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HARER STABILITY AND ORBIFOLD COHOMOLOGY

NICOLA PAGANI

In this paper we review the combinatorics of the twisted sectors of Mg,n, and
we exhibit a formula for the age of each of them in terms of the combina-
torial data. Then we show that orbifold cohomology of Mg,n when g → ∞

reduces to its ordinary cohomology. We do this by showing that the twisted
sector of minimum age is always the hyperelliptic twisted sector with all
markings in the Weierstrass points; the age of the latter moduli space is just
half its codimension in Mg,n.

1. Introduction

In recent years there have been lots of new results on geometrical and topological
properties of the moduli space Mg,n parametrizing smooth curves of genus g with
n distinct marked points on it. When 2g − 2 + n > 0, this moduli space is a
smooth Deligne–Mumford stack, or an orbifold, and its coarse moduli space is a
quasiprojective variety of dimension 3g− 3+ n. When n > 2g+ 2, every marked
curve is rigid, therefore the moduli space is actually a smooth quasiprojective
variety.

A celebrated result states that there are isomorphisms

(1) H k(Mg,n,Q)∼= H k(Mg+1,n,Q) when 3k+ 2≤ 2g.

These isomorphisms were introduced in [Harer 1985], but the ranges of their
validity have been gradually improved over time by the efforts of different authors.
This allows the definition of the stable cohomology, denoted H∗(M∞,n,Q). The
tautological classes κ and ψ are preserved by the above isomorphisms when g is
sufficiently large.

A recent result, whose proof was completed in [Madsen and Weiss 2007], asserts
that the resulting maps

(2) Q[κ1, κ2, . . . ]⊗Q[ψ1, . . . , ψn] → H∗(M∞,n).

are also isomorphisms. (More precisely, the paper cited shows the result in the case
n = 0; the extension to n > 0 follows from [Looijenga 1996, Proposition 2.1].)
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We refer the reader to [Kirwan 2002; Wahl 2012] for a survey of these topological
results.

In the latest years, building on earlier results in topology [Kawasaki 1979] and
theoretical physics [Dixon et al. 1985; 1986], it has become clearer that when
studying the geometry and topology of orbifolds, one should include in the study
the twisted sectors of the orbifold itself. We refer to [Adem et al. 2007] for an
introduction to this emerging new subject. In particular, the cohomology theory of
an orbifold is enriched by the so-called orbifold cohomology, introduced by Chen
and Ruan in [2004]. As a graded vector space, the orbifold cohomology is the
direct sum of the cohomology of the original orbifold and of the cohomology of
the twisted sectors; the degree of the cohomology classes of each twisted sector
is shifted in orbifold cohomology by (twice) a rational number called age. This
number is not of topological nature, in fact it depends on the complex structure.
Its geometric significance appears in [Jarvis et al. 2007] as the virtual rank of an
element in the rational K -theory of the twisted sector also known as “half of the
normal bundle”, this element plays a key role in orbifold intersection theory.

In this note, we introduce the twisted sectors of Mg,n in the combinatorial
description of [Pagani 2012; Pagani and Tommasi 2013], we write a closed formula
for the age of the twisted sectors of Mg,n . (The two papers just cited contain the
special cases of this formula for M2,n and Mg, respectively.) Our main result is
Theorem 1, which states that for fixed (g, n), the twisted sector of minimum age is
the hyperelliptic twisted sector with marked Weierstrass points. It is a well-known
and classical fact, which we review in Proposition 1, that the twisted sectors of Mg,n

have codimension higher than g− 2+ n, with equality only for the hyperelliptic
locus. Our novel contribution here is that the virtual rank of “half of the normal
bundle” (see above) is strictly greater than 1

2(g − 2+ n), with equality only for
the hyperelliptic twisted sector. This inequality might have further geometric
consequences, besides the implications in orbifold cohomology investigated in this
note. (The study of the age of the twisted sectors of various types of moduli spaces
of curves, has also recently played a significant role in the investigation of the
singularities of the coarse moduli space.)

Combining Theorem 1 with Harer stability, we obtain that the orbifold coho-
mology of Mg,n stabilizes. Combining further our main result with the theorem of
Madsen–Weiss, we can explicitly compute the orbifold cohomology of Mg,n in low
degrees. Indeed, from Theorem 1, we deduce

(3) H k
orb(Mg,n,Q)= H k(Mg,n,Q) if k < g− 2+ n or n > 2g+ 2.

