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SPECTRA OF PRODUCT GRAPHS AND
PERMANENTS OF MATRICES OVER FINITE RINGS

LE ANH VINH

We study the spectra of product graphs over the finite cyclic ring Zm. Using
this spectra, we show that if E is a sufficiently large subset of Zk

m then the set
of permanents of k × k matrices with rows in E contains all nonunits of Zm.

1. Introduction

Let Fq be a finite field of q elements where q is an odd prime power. The prime
base field Fp of Fq may then be naturally identified with Zp. Let M be an k × k
matrix. Two basic parameters of M are its determinant

Det(M) :=
∑
σ∈Sk

sgn(σ )
k∏

i=1

aiσ(i),

and its permanent

Per(M) :=
∑
σ∈Sk

k∏
i=1

aiσ(i).

The distribution of the determinants of matrices with entries in a finite field Fq

has been studied by various researchers. Suppose that the ground field Fq is fixed
and M = Mk is a random k× k matrix with entries chosen independently from Fq .
If the entries are chosen uniformly from Fq , then it is well known that

(1-1) Pr(Mk is nonsingular)→
∏
i>1

(1− q−i ) as k→∞.

It is interesting that (1-1) is quite robust. Specifically, J. Kahn and J. Komlós [2001]
proved a strong necessary and sufficient condition for (1-1).

Theorem 1.1 [Kahn and Komlós 2001]. Let Mk be a random k × k matrix with
entries chosen according to some fixed nondegenerate probability distribution µ on
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Fq . Then (1-1) holds if and only if the support of µ is not contained in any proper
affine subfield of Fq .

An extension of the uniform limit to random matrices with µ depending on k
was considered by Kovalenko, Levitskaya, and Savchuk [1986]. They proved the
standard limit (1-1) under the condition that the entries mi j of M are independent
and Pr(mi j = α) > (log k+α(1))/n for all α ∈ Fq . The behavior of the nullity of
Mk for 1−µ(0) close to log k/k and µ(α) = (1−µ(0))/(q − 1) for α 6= 0 was
also studied by Blömer, Karp, and Welzl [1997].

Another direction is to fix the dimension k of matrices and view the size of
the finite field as an asymptotic parameter. Note that the implied constants in
the symbols O , o, ., and � may depend on the integer parameter k. We recall
that the notations U = O(V ) and U . V are equivalent to the assertion that the
inequality |U | ≤ c|V | holds for some constant c > 0. The notations U = o(V )
and U � V are equivalent to the assertion that for any ε > 0, the inequality
|U | ≤ ε|V | holds when the variables of U and V are sufficiently large. For an
integer k and a subset E⊆ Fk

q , let Mk(E) denote the set of k× k matrices with rows
in E. For any t ∈ Fq , let Dk(E; t) be the number of k×k matrices in Mk(E) having
determinant t . Ahmadi and Shparlinski [2007] studied some natural classes of
matrices over finite fields Fp of p elements with components in a given subinterval
[−H, H ] ⊆ [−(p− 1)/2, (p− 1)/2]. They showed that

(1-2) Dk([−H, H ]k; t)= (1+ o(1))
(2H + 1)k

2

p
,

if t ∈ F∗p and H & p3/4+ε for any constant ε > 0. In the case k = 2, the lower bound
of the size of the interval can be improved to H & p1/2.

Using the geometry incidence machinery developed in [Covert et al. 2010],
and some properties of nonsingular matrices, the author [Vinh 2009] obtained the
following result for higher-dimensional cases (k ≥ 4):

Dk(A
k
; t)= (1+ o(1))

|A|k
2

q
,

if t ∈ F∗q and A ⊆ Fq of cardinality |A| � qk/(2k−1). Covert et al. [2010] studied
this problem in a more general setting. A subset E⊆ Fk

q is called a product-like set
if |Hl ∩ E|. |E|l/k for any l-dimensional subspace Hl ⊂ Fk

q . Covert et al. showed
that

D3(E; t)= (1+ o(1))
|E|3

q
,

if t ∈ F∗q and E ⊂ F3
q is a product-like set of cardinality |E| � q15/8. In the

singular case, the author [Vinh 2012b] showed that for any subset E ⊆ Fk
q with

|E|� qk−1+2/k then the number of singular matrices whose rows are in E is close to



SPECTRA OF PRODUCT GRAPHS AND PERMANENTS OF MATRICES 481

the expected number (1+o(1))|E|k/q . In the general case, the author [Vinh 2013a]
showed that if E is a subset of the k-dimensional vector space over a finite field Fq

(k ≥ 3) of cardinality |E| ≥ (k− 1)qk−1, then the set of volumes of k-dimensional
parallelepipeds determined by E covers Fq . This bound is sharp up to a factor of
(k− 1) as taking E to be a (k− 1)-hyperplane through the origin shows.

