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Dedicated to my wife Cynthia

This work is devoted to the study of deformations of hyperbolic cone struc-
tures under the assumption that the length of the singularity remains uni-
formly bounded over the deformation. Let (Mi, pi ) be a sequence of pointed
hyperbolic cone manifolds with cone angles of at most 2π and topological
type (M,6), where M is a closed, orientable and irreducible 3-manifold
and 6 an embedded link in M. Assuming that the length of the singularity
remains uniformly bounded, we prove that either the sequence Mi collapses
and M is Seifert fibered or a Sol manifold, or the sequence Mi does not
collapse and, in this case, a subsequence of (Mi, pi ) converges to a complete
three dimensional Alexandrov space endowed with a hyperbolic metric of
finite volume on the complement of a finite union of quasigeodesics. We ap-
ply this result to a question proposed by Thurston and to provide universal
constants for hyperbolic cone structures when 6 is a small link in M.

1. Introduction

This text focuses on deformations of hyperbolic cone structures on a closed, ori-
entable and irreducible 3-manifold M which are singular along a fixed embedded
link 6 =61 t · · · t6l . Unlike complete hyperbolic structures, which are rigid by
Mostow’s theorem, the hyperbolic cone structures can be deformed (see [Hodgson
and Kerckhoff 1998]). The difficulty in understanding these deformations lies in the
possibility that the structure degenerates. In other words, the Hausdorff–Gromov
limit (see Section 2 for the definition) of the deformation is only an Alexandrov
space which may have dimension strictly smaller than 3, although its curvature
remains bounded from below by −1 (see [Kojima 1998]).

From [Kojima 1998; Hodgson and Kerckhoff 2005; Fujii 2000] it is known
that the degeneration of the hyperbolic cone structures occurs if and only if the
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singular link of these structures intersects itself during the deformation. When
the cone angles vary between 0 and π , the Dirichlet polyhedron of the hyperbolic
cone structures is convex and we can use this fact to avoid self intersections of the
singular link over deformations (see [Kojima 1998]). In this article we will not use
this restrictive assumption and allow the cone angles vary until 2π .

We are interested in studying the following question that was proposed by
W. Thurston in the 1980s:

Question 1. Let M be a closed and orientable hyperbolic 3-manifold and suppose
there exists a simple closed geodesic 6 in M. Can the hyperbolic structure of M
be deformed to the complete hyperbolic structure on M −6 through a path Mα of
hyperbolic cone structures with topological type (M, 6) and parametrized by the
cone angles α ∈ [0, 2π ]?

If the deformation proposed by Thurston exists, it is a consequence of his
hyperbolic Dehn surgery theorem that the length of the singular link must converge
to zero. In particular, we have that its length remains uniformly bounded over the
deformation. This conclusion give us a necessary condition for the existence of
Thurston’s desired deformation. For this reason, we will focus only on deformations
of hyperbolic cone structures with this additional hypothesis on the singularity’s
length. We remark that this assumption is automatically verified when the holonomy
representations of the hyperbolic cone structures are convergent.

We started studying this question in [Barreto 2012]. In that paper we obtained
the following result (see Section 3 for the definition of collapse):

Theorem 2. Let M be a closed, orientable and irreducible 3-manifold and let
6 =61 t · · · t6l be an embedded link in M. Suppose there exists a sequence Mi

of hyperbolic cone manifolds with topological type (M, 6) and having cone angles
αi j ∈ (0, 2π ] along 6 j for i ∈N. Denote by LMi (6 j ) the length of the connected
component 6 j of 6 in the hyperbolic cone manifold Mi . If

(1-1) sup
{
LMi (6 j )

∣∣ i ∈ N and j ∈ {1, . . . , l}
}
<∞

and the sequence Mi collapses, then M is Seifert fibered or a Sol manifold.

As a consequence of this theorem, we obtained the following result yielding
some information on Thurston’s question:

Corollary 3. Let M be a closed and orientable hyperbolic 3-manifold and suppose
there exists a finite union of disjoint simple closed geodesics 6 in M. Let Mα

be a (angle decreasing) deformation of this structure along a continuous path of
hyperbolic cone structures with topological type (M, 6) and having cone angles
α ∈ (L , 2π ] ⊂ [0, 2π ] (the same for all components of 6). If

(1-2) sup
{
LMα

(6 j )
∣∣ α ∈ (L , 2π ] and j ∈ {1, . . . , l}

}
<∞,
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then every convergent sequence Mαi , with αi converging to L , does not collapse.

In this article, we will focus on noncollapsing deformations of hyperbolic cone
structures. The principal result of this paper is the following one:

Theorem 4. Let M be a closed, orientable and irreducible 3-manifold and let
6 =61 t · · · t6l be an embedded link in M. Suppose there exists a sequence Mi

of hyperbolic cone manifolds with topological type (M, 6) and having cone angles
αi j ∈ (0, 2π ] along 6 j for i ∈N. Denote by LMi (6 j ) the length of the connected
component 6 j of 6 in the hyperbolic cone manifold Mi . If

sup
{
LMi (6 j )

∣∣ i ∈ N and j ∈ {1, . . . , l}
}
<∞,

then one of the following statements holds:

(i) The sequence Mi collapses and M is Seifert fibered or a Sol manifold.

(ii) The sequence Mi does not collapse and there exists a sequence of points
pik ∈M−6 such that the sequence (Mik , pik ) converges to a three-dimensional
pointed Alexandrov space (Z , z0). The Alexandrov space Z is endowed with
a (noncomplete) hyperbolic metric of finite volume on the complement of a
finite union 6Z of quasigeodesics. Moreover, Z is homeomorphic to M (in
particular, Z is compact) if there exists ε ∈ (0, 2π) such that the cone angles
αi j belong to (ε, 2π ]. Further, the following statements are equivalent:

(a) Z is compact.
(b) inf

{
cone angleMik

(6 j )
∣∣ k ∈ N and 6 j ⊂6

}
> 0.

(c) inf
{
LMik

(6 j )
∣∣ k ∈ N

}
> 0 for each component 6 j of 6.