(There are no twisted sectors of Mg,n if and only if n > 2g+ 2).
The stabilization of orbifold cohomology was conjectured by Fantechi in the

discussion following her talk [Fantechi 2009] at MSRI. We acknowledge her for
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the insight in this topic. We also thank Stefano Maggiolo for having significantly
improved the computer program that plays a role at the end of the proof of our
main result. The author was supported by DFG project Hu 337/6-2.

2. The twisted sectors of Mg,n and their age

In this section we review the combinatorics of the twisted sectors of Mg,n . This
description of the twisted sectors of Mg,n was obtained in [Pagani 2012] for n ≥ 1
or g = 2, and in [Pagani and Tommasi 2013] for the remaining cases Mg,0, g ≥ 3.

Let us fix (g, n) with 2g − 2+ n > 0. A (g, n)-admissible datum consists of
non-negative integers (g′, N ; d1, . . . , dN−1, a1, . . . , aN−1) such that N ≥ 2 and

2g− 2= N (2g′− 2)+
N−1∑
i=1

(N − gcd(i, N ))di ,(4)

N−1∑
i=1

i di ≡ 0 (mod N ),(5)

N−1∑
i=1

ai = n, ai ≤ di , ai = 0 if gcd(i, N ) 6= 1,(6)

n = g′ = 0 =⇒ the g.c.d. of N and of the i’s such that di 6= 0 is 1.(7)

Each (g, n)-admissible datum corresponds to
( n

a1,...,aN−1

)
twisted sectors of Mg,n

that are related each to the other by an (a1, . . . , aN−1)-permutation of the n marked
points. Since we will only investigate properties of the twisted sectors of Mg,n that
do not depend on this permutation, from now on we shall slightly abuse the notation
and identify each twisted sector Y of Mg,n with its (g, n)-admissible datum

Y ∼ (g′, N ; d1, . . . , dN−1, a1, . . . , aN−1).

These facts follow from [Pagani 2012, Proposition 2.13] for n ≥ 1 and from [Pagani
and Tommasi 2013, Corollary 2.16, Theorem 2.19] in the case n = 0.

We observe that, from condition (4), there are no (g, n)-admissible data when
n > 2g+ 2; in particular, this is the case when g equals 0.

For completeness, we briefly recall our description of the twisted sectors of
Mg,n , from which the above correspondence follows. For more details, we refer to
[Pagani 2012, Section 2.b] for the case n ≥ 1 and to [Pagani and Tommasi 2013,
Section 2.b] for the case n = 0.

Construction 1. A twisted sector of Mg,n parametrizes connected cyclic covers
of order N of curves of genus g′ with total space a curve of genus g, where the
n marked points are chosen among the points of total ramification. The branch
divisor of the cyclic cover splits into N − 1 divisors, some of which are possibly
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empty. Indeed to any point p in the branch divisor D, let q be any point in the
fiber of p under the cyclic cover map; we define Hp as the stabilizer of the action
of Z/NZ at q , and ψp as the character of the action of Hp on the cotangent space
in q. Then, for 0 < i < N , we define Di as the subset of D of those p such that
Hp equals the subgroup generated by i in Z/NZ, and such that ψp(i) equals ωN , a
fixed generator for µN : the group of N -th roots of 1. In addition to (g, g′, N ), the
admissible datum consists of di := |Di | and of ai , the number of chosen marked
points in the preimage of Di under the cyclic cover map.

Given a (g, n)-admissible datum, we can construct a moduli space of cyclic
covers as in the paragraph above. Condition (4) is the Riemann–Hurwitz formula,
condition (5) is a compatibility condition that guarantees the existence of a (not
necessarily connected) cyclic cover with the data di and N , condition (6) corresponds
to the fact that the marked points must be points of total ramification for the cover.
Now if n ≥ 1, it is easy to see that the total space of the cover is forced to be
connected and that the moduli space parametrizing such covers is also connected.
If instead n = 0, it is shown in [Pagani and Tommasi 2013, Theorem 2.19] that
there is always one connected component of the moduli space that parametrizes
connected cyclic covers. This component may possibly be empty only when g′ = 0,
condition (7) rules out precisely these cases.