On the other hand, little is known about the permanent. The only known uniform
limit similar to (1-1) for the permanent is due to Lyapkov and Sevast′yanov [Lyapkov
and Sevast’yanov 1996]. They proved that the permanent of a random k× l matrix
Mkl with elements from Fp and independent rows has the limit distribution of the
form

lim
k→∞

Pr(Per(Mkl)= λ)= ρlδλ0+ (1− ρl)/p, λ ∈ Fp,

where δλ0 is Kronecker’s symbol. In [Vinh 2012a], the author studied the distribution
of the permanent when the dimension of matrices is fixed. We are interested in
the set of all permanents, Pk(E)= {Per(M) : M ∈ Mk(E)}. Using Fourier analytic
methods, the author [Vinh 2012a] proved the following result.

Theorem 1.2 [Vinh 2012a]. Suppose that q is an odd prime power and gcd(q, k)=1.
If E∩ (F∗q)

k
6=∅, and |E|& q(k+1/2), then F∗q ⊆ Pk(E).

Note that if |E| > nqn−1 then E ∩ (F∗q)
k
6= ∅. Hence we have an immediate

corollary of Theorem 1.2.

Corollary 1.3 [Vinh 2012a]. Suppose that q is an odd prime power and gcd(q, n)=1.

(a) If E⊂ Fn
q of cardinality |E|> nqn−1, then F∗q ⊆ Pn(E).

(b) If A⊂ Fq of cardinality |A| � q1/2+1/(2n), then F∗q ⊆ Pn(A
n).

The bound in the first part of Corollary 1.3 is tight up to a factor of n. For
example, |{x ∈ Fn

q : x1 = 0}| = qn−1 and Pn({x ∈ Fn
q : x1 = 0}) = 0. However,

we conjecture that the bound in the second part of Corollary 1.3 can be further
improved to |A| � q1/2+ε (for any ε > 0) when n is sufficiently large.

Let m be a large nonprime integer and Zm be the ring of residues modulo m. Let
γ (m) be the smallest prime divisor of m, ω(m) the number of prime divisors of
m, and τ(m) the number of divisors of m. We identify Zm with {0, 1, . . . ,m− 1}.
Define the set of units and the set of nonunits in Zm by Z×m and Z0

m , respectively. The
finite Euclidean space Zk

m consists of column vectors x, with j-th entries x j ∈ Zm .
The main purpose of this paper is to extend Theorem 1.2 to the setting of finite
cyclic rings Zm . One reason for considering this situation is that if one is interested
in answering similar questions in the setting of rational points, one can ask questions
for such sets and see how they compare to the answers in Rk . By scale invariance of
these questions, the problem for a subset E of Qk would be the same as for subsets
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of Zk
m . More precisely, we have the following analog of Theorem 1.2 over the finite

cyclic rings.

Theorem 1.4. Suppose that m is a large integer and gcd(m, k)= 1. If E∩(Z×m)
k
6=

∅, and

|E|&
τ(m)mk

γ (m)(k−1)/2 ,

then Z×m ⊆ Pk(E).

Notice that if |E|> k(m−φ(m))mk−1 then E∩ (Z×m)
k
6=∅. Hence, we have an

immediate corollary of Theorem 1.4.

Corollary 1.5. Suppose that m is a large integer and gcd(m, k)= 1.

(a) Suppose that
(m−φ(m))γ (m)(k−1)/2 & τ(m)m

and
|E|& (m−φ(m))mk−1,

then Z×m ⊆ Pk(E).

(b) Suppose that A⊂ Zm of cardinality

|A|&
τ(m)m

γ (m)(k−1/2k) ,

then Z×m ⊆ Pk(A
k).

Note that the bound in Corollary 1.5 is sharp. For example, if E= Z0
m ×Zk−1

m
then Pk(E)⊂ Z0

m . Theorem 1.4 and Corollary 1.5 are most effective when m has
only a few prime divisors. For example, if m = pr , we have the following result.