Remark 5. A byproduct of this theorem is that the length of a connected component
6 j of 6 shrinks down to zero if and only if the same arises for its cone angles αi j

(when i goes to infinity). If the cone angles are supposed to be the same on all
connected components of6, it follows from this (see Corollary 23) that the sequence
of cone angles converges to zero if and only if the following statements hold:

(i) sup
{
LMi (6)

∣∣ i ∈ N
}
<∞.

(ii) lim
i→∞

diam(Mi )=∞.

(iii) The sequence Mi does not collapse.

In general, the limiting singular locus 6Z need not be a disjoint union of quasi-
geodesics since the singular link could intersect itself as cone angles are changed.
It seems possible that the components of 6Z are continuous geodesics and that the
limit is a hyperbolic cone manifold in a more general sense allowing singularities
along a graph instead of a link. The main problem in understanding the limiting
singular locus lies in the possibility that the singularity intersects itself infinitely
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many times at the limit. More precisely, 6Z may be a graph with infinite degree
vertices. A better comprehension of the limiting singular locus is an interesting
problem for further investigation.

As an application of Theorem 4, we obtain the following result related to
Question 1.

Corollary 6. Let M be a closed and orientable hyperbolic 3-manifold and suppose
there exists a finite union of disjoint simple closed geodesics 6 in M. Let Mα be a
deformation of this structure along a continuous path of hyperbolic cone structures
with topological type (M, 6) and having cone angles α ∈ (θ, 2π ] ⊂ [0, 2π ] (the
same for all components of 6). The following statements are equivalent:

(i) θ = 0 and the path Mα extends continuously to [0, 2π ], where M0 denotes
M −6 with the complete hyperbolic metric.

(ii) lim
α→θ

LMα
(6)= lim

α→θ

l∑
i=1

LMα
(6 j )= 0.

(iii) There exists a sequence αi ∈ (θ, 2π ] converging to θ satisfying

sup
{
LMα

(6 j )
∣∣ α ∈ (θ, 2π ] and j ∈ {1, . . . , l}

}
<∞

and such that the sequence diam(Mαi ) goes to infinity with i .

Remark 7. Corollary 6 provides a necessary and sufficient condition for the exis-
tence of the deformation proposed by Thurston. Using the notation in Question 1,

θ = 0 if and only if lim
α→θ

LMα
(6)= 0.

Supposing in addition that M is not Seifert fibered and that 6 is a small link
in M , we have also the following theorem (see Corollaries 25 and 26) providing
universal constants for hyperbolic cone structures with topological type (M, 6).

Theorem 8. Let M be a closed, orientable, irreducible and non-Seifert fibered 3-
manifold and let 6 be a small link in M. There exists a constant V = V (M, 6) > 0
and a constant K = K (M, ε) > 0, for each ε ∈ (0, 2π), such that

(i) Vol(M) > V for every hyperbolic cone manifold M with topological type
(M, 6), and

(ii) diam(M) < K for every hyperbolic cone manifold M with topological type
(M, 6) and having cone angles in the interval (ε, 2π ].

2. Metric geometry

In this section, we recall some definitions about Alexandrov spaces and Hausdorff–
Gromov convergence. We refer to [Burago et al. 2001; Burago et al. 1992; Gromov
1981; Perelman and Petrunin 1994] for details.



DEFORMATION OF HYPERBOLIC CONE STRUCTURES: NONCOLLAPSING CASE 5

Given a metric space Z , the metric on Z will always be denoted by dZ ( · , · ).
The open ball of radius r > 0 about a subset A of Z will be denoted by

BZ (A, r)=
⋃
a∈A

{
z ∈ Z

∣∣ dZ (z, a) < r
}
.

A metric space Z is called a length space (and its metric is called intrinsic) when
the distance between every pair of points in Z is given by the infimum of the lengths
of all rectificable curves connecting them. When a minimizing geodesic between
every pair of points exists, we say that Z is complete.

For all k ∈R, denote by M2
k the complete and simply connected two-dimensional

Riemannian manifold of constant sectional curvature equal to k.
Let4(x, y, z)⊂ Z be a geodesic triangle in Z with vertices x, y, z∈ Z . The angle

of 4(x, y, z) at vertex x , for example, will be denoted by ]4(x). A comparison
triangle for4(x, y, z)⊂ Z in M2

k is a geodesic triangle4k(x̄, ȳ, z̄)⊂M2
k satisfying

dM2
k
(x̄, ȳ)= dZ (x, y), dM2

k
(ȳ, z̄)= dZ (y, z), and dM2

k
(z̄, x̄)= dZ (z, x).

Definition 9. A length space Z is called an Alexandrov space of curvature not
smaller than k ∈ R if every point of Z has a neighborhood U such that, the angles
of every triangle 4(x, y, z)⊂U are well defined and satisfy the inequalities

]4(x)≥ ]4k
(x̄), ]4(y)≥ ]4k

(ȳ), and ]4(z)≥ ]4k
(z̄)

for every comparison triangle 4k(x̄, ȳ, z̄)⊂M2
k of 4.

Suppose from now on that Z is an n-dimensional Alexandrov space of curvature
not smaller than k ∈ R and fix a point O ∈M2

k . We next recall the definition of
quasigeodesics on an Alexandrov space (see [Perelman and Petrunin 1994]). Let
γ : [a, b] → Z be a 1-Lipschitz curve and let z ∈ Z be a point satisfying

(2-1) 0< dZ (z, γ (t)) <
π
√

k

for all t ∈ [a, b]. We say that a curve γ̃ : [a, b] →M2
k is a development of γ with

respect to z ∈ Z when

dZ (z, γ (t))= dM2
k
(O, γ̃ (t))

for all t ∈ [a, b].

Definition 10. A 1-Lipschitz curve γ : [a, b] → Z is a quasigeodesic of Z if it is
parametrized by arc length and, for every point z ∈ Z satisfying (2-1) and every
development γ̃ : [a, b] →M2

k of γ with respect to z ∈ Z , the curvilinear triangle
bounded by the segments O γ̃ (t ± δ) and the arc γ̃ |[t−δ,t+δ], where t ∈ (a, b) and
δ > 0 sufficiently small, is convex.
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Given three points x, y, z ∈ Z , let 4k(x̄, ȳ, z̄) be a triangle in M2
k satisfying

dM2
k
(x̄, ȳ)= dZ (x, y), dM2

k
(ȳ, z̄)= dZ (y, z), and dM2

k
(z̄, x̄)= dZ (z, x).

