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CONVEX LEVEL SETS OF MINIMAL SURFACES WITH

RESPECT TO THE HEIGHT

PEI-HE WANG

For the minimal graph with strictly convex level sets, we find an auxiliary
function to study the Gaussian curvature of the level sets. We prove that
this curvature function is a concave function with respect to the height of
the minimal surface while this auxiliary function is almost sharp when the
minimal surface is the catenoid.

1. Introduction

Consider a function whose graph is minimal and whose level sets are strictly convex.
Extending work of Longinetti [1987], we explore the relation between the Gaussian
curvature of the level sets and the height.

The nature of the level sets of the solutions of elliptic partial differential equations
is a subject with a long history, going back to results of Shiffman in the 1950s for
minimal surfaces. The curvature of such level sets has also been studied for several
decades. Some key contributions to these problems are listed in the introduction
of [Chen and Shi 2011]. Here we just mention some recent developments directly
relevant to our problem.

Jost, Ma, and Ou [Jost et al. 2012] and Ma, Ye, and Ye [Ma et al. 2011] proved
that the Gaussian and principal curvatures of convex level sets of three-dimensional
harmonic functions attain their minima on the boundary. Ma, Ou, and Zhang [2010]
gave estimates of the Gaussian curvature of convex level sets of higher-dimensional
harmonic functions based on the Gaussian curvature of the boundary and the norm
of the gradient on the boundary. Wang and Zhang [2012] have given estimates for
the Gaussian curvature of convex level sets of minimal surfaces, Poisson equations,
and a class of semilinear elliptic partial differential equations studied by Caffarelli
and Spruck [1982].
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In this paper we use the support function of strictly convex level sets and the
maximum principle to obtain the concavity of the Gaussian curvature of convex
level sets of minimal graphs with respect to the height:

Theorem 1.1. Let � be a bounded smooth domain in Rn , n ≥ 2, and let

u ∈ C4(�)∩C2(�), t0 ≤ u(x)≤ t1

be a minimal graph in �, that is, one such that

(1-1) div
∇u

√

1+ |∇u|2
= 0 in �.

Assume |∇u| 6= 0 in �. Let

0t = {x ∈� : u(x)= t} for t0 < t < t1

be the level sets of u and let K be their Gaussian curvature function. For

f (t)=min
{[(

|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
(x) : x ∈ 0t

}
,

if the level sets of u are strictly convex with respect to the normal ∇u, we have the
differential inequality

D2 f (t)≤ 0 in (t0, t1).

Under the same assumption as in Theorem 1.1, Wang and Zhang [2012] proved
the following statement: for n ≥ 2, the function (|∇u|2/(1+ |∇u|2))θK attains its
minimum on the boundary, where θ =− 1

2 or θ ≥ 1
2(n− 3). From this fact they got

the lower bound estimates for the Gaussian curvature of the level sets.

Corollary 1.2. Let u satisfy

(1-2)


div

∇u
√

1+ |∇u|2
= 0 in �=�0\�1,

u = 0 on ∂�0,

u = 1 on ∂�1,

where �0 and �1 are bounded smooth convex domains in Rn, n ≥ 2, �1 ⊂ �0.
Assume |∇u| 6= 0 in � and the level sets of u are strictly convex with respect to
normal ∇u. Let K be the Gaussian curvature of the level sets. For any point
x ∈ 0t , 0< t < 1, we have the following estimates.

• For n = 3, we have

(1-3) K (x)1/2 ≥ (1− t)(min∂�0 K )1/2+ t (min∂�1 K )1/2.
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• For n 6= 3, we have

(1-4)
[(
|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
(x)

≥ (1− t)min
∂�0

[(
|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
+ t min

∂�1

[(
|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
.

Remark 1.3. The following example shows that our estimates are almost sharp in
a sense. Let u(r, θ), r > 2, be the n-dimensional catenoid:

(1-5) u(r, θ)=
∫
−2

−r

1
√

s2(n−1)− 1
ds.

Then

(1-6) |∇u| =
1

√
r2(n−1)− 1

,

and the Gaussian curvature of the level set at x is K (x)= r1−n . Hence,

(1-7) f (t)=
[(
|∇u|2

1+ |∇u|2

)n−3
2

K
] 1

n−1
= r2−n.

For n = 2, f (t) becomes a constant function, which shows that our estimate of
its concavity is sharp. Now we turn to the case n > 2.

Set

R =
∫
−2

−∞

1
√

s2(n−1)− 1
ds.

Then we have

(1-8) −u+ R =
∫
−r

−∞

1
sn−1 ds−

∫
−r

−∞

1
sn−1

[
1−

1
√

1− s−2(n−1)

]
ds

=
(−1)n

2− n
r2−n
+O(r4−3n).

This means that

(1-9) f (t)= (−1)n(2− n)(R− t)+O(r4−3n),

which shows the “almost sharpness” of our estimate in higher dimensions.

To prove these theorems, let K be the Gaussian curvature of the convex level
sets, and let ϕ = log K (x)+ ρ(|∇u|2). For suitable choices of ρ and β, we shall
show the elliptic differential inequality

(1-10) L(eβϕ)≤ 0 mod ∇θϕ in �,
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where L is the elliptic operator associated with the equation we discussed and here
we have suppressed the terms involving ∇θϕ (see the notations below) with locally
bounded coefficients. Then we apply the strong minimum principle to obtain the
main results.