Theorem 1.6. Suppose that pr is a large prime power and gcd(p, k) = 1. If
E∩ (Z×pr )k 6=∅, and

|E|& (r + 1)prk−(k−1/2),

then Z×pr ⊆ Pk(E).
In particular, suppose that k ≥ 3, p� r , and |E| & pkr−1, then Z×pr ⊂ Pk(E).

The lower bound of |E| in this case is sharp, as taking E to be the set Z0
pr ×Zk−1

pr

shows.

Note that, the bounds in Corollary 1.5 and Theorem 1.6 are sharp in general
cases. When E=An is a product set, we conjecture that these bounds can be further
improved when n is sufficiently large.

For any t ∈ Fq and E ⊂ Fk
q , let Pk(E; t) be the number of k × k matrices with

rows in E having permanent t . In [Vinh 2012a], the author studied the distribution
of Pn(E; t) when E = Ak for a large subset A ⊂ Fq . It would be of interest to
extend these results to the setting of finite rings.
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2. Product graphs over rings

For a graph G, let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of its adjacency matrix.
The quantity λ(G)=max{λ2,−λn} is called the second eigenvalue of G. A graph
G = (V, E) is called an (n, d, λ)-graph if it is d-regular, has n vertices, and the
second eigenvalue of G is at most λ. It is well known (see [Ahmadi and Shparlinski
2007, Chapter 9] for more details) that if λ is much smaller than the degree d , then
G has certain random-like properties. For two (not necessarily) disjoint subsets of
vertices U,W ⊂ V , let e(U,W ) be the number of ordered pairs (u, w) such that
u ∈U , w ∈ W , and (u, w) is an edge of G. For a vertex v of G, let N (v) denote
the set of vertices of G adjacent to v and let d(v) denote its degree. Similarly, for a
subset U of the vertex set, let NU (v)= N (v)∩U and dU (v)= |NU (v)|. We first
recall the following well-known fact.

Theorem 2.1 [Ahmadi and Shparlinski 2007, Corollary 9.2.5]. Let G = (V, E) be
an (n, d, λ)-graph. For any two sets B,C ⊂ V , we have∣∣∣∣e(B,C)−

d|B||C |
n

∣∣∣∣≤ λ√|B||C |.
For any λ ∈ Zm , the product graph Bm(k, λ) is defined as follows. The vertex set

of the product graph Bm(k, λ) is the set V (Bm(k, λ))= Zk
m\(Z

0
m)

k . Two vertices a
and b ∈ V (Bm(k, λ)) are connected by an edge, (a, b) ∈ E(Bm(k, λ)), if and only
if a · b= λ. When λ= 0, the graph is a variant of the Erdős–Rényi graph, which
has several interesting applications. We will study this case in a separate paper. We
now study the product graph when λ ∈ Z×m .

Theorem 2.2 [Vinh 2013b]. For any k ≥ 2 and λ∈Z×m , the product graph Bm(k, λ)
is an (

mk
− (m−φ(m))k,mk−1,

τ (m)mk−1

γ (m)(k−1)/2

)
-graph.

Proof. This proof follows from the proof of [Vinh 2013b, Theorem 3.1]. We include
its proof here for completeness. It follows from the definition of the product graph
Bm(k, λ) that Bm(k, λ) is a graph of order mk

− (m−φ(m))k . The valency of the
graph is also easy to compute. Given a vertex x ∈ V (Bm(k, λ)), there exists an
index xi ∈ Z×m . We can assume that x1 ∈ Z×m . We can choose y2, . . . , yk ∈ Zm

arbitrarily, then y1 is determined uniquely such that x · y = λ. Hence, Bm(k, λ)
is a regular graph of valency md−1. It remains to estimate the eigenvalues of this
multigraph (that is, graph with loops). For any a 6= b ∈ Zk

m\(Z
0
m)

k , we count the
number of solutions of the following system:

(2-1) a · x ≡ b · x ≡ λ mod m, x ∈ Zk
m\(Z

0
m)

k .
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There exist uniquely n|m and b1 ∈ (Zm/n)
k
\(Z0

m/n)
k such that b = a+ nb1. The

system (2-1) becomes

(2-2) a · x ≡ λ mod m, nb1 · x ≡ 0 mod m, x ∈ (Zm/n)
k
\(Z0

m/n)
k .