Let us fix a twisted sector (g′, N ; d1, . . . , dN−1, a1, . . . , aN−1). Since Y admits
a finite map to Mg′,

∑
di , its dimension is 3g′−3+

∑
di , its codimension in Mg,n is

(8) codim(Y ) := 3g− 3g′−
N−1∑
i=1

di + n,

and its twin is (g′, N ; dN−1, . . . , d1, aN−1, . . . , a1). If (g, n) is fixed and n is at
most 2g+ 2, the hyperelliptic twisted sector with n marked Weierstrass points is
(g′ = 0, N = 2; d1 = 2g + 2, a1 = n). In short, we will also call it simply the
hyperelliptic twisted sector; from (8) it has codimension g− 2+ n.

The next result is classical, but we review it for completeness.

Proposition 1. The codimension of any twisted sector Y of Mg,n satisfies

codim(Y )≥ g− 2+ n,

with equality if and only if Y is the hyperelliptic twisted sector with n marked
Weierstrass points.

Proof. Using (8), our statement is reduced to proving the inequality

(9)
∑

di ≤ 2g− 3g′+ 2.
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Using (4), we have

(10)
N
2

∑
di ≤

∑
di (N − gcd(i, N ))= 2g− 2− N (2g′− 2);

therefore, it is enough to show that

2
N
(2g− 2− N (2g′− 2))≤ 2g− 3g′+ 2.

Or, rearranging the terms, that

(11) (2N − 4)(g− 1)+ Ng′ ≥ 0.

This is clearly always true. Equality holds if and only if g′ = 0 and N = 2. �

Every twisted sector Y is assigned a rational number, first defined by Chen and
Ruan in [2004], which is called the degree shifting number, age, or fermionic shift.
Orbifold cohomology is then the direct sum of the ordinary cohomology and of
the cohomology of all the twisted sectors, where the latter is shifted in degree by
twice the age. For completeness, we briefly review the Chen–Ruan definition of
the degree shifting number, building on Construction 1.

Construction 2. Let f : Y →Mg,n be the natural map from the twisted sector to
the moduli stack of curves. The group µN of N -th roots of 1 acts on f ∗(TMg,n ),
the action can be diagonalized, and each eigenvalue at a point of Y has the form
λk = e2π iαk , where the αk ∈ [0, 1)∩Q are the “logarithms” of the eigenvalues. It is
not difficult to see that the function

∑
k αk is well-defined and constant on Y , thus

the age of Y is defined as

(12) a(Y ) :=
∑

k

αk ∈Q.

Moreover, by the very definition of twisted sector, the action of µN on TY is trivial,
thus in the definition (12) it is equivalent to sum the “logarithms” of the eigenvalues
of the normal bundle NY Mg,n , where the latter is defined by the exact sequence of
vector bundles

0→ TY → f ∗(TMg,n )→ NY Mg,n→ 0.

The age of a twisted sector can be interpreted as the virtual rank of an element
in the rational K -theory of Y that plays an important role in orbifold intersection
theory, see [Jarvis et al. 2007, Definition 1.3, Sections 1.3 and 4].

The age of a twisted sector of Mg,n can explicitly be determined in terms of its
admissible datum. From [Pagani and Tommasi 2013, Proposition 5.6] and [Pagani
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2012, Lemma 4.6], we have the following formula for the age:

(13) a(Y )=
(3g′− 3)(N − 1)

2
+

1
N

∑
gcd(i,N )=1

ai

N−1∑
k=1

kσ(k, i)

+
1
N

N−1∑
i=1

di

N−1∑
k=1

k
({

ki
N

}
+ σ(k, i)

)
,

where {x} := x −bxc denotes the fractional part of x ∈Q+, and

σ(k, i) :=
{

0 if ki + gcd(i, N )≡ 0 (mod N ),
1 if ki + gcd(i, N ) 6≡ 0 (mod N ).

Using only (13), it is an easy exercise to check that, if Y and Y ′ are twins, then

(14) a(Y )+ a(Y ′)= codim(Y )= codim(Y ′).

For example, when a twisted sector Y is twin to itself (this happens always, for
example, when N = 2), its age is half its codimension.

3. The twisted sectors of minimum age

Using only the combinatorial description of the previous section, and in analogy
with Proposition 1, we can prove the main result of this note. From now on, we
assume 2g− 2+ n > 0.

Theorem 1. The age of any twisted sector Y satisfies 2a(Y ) ≥ g − 2+ n, with
equality if and only if Y is the hyperelliptic twisted sector with n marked Weierstrass
points.