In Section 2, we first give brief definitions on the support function of the level
sets, and then we obtain the equation of the minimal graph in terms of the support
function. We prove Theorem 1.1 in Section 3 by formal calculations. The main
technique in the proof consists of rearranging the second and third derivative
terms using the equation and the first derivative condition for ϕ. The key idea is
Pogorelov’s method in a priori estimates for fully nonlinear elliptic equations.

2. Notations and preliminaries

Let �0 and �1 be bounded smooth open convex subsets of Rn such that �1 ⊂�0,
and let �=�0\�1. Let u :�→ R be a smooth function with |Du|> 0 in � and
let its level sets be strictly convex with respect to the normal direction Du.

For simplicity, we will assume that

u = 0 on ∂�0,

u = 1 on ∂�1,

and we extend u to �1 with the value 1. For 0≤ t ≤ 1, we set

�t = {x ∈�0 : u ≥ t};

Then every x ∈� belongs to the boundary of �u(x).
Next we define the support function of u, denoted by

H : Rn
×[0, 1] → R

as follows: for each t ∈ [0, 1], H( · , t) is the support function of the convex body
�t , that is,

H(X, t)= H�t
(X) for all X ∈ Rn, t ∈ [0, 1].

For details, see [Colesanti and Salani 2003; Longinetti and Salani 2007].
The rest of this section is devoted to deriving the minimal graph by means of the

support function. For this we need a reformulation of the first and second derivatives
of u in terms of the support function h�t , which is the restriction of H( · , t) to the
unit sphere Sn−1; see [Chiti and Longinetti 1992; Longinetti and Salani 2007]. For
the convenience of the reader, we report the main steps here.

Recall that h is the restriction of H to Sn−1
×[0, 1], so h(θ, t)= H(Y (θ), t)=

h�t
(Y (θ)) where t ∈ [0, 1] and Y (θ) ∈ Sn is a unit vector with coordinate θ . Since

the level sets of u are strictly convex and h(θ, t) is well defined, the map

x(X, t)= x�t
(X),
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which assigns to every (X, t) ∈ Rn
\{0}× (0, 1) the unique point x ∈� on the level

surface {u = t}, where the gradient of u is parallel to X (and orientation reversed).
Let

Ti =
∂Y
∂θi
,

so that {T1, . . . , Tn−1} is a tangent frame field on Sn−1, and let

x(θ, t)= x�t
(Y (θ));

we denote its inverse map by

ν : (x1, . . . , xn)→ (θ1, . . . , θn−1, t).

Notice that all these maps (h, x , and ν) depend on the considered function u (like
H ), even if we do not adopt any explicit notation to stress this fact.

For h(θ, t) = 〈x(θ, t), Y (θ)〉, since Y is orthogonal to ∂�t at x(θ, t), deriving
the previous equation, we obtain

hi = 〈x, Ti 〉.

In order to simplify some computations, we can also assume that θ1, . . . , θn−1, Y is
an orthonormal frame positively oriented. Hence, from the previous two equalities,
we have

x = hY +
∑

i

hi Ti

and
∂Ti

∂θ j
=−δi j Y at x,

where the summation index runs from 1 to n− 1 if no extra explanation is given,
and δi j is the standard Kronecker symbol. Following [Chiti and Longinetti 1992],
we obtain, at the point x under consideration,

∂x
∂t
= ht Y +

∑
i

hti Ti ,

∂x
∂θ j
= hT j +

∑
i

hi j Ti , j = 1, . . . , n− 1.

The inverse of the above Jacobian matrix is

(2-1)

∂t
∂xα
= h−1

t [Y ]α, α = 1, . . . , n,

∂θi

∂xα
=

∑
j

bi j
[T j − h−1

t ht j Y ]α, α = 1, . . . , n,
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where [ · ]i denotes the i-coordinate of the vector in the bracket and

(2-2) bi j =

〈
∂x
∂θi
,
∂Y
∂θ j

〉
= hδi j + hi j

denotes the inverse tensor of the second fundamental form of the level surface ∂�t at
x(θ, t). The eigenvalues of the tensor bi j are the principal curvatures κ1, . . . , κn−1

of ∂�t at x(θ, t); see [Schneider 1993].
The first equation of (2-1) can be rewritten as

Du =
Y
ht
,

where the left hand side is computed at x(θ, t), while the right hand side is computed
at (θ, t). It follows that

|Du| = −
1
ht
.

By the chain rule and (2-1), the second derivatives of u in terms of h can be
computed as

(2-3) uαβ =
∑
i, j

[−h−2
t hti Y + h−1

t Ti ]αbi j
[T j − h−1

t ht j Y ]β − h−3
t ht t [Y ]α[Y ]β

for α, β = 1, . . . , n.
In these new coordinates, the minimal graph equation, div

∇u
√

1+ |∇u|2
= 0, reads

(2-4) ht t =
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi j ,

and the associated linear elliptic operator is

(2-5) L =
∑

i, j,p,q

[(1+h2
t )δpq +htphtq ]bi pb jq ∂2

∂θi ∂θ j
−2

∑
i, j

ht j bi j ∂2

∂θi ∂t
+
∂2

∂t2 .

