ B ′ is a spectral operator then T is the sum of a spectral operator R of scalar
type in B ′ and a nilpotent operator Q of order k, Q ∈ B ′.

Next we will study the dense linear subspaces of X that are invariant under
every element of B, where B is the strongly closed algebra generated by B, the
complete Boolean algebra of projections of uniform multiplicity k with the direct
sum property. The following lemma is an extension to the case of Banach spaces
and an improvement on [Douglas and Pearcy 1972, Lemma 3.3]. Using Remark 8
and Lemma 9, we will identify X with L and B with {V S(ϕ)V−1

| S(ϕ) ∈ B}.

Lemma 13. Let k ∈N and B the strongly closed algebra generated by the Boolean
algebra of projections of uniform multiplicity k, B⊂ B(X) and with the direct sum
property. With the above notations, suppose that D⊂X is a dense linear subspace
which is invariant under all operators in B. Then, for every ε > 0, there exists an
open and closed set λε ⊂� such that

(i) µi (λ
c
ε) < ε, i = 1, 2, . . . , k, where λc

ε is the complement of λε in �, and
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(ii) χλε e j ∈D for all j ∈ {1, 2, . . . , k}, where {e j | j = 1, 2, . . . , k} is the standard
basis of C(k).

Proof. If z = (z1, z2, . . . , zk) ∈ C(k), consider the norm

‖z‖ =max
{
|z p
|
∣∣ 1≤ p ≤ k

}
.

It is easy to see that there exists α > 0 such that if the set {h1, h2, . . . , hk} ⊂ C(k)

satisfies ‖hi − ei‖ < α, i = 1, 2, . . . , k, then the set {h1, h2, . . . , hk} is linearly
independent. Let now ε > 0 be arbitrary. We can choose α < ε2/2. Let ρ ∈ 6,
µl(ρ)< ε/2, 1≤ l ≤ k, be as in Lemma 11. Since � is extremally disconnected, we
can assume that ρ is an open and closed set. For every j , 1≤ j ≤ k let g j (w)= e j ,
if w ∈ ρ and g j (w)= 0 if ω ∈ ρc. Since by point (a) of Remark 8 (ii) we have that
g j ∈ χρL for every j , 1 ≤ j ≤ k and χρD is dense in χρL , it follows that there
exists a set of elements { li | 1≤ i ≤ k} ⊂ χρD, li = l1

i ⊕ l2
i ⊕ · · ·⊕ lk

i such that

‖li − gi‖0 = max
1≤p≤k

{
‖l p

i − g p
i ‖0 = ‖l

p
i − g p

i ‖1+‖T
−1(l p

i − gi )
p
‖
}
< α < ε2.

Let δε =
k⋂

i=1

{
ω ∈ ρ

∣∣ |l p
i (w)− g p

i (w)| ≥ ε and 1≤ p ≤ k
}
. Then we have

ε2/2> α >max
{
‖l p

i − g p
i ‖1

∣∣ 1≤ i, p ≤ k
}
≥ εµm(δε) for 1≤ m ≤ k.

Hence µm(δε) < ε/2 for m = 1, 2, . . . , k. Assuming that ε < 2, it follows that
µm(δ

c
ε) 6= 0 and since � is a Stonean space, and µm a normal measure, µm(δ

c
ε)=

µm((δ
c
ε)
◦) where (δc

ε)
◦ is the interior of δc

ε . The same argument as the preceding one
shows that there exists an open and closed subset σε ⊂ (δc

ε)
◦ with µm(σ

c
ε ) < ε/2.

Let λε = ρ ∩ σε . Then, µm(λε) < ε for all 1 ≤ m ≤ k. It follows that all the
components of the vectors lεi = liχλε ∈ L are in EB(�,6). Let M be the matrix
whose i-th column is lεi . Then, using Lemma 11, it follows that M is a bounded
linear operator that commutes with every element in B, so M ∈ B

′

. The choice
of α implies that M(w) is nonsingular for every ω ∈ λε . Consider the matrix N
defined as follows:

N (w)=

{
M(w)−1 if w ∈ λε ,

0 if w ∈ λc
ε .

By restricting N to an open and closed subset of λε , if necessary, we can apply
Lemma 11 again and get N ∈ B ′. It follows that the columns of the product M N
are linear combinations of vectors in D with coefficients in B. Since D is invariant
under B we have that these columns belong to D. Since M(w)N (w)= I for w ∈ λε
the proof is completed. �

We will use next the following results about spectral operators and their resolu-
tions of the identity from [Dunford and Schwartz 1988].
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Remark 14. If the operator M commutes with the spectral operator T , then M
commutes with every resolution of the identity of T .