We denote by ]k(x; y, z) the angle of 4k(x̄, ȳ, z̄) at x̄ . Note that this definition
does not depend on the choice of the triangle 4k(x̄, ȳ, z̄).

Consider z ∈ Z and λ ∈ (0, π). The point z is said to be λ-strained if there
exists a set {(ai , bi ) ∈ Z × Z | i ∈ {1, . . . , n}}, called a λ-strainer at z, such that
]k(z; ai , bi ) > π − λ and

max
{∣∣∣]k(z; ai , a j )−

π

2

∣∣∣, ∣∣∣]k(z; bi , b j )−
π

2

∣∣∣, ∣∣∣]k(z; ai , b j )−
π

2

∣∣∣}< λ
for all i 6= j ∈ {1, . . . , n}. The set Rλ(Z) of λ-strained points of Z is called the set
of λ-regular points of Z . It is a remarkable fact that Rλ(Z) is an open and dense
subset of Z .

We now recall the notion of (pointed) Hausdorff–Gromov convergence:

Definition 11 [Burago et al. 2001]. Let (Zi , zi ) be a sequence of (pointed) metric
spaces. We say that the sequence (Zi , zi ) converges in the (pointed) Hausdorff–
Gromov sense to a (pointed) metric space (Z , z0), if the following holds: For every
r > ε > 0, there exist i0 ∈ N and a sequence of (maybe noncontinuous) maps
fi : BZi (zi , r)→ Z (i > i0) such that

(i) fi (zi )= z0,

(ii) sup
{
dZ ′
(

fi (z1), fi (z2)
)
− dZ (z1, z2)

∣∣ z1, z2 ∈ Z
}
< ε,

(iii) BZ (z0, r − ε)⊂ BZ
(

fi (BZi (zi , r)), ε
)
,

(iv) fi (BZi (zi , r))⊂ BZ (z0, r + ε).

For the rest of the paper, the term “converges” will stand for “converges in the
(pointed) Hausdorff–Gromov sense”.

Let (Zi , zi ) be a convergent sequence of Alexandrov spaces with the same lower
curvature bound k ∈ R and the same dimension n ∈N. The limit Alexandrov space
must have the same lower curvature bound k, but can have dimension less than or
equal to n (see [Burago et al. 2001, Corollary 10.8.25]). When the limit Alexandrov
space has dimension n, Perelman’s stability theorem (see [Kapovitch 2007]) assures
that it is homeomorphic to Zi , for sufficiently large indexes.

It is a fundamental fact that the class of Alexandrov spaces of curvature not
smaller than k∈R is precompact with respect to the Hausdorff–Gromov convergence
(see [Gromov 1981, Proposition 5.2] and [Burago et al. 2001, Corollary 10.8.25]).
More precisely, every sequence of pointed Alexandrov spaces of curvature not
smaller than k ∈ R admits a convergent subsequence to an Alexandrov space with
the same lower bound for the curvature.
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Another important fact concerning Alexandrov spaces is that the Hausdorff–
Gromov limit of quasigeodesics is a quasigeodesic (see [Perelman and Petrunin
1994]). More precisely, if γi : [a, b]→ Zi is a convergent sequence of quasigeodesics,
then the limit curve is a quasigeodesic on the limit space.

3. Sequences of hyperbolic cone manifolds

Let M be a closed, orientable and irreducible differential manifold of dimension 3
and let 6 =61 t · · · t6l be an embedded link in M . A hyperbolic cone structure
with topological type (M, 6) is a complete intrinsic metric on M such that every
nonsingular point (i.e., every point in M −6) has a neighborhood isometric to an
open set of H3, the hyperbolic space of dimension 3, and that every singular point
(i.e., every point in 6) has a neighborhood isometric to an open neighborhood of a
singular point of H3(α), the space obtained by identifying the sides of a wedge of
angle α ∈ (0, 2π ] in H3 by a rotation about the axis of the wedge. The angles α are
called cone angles and they may vary from one connected component of 6 to the
other. We emphasize that we only allow cone angles of at most 2π in this paper. By
convention, the complete hyperbolic structure M0 on M −6 (see [Kojima 1996])
is considered as a hyperbolic cone structure with topological type (M, 6) and cone
angles equal to zero.

We point out that every hyperbolic cone manifold is an Alexandrov space of
curvature not smaller than −1. Furthermore, every geodesic on it is a quasigeodesic.

A natural way to study degenerating deformations of hyperbolic cone structures
on (M, 6) is to consider sequences of hyperbolic cone structures converging (in the
pointed Hausdorff–Gromov sense) to the limit Alexandrov space. To study these
kind of sequences, we need the important notion of collapse which illustrates the
intuitive fact that the volume of the sequence may or may not go to zero.

Definition 12. We say that a sequence Mi of hyperbolic cone manifolds with
topological type (M, 6) collapses if, for every sequence of points pi ∈ M −6,
the sequence r Mi−6

inj (pi ) consisting of their Riemannian injectivity radii in Mi −6

converges to zero. Otherwise, we say that the sequence Mi does not collapse.

When a convergent sequence of hyperbolic cone manifolds collapses, most of
the geometric information can be lost. This happens because the dimension of
the limit Alexandrov space is strictly smaller than 3 (see [Barreto 2012]). On the
noncollapsing case, however, the limit Alexandrov space must have dimension 3
and, in this case, many kinds of geometric information are preserved and can be
used to study the deformation.