Now we recall the well-known commutation formulas for the covariant derivatives
of a smooth function u ∈ C4(Sn).

ui jk − uik j =−ukδi j + u jδik,(2-6)

ui jkl − ui jlk = uikδ jl − uilδ jk + uk jδil − ul jδik .(2-7)

They will be used during the calculations in the next section. By the definition of
bi j and the above commutation formulas, we easily get the following Codazzi-type
formula:

(2-8) bi j,k = bik, j .
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3. Gauss curvature of the level sets of minimal graph

In this section we prove Theorem 1.1. We state a technical lemma.

Lemma 3.1 [Ma et al. 2010]. Let λ≥ 0, µ∈R, bk > 0, and ck ∈R for 2≤ k ≤ n−1.
Define the quadratic polynomial

Q(X2, . . . , Xn−1)=−
∑

2≤k≤n−1

bk X2
k − λ

( ∑
2≤k≤n−1

Xk

)2

+ 4µ
∑

2≤k≤n−1

ck Xk .

Then we have
Q(X2, . . . , Xn−1)≤ 4µ20,

where

0 =
∑

2≤k≤n−1

c2
k

bk
− λ

(
1+ λ

∑
2≤k≤n−1

1
bk

)−1( ∑
2≤k≤n−1

ck

bk

)2

.

For a continuous function f (t) on [0, 1], we define its generalized second-order
derivative at any point t in (0, 1) as

D2 f (t)= lim sup
h→0

f (t + h)+ f (t − h)− 2 f (t)
h2 .

Let B be the quotient set B ≡ Rn/2πZn and let Q ≡ B × (0, 1). Let G(θ, t) be
a regular function in Q such that L(G(θ, t)) ≥ 0 for (θ, t) ∈ Q, where L is an
elliptic operator of the form

L=
∑
i, j

ai j ∂2

∂θi ∂θ j
+

∑
i

bi ∂2

∂θi ∂t
+
∂2

∂t2 +
∑

i

ci ∂

∂θi

with regular coefficients ai j , bi , ci .

Lemma 3.2 [Longinetti 1987]. The function φ(t)=max{G(θ, t) : θ ∈ B} satisfies
the differential inequality

D2φ(t)≥ 0.

Moreover, φ(t) is a convex function with respect to t .

The lemma is proved only in dimension n = 2 in [Longinetti 1987], but it is easy
to see that it is valid for the general case n ≥ 2.

Since the level sets of u are strictly convex with respect to the normal Du, the
matrix of second fundamental form (bi j ) is positive definite in �. Set

ϕ = ρ(h2
t )− log K (x),

where K = det(bi j ) is the Gaussian curvature of the level sets and ρ(t) is a smooth
function defined on (0,+∞). For suitable choices of ρ and β, we will derive the
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differential inequality

(3-1) L(eβϕ)≤ 0 mod ∇θϕ in �,

where the elliptic operator L is given in (2-5) and we have modified the terms
involving ∇θϕ with locally bounded coefficients. Then, by applying a maximum
principle argument in Lemma 3.2, we can obtain the desired result.

In order to prove (3-1) at an arbitrary point x0 ∈�, we may assume the matrix
(bi j (x0)) is diagonal by rotating the coordinate system suitably. From now on, all
the calculations will be done at the fixed point x0.

Proof of Theorem 1.1. We shall prove the theorem in three steps.

Step 1: computation L(ϕ). Taking the first derivative of ϕ, we get

∂ϕ

∂θ j
= 2ρ ′ht ht j +

∑
k,l

bklbkl, j ,(3-2)

∂ϕ

∂t
= 2ρ ′ht ht t +

∑
k,l

bklbkl,t .(3-3)

Taking the derivative of (3-2) and (3-3) once more, we have

∂2ϕ

∂θi ∂θ j
= (2ρ ′+ 4ρ ′′h2

t )hti ht j + 2ρ ′ht ht j i −
∑

k,l,r,s

bkr brs,i bslbkl, j +
∑
k,l

bklbkl, j i ,

∂2ϕ

∂θi ∂t
= (2ρ ′+ 4ρ ′′h2

t )hti ht t + 2ρ ′ht ht ti −
∑

k,l,r,s

bkr brs,i bslbkl,t +
∑
k,l

bklbkl,ti ,

∂2ϕ

∂t2 = (2ρ
′
+ 4ρ ′′h2

t )h
2
t t + 2ρ ′ht ht t t −

∑
k,l,r,s

bkr brs,t bslbkl,t +
∑
k,l

bklbkl,t t .

So we can wrtie

(3-4) L(ϕ)= I1+ I2+ I3+ I4,

with

I1 = (2ρ ′+4ρ ′′h2
t )

[∑
i, j

[(1+h2
t )δi j+hti ht j ]bi i b j j hti ht j−2

∑
i

h2
ti b

i i ht t+h2
t t

]
,

I2 = 2ρ ′ht

[∑
i, j

[(1+h2
t )δi j+hti ht j ]bi i b j j ht j i−2

∑
i

hti bi i ht ti+ht t t

]
,

I3 =−
∑
k,l

bkkbll
[∑

i, j

[(1+h2
t )δi j+hti ht j ]bi i b j j bkl,i bkl, j , −2

∑
i

hti bi i bkl,i bkl,t

+b2
kl,t

]
I4 =

∑
k

bkk L(bkk).
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In the rest of this section, we will deal with the four terms above respectively.
For the term I1, by recalling our equation, that is,

(3-5) ht t =
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi j ,

we have, by recalling that (bi j ) is diagonal at x0,

(3-6)