The marked hyperelliptic twisted sector is, using the terminology established in
the previous section, twin to itself. Therefore its age is half its codimension:
1
2(g− 2+ n).

This implies the following corollary, relevant for orbifold cohomology:

(15) H k(Mg,n,Q)= H k
orb(Mg,n,Q) if k < g− 2+ n or n > 2g+ 2.

There are no twisted sectors of Mg,n if and only if n > 2g+2; otherwise our bound
on the cohomological degree k is sharp.

Using the stability results for ordinary cohomology, we deduce:

Corollary 1. The isomorphisms (1) are, in fact, isomorphisms

H k
orb(Mg,n,Q)∼= H k

orb(Mg+1,n,Q)

when k ≤min(g− 3+ n, 2g/3− 2/3).
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In particular, we can interpret this by saying that orbifold cohomology of Mg,n

“trivially stabilizes” when g→∞, and the stable orbifold cohomology of Mg,n

coincides with its ordinary stable cohomology. The only pairs (g, n) for which
2g/3− 2/3> g− 3+ n occur are

(1, 1), (2, 0), (3, 0), (4, 0).

In these special cases, the ranges for k in Corollary 1 are optimal, whereas in all
other cases our ranges coincide with the ranges of stability for ordinary cohomology:
k < 2g/3− 2/3. The latter ranges are known to be optimal when g ≡ 2 (mod 3).
More details on the sharpness of the ranges for cohomological stability can be
found in [Wahl 2012, p. 2].

Combining (15) with the isomorphisms (2), we see how the orbifold cohomology
of Mg,n is explicitly computable in low degrees.

We now move to the proof of Theorem 1. Thanks to Proposition 1 and to (14),
what we have to prove is in fact

(16) |a(Y )− a(Y ′)| ≤ codim(Y )− (g− 2+ n)

= 2g+ 2− 3g′−
∑

di ,

with equality only when Y is the hyperelliptic twisted sector with n marked Weier-
strass points.

We introduce some notation. Let

6 := {d ∈ N | d divides N , d 6= N }

be the set of proper divisors of N , and let

a(Y )mark :=
1
N

∑
gcd(i,N )=1

ai

N−1∑
k=1

k σ(k, i),(17)

a(Y )σ :=
1
N

∑
gcd(i,N )=σ

di

N−1∑
k=1

k
({

ki
N

}
+ σ(k, i)

)
.(18)

We can rewrite formula (13) for the age of a twisted sector Y as:

a(Y )=
(3g′− 3)(N − 1)

2
+ a(Y )mark+

∑
σ∈6

a(Y )σ .

The term a(Y )mark is the contribution to the age of Y coming from the marked
points, and as such it is zero when n = 0. Of course now we have the estimate

(19) |a(Y )− a(Y ′)| ≤
∣∣a(Y )mark− a(Y ′)mark

∣∣+∑
σ∈6

∣∣a(Y )σ − a(Y ′)σ
∣∣ .

We can give estimates for each term in the right hand side of (19).
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Lemma 1. The following inequalities hold:

|a(Y )mark− a(Y ′)mark| ≤
N − 2

N

∑
gcd(i,N )=1

ai ,(20)

|a(Y )σ − a(Y ′)σ | ≤
(N − 2σ)(N/σ + 5)

6N

∑
gcd(i,N )=σ

di .(21)

Proof. Let us begin with the contribution coming from the marked points. The left
hand side of (20) is equal to

(22)
1
N

∣∣∣∑ ai (λ(i)− λ(N − i))
∣∣∣ ,

where λ(s) is the multiplicative inverse of s modulo N . The maximum of the
absolute value of

λ(i)− λ(N − i)= 2λ(i)− N

is obtained when i is either 1 or N − 1.
As for the second inequality, we separate the two summands in the right hand

side of (18). For the first term, consider the function of i

gσN (i) :=

∣∣∣∣∣
N−1∑
k=1

k
({

ik
N

}
−

{
(N − i)k

N

})∣∣∣∣∣ .
Its maximum among the values of i such that gcd(i, N )= σ is obtained for i = σ
or for i = N − σ . From this, we obtain

(23)

∣∣∣∣∣
N−1∑
k=1

k
{

ik
N

}
−

{
(N − i)k

N

}∣∣∣∣∣≤ gσN (σ )=
1
6

(
N
σ
− 1

)
(N − 2σ).