Given a sequence Mi of hyperbolic cone manifolds with topological type (M, 6),
fix indices i ∈ N and j ∈ {1, . . . , l}. For sufficiently small radius R > 0, the metric
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neighborhood
BMi (6 j , R)=

{
x ∈ Mi

∣∣ dMi (x, 6 j ) < R
}

of 6 is a solid torus embedded in Mi . The supremum of the radius R > 0 satisfying
the above property will be called normal injectivity radius of 6 j in Mi and it is
going to be denoted by Ri (6 j ). Analogously we can define Ri (6), the normal
injectivity radius of 6. It is a remarkable fact (see [Fujii 2000; Hodgson and
Kerckhoff 2005]) that the existence of a uniform lower bound for Ri (6) ensures
the existence of a sequence of points pik ∈ M such that the sequence (Mik , pik )

converges to a pointed hyperbolic cone manifold (M∞, p∞) with topological type
(M, 6). Moreover, M∞ must be compact provided that the cone angles of Mik are
uniformly bounded from below.

Let us also emphasize that the sequence Vol(Mi ) consisting of the Riemannian
volumes of the hyperbolic manifolds Mi −6 is always uniformly bounded. More
precisely (see [Dunfield 1999; Francaviglia 2004]), we have

(3-1) Vol(Mi ) < Vol(M0),

where M0 denotes the complete hyperbolic manifold that is homeomorphic to M−6.
The purpose of this section is to prove Theorem 4. It is divided into two parts.

The first part contains some preliminary results whereas the remaining part deals
with the proof of Theorem 4.

Let us point out that, throughout the rest of the paper, the term “component” is
going to stand for “connected component”.

3.1. Preliminary results. Let us recall some definitions and elementary results
which will be important for the proof of Theorem 4. We will begin with the
classification of two-dimensional embedded tori in M −6 (see [Barreto 2012]).

Lemma 13. Suppose that M −6 is hyperbolic and let T be a two-dimensional
torus embedded in M −6. Then T separates M. Moreover, one and only one of
the following statements holds:

(i) T is parallel to a component of 6 (hence it bounds a solid torus in M).

(ii) T is not parallel to a component of 6 and it bounds a solid torus in M −6.

(iii) T is not parallel to a component of 6 and it is contained in a ball B of M−6.
Furthermore, T bounds a region in B which is homeomorphic to the exterior
of a knot in S3.

We turn to the geometric classification of the thin part of a hyperbolic manifold.

Definition 14. Fix δ>0 and let M be a hyperbolic manifold of dimension 3 (without
boundary and perhaps noncomplete). Define the δ-thin part Mthin(δ) of M by

Mthin(δ)=
{
q ∈ M

∣∣ r M
inj(q) < δ and expq is defined on BTq M(0, 3δ)

}
.
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The following result concerning the thin part of hyperbolic manifolds will be
needed later.

Proposition 15. Let M be a hyperbolic manifold of dimension 3 (without boundary
and perhaps noncomplete) of finite volume. If δ > 0 is small enough, then each
component of Mthin(δ) contains a maximal region which is isometric to either

(i) the quotient of a metric neighborhood of a geodesic γ in H3 by a loxodromic
element of PSL2(C) leaving γ invariant and whose translation length is not
bigger than δ, or

(ii) a parabolic cusp of rank 2.

In addition, when Vol(M) <∞, it follows that M has finitely many ends.

This proposition is a consequence of the existence of a Margulis foliation for the
thin part of a hyperbolic manifold. A proof for this proposition is given in [Boileau
et al. 2005, Theorem 5.3 and Corollary 5.5] where the authors study the thin part of
hyperbolic cone manifolds with topological type (M, 6) and whose cone angles are
not bigger than π . Note that the condition imposed on the cone angles is used only
in the description of the singular components of the thin part. We summarize below
their proof for the first part of the proposition which, indeed, makes unnecessary
the angle condition.

Consider a hyperbolic manifold M and denote by π : M̃ → M the universal
cover of M . Let δ > 0 be the constant given by the Margulis lemma (see [Každan
and Margulis 1968; Ballmann et al. 1985; Boileau et al. 2005]). Then for every
component P of Mthin(δ), the stabilizer of a component of π−1(P) ⊂ M̃ is an
elementary subgroup of PSL2(C) generated by a loxodromic element or by at most
two parabolic elements. Associated to this group we have a canonical foliation
of H3. The pull-back of this foliation by a developing map gives a foliation on
π−1(P) which is equivariant by the action of π1 M . The quotient of this foliation is
the Margulis foliation on P.

To finish the proof, it is sufficient to show that the leaves of this foliation are
two-dimensional tori.

First, we remark that the leaves are complete. This is a consequence of the fact
that injectivity radius is constant on them (see [Barreto 2009]). When the stabilizer
of a component of π−1(P) is generated by a loxodromic element, the conclusion
follows immediately. In the second case, we need to use the fact that the leaves are
flat (they were obtained from horospheres) and the Gauss–Bonnet theorem. The
hypothesis that the volume of the manifold is finite excludes undesirable euclidean
surfaces other than torus.

3.2. Proof of Theorem 4. The purpose of this section is to study a noncollapsing
sequence Mi . Without loss of generality, this hypothesis implies the existence of a
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sequence pi ∈ M −6 satisfying

r0 = inf
{
r Mi

inj (pi )
∣∣ i ∈ N

}
> 0,

and such that the sequence (Mi , pi ) converges to a pointed Alexandrov space
(Z , z0). By definition of the pointed Hausdorff–Gromov convergence, the ball
BZ (z0, r0) is isometric to a ball of radius r0 in H3 and this implies that Z has
dimension equal to 3.

We are interested in the case where the length of the singularity remains uniformly
bounded, i.e., where

sup
{
LMi (6 j )

∣∣ i ∈ N and j ∈ {1, . . . , l}
}
<∞.

Fix j ∈ {1, . . . , l}. We can suppose (passing to a subsequence if necessary) that

sup
{
dMi (pi , 6 j )

∣∣ i ∈ N
}
<∞ or lim

i→∞
dMi (pi , 6 j )=∞.