Let an ∈ (Zm/n)
k
\(Z0

m/n)
k
≡ a mod m/n, xn ∈ (Zm/n)

k
\(Z0

m/n)
k
≡ x mod m/n,

and λn ≡ λ mod m/n. To solve (2-2), we first solve the following system:

(2-3) an · xn ≡ λn mod m/n, b1 · xn ≡ 0 mod m/n, xn ∈ (Zm/n)
k
\(Z0

m/n)
k .

The system (2-3) has no solution when an ≡ t b1 mod p for some prime p|(m/n)
and t ∈ Z×m , and (m/n)k−2 solutions otherwise. For each solution xn of (2-3),
putting back into the system

(2-4) a · x ≡ λ mod m, x ≡ xn mod m/n,

gives us nk−1 solutions of the system (2-2). Hence, the system (2-2) has mk−2n
solutions when an 6≡ t b1 mod p and no solution otherwise. Let A be the adjacency
matrix of Bm(k, λ). It follows that

(2-5) A2
=mk−2 J+(mk−1

−mk−2)I−mk−2
∑
n|m

1≤n<m

En+
∑
n|m

1<n<m

(mk−2n−mk−2)Fn,

where J is the all-ones matrix; I is the identity matrix; En is the adjacency matrix
of the graph BE,n , where for any two vertices a, b∈ V (Bm(k, λ)), (a, b) is an edge
of BE,n if and only if b= a+ nb1, b1 ∈ (Zm/n)

k
\(Z0

m/n)
k and an ≡ t b1 mod p for

some prime p|(m/n); and Fn is the adjacency matrix of the graph BF,n , where
for any two vertices a, b ∈ V (Bm(k, λ)), (a, b) is an edge of BF,n if and only if
b= a+ nb1, b1 ∈ (Zm/n)

k
\(Z0

m/n)
k , and an 6≡ t b1 mod p for any prime p|(m/n).

Therefore, BE,n is a regular graph of valency at most∑
p|(m/n), p∈P

(p− 1)
( m

np

)k
< ω(m)(m/n)kγ (m)1−k .

Hence all eigenvalues of En are at most ω(m)(m/n)kγ (m)1−k . Besides, it is clear
that all eigenvalues of Fn are at most (m/n)k . Since Bm(k, λ) is a mk−1-regular
graph, mk−1 is an eigenvalue of A with the all-one eigenvector 1. The graph
Bm(k, λ) is connected, therefore the eigenvalue mk−1 has multiplicity one. Since
the graph Bm(k, λ) contains (many) triangles, it is not bipartite. Hence, for any
other eigenvalue θ , |θ |< mk−1. Let vθ denote the corresponding eigenvector of θ .
Note that vθ ∈ 1⊥, so Jvθ = 0. It follows from (2-5) that

(θ2
−mk−1

+mk−2)vθ =
(

mk−2
∑
n|m

1≤n<m

En −
∑
n|m

1<n<m

(mk−2n−mk−2)Fn

)
vθ .
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Hence, vθ is also an eigenvalue of

mk−2
∑
n|m

1≤n<m

En −
∑
n|m

1<n<m

(mk−2n−mk−2)Fn.

Since the absolute values of the eigenvalues of a sum of matrices are bounded by
the sums of the largest absolute values of eigenvalues of the summands, we have

θ2
≤ mk−1

−mk−2
+mk−2

∑
n|m

1≤n<m

ω(m)(m/n)kγ (m)1−k
+

∑
n|m

1<n<m

(mk−2n−mk−2)(m/n)k

< mk−1
+ω(m)(τ (m)−1)m2k−2γ (m)1−k

+

∑
n|m

1<n<m

m2k−2n1−k

< (ω(m)+1)(τ (m)−1)m2k−2γ (m)1−k
≤ τ(m)2m2k−2γ (m)1−k .

The lemma follows. �

The following lemma is an immediate corollary of Theorems 2.1 and 2.2.

Lemma 2.3. For any E,F⊂ Zk
m\(Z

0
m)

k and λ ∈ Z×m , let

eλ(E, F)= |{(x, y) ∈ E×F : x · y = λ}|.
Then

eλ(E,F)=
(1+ o(1))|E||F|

m
+ O

(
τ(m)mk−1

γ (m)(k−1)/2

√
|E||F|

)
.

See also [Covert et al. 2012, Theorem 1.3.2] for another proof using character
sums over finite rings of Lemma 2.3 in the case of m = pr .