I1 = (2ρ ′+ 4ρ ′′h2
t )

[∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j hti ht j − 2

∑
i

h2
ti b

i i ht t + h2
t t

]

= (2ρ ′+ 4ρ ′′h2
t )

[
(1+ h2

t )
∑

i

(hti bi i )2+

(∑
i

h2
ti b

i i
− ht t

)2]
= (2ρ ′+ 4ρ ′′h2

t )(1+ h2
t )
∑

i

(hti bi i )2+ (2ρ ′+ 4ρ ′′h2
t )(1+ h2

t )
2σ 2

1 ,

where σ1 =
∑

i bi i is the mean curvature.
Now we treat the term I2. Differentiating (3-5) with respect to t , we have

(3-7) ht t t = 2ht ht tσ1+ 2
∑
i, j

ht ti ht j bi j
−

∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j bi j,t .

By inserting (3-7) into I2, we can get

I2 = 2ρ ′ht

[∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j ht j i − 2

∑
i

hti bi i ht ti + ht t t

]

= 2ρ ′ht

[∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j (ht j i − bi j,t)+ 2ht ht tσ1

]
.

Recalling the definition of the second fundamental form, that is, (2-2), together
with (3-5), we obtain

(3-8) I2 = 2ρ ′ht

[∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j (−htδi j )+ 2ht ht tσ1

]
=−2ρ ′h2

t (1+ h2
t )
∑

i

(bi i )2− 2ρ ′h2
t

∑
i

(hti bi i )2+ 4ρ ′h2
t (1+ h2

t )σ
2
1

+ 4ρ ′h2
t σ1

∑
i

h2
ti b

i i .

Combining (3-6) and (3-8),

(3-9) I1+ I2

= 4ρ ′h2
t σ1

∑
i

h2
ti b

i i
+[4ρ ′h2

t (1+h2
t )+(2ρ

′
+4ρ ′′h2

t )(1+h2
t )

2
]σ 2

1

+[(2ρ ′+4ρ ′′h2
t )(1+h2

t )−2ρ ′h2
t ]
∑

i

(hti bi i )2−2ρ ′h2
t (1+h2

t )
∑

i

(bi i )2.
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In order to deal with the last two terms, we shall compute L(bkk) in advance. In
this process, the index k is not summed. By differentiating (3-5) twice with respect
to θk , we have

(3-10) ht tkk = J1+ J2+ J3+ J4,

with
J1 =

∑
i, j

[(1+ h2
t )δi j + hti ht j ]kkbi j ,

J2 = 2
∑

i j,p,q

[(1+ h2
t )δi j + hti ht j ]k(−bi pbpq,kbq j ),

J3 =
∑

i j,p,q,r,s

[(1+ h2
t )δi j + hti ht j ](2bir brs,kbspbpq,kbq j ),

J4 =
∑

i j,p,q

[(1+ h2
t )δi j + hti ht j ](−bi pbpq,kkbq j ).

For the term J1, we have

J1 =
∑
i, j

(2ht htkδi j + htikht j + hti ht jk)kbi j

= 2h2
tkσ1+ 2ht htkkσ1+ 2

∑
i

htikkhti bi i
+ 2

∑
i

h2
tikbi i .

Noticing that

htik = hki t = bki,t − htδki ,

htikk = hikkt = bik,kt − hktδik = bkk,i t − hktδik,

we obtain

(3-11) J1 = 2h2
tkσ1+ 2ht bkk,tσ1− 2h2

t σ1+ 2
∑

i

bkk,i t hti bi i

− 2h2
tkbkk
+ 2

∑
l

b2
kl,t b

ll
− 4ht bkk,t bkk

+ 2h2
t bkk .

For the term J2, we have

(3-12) J2 = 2
∑
i, j

(2ht htkδi j + htikht j + hti ht jk)(−bi i bi j,kb j j )

=−4ht htk

∑
i

(bi i )2bi i,k − 4
∑
i, j

htikht j bi i b j j bi j,k

=−4ht htk

∑
i

(bi i )2bi i,k − 4
∑
i,l

hti bi i bllbkl,i bkl,t

+ 4ht

∑
j

ht j bkkb j j bkk, j .
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Note that we have changed the lower index during the above calculations and this
will happen frequently in the following procedure.

Also we have

(3-13) J3 = 2
∑
i, j,l

[(1+ h2
t )δi j + hti ht j ]bi i b j j bllbkl,i bkl, j .

Applying the commutation rule bi j,kl −bi j,lk = b jkδil −b jlδik +bikδ jl −bilδ jk, for
the term J4, we have

(3-14) J4 =−
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j bi j,kk

=−

∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j (bkk,i j + bi j − bkkδi j ).

On the other hand,

(3-15) ht tkk = hkktt = bkk,t t − ht t = bkk,t t −
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi j .

By putting (3-11)–(3-15) into (3-10), recalling the definition of the operator L , we
obtain

L(bkk)=
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi j

+ 2h2
tkσ1+ 2ht bkk,tσ1− 2h2

t σ1

− 2h2
tkbkk
+ 2

∑
l

b2
kl,t b

ll
− 4ht bkkbkk,t + 2h2

t bkk
− 4ht htk

∑
i

(bi i )2bi i,k

− 4
∑
i,l

hti bi i bllbkl,i bkl,t + 2
∑
i, j,l

[(1+ h2
t )δi j + hti ht j ]bi i b j j bllbkl,i bkl, j

+ 4ht

∑
i

hti bkkbi i bkk,i −
∑
i, j

[(1+ h2
t )δi j + hti ht j ]bi i b j j (bi j − bkkδi j ).