In the first case, we can use again the precompactness to suppose that the component
6 j ⊂ Mi , viewed as a sequence of Alexandrov spaces of dimension 1, converges to
a closed curve 6Z

j in Z . Since Z has dimension 3 and it is the limit of a sequence of
Alexandrov spaces with same dimension 3 and same lower curvature bound −1, we
can conclude that 6Z

j is a quasigeodesic in Z (see [Perelman and Petrunin 1994]).
Summarizing, each component 6 j of 6 satisfies one, and only one, of the

following statements:

(1) sup
{
dMi (pi , 6 j )

∣∣ i ∈ N
}
<∞ and 6 j converges to a quasigeodesic 6Z

j ⊂ Z .

(2) lim
i→∞

dMi (pi , 6 j )=∞.

This dichotomy allows us to write6=60t6∞, where60 contains the components
6 j of 6 which satisfy item (1) and 6∞ those that satisfy item (2).

The following lemma shows that the hypothesis of noncollapsing imposes re-
strictions on the length and on the cone angles of the singular components of 6
contained in 60.

Lemma 16. Suppose that the sequence Mi does not collapse and let pi ∈ M −6
be a sequence of points such that r0 = inf{r Mi

inj (pi )
∣∣ i ∈ N}> 0. If

L = sup
{
LMi (6 j )

∣∣ i ∈ N and j ∈ {1, . . . , l}
}
<∞,

the following inequalities hold:

(i) inf
{
LMi (6 j )

∣∣ i ∈ N and 6 j ⊂60
}
> 0.

(ii) inf
{
αi j

∣∣ i ∈ N and 6 j ⊂60
}
> 0.

(iii) sup
{

Ri (6 j )
∣∣ i ∈ N and 6 j ⊂60

}
<∞.
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Proof. Consider R> sup{dMi (pi , 6 j ) | i ∈N and 6 j ⊂60}+ r0. By construction,
R<∞ and BMi (pi , r0)⊂ BMi (6 j ,R), for all i ∈N and all components 6 j of 60.

Fix i ∈N and fix a component 6 j of 60. Let A be a region of H3(αi j ) which is
bounded by two planes orthogonal to the singular geodesic σ of H3(αi j ) and having
distance LMi (6 j ) between them. Using a developing map for Mi −6 and the
minimizing geodesics leaving 6 j orthogonally, the manifold Mi can be developed
in a compact domain K ⊂A such that Vol(K )= Vol(Mi ).

Since BMi (pi , r0) ⊂ BMi (6 j ,R), the development of BMi (pi , r0) in K is con-
tained in BH3(αi j )(σ,R)∩A. If V0 represents the volume of a ball of radius r0 in H3,
we have

V0 = Vol
(
BMi (pi , r0)

)
≤ Vol

(
BH3(αi j )(σ,R)∩A

)
=
αi j

2
LMi (6 j ) sinh2(R)

and therefore

LMi (6 j )≥
V0

π sinh2(R)
> 0 and αi j ≥

2V0

L sinh2(R)
> 0.

Finally, item (iii) follows from the fact that the sequence Vol(Mi ) is uniformly
bounded from above (see (3-1)). �

With the preceding notations, set

6Z =
⋃

6 j⊂60

6Z
j ⊂ Z .

We present now the main result for the noncollapsing:

Theorem 17 (noncollapsing). Suppose that there exists a sequence pi ∈ M −6
satisfying

r0 = inf
{
r Mi

inj (pi )
∣∣ i ∈ N

}
> 0

and such that the sequence (Mi , pi ) converges to a pointed Alexandrov space
(Z , z0) of dimension 3. If

sup
{
LMi (6 j )

∣∣ i ∈ N and j ∈ {1, . . . , l}
}
<∞.

Then:

(i) Z − 6Z is a hyperbolic 3-manifold of finite volume whose convex and un-
bounded ends are finite in number and are parabolic cusps of rank 2.

(ii) Z is compact (and therefore homeomorphic to M) if and only if 6∞ =∅.

(iii) If Z is not compact, there is a bijection between the connected components
of 6∞ and the complete ends of Z −6Z . In fact, each unbounded end C j of
Z −6Z is the Hausdorff–Gromov limit of metric neighborhoods (homeomor-
phic to solid tori) BMi (6 j , ri ) of a component 6 j of 6∞, where ri > 0 is an
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increasing sequence going off to infinity. In addition, the cone angles αi j and
the lengths of these components converge to 0.

Proof of (i). According to [Fujii 2000, Lemma 2], every point of Z−6Z is the limit
of a sequence of points of Mi −6 whose injectivity radius is uniformly bounded
from below. This implies that Z −6Z is a (without boundary and noncomplete)
hyperbolic manifold. Note that the unbounded ends of Z are those of Z −6Z . In
view of Proposition 15, to prove item (i) it is sufficient to show the following:

Claim. Vol(Z −6Z ) <∞.

Proof of claim. Suppose for contradiction the statement is false. Let K∞ be a
compact set of Z −6Z whose Riemannian volume is strictly greater than Vol(M0),
where M0 is M −6 with its complete hyperbolic metric. Since the convergence
is bilipschitz on compact subsets (see [Cooper et al. 2000, Theorem 6.20]), there
exists an index i0 ∈ N and a compact subset Ki0 of Mi0 −6 (near K∞) such that

Vol(M0) < VolMi0
(Ki0)≤ Vol(Mi0).

This is however impossible since Vol(Mi0) < Vol(M0) (see (3-1)). This proves the
claim, and thus completes the proof of item (i) of Theorem 17. �

Proof of (ii) and (iii). If Z is compact then 6∞ =∅. Suppose now that Z is not
compact. By Lemma 16 we can choose R > 0 such that

BMi

(
6 j , Ri (6 j )

)
⊂ BMi (pi , R/2)

for all connected components 6 j of 60 and all i ∈ N . Let K be a compact subset
of Z which contains the ball BZ (z0, R) (and hence 6Z ) in its interior and satisfies

Z= Z − int(K )= C1 t · · · tCm,

where each Ck ≈ T 2
×[0,∞) is a cuspidal end of Z .

Consider a sequence C1i = T 2
×[0, ti ] of compact subsets of C1, where ti > 0

is an unbounded and strictly increasing sequence.
Let εi > 0 be a sequence converging to zero. Without loss of generality, there

exists (according to [Cooper et al. 2000, Theorem 6.20]) a sequence of (1+ εi )-
bilipschitz embeddings f1i : C1i → Mi − 6 onto their images. Therefore, the
sequence B1i = f1i (C11) converges in the bilipschitz sense to the compact set C11.