Proof. This is [Dunford and Schwartz 1988, Corollary XV.3.7]. �

3. Algebras with complemented invariant subspace lattices

In this section we will prove our main result:

Theorem 15. Let B be the strongly closed subalgebra of B(X) generated by a
complete Boolean algebra of projections B⊂ B(X) of finite uniform multiplicity,
k, with the direct sum property. If A ⊂ B(X) is a strongly closed algebra with
complemented invariant subspace lattice that contains B, then A is reflexive.

The proof of this theorem will be given after a series of auxiliary results. In the
rest of this section B and B will be as in Theorem 15. We will identify X with
(L , ‖ · ‖0) as in Remark 8.

Proposition 16. Let B as in Theorem 15 and let T be a densely defined closed
operator on X which commutes with B. There exists an increasing sequence of
projections {qp}

∞

p=1 ⊂B that converges strongly to I such that T qp is a spectral
operator of finite type for every p ∈ N.

Proof. Let D⊂ X be the (dense) domain of T . Since T commutes with B it follows
that D is invariant under B. By Lemma 13 it follows that for every p ∈ N there
is an open and closed subset σp ⊂ � such that χσp

⊕ χσp
⊕ · · · ⊕ χσp

∈ D and
µl(σ

c
p) < 1/2p for every 1 ≤ l ≤ k. Define rp = S(χσp

) ∈B. Obviously, we can
take rp ≤ rp+1 (in the sense that rp X ⊂ rp+1 X) for every p ∈ N. Therefore T rp

(p ∈N) is a bounded operator and rp↗ I . On the other hand, by Remark 12, since
T rp ∈ B

′

, for every p ∈N, there exists a Borel set δp ∈6 such that, for all 1≤ l ≤ p,
we have µl(δ

c
p) < 1/2p. Furthermore, if qp = S(χδp∩σp

), then T qp is a spectral
operator of finite type. Clearly {qp} is an increasing sequence of projections in B

that converges strongly to I and the proof is completed. �

Proposition 17. Assume that B is as in the statement of Theorem 15. Let T be a
densely defined graph transformation for B⊂ B(X). Then there exists an increasing
sequence of projections {qp}

∞

p=1 ⊂ B that converges strongly to I such that T qp

is a spectral operator of finite type for every p ∈ N. In particular every such
transformation is closable and its closure commutes with B.

Proof. Let T be a densely defined graph transformation for B with domain DT . Since
T is a graph transformation for B, there exists l ∈N and operators T1, T2, . . . , Tl−2

such that the subspace

Z =
{

x ⊕ T x ⊕ T1x ⊕ T2x ⊕ · · ·⊕ Tl−2x
∣∣ x ∈ DT

}
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belongs to Lat B(l). Define 1l−1 = {x ⊕ x ⊕ · · ·⊕ | x ∈ X} ⊂ X (l−1). Then it can
be easily seen that the subspace

1c
l−1 =

{
x1⊕ x2⊕ · · ·⊕ xl−1

∣∣∣∣ xi ∈ X with
l−1∑
i=1

xi = 0
}

is a Banach subspace complement of 1l−1 which is invariant under every element
of B(l−1). The operator T̃ defined by

T̃ (x ⊕ x ⊕ · · ·⊕ x)= T x ⊕ T1x ⊕ · · ·⊕ Tl−2x if x ∈ DT

and
T̃ (x1⊕ x2⊕ · · ·⊕ xl−1)= 0 if x1⊕ x2⊕ · · ·⊕ xl−1 ∈1

c
l−1

is a closed, densely defined operator which commutes with B(l−1). An application
of Proposition 16 with k replaced by k(l − 1) completes the proof. �

Remark 18. Let A ⊂ B(X) be a strongly closed algebra with complemented
invariant subspace lattice and I ∈ A. Then, if Q ∈ A′ is such that Q2

= 0 it follows
that Q ∈ (algLat A)′.

Proof. The proof of [Feintuch and Rosenthal 1973, Lemma 3] for the particular case
of Hilbert spaces can be extended to the case of Banach spaces. Indeed, let Q ∈ A′

be such that Q2
= 0. Then, if Y = ker Q is the null space of Q, Y is in Lat A and

since A has a complemented invariant subspace lattice, Y has a complement, Y c in
Lat A. Therefore Q can be written as a matrix

Q =
[

0 c
0 0

]
,

and every a ∈ A can be written as the matrix

a =
[

a1 0
0 a2

]
.