Therefore,

(3-16)

I4 = 2
∑

i, j,k,l

[(1+ h2
t )δi j + hti ht j ]bi i b j j bkkbllbkl,i bkl, j − 4

∑
i,k,l

hti bi i bkkbllbkl,i bkl,t

+ 2htσ1
∑

k

bkkbkk,t − 4ht

∑
k

(bkk)2bkk,t − 2h2
t σ

2
1 + 2

∑
k,l

bkkbllb2
kl,t

+ [(n− 1)(1+ h2
t )+ 2h2

t ]
∑

i

(bi i )2+ 2σ1
∑

i

h2
ti b

i i

+ (n− 3)
∑

i

(hti bi i )2.
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By substituting (3-9) and (3-16) in (3-4), we obtain

(3-17)

L(ϕ)=
∑

i, j,k,l

[(1+h2
t )δi j +hti ht j ]bi i b j j bkkbllbkl,i bkl, j −2

∑
i,k,l

hti bi i bkkbllbkl,i bkl,t

+

∑
k,l

bkkbllb2
kl,t + 2htσ1

∑
k

bkkbkk,t − 4ht

∑
k

(bkk)2bkk,t

+(2+4ρ ′h2
t )σ1

∑
i

h2
ti b

i i
+[(n−1)(1+h2

t )+2h2
t−2ρ ′h2

t (1+h2
t )]
∑

i

(bi i )2

+ [4ρ ′h2
t (1+ h2

t )+ (2ρ
′
+ 4ρ ′′h2

t )(1+ h2
t )

2
− 2h2

t ]σ
2
1

+ [(2ρ ′+ 4ρ ′′h2
t )(1+ h2

t )− 2ρ ′h2
t + (n− 3)]

∑
i

(hti bi i )2.

Step 2: calculation of L(eβϕ) and estimation of the third-order derivatives involving
bkk,t . Notice that

L(eβϕ)= βeβϕ{L(ϕ)+βϕ2
t }+β

2eβϕ
∑

i, j,p,q

[(1+ h2
t )δpq + htphtq ]bi pb jq ∂ϕ

∂θi

∂ϕ

∂θ j

− 2β2eβϕ
∑
i, j

ht j bi j ∂ϕ

∂θi

∂ϕ

∂t
.

To reach (3-1), we only need to prove that, for some constant β < 0,

L(ϕ)+βϕ2
t ≥ 0 mod ∇θϕ.

We now compute βϕ2
t .

By (3-3), we have

(3-18) ϕ2
t = 4(ρ ′)2h2

t h2
t t + 4ρ ′ht ht t

∑
k

bkkbkk,t +

(∑
k

bkkbkk,t

)2

= 4(ρ ′)2h2
t (1+ h2

t )
2σ 2

1 + 8(ρ ′)2h2
t (1+ h2

t )σ1
∑

i

h2
ti b

i i

+ 4(ρ ′)2h2
t

(∑
i

h2
ti b

i i
)2

+ 4ρ ′ht(1+ h2
t )σ1

∑
k

bkkbkk,t

+ 4ρ ′ht

(∑
i

h2
ti b

i i
)(∑

k

bkkbkk,t

)
+

(∑
k

bkkbkk,t

)2

.

Joining (3-17) with (3-18), we regroup the terms in L(ϕ)+βϕ2
t as follows:

L(ϕ)+βϕ2
t = P1+ P2+ P3,
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where

P1 =
∑
k 6=l

(∑
i, j

hti ht j bi i b j j bkkbllbkl,i bkl, j − 2
∑

i

hti bi i bkkbllbkl,i bkl,t

+ bkkbllb2
kl,t

)
,

P2 =
∑

k

(bkkbkk,t)
2
+β

(∑
k

bkkbkk,t

)2

+ 2
∑

k

[
[1+ 2βρ ′(1+ h2

t )]htσ1+ 2βρ ′ht

(∑
i

h2
ti b

i i
)

−

∑
i

hti bi i bkkbkk,i − 2ht bkk
]
· (bkkbkk,t),

P3 = (1+ h2
t )
∑
i,k,l

(bi i )2bkkbllb2
kl,i +

∑
i, j,k

hti ht j bi i b j j bkkbkk,i bkkbkk, j

+ [2+ 4ρ ′h2
t + 8β(ρ ′)2h2

t (1+ h2
t )]σ1

∑
i

h2
ti b

i i

+ [(n− 1)(1+ h2
t )+ 2h2

t − 2ρ ′h2
t (1+ h2

t )]
∑

i

(bi i )2

+ [4ρ ′h2
t (1+ h2

t )+ (2ρ
′
+ 4ρ ′′h2

t )(1+ h2
t )

2
− 2h2

t + 4β(ρ ′)2h2
t (1+ h2

t )
2
]σ 2

1

+ [(2ρ ′+ 4ρ ′′h2
t )(1+ h2

t )− 2ρ ′h2
t + (n− 3)]

∑
i

(hti bi i )2

+ 4β(ρ ′)2h2
t

(∑
i

h2
ti b

i i
)2

.