3. Proof of Theorem 1.4

Fix an a= (a1, . . . , an)∈E∩(Z×m)
k . For any x= (x1, . . . , xk), and y= (y1, . . . , yk)

∈ E, let M(a; x, y) denote the matrix whose rows are x, y, and (k − 2) a’s. Let
1 := (1, . . . , 1), x/a := (x1/a1, . . . , xk/ak), and y/a := (y1/a1, . . . , yk/ak); we
have

Per(M(a; x, y))=
k∏

i=1

ai Per(M(1; x/a, y/a))=
( k∏

i=1

ai

) k∑
i=1

xi

ai

∑
j 6=i

y j

a j
.

Set

E1 := {(xi/ai )
k
i=1 : (x1, . . . , xk) ∈ E},(3-1)

E2 :=

{( ∑
j 6=i

yi/ai

)k

i=1
: (y1, . . . , yk) ∈ E

}
.(3-2)

It is clear that |E1| = |E2| = |E| (as gcd(k,m) = 1). For any λ ∈ Z×m , it follows
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from Lemma 2.3 that

(3-3)
eλ(E1, E2)=

(1+ o(1))|E1||E2|

m
+ O

(
τ(m)mk−1

γ (m)(k−1)/2

√
|E1||E2|

)
=
(1+ o(1))|E|2

m
+ O

(
τ(m)mk−1

γ (m)(k−1)/2 |E|

)
.

Since

|E|&
τ(m)mk

γ (m)(k−1)/2 ,

(3-3) implies that

Z×m ⊂ {Per(M(a; x, y)) : x, y ∈ E} ⊂ Pk(E),

completing the proof of Theorem 1.4.

References

[Ahmadi and Shparlinski 2007] O. Ahmadi and I. E. Shparlinski, “Distribution of matrices with
restricted entries over finite fields”, Indag. Math. (N.S.) 18:3 (2007), 327–337. MR 2008k:11127
Zbl 1181.11030

[Blömer et al. 1997] J. Blömer, R. Karp, and E. Welzl, “The rank of sparse random matrices over
finite fields”, Random Structures Algorithms 10:4 (1997), 407–419. MR 99b:15028 Zbl 0877.15027

[Covert et al. 2010] D. Covert, D. Hart, A. Iosevich, D. Koh, and M. Rudnev, “Generalized incidence
theorems, homogeneous forms and sum-product estimates in finite fields”, European J. Combin. 31:1
(2010), 306–319. MR 2010m:11014 Zbl 1243.11009

[Covert et al. 2012] D. Covert, A. Iosevich, and J. Pakianathan, “Geometric configurations in the ring
of integers modulo p`”, Indiana Univ. Math. J. 61:5 (2012), 1949–1969. MR 3119606 Zbl 06236912

[Kahn and Komlós 2001] J. Kahn and J. Komlós, “Singularity probabilities for random matrices over
finite fields”, Combin. Probab. Comput. 10:2 (2001), 137–157. MR 2002c:15043 Zbl 0979.15022

[Kovalenko et al. 1986] I. N. Kovalenko, A. A. Levitskaya, and M. N. Savchuk, Izbrannye zadachi
veroyatnostnoi kombinatoriki, Naukova Dumka, Kiev, 1986. MR 88m:60022

[Lyapkov and Sevast’yanov 1996] L. A. Lyapkov and B. A. Sevast’yanov, “Limit distribution of the
probabilities of the permanent of a random matrix in the field GF(p)”, Diskret. Mat. 8:2 (1996), 3–13.
In Russian; translated in Discrete Math. Appl. 6(2), 107–116 (1996). MR 97g:60017 Zbl 0869.15004

[Vinh 2009] L. A. Vinh, “Distribution of determinant of matrices with restricted entries over finite
fields”, J. Comb. Number Theory 1:3 (2009), 203–212. MR 2011g:11056 Zbl 1234.11030

[Vinh 2012a] L. A. Vinh, “On the permanents of matrices with restricted entries over finite fields”,
SIAM J. Discrete Math. 26:3 (2012), 997–1007. MR 3022119 Zbl 1260.15008

[Vinh 2012b] L. A. Vinh, “Singular matrices with restricted rows in vector spaces over finite fields”,
Discrete Math. 312:2 (2012), 413–418. MR 2012h:15062 Zbl 1246.15035

[Vinh 2013a] L. A. Vinh, “On the volume set of point sets in vector spaces over finite fields”, Proc.
Amer. Math. Soc. 141:9 (2013), 3067–3071. MR 3068960 Zbl 06203435