Consider now a sequence of holonomy representations ζ1i : Z×Z→ PSL2(C)

for the hyperbolic structures on the interior sets B1i . According to [Cooper et al.
2000, Theorem 6.22], we can assume that

(3-2) ζ1i ◦ ( f1i )∗ −→ ϕ1,
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where ϕ1 : Z×Z → PSL2(C) is a holonomy representation of the hyperbolic
structure in the interior of C1 and where ( f1i )∗ :Z×Z→π1(M−6) is the canonical
homomorphism induced by the map f1i .

Consider the torus T1i = f1i (T 2
×{0}) embedded in M −6. Since K contains

the ball BZ (z0, R), the torus T1i cannot be parallel to a component 6 j of 60. For
i sufficiently large, the torus T1i cannot be contained in a ball of M −6. To see
this, consider a homotopically nontrivial loop γ1 on T 2

×{0} ⊂ C11. Since C1 is a
parabolic cusp, ϕ1(γ1) is a nontrivial parabolic element of PSL2(C) and therefore
the convergence (3-2) implies that ζ1i ◦ ( f1i )∗(γ1) is not trivial for i very large. The
same then holds for the sequence ( f1i )∗(γ1).

According to Lemma 13, we can suppose that the torus T1i bounds a solid torus
W1i in M (with perhaps a singular soul). Note that

(3-3) lim
i→∞

diamMi (W1i )=∞,

because f1i (C1i )⊂W1i , for all i ∈ N.
We can repeat the same construction for each cusp Ck of Z in order to obtain

sequences of embedded tori Tki ⊂ M −6 (k ∈ {1, . . . ,m} and i ∈N), each of then
bounds solid torus Wki in M −60. Furthermore whose diameters become infinite
with i . This yields a sequence of 3-manifolds with torus boundary

Mi = Mi −

m⋃
k=1

Wki

such that M can be obtained by Dehn filling on their boundary components. By
construction, the sequence Mi converges to the compact K and then (by Perelman’s
stability theorem [Kapovitch 2007]), we can assume that the manifolds Mi are all
homeomorphic to K .

For all i ∈ N and all k ∈ {1, . . . ,m}, fix a homotopically nontrivial loop µki in
T 2
×{0} ⊂ Ck satisfying:

• the loop fki ◦µki bounds a disc in Wki ,

• if, for some index j ∈ N, a loop µk j belongs to the same homotopy class of
the loop µki , then µk j = µki .

The rest of the proof is going to be divided in two cases depending on whether
or not 60 is empty.

First case: 60 =∅. Since the link 6 was supposed to be nonempty, it follows that
6∞ 6=∅. Since the distance between pi and 6∞ becomes infinite, we can assume
that 6∞ is contained in the complement of Mi . More precisely, we can also assume
(see Lemma 13) that each solid torus of Mi −Mi contains at most one component
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of 6∞ and, in the latter case, this component corresponds to the soul of the solid
torus in question.

The singular set6∞ has a finite number of components. Passing to a subsequence
if necessary, we obtain an one-to-one map which associates each component 6 j

of 6∞ to a component Ck j of Z, that is, the component 6 j is contained in the
component Wk j i of Mi −Mi , for all i ∈ N.

Recall that limi→∞ dMi (pi , 6 j )=∞ for every connected component 6 j of 6∞.
Since the tori Tk j i remain at a finite distance to the points pi and they are parallel
to the components 6 j , we must have limi→∞ Ri (6 j )=∞.

Since 60 =∅ and thanks to [Fujii 2000, Theorem 1], the cone angles of 6 con-
verge to zero and Z has a complete hyperbolic structure whose ends are associated
with components of 6∞. In other words, the injection defined above between the
components of 6∞ and the components of Z is, indeed, a bijection.

Second case: 60 6=∅. Denote by 3 the subset of {1, . . . ,m} containing the indices
that are not associated with components of 6∞. Denote also by � the subset of
{1, . . . ,m} containing the indices that are associated with components of6∞ whose
sequence of cone angles does not converge to zero.

Lemma 18. There exist i0 ∈N satisfying: for each k ∈3∪�, the homotopy classes
of loops µki (i > i0) are pairwise distinct.

Proof. Suppose for a contradiction that the statement of the lemma does not hold.
Without loss of generality, there exists k0 ∈3∪� such that all loops µk0i (i ∈ N)
belongs to the same homotopy class. By construction, this implies that the loops
µk0i (i ∈ N) are the same loop, say µ.

Suppose first that k0 ∈3. By construction,

(3-4) ζk0i ◦ ( fk0i )∗(µ)= ζk0i ( fk0i ◦µ)= 1PSL2(C),

for all i ∈ N. Because ϕk0([µ]) is a nontrivial parabolic element of PSL2(C), we
have a contradiction.

Suppose now that k0 ∈�. Then k0 = k j , for some component 6 j of 6∞ whose
sequence of cone angles converges to α∞ j 6= 0. Since the maps fk0i are (1+ εi )-
bilipschitz embeddings (with εi shrinks down to zero), the loops fk0i ◦µ must have
bounded lengths.

As noted in the preceding case, the sequence Ri (6 j ) of the normal injectivity
radii of the component 6 j goes off to infinity. Since α∞ j 6= 0, the sequence
LMi ( fk0i ◦µ) formed by the lengths of the loops fk0i ◦µ cannot be bounded. This
is a contradiction with the above paragraph. �

As a consequence of the above lemma, we will show that the set 3∪� is empty.
To do this, the following lemma will be needed:
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Lemma 19. Given k ∈3, there exists i0 = i0(k) ∈ N such that the solid tori Wki

contains a simple closed geodesic σki , for every i > i0.

Proof. Fix k ∈3 and let

δ = 1
2 inf

{
r Z−6Z

inj (z)
∣∣ z ∈ Ck1

}
> 0.