Moreover, every b ∈ algLat A, can be written as a matrix

b =
[

b1 0
0 b2

]
.

Since aQ = Qa it follows that ca2 = a1c. Hence the subspace {cx ⊕ x | x ∈ Y c}

belongs to Lat A and is therefore invariant for algLat A. It follows that cb2 = b1c,
so Qb = bQ. �

Part (i) of the next result is a generalization of Remark 18.

Proposition 19. Let A ⊂ B(X) be an algebra with complemented invariant sub-
space lattice.
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(i) If Q ∈ A′ is a nilpotent operator, then Q ∈ (algLat A)′.

(ii) If T = R+Q is a spectral operator of finite type (where R is spectral of scalar
type and Q is nilpotent) and T ∈ A′, then R ∈ (algLat A)′ and N ∈ (algLat A)′.

Proof. We will prove point (i) of this proposition by induction. By Remark 18, if
Q ∈ A′ and Q2

= 0, then Q ∈ (algLat A)′. Suppose that for every operator Q ∈ A′

with Qn
= 0 it follows that Q ∈ (algLat A)′ and let Q ∈ A′ with Qn+1

= 0. Let p0

denote a projection on ker Q such that p0 ∈ A′. Since Qp0 = 0 it follows that

(1− p0)Q = (1− p0)Q(1− p0)

and therefore

(1− p0)Qk
= ((1− p0)Q(1− p0))

k, k ∈ N.

Since Qn+1
= 0 we have Qn(X)⊂ ker Q and therefore

0= (1− p0)Qn
= ((1− p0)Q(1− p0))

n.

By hypothesis, (1− p0)Q = (1− p0)Q(1− p0) ∈ (algLat A)′. On the other hand,
since Q ∈ A′ and p0 ∈ A′ we have p0 Q ∈ A′. Since obviously (p0 Q)2 = 0, by
Remark 18, it follows that p0 Q ∈ (algLat A)′. Therefore

Q = p0 Q+ (1− p0)Q ∈ (algLat A)′

and the proof of (i) is completed.
We turn now to prove point (ii). By Remark 14, every resolution of the iden-

tity of T , E(δ), where δ is a Borel subset of the spectrum of T , δ ⊂ sp(T ), is
in A′. Therefore, since A has complemented invariant subspace lattice, it follows
that E(δ) ∈ (algLat A)′ for every Borel set δ ⊂ sp(T ). Hence R =

∫
λ E(dλ) ∈

(algLat A)′. Since T ∈ A′ and R ∈ A′ it follows that Q ∈ A′. By part (i) it follows
that Q ∈ (algLat A)′. �

Lemma 20. Let A be a strongly closed algebra with complemented invariant
subspace lattice that contains a complete Boolean algebra of projections of finite
uniform multiplicity k with the direct sum property. Then, if K ∈ Lat A(n) for some
n ∈ N, then, there exists an increasing sequence of projections {pm} ⊂B, pm ↗ I
such that p(n)m K is complemented in Lat(pm Apm)

(n) for every m ∈ N.

Proof. We will prove the lemma by induction on n. For n = 1 the statement is
obvious with pm = I for every m. Let K ∈ Lat A(n). Define

K0 = {x ∈ X (n−1)
| 0⊕ x ∈ K }.

Obviously, K0 ∈ Lat A(n−1), so there exists an increasing sequence of projections
{rm} ⊂ B, rm ↗ I such that r (n−1)

m K0 is complemented in Lat(rm Arm)
(n−1). Let
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(r (n−1)
m K0)

c be the complement of r (n−1)
m K0 in Lat(rm Arm)

(n−1). Then,(
rm X ⊕ (r (n−1)

m K0)
c)
∩ K ∈ Lat A(n)

and
r (n)m K =

(
0⊕ r (n−1)

m K0
)
+
(
rm X ⊕ (r (n−1)

m K0)
c)
∩ r (n)m K .