[Vinh 2013b] L. A. Vinh, “Product graphs, sum-product graphs and sum-product estimates over finite
rings”, Forum Mathematicum (2013).

http://dx.doi.org/10.1016/S0019-3577(07)00013-4
http://dx.doi.org/10.1016/S0019-3577(07)00013-4
http://msp.org/idx/mr/2008k:11127
http://msp.org/idx/zbl/1181.11030
http://dx.doi.org/10.1002/(SICI)1098-2418(199707)10:4<407::AID-RSA1>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1098-2418(199707)10:4<407::AID-RSA1>3.0.CO;2-Y
http://msp.org/idx/mr/99b:15028
http://msp.org/idx/zbl/0877.15027
http://dx.doi.org/10.1016/j.ejc.2008.11.015
http://dx.doi.org/10.1016/j.ejc.2008.11.015
http://msp.org/idx/mr/2010m:11014
http://msp.org/idx/zbl/1243.11009
http://dx.doi.org/10.1512/iumj.2012.61.4751
http://dx.doi.org/10.1512/iumj.2012.61.4751
http://msp.org/idx/mr/3119606
http://msp.org/idx/zbl/06236912
http://dx.doi.org/10.1017/S096354830100462X
http://dx.doi.org/10.1017/S096354830100462X
http://msp.org/idx/mr/2002c:15043
http://msp.org/idx/zbl/0979.15022
http://msp.org/idx/mr/88m:60022
http://dx.doi.org/10.1515/dma.1996.6.2.107
http://dx.doi.org/10.1515/dma.1996.6.2.107
http://msp.org/idx/mr/97g:60017
http://msp.org/idx/zbl/0869.15004
http://msp.org/idx/mr/2011g:11056
http://msp.org/idx/zbl/1234.11030
http://dx.doi.org/10.1137/110835050
http://msp.org/idx/mr/3022119
http://msp.org/idx/zbl/1260.15008
http://dx.doi.org/10.1016/j.disc.2011.10.002
http://msp.org/idx/mr/2012h:15062
http://msp.org/idx/zbl/1246.15035
http://dx.doi.org/10.1090/S0002-9939-2013-11630-8
http://msp.org/idx/mr/3068960
http://msp.org/idx/zbl/06203435
http://dx.doi.org/10.1515/forum-2012-0177
http://dx.doi.org/10.1515/forum-2012-0177


SPECTRA OF PRODUCT GRAPHS AND PERMANENTS OF MATRICES 487

Received December 18, 2011. Revised September 9, 2013.

LE ANH VINH

UNIVERSITY OF EDUCATION

VIETNAM NATIONAL UNIVERSITY, HANOI

144 XUAN THUY

CAU GIAY

HANOI 100000
VIETNAM

vinhla@vnu.edu.vn

mailto:vinhla@vnu.edu.vn




PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2014 is US $410/year for the electronic version, and $535/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:pacific@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 267 No. 2 February 2014

257Sums of squares in algebraic function fields over a complete discretely
valued field

KARIM JOHANNES BECHER, DAVID GRIMM and JAN VAN GEEL

277On the equivalence problem for toric contact structures on S3-bundles over
S2

CHARLES P. BOYER and JUSTIN PATI

325An almost-Schur type lemma for symmetric (2,0) tensors and applications
XU CHENG

341Algebraic invariants, mutation, and commensurability of link complements
ERIC CHESEBRO and JASON DEBLOIS

399Taut foliations and the action of the fundamental group on leaf spaces and
universal circles

YOSUKE KANO

417A new monotone quantity along the inverse mean curvature flow in Rn

KWOK-KUN KWONG and PENGZI MIAO

423Nonfibered L-space knots
TYE LIDMAN and LIAM WATSON

431Families and Springer’s correspondence
GEORGE LUSZTIG

451Reflexive operator algebras on Banach spaces
FLORENCE MERLEVÈDE, COSTEL PELIGRAD and MAGDA PELIGRAD

465Harer stability and orbifold cohomology
NICOLA PAGANI

479Spectra of product graphs and permanents of matrices over finite rings
LE ANH VINH

489The concavity of the Gaussian curvature of the convex level sets of minimal
surfaces with respect to the height

PEI-HE WANG

0030-8730(2014)267:2;1-6

Pacific
JournalofM

athem
atics

2014
Vol.267,N

o.2


	1. Introduction
	2. Product graphs over rings
	3. Proof of 0=theorem.91=Theorem 1.4
	References
	
	