Since the map fki |Ck1 : Ck1→ Bki becomes closer and closer to isometries, there
exists i1 ∈ N such that

r Mi
inj (q) > δ,

for all i > i1 and for all q ∈ Bki (in particular, for all q ∈ Tki ).

Claim. There is i2 ∈N such that, for all i > i2, we can find a loop γki in Wki which
is homotopically nontrivial in the interior M −6 and has length smaller than δ.

Proof of claim. Consider the loops consisting of two geodesic segments with same
ends and equal lengths which, furthermore, are smaller than δ/2. These loops are
always homotopically nontrivial; otherwise we would obtain, after development,
two distinct geodesic arcs with the same ends and equal lengths in H3, which is not
possible.

The fact that Wki does not admit this type of loop in its interior is equivalent to say-
ing that all points of Wki have injectivity radius not smaller than δ/2. This is a contra-
diction because the sequence Vol(Mi ) is uniformly bounded from above (see (3-1))
and the diameter of components Wki becomes infinite. This proves the claim.

Consider io = max{i1, i2} and fix i > i0. Let γki ⊂ Wki be a loop as above.
By [Kojima 1998, Lemma 1.2.4], the loop γki is freely homotopic (in M −6) to a
closed geodesic σki ⊂ M−6. Moreover, the length of σki is smaller than δ because
the length of loops is strictly decreasing along this homotopy. Because the points
of the torus Tki have injectivity radius bigger than δ, all the loops involved in this
homotopy must lie entirely in the interior of Wki . In particular, σki ⊂Wki .

If σki is not simple, then it gives rise to a loop γ ′ki consisting of two geodesic
segments with same ends and equal lengths which are smaller than δ/4. This
implies that the injectivity radius of the ends of γ ′ki is smaller than δ/4. We can
apply the same construction for the loop γ ′ki in order to obtain a new closed geodesic
σki ⊂Wki whose length is smaller than δ/4. Since the injectivity radius of points
of Wki bounded from below by compactness, this process must end after a finite
number of steps and therefore we can suppose that σki is simple. This completes
the proof of Lemma 19. �

The following lemma shows that 6∞ is not empty and the cone angles of its
components goes to zero. Moreover the map between the components of 6∞ and
the components of Z must be a bijection.

Lemma 20. The set 3∪� is empty.
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Proof. According to the above lemma, we can suppose there exists a simple closed
geodesic σki in the solid torus Wki , for every i ∈N and every k ∈3. If the manifolds
Mi are regarded as hyperbolic cone manifolds with topological type (M, 6′), where

6′ =6 ∪
⋃
k∈3

σki

and the cone angles on the geodesics σki are equal to 2π , it follows from Lemma 13
that the tori Tki are parallel to the geodesics σki . In addition, M −6′ admits a
complete hyperbolic structure (see [Kojima 1996]) that will be denoted by M0.

For all i ∈ N and all k ∈ 3, denote the homotopy class of the loop µik by
(pki , qki ) ∈ Z×Z ≈ π1Ck . Without loss of generality, the Thurston’s hyperbolic
Dehn surgery [Cooper et al. 2000, Theorem 1.13] gives a sequence of complete
hyperbolic manifolds M(pi1, qi1, . . . , pim, qim) diffeomorphic to M −6 and such
that

(3-5) Vi := Vol(M(p1i , q1i , . . . , pmi , qmi )) < Vol(M0),

where (pki , qki )=∞, for all i ∈ N and all k ∈ {1, . . . ,m}−3.
Since, for each k ∈3, the pairs (pki , qki )i∈N are pairwise distinct (the homotopy

classes of µik are pairwise distinct), a subsequence M(p1is , q1is , . . . , pmis , qmis )

such that

lim
s→∞
‖(pkis , qkis )‖ = lim

s→∞
(pkis )

2
+ (qkis )

2
=∞ for every k ∈3

always exists. Thurston’s hyperbolic Dehn surgery then gives

(3-6) lim
s→∞

Vis = Vol(M0).

Recall that the Riemannian volume of a complete hyperbolic manifold with
finite volume is a topological invariant (Mostow’s theorem). Since the manifolds
M(pi1, qi1, . . . , pim, qim) are diffeomorphic, the sequence Vi must be constant.
This contradicts the statements (3-5) and (3-6). Hence Mi − Mi cannot have
nonsingular components. Therefore, 6∞ 6=∅ and the map between the components
of 6∞ and the components of Z is a bijection. This proves Lemma 20, and thus
completes the proof of items (ii) and (iii) of Theorem 17. �

Corollary 21. Suppose that the sequence Mi does not collapse and verifies

sup
{
LMi (6 j )

∣∣ i ∈ N and j ∈ {1, . . . , l}
}
<∞.

If there is ε ∈ (0, 2π) such that the cone angles αi j belong to (ε, 2π ], then there
exists a sequence of points pik ∈ M−6 such that the sequence (Mik , pik ) converges
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to a compact and 3-dimensional pointed Alexandrov space (Z , z0) (in fact home-
omorphic to M). Moreover, there exists a finite union of quasigeodesics 6Z such
that Z −6Z is a noncomplete hyperbolic manifold of finite volume.

Remark 22. Suppose that 6 is not connected. If (Mi , pi ) is a sequence as in the
statement of Theorem 17, then the inequality

sup
{
diamMi (6)

∣∣ i ∈ N
}
<∞

is a necessary and sufficient condition to ensure that the sequence diam(Mi ) remains
bounded.

We have also the following less immediate corollary:

Corollary 23. Let M be a closed, orientable and irreducible 3-manifold and let 6
be an embedded link in M. Assume that there exists a sequence Mi of hyperbolic
cone manifolds with topological type (M, 6) and having the same cone angles
αi ∈ (0, 2π ] for all components of 6. Then there is a pointed subsequence Mik

converging to M0 (M −6 with its complete hyperbolic metric) if and only if the
following conditions hold:

(i) sup
{
LMi (6)

∣∣ i ∈ N
}
<∞.

(ii) sup
{
diam(Mi )

∣∣ i ∈ N
}
=∞.

(iii) The sequence Mi does not collapse.