In the rest of this step, we will deal with the term P2. Let Xk = bkkbkk,t(k =
1, 2, . . . , n− 1). Then P2 can be rewritten as

P2(X1, X2, . . . , Xn−1)=
∑

k

X2
k +β

(∑
k

Xk

)2

+ 2
∑

k

ck Xk,

where

ck = [1+ 2βρ ′(1+ h2
t )]htσ1+ 2βρ ′ht

(∑
i

h2
ti b

i i
)
−

∑
i

hti bi i bkkbkk,i − 2ht bkk .

Denote by P2 the matrix 
1+β β · · · β

β 1+β · · · β
...

...
. . . · · ·

β β · · · 1+β

 .
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In a word, we want to bound P2(X1, X2, . . . , Xn−1) from below. Thus the
nonnegativity of P2 is necessary, and this requires

β ≥−
1

n− 1
.

For convenience, Let us choose the degenerate case, that is, β =−1/(n−1). By
setting τ = (1, 1, . . . , 1), the null eigenvector of the matrix P2, we then have, by
(3-2),

(?) P2(1, 1, . . . , 1)=2
∑

k

ck=2[n−3−2ρ ′(1+h2
t )]htσ1−2

∑
i

hti bi i ∂ϕ

∂θi
,

which suggests that the simplest selection should be ρ(t)= ((n− 3)/2) log(1+ t).
From now on, let us fix ρ(t)= ((n− 3)/2) log(1+ t) and β =−1/(n− 1). But,

for simplicity, we do not always substitute for the values of ρ and β.
By straightforward computation and (?), we have∑

k

(
Xk +β

∑
i

X i + ck

)2

= P2(X1, X2, . . . , Xn−1)+
∑

k

c2
k + P2(∇θϕ),

where

P2(∇θϕ)= 2β
(∑

i

X i

)∑
k

ck = 2β
(∑

j

X j

)∑
i

hti bi i ∂ϕ

∂θi
.

Putting ρ and β into some terms in ck , we derive that

ck =
2

n− 1
htσ1−

2
n− 1

ρ ′ht

(∑
i

h2
ti b

i i
)
−

∑
i

hti bi i bkkbkk,i − 2ht bkk .

Therefore, together with (3-2), we get

P2(X1, X2, . . . , Xn−1)

≥−

∑
k

c2
k − P2(∇θϕ)

=−

∑
i, j,k

hti ht j bi i b j j bkkbkk,i bkkbkk, j − 4ht

∑
i,k

hti bi i (bkk)2bkk,i

− 4h2
t

∑
k

(bkk)2+
4

n− 1
h2

t σ
2
1 −

8
n− 1

ρ ′h2
t σ1

∑
i

h2
ti b

i i

+
4

n− 1
h2

t (ρ
′)2
(∑

i

h2
ti b

i i
)2

+ P̃2(∇θϕ),

where

P̃2(∇θϕ)=−P2(∇θϕ)−
4

n− 1
ht

[
σ1− ρ

′
∑

j

h2
t j b

j j
]∑

i

hti bi i ∂ϕ

∂θi
.
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Observing that P1 ≥ 0,

(3-19) L(ϕ)+βϕ2
t

≥ (1+ h2
t )
∑
i,k,l

(bi i )2bkkbllb2
kl,i − 4ht

∑
i,k

hti bi i (bkk)2bkk,i

+

[
2+ 4ρ ′h2

t + 8β(ρ ′)2h2
t (1+ h2

t )−
8

n−1
ρ ′h2

t

]
σ1
∑

i

h2
ti b

i i

+ [(n− 1)(1+ h2
t )− 2h2

t − 2ρ ′h2
t (1+ h2

t )]
∑

i

(bi i )2

+

[
4ρ ′h2

t (1+h2
t )+[(2ρ

′
+4ρ ′′h2

t )+4β(ρ ′)2h2
t ](1+h2

t )
2
−

2n−6
n−1

h2
t

]
σ 2

1

+ [(2ρ ′+ 4ρ ′′h2
t )(1+ h2

t )− 2ρ ′h2
t + (n− 3)]

∑
i

(hti bi i )2+ P̃2(∇θϕ).

In the next step we will concentrate on the following two terms:

R = (1+ h2
t )
∑
i,k,l

(bi i )2bkkbllb2
kl,i − 4ht

∑
i,k

hti bi i (bkk)2bkk,i .

Step 3: conclusion of the proof of (3-1). Recalling our first-order condition (3-2),
we have

b11b11, j =
∂ϕ

∂θ j
−

∑
k≥2

bkkbkk, j − 2ρ ′ht ht j for j = 1, 2, . . . , n− 1.(3-20)

For the term R, we have

R = (1+ h2
t )

[∑
i

∑
k 6=l

(bi i )2bkkbllb2
kl,i +

∑
i,k

(bi i )2(bkkbkk,i )
2
]

− 4
∑
i,k

ht hti bi i (bkk)2bkk,i

= (1+ h2
t )

[
2
∑
k≥2

(b11)2bkkb11b2
k1,1+ 2

∑
i,k≥2

(bi i )2bkkb11b2
k1,i

+

∑
i

∑
k,l≥2
k 6=l

(bi i )2bkkbllb2
kl,i +

∑
i

(bi i )2(b11b11,i )
2

+

∑
i

∑
k≥2

(bi i )2(bkkbkk,i )
2
]