Since
(
rm X ⊕ (r (n−1)

m K0)
c
)
∩ r (n)m K is the complement of 0⊕ r (n−1)

m K0 in r (n)m K ,
there exist graph transformations T1, T2, . . . , Tn−1 such that(

rm X ⊕ (r (n−1)
m K0)

c)
∩ r (n)m K =

{
x ⊕ T1x ⊕ T2x ⊕ · · ·⊕ Tn−1x

∣∣ x ∈ P
}
,

where P is a linear subspace of rm X invariant under every element of rm Arm . The
closure of P in rm X , P , belongs to Lat(rm Arm) and hence has a complement Pc

in Lat(rm Arm). For 1≤ i ≤ n− 1, consider the following densely defined, graph
transformation on rm X :

T̃i x =
{

Ti x if x ∈ P ,
0 if x ∈ Pc.

Then T̃i commutes with A. By Proposition 17, there exists an increasing sequence
of projections {qp} ⊂B, qp↗ I such that T̃i qp are bounded spectral operators of
finite type. From Lemma 3 it follows that the subspace{

qpx ⊕ T̃1qpx ⊕ T̃2qpx ⊕ · · ·⊕ T̃n−1qpx
∣∣ x ∈ qp P ⊕ qp Pc}

is complemented in Lat(qp Aqp)
(n). By the definition of the transformations T̃i it

follows immediately that the subspace{
qpx ⊕ T1qpx ⊕ T2qpx ⊕ · · ·⊕ Tn−1qpx

∣∣ x ∈ P
}

is complemented in Lat(qp Aqp)
(n). If we set pm = rmqm ∈B we have that pm↗ I ,

p(n)m K is complemented in Lat(pm Apm)
(n):

p(n)m X =
(
0⊕ p(n−1)

m K0
)
+
{

pm x ⊕ T1 pm x ⊕ · · ·⊕ Tn−1 pm x
∣∣ x ∈ P

}
+
(
(pm P)c⊕ p(n−1)

m K c
0
)
.

Hence
p(n)m X =

(
p(n)m K

)
+
(
(pm P)c⊕ p(n−1)

m K c
0
)
,

and the proof of the lemma is completed. �

The following statement follows from the proof of Lemma 20.

Remark 21. If A is as in the statement of Lemma 20 and K ∈ Lat A(n) for some
n ∈N, then there exists an increasing sequence of projections {pm} ⊂B, pm ↗ I
such that p(n)m K = (0⊕ p(n−1)

m K0)+{pm x⊕T1 pm x⊕· · ·⊕Tn−1 pm x
∣∣ x ∈ P}, where

K0= {x ∈ X (n−1)
| 0⊕x ∈ K } and Ti pm , 1≤ i ≤ n−1, m ∈N, are bounded spectral



REFLEXIVE OPERATOR ALGEBRAS ON BANACH SPACES 463

operators of finite type on the closed A-invariant subspace pm P that commute with
pm Apm .

Proof of Theorem 15. Let b ∈ algLat A and K ∈ Lat A(n). We will prove by
induction on n that there exists an increasing sequence of projections {pm} ⊂ B

such that pm ↗ I and p(n)m K ∈ Lat(pmbpm)
(n) for every m ∈ N and therefore

K ∈ Lat b(n); then apply Remark 1 to conclude that b ∈ A. By Remark 21, there
exists an increasing sequence of projections {pm} ⊂B, pm ↗ I such that p(n)m K =
(0⊕ p(n−1)

m K0)+{pm x ⊕ T1 pm x ⊕ T2 pm x ⊕ · · ·⊕ Tn−1 pm x | x ∈ P} where K0 =

{x ∈ X (n−1)
| 0⊕ x ∈ K } and Ti pm, 1 ≤ i ≤ n − 1, m ∈ N, are bounded spectral

operators of finite type on the closed A-invariant subspace pm P that commute with
pm Apm . The induction hypothesis and Proposition 2 (i) imply that 0⊕ p(n−1)

m K0 ∈

Lat(pmbpm)
(n). By Proposition 19 (ii) it follows that the bounded spectral operators

of finite type Ti pm, 1≤ i ≤ n− 1, m ∈ N commute with pmbpm . Hence p(n)m K ∈
Lat(pmbpm)

(n). Since pm↗ I and, by Remark 7 (iv), B is norm bounded, it follows
that K ∈ Lat b(n) and the result follows. �

Corollary 22. Let A⊂ B(X) be a strongly closed algebra that contains a complete
Boolean algebra of projections B of finite uniform multiplicity with the direct sum
property. If A has complemented invariant subspace lattice, then A = A′′ where A′′

is the bicommutant of A.

Proof. Follows from Theorem 15 and Remark 4. �
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