Proof. By Kojima’s result [1998], the existence of a subsequence Mik converging
to M0 is equivalent to the convergence of the cone angles αik to zero.

Suppose that the sequence αi converges to zero. Without loss of generality, we
can assume that αi ∈ (0, π], for every i ∈ N. According to [Kojima 1998], there
exists a continuous path (parametrized by cone angles) of hyperbolic cone structures
with topological type (M, 6) which connects the hyperbolic cone structure of M0

to the complete hyperbolic structure on M −6. Moreover, by uniqueness of the
hyperbolic cone structures with cone angles not bigger than π (see [Kojima 1998]),
this path contains the hyperbolic cone structures of Mi , for every i ∈ N. Then for
every point p∈M , the sequence (Mi , p) converges to (M−6, p)with the complete
hyperbolic structure. This implies items (ii) and (iii). Item (i) is a consequence
of Thurston’s hyperbolic Dehn surgery theorem which implies that the sequence
LMi (6) converges to zero.

Conversely, suppose now that items (i), (ii) and (iii) are true. Then there exists a
sequence of points pik ∈ M −6 satisfying

inf
{
r Mi

inj (pik )
∣∣ k ∈ N

}
> 0
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and such that the sequence (Mik , pik ) converges to a noncompact and 3-dimensional
pointed Alexandrov space (Z , z0). Corollary 21 then shows that the sequence αi

must converge to zero. �

4. Applications

4.1. Small links. An embedded link 6 in a 3-manifold M is called small (in M)
if it has an open tubular neighborhood U such that M −U does not contain an
embedded essential surface whose boundary is empty or an union of meridians
of 6. An important fact due to W. Thurston and A. Hatcher [1985, Lemma 3] is
that every 3-manifold containing a small link does not admit an embedded essential
surface.

Given a 3-manifold M , let 6 be an embedded link in M . Suppose there exists
a sequence Mi of hyperbolic cone manifolds with topological type (M, 6) and
consider the sequence LMi (6) formed by the lengths of the singular set 6 in Mi .
As a consequence of the Culler–Shalen theory [1983], the holonomy representations
of Mi are convergent. Therefore, we have the following proposition:

Proposition 24. Let Mi be a sequence of hyperbolic cone manifolds with topologi-
cal type (M, 6). If 6 is a small link in M , then

sup
{
LMi (6 j )

∣∣ i ∈ N and 6 j component of 6
}
<∞.

When 6 is a small link in M , Theorem 4 yields the following corollaries:

Corollary 25. Suppose that M is a closed, orientable, irreducible and non-Seifert
fibered 3-manifold and let 6 be an embedded small link in M. Then there exists
a constant V = V (M, 6) > 0 such that Vol(M) > V , for every hyperbolic cone
manifold M with topological type (M, 6) and having cone angles of at most 2π .

Proof. First note that M is not a Sol manifold. In fact every Sol manifold is foliated
by essential two-dimensional tori and this is not possible since 6 is small (see
[Hatcher and Thurston 1985, Lemma 3]).

Suppose that the lower bound V does not exist. Since 6 is small in M , the
nonexistence of V implies the existence of a sequence of hyperbolic cone manifolds
Mi with topological type (M, 6) satisfying

• sup
{
LMi (6 j )

∣∣ i ∈ N and 6 j component of 6
}
<∞,

• the sequence Vol(Mi −6) formed by the Riemannian volumes of the hyper-
bolic manifolds Mi −6 shrinks down to zero (and therefore the sequence Mi

collapses).

According to Theorem 4, M must be Seifert fibered, contradicting our hypothesis.
�
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Corollary 26. Suppose that M is a closed, orientable, irreducible and non-Seifert
fibered 3-manifold and let 6 be an embedded small link in M. Given ε ∈ (0, 2π),
there is a constant K = K (M, ε) > 0 such that diam(M) < K , for every hyperbolic
cone manifold M with topological type (M, 6) and having cone angles belonging
to (ε, 2π ].

Proof. As seen in the previous corollary, M is not a Sol manifold. Fix ε ∈ (0, 2π)
and suppose that the upper bound K does not exist. Since 6 is small in M , the
nonexistence of K implies the existence of a sequence of hyperbolic cone manifolds
Mi with topological type (M, 6), having cone angles α j i ∈ (ε, 2π ] and satisfying
these conditions:

(i) sup
{
LMi (6 j )

∣∣ i ∈ N and 6 j component of 6
}
<∞.

(ii) The sequence diam(Mi ) formed by the diameters of the hyperbolic cone mani-
folds Mi go to infinity.

Since M is neither Seifert fibered nor a Sol manifold, it follows from item (i) and
Theorem 4 that the sequence Mi does not collapse. Moreover, since the cone angles
α j i belong to (ε, 2π ], it follows that the sequence diam(Mi ) is bounded and this
yields a contradiction with item (ii). �

4.2. Proof of Corollary 6. First, we would like to recall that the existence of a
deformation Mα as in Corollary 6 is a consequence of the local deformation theorem
due to [Hodgson and Kerckhoff 1998].

Proof. The implication (i)⇒ (ii) is immediate (see [Kojima 1998]). Suppose now
that the sequence LMα

(6) converges to 0 when α converges to θ . Then

sup
{
LMαi

(6 j )
∣∣ i ∈ N and 6 j component of 6

}
<∞,

for every sequence αi ∈ (θ, 2π ] converging to θ . Consider such a sequence αi .
Since M is hyperbolic (and therefore is neither Seifert fibered nor a Sol manifold),
it follows from Theorem 4 that the sequence Mαi does not collapse. Moreover,
since the sequence LMαi

(6) converges to zero, we must have lim
i→∞

diam(Mαi )=∞.
This concludes the proof of the implication (ii)⇒ (iii).

To prove (iii)⇒ (i) take a sequence αi satisfying item (iii). Again by Theorem 4,
it follows that the sequence Mαi does not collapse. Moreover, since the sequence
diam(Mαi ) is not bounded, we must have θ = 0 because all the components of 6
have the same cone angle. Then, by [Kojima 1998], it follows that Mi converges
to M0. �
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