− 4
∑

i

ht hti bi i (b11)2b11,i − 4
∑

i

∑
k≥2

ht hti bi i (bkk)2bkk,i

= R1+ R2+ R3,
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where

R1 = (1+ h2
t )

[
2
∑
k≥2

(b11)2bkkb11b2
k1,1+

∑
i

(bi i )2(b11b11,i )
2
]

− 4
∑

i

ht hti bi i (b11)2b11,i ,

R2 = 2
∑
i,k≥2

(1+ h2
t )(b

i i )2bkkb11b2
k1,i +

∑
i

∑
k,l≥2
k 6=l

(1+ h2
t )(b

i i )2bkkbllb2
kl,i ,

R3 =
∑

i

∑
k≥2

(1+ h2
t )(b

i i )2(bkkbkk,i )
2
− 4

∑
i

∑
k≥2

ht hti bi i (bkk)2bkk,i .

By (3-20), one has

R1 = (1+ h2
t )

[
2b11

∑
i,k,l≥2

bi i bkkbllbkk,i bll,i + 8ρ ′ht b11
∑
i,k≥2

hti bi i bkkbkk,i

+ 8(ρ ′)2h2
t b11

∑
i≥2

h2
ti b

i i
+

∑
i

∑
k,l≥2

(bi i )2bkkbllbkk,i bll,i

+ 4ρ ′ht

∑
i

∑
k≥2

hti (bi i )2bkkbkk,i + 4(ρ ′)2h2
t

∑
i

(hti bi i )2
]

+ 4ht

∑
i

∑
k≥2

hti bi i b11bkkbkk,i + 8ρ ′h2
t b11

∑
i

h2
ti b

i i
+ R(∇θϕ),

where

R(∇θϕ)= (1+ h2
t )

[
2b11

∑
k≥2

bkk
(
∂ϕ

∂θk

)2

− 4b11
∑
k,l≥2

bkkbllbll,k
∂ϕ

∂θk

− 8ρ ′ht b11
∑
k≥2

bkkhtk
∂ϕ

∂θk
+

∑
i

(bi i )2
(
∂ϕ

∂θi

)2

− 2
∑

i

∑
k≥2

(bi i )2bkkbkk,i
∂ϕ

∂θi
− 4ρ ′ht

∑
i

(bi i )2hti
∂ϕ

∂θi

]
− 4ht b11

∑
i

bi i hti
∂ϕ

∂θi
.

On the other hand,

R2 = (1+ h2
t )

[
2b11

∑
k≥2

(bkk)3b2
kk,1+ 2

∑
i,k≥2
i 6=k

(bi i )2bkkb11b2
k1,i

+ 2
∑
i,k≥2
i 6=k

bi i (bkk)3b2
kk,i +

∑
i

∑
k,l≥2

k 6=l,k 6=i,l 6=i

(bi i )2bkkbllb2
kl,i

]
.
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Recall that 2ρ ′(1+h2
t )= n−3, which will be denoted by α for simplicity in the

following calculations. Now we are at a stage where we can rewrite the terms in R
in a natural way: we denote by T1 the terms involving bkk,1(k ≥ 2), by T2 the terms
involving bkk,i (k, i ≥ 2), and by T3 all of the rest of the terms. More precisely,

T1 =
∑
k≥2

(1+ 2b11bkk) · ((1+ h2
t )

1/2b11bkkbkk,1)
2
+

(∑
k≥2

(1+ h2
t )

1/2b11bkkbkk,1

)2

+ 4ht ht1b11(1+ h2
t )
−1/2

∑
k≥2

(
1+

α

2
− b11bkk

)
· ((1+ h2

t )
1/2b11bkkbkk,1)

and

T2 = (1+ h2
t )
∑
i≥2

{
(1+ 2bi i b11) ·

(∑
k≥2

bi i bkkbkk,i

)2

+

∑
k≥2
k 6=i

2bi i bkk
· (bi i bkkbkk,i )

2

+

∑
k≥2

(bi i bkkbkk,i )
2
+ 4ht hti bi i (1+ h2

t )
−1

×

∑
k≥2

[−bi i bkk
+
α

2
+ (1+α)bi i b11

] · (bi i bkkbkk,i )

}
;

the rest of the terms are

(3-21) T3= h2
t (1+h2

t )
−1
[

2α2b11
∑
i≥2

h2
ti b

i i
+α2

∑
i

(hti bi i )2+4αb11
∑

i

h2
ti b

i i
]

+ (1+ h2
t )

[
2
∑
i,k≥2
i 6=k

(bi i )2bkkb11b2
k1,i +

∑
i

∑
k,l≥2

k 6=l,k 6=i,l 6=i

(bi i )2bkkbllb2
kl,i

]

+ R(∇θϕ).

We shall minimize the terms T1 and T2 via Lemma 3.1 for different choices of
parameters.

At first, let us examine the term T1. set Xk = (1+ h2
t )

1/2b11bkkbkk,1, λ = 1,
µ= ht1b11ht(1+ h2

t )
−1/2, bk = 1+ 2b11bkk , and ck = b11bkk

− (1+ α/2), where
k ≥ 2. By Lemma 3.1, we have

T1 ≥−4h2
t (1+ h2

t )
−1(ht1b11)201,

where

01 =
∑
k≥2

c2
k

bk
−

(
1+

∑
k≥2

1
bk

)−1(∑
k≥2

ck

bk

)2

.