The second term is treated similarly to the contribution coming from the marked
points. The maximum of the absolute value of∑

k

(σ (k, i)− σ(k, N − i))= 2i − N

is obtained when i is either σ or N − σ . Combining this fact with (23), we get the
desired inequality. �

Proof of Theorem 1. As we have already observed, it suffices to prove (16). By
using the Riemann–Hurwitz formula (4) to eliminate the variable g, the right hand
side of (16) can be rearranged to

(2N − 3)g′− 2(N − 2)+
∑
σ∈6

(N − σ − 1)
∑

gcd(i,N )=σ

di .
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Now let us define for convenience the function

fN (σ ) := (N − σ − 1)−
(N − 2σ)

( N
σ
+ 5

)
6N

=

(
6− 1

σ

)
N 2
− (6σ + 9)N + 10σ

6N

for any integer N ≥ 2 and any σ a real number between 1 and N/2. By using (20)
and (21), in order to prove (16) it is enough to prove

(24) −
N − 2

N

∑
gcd(i,N )=1

ai +
∑
σ∈6

fN (σ )
∑

gcd(i,N )=σ

di ≥ (2− 2g′)(N − 2)− g′,

with equality only in the case of the hyperelliptic twisted sector. Note that ai ≤ di

from inequality (6).
The left hand side of (24) is always nonnegative for any integer N ≥ 2, because

f̃N (1) := fN (1)−
N − 2

N
=
(N − 2)(5N − 11)

6N
≥ 0.

Therefore when g′ > 0, the strict inequality (24) holds evidently, as the right hand
side is strictly smaller than 0. Thus all we have to prove is (24) when g′ = 0, a case
in which we always have that

∑
di ≥ 3 (this follows from condition (4) with g′ = 0

and g > 0).
We start with the case g′ = 0 and

∑
di ≥ 4. The function fN is concave (just

look at its second derivative with respect to σ ), thus it has its minimum either in
1 or in N/2, and we have fN (N/2)= (N − 2)/2. The following two inequalities
hold in this case:

f̃N (1)
∑

di ≤ 2(N − 2),(25)

fN (N/2)
∑

di ≤ 2(N − 2),(26)

and they suffice to prove (24). If (24) is an equality, then either (25) or (26) must be
an equality. If N = 2, we are precisely in the case of the hyperelliptic twisted sector.
If N > 2, the inequality (25) is strict, so (26) must be an equality and therefore∑

di = 4. So if (24) is an equality, with g′= 0, N > 2 and
∑

di = 4, then dN/2= 4,
but this implies g = 1 by (4), hence n ≥ 1, and this case does not exist because
of (6).

So we are left with the case g′ = 0 and
∑

di = 3. A large number of twisted
sectors still falls into this last category, but not the hyperelliptic twisted sector. We
set the three nonzero di ’s to 1, and denote them by dσ1 = dσ2 = dσ3 = 1. Then it
suffices to prove the strict inequality

(27)
(

6−
3∑

i=1

1
σi

)
N 2
−

(
3+ 6

3∑
i=1

σi

)
N + 10

3∑
i=1

σi > 6n(N − 2).
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If N is fixed, there are only finitely many possibilities for the variables involved in
(27). The constraints are

(28)


σ1+ σ2+ σ3 < N ,

aσ1+ bσ2+ cσ3 = N for some a, b, c ∈ N+,

n ≤
∣∣{i | σi = 1}

∣∣≤ 3,

σi divides N , σi 6= N ,

where all the quantities involved are integers. The first is a consequence of Riemann–
Hurwitz (4) (assuming g > 1), the second follows from (5) and the third from (6).
From now on, we aim at proving (27) for N greater than a certain explicit constant.
We will repeatedly use that the left hand side of (27), for fixed n, N , is a concave
function in the domain of definition (28). We can also assume for convenience that
σ1 ≤ σ2 ≤ σ3.

• If n = 3, then from (28) we deduce σ1 = σ2 = σ3 = 1. The inequality (27) is
satisfied when N > 11.

• If n = 2, from (28), we have that σ1 = σ2 = 1. It is enough to check (27) for the
extreme values σ3 = 1 and σ3 = N/2. The first follows from the case n = 3, by
checking the case of σ3 = N/2 we see that (27) is valid when N > 22.

• If n = 1, from (28) σ1 = 1, so we have 1≤ σ2 ≤ σ3 ≤ N/2 and σ2+σ3 < N − 1.
It is enough to check the extremal values. The case when σ2 = 1 follows from
the case n = 2. From the second point in (28), if σ3 = N/2, then σ2 is either 1
or 2; in the latter case (27) is valid when N > 14. Finally, when σ2 = σ3 = N/3,
(27) is always valid.

• If n = 0, we can assume σi ≥ 2, since the other cases fall in the above paragraph.
Moreover, there are six extremal cases that fulfill the first and the last of (28):

(2, 2, 2),
(

2, 2, N
2

)
,
(

2, N
3
,

N
2

)
,
(N

7
,

N
3
,

N
2

)
,
(N

5
,

N
4
,

N
2

)
,
(N

4
,

N
3
,

N
3

)
.

We check that (27) for the extremal cases is satisfied when N > 36 (the inequality
is sharp in the case of the fourth triple).

To conclude the proof, we have to check that (16) holds in the cases when g′ = 0,∑
di = 3 and N < 37, which imply g ≤ 17. These cases are only finitely many,

and can be handled with the help of a computer program.1 �

Let us conclude with some remarks.

1The source code of a C++ program that lists all twisted sectors of Mg , each one with its age, is
available at http://pcwww.liv.ac.uk/~pagani/twisted.cpp.

http://pcwww.liv.ac.uk/~pagani/twisted.cpp
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Remark 1. We list the number of twisted sectors of Mg for 1≤ g ≤ 17, to give an
idea of its rapid growth:

(7,17,47,72,76,203,196,225,415,537,427,1040,811,779,1750,1860,1371).

Then the number of twisted sectors of Mg with g′ = 0:

(7, 16, 43, 65, 64, 193, 163, 207, 372, 485, 359, 983, 657, 866, 1592, 1636, 1115).

And, finally, the number of twisted sectors of Mg with g′ = 0 and
∑

di = 3:

(6, 12, 32, 38, 42, 108, 76, 100, 184, 190, 150, 352, 162, 286, 544, 382, 196).

These final 2860 twisted sectors are those for which we performed the computer
assisted calculation mentioned in the last paragraph of the proof of Theorem 1.

Remark 2. One can also ask what are the twisted sectors of small age in Mg,n , after
the marked hyperelliptic one. Here we list, for fixed (g, n), the first twisted sectors
in order of increasing age: marked hyperelliptic, marked bielliptic, . . . , (marked)
double covers of curves of genus dg/2e. We remark that the ranges of existence of
those twisted sectors, in terms of g and n, are, respectively,

n ≤ 2g+ 2, n ≤ 2g− 2, n ≤ 2g− 6, . . . , n ≤ 1+ (−1)g;

their ages are, respectively,

g− 2+ n
2

,
g− 1+ n

2
,

g+ n
2

, . . . ,
3bg/2c− 1− (−1)g + n

2
.

After all these, there is one marked trigonal cyclic twisted sector (when n≤ g+2).
Then the picture becomes more complicated, and we do not know the answer. For
example, we have empirically observed that the minimum age among twisted sectors
of codimension k can be bigger than the minimum age among twisted sectors of
codimension k+ 1.

The validity of the statements that we made in this remark require a long combi-
natorial proof along the lines of the proof of Theorem 1, which we do not include
in this note as it is not really relevant to our scope.

Remark 3. Condition (7) has not been used in any of the steps of the proof of
Theorem 1, which could then have been stated slightly more generally for the
twisted sectors of the moduli spaces of not necessarily connected smooth curves of
genus g.

Remark 4. There is no such thing as a stable cohomology in low degrees for Mg,n;
it is a classical fact for example that even the second Betti number (which equals
the dimension of the Picard group in this case) grows exponentially in g. It still
makes sense to ask for the twisted sector of minimum age of Mg,n , but the answer
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is much easier. To fix the ideas, we give the answer when g+ n > 3 and g > 0:
the cases in which the generalized hyperelliptic locus has codimension > 1. Then
the unique twisted sector of minimum age is the codimension-1 locus, consisting
generically of a smooth elliptic curve glued at the origin to a smooth curve of genus
g−1 carrying all the marked points, and with the automorphism induced by the pair
(elliptic involution on the elliptic curve, identity). Its age is 1

2 : half its codimension.
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