Next we shall simplify 01. By denoting

βk =
1
bk
,
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we have

b11bkk
=

1
2βk
−

1
2 , ck =

1
2βk
−

3+α
2

.

Hence

01 =
∑
k≥2

βk

(
1

2βk
−

3+α
2

)2

−

(
1+

∑
k≥2

βk

)−1[∑
k≥2

βk

(
1

2βk
−

3+α
2

)]2

=
1
4

∑
k≥2

1
βk
−

(
1+

∑
k≥2

βk

)−1
(n+ 1+α)2

4
+
(3+α)2

4
.

Since
1≤ 1+

∑
k≥2

βk ≤ n− 1,

it follows that

01 ≤
1
4

∑
k≥2

1
βk
−
(n+ 1+α)2

4(n− 1)
+
(3+α)2

4

=
n− 2

4(n− 1)
(2+α)2+ 1

4(2σ1b11− 2).

Therefore,

(3-22) T1 ≥−

[
(n− 2)
n− 1

(2+α)2+ 2σ1b11− 2
]

h2
t (1+ h2

t )
−1(ht1b11)2.

Now we will deal with T2. For every i ≥ 2 fixed, set Xk = bi i bkkbkk,i , λ =
1+ 2bi i b11, µ = −hti bi i ht(1+ h2

t )
−1, bk = 1+ 2bi i bkk(k 6= i), bi = 1, and ck =

bi i bkk
−

1
2α− (1+α)bi i b11. By Lemma 3.1, we have

T2 ≥−4(1+ h2
t )
∑
i≥2

(hti bi i )20i ,

where

0i = c2
i +

∑
k≥2
k 6=i

c2
k

bk
−

(
1
λ
+ 1+

∑
k≥2
k 6=i

1
bk

)−1(
ci +

∑
k≥2
k 6=i

ck

bk

)2

.

For k 6= i , denoting

βk =
1
bk
,

we have

bi i bkk
=

1
2βk
−

1
2 , ck =

1
2βk
− δ,

where

δ =
1+α

2
+ (1+α)bi i b11.
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Noticing that

ci =
3
2 − δ,

δ

λ
=

1+α
2

,

we obtain

0i = c2
i +

∑
k≥2
k 6=i

βk(
1

2βk
− δ)2−

(
1
λ
+ 1+

∑
k≥2
k 6=i

βk

)−1[
ci +

∑
k≥2
k 6=i

βk

(
1

2βk
− δ

)]2

=
1
4

∑
k≥2
k 6=i

1
βk
−

(
1
λ
+ 1+

∑
k≥2
k 6=i

βk

)−1(n
2
+
δ

λ

)2

+
9
4
+
δ2

λ

=
1
4

∑
k≥2
k 6=i

1
βk
−

(
1
λ
+ 1+

∑
k≥2
k 6=i

βk

)−1
(n+ 1+α)2

4
+

9
4
+

1+α
2

δ.

Obviously,

1≤
1
λ
+ 1+

∑
k≥2
k 6=i

βk ≤ n− 1,

hence

0i ≤
1
4

∑
k≥2
k 6=i

1
βk
−
(n+ 1+α)2

4(n− 1)
+

9
4
+

1+α
2

δ

=
n− 2

4(n− 1)
α2
−

1
n− 1

α+
n− 3

2(n− 1)
+

1
2σ1bi i +

1
2α

2bi i b11
+αbi i b11.

Therefore, we have

(3-23) T2 ≥−
h2

t

1+ h2
t

∑
i≥2

(
n− 2
n− 1

α2
−

4
n− 1

α+
2n− 6
n− 1

+ 2σ1bi i + 2α2bi i b11
+ 4αbi i b11

)
(hti bi i )2.

Now, combining (3-21) , (3-22), and (3-23), we obtain

(3-24) R≥
h2

t

1+ h2
t

∑
i

(
1

n− 1
α2
+

4
n− 1

α−
2n− 6
n− 1

−2σ1bi i

)
(hti bi i )2+R(∇θϕ).

For choices of ρ and β, by (3-19) and (3-24), we have, for n ≥ 2,

L(ϕ)−
1

n− 1
ϕ2

t ≥
2σ1

1+ h2
t

∑
i

h2
ti b

i i
+ (n− 1)

∑
i

(bi i )2+ (n− 3)σ 2
1

+
2(n− 3)
1+ h2

t

∑
i

(hti bi i )2+ P̃2(∇θϕ)+ R(∇θϕ)

≥ 0 mod ∇θϕ.
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The proof of (3-1) is completed. �

Now we give a remark on Theorem 1.1.

Remark 3.3. In the proof of Theorem 1.1, if we restrict to the case n = 2 and just
set ρ = 0, then (3-2) shows that

b11,1 = 0 mod ∇θϕ.

Applying this to the expression of L(ϕ) in (3-17) will give

L(ϕ)= (b11b11,t)
2
− 2ht(b11)2b11,t + (b11)2h2

t1+ (1+ h2
t )(b

11)2

= [b11b11,t − ht b11
]
2
+ (b11)2h2

t1+ (b
11)2 ≥ 0 mod ∇θϕ,

and this means that, for any point x ∈ 0t , 0< t < 1,

log K (x)≥ (1− t)min
∂�0

log K + t min
∂�1

log K ,

which has already been proved by Longinetti [1987]. Also, by Remark 1.3 we know
that this estimate is not sharp in the two-dimensional case.
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