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Let … be a cohomological residual automorphic representation of GLn=F ,
for F an arbitrary number field. Let qmin be the lowest degree in which …

has nonvanishing cohomology. We prove that the cohomology of … always
injects into the cohomology of the corresponding locally symmetric space
in degree qmin. This extends the well-known result of Borel for cuspidal
automorphic representations to all square-integrable automorphic repre-
sentations in this certain degree. Moreover, we thereby improve a result
of Rohlfs and Speh and confirm an idea of Harder.

Introduction

Let F be any number field and let G D GLn=F . As it is well-known, the space of
square-integrable automorphic forms of G.A/ decomposes into the space Acusp.G/

of cuspidal automorphic forms, and a natural complement, the space Ares.G/ of
residual automorphic forms. The latter are given by square-integrable residues of
Eisenstein series and described in terms of representation theory by [Mœglin and
Waldspurger 1989]. Let … be a residual automorphic representation of G.A/. We
say that … is cohomological, if the ring of relative Lie algebra cohomology of
… is nonvanishing with respect to some irreducible, finite-dimensional algebraic
representation M of G. See also Section 1C. Assume now that … is cohomological
and let qmin be the lowest degree in which … has nonvanishing cohomology.

In this paper we prove that, in degree qmin, the cohomology of … always injects
into the cohomology of the locally symmetric space attached to G. This extends the
well-known result of Borel [1981] for cuspidal automorphic representations to all
square-integrable automorphic representations in this certain degree. The precise
result reads as follows (see Theorem 4.1, also for unexplained notation):

Theorem. Let G D GLn=F and let M be an irreducible, finite-dimensional, al-
gebraic representation of G on a complex vector space. Let fP g be an associate
class of proper parabolic F -subgroups of G and let 'P be an associate class of
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cuspidal automorphic representations of LP .A/. Let … ,!Ares;J.G/ be a residual
automorphic representation of G.A/ with cuspidal support � 2 'P , spanned by
iterated residues of Eisenstein series at a point � 2 LaGP;C for which � C � Q� is
annihilated by J. The map in cohomology

H qmin
�
mG ; K; …˝M

�
�!H qmin

�
mG ; K; AJ;fP g;'P

.G/˝M
�
;

induced from the natural inclusion… ,!AJ;fP g;'P
.G/, is injective. In other words,

the .mG ; K/-cohomology of a residual automorphic representation of GLn.A/
always embeds into H �

�
G.F /nG.A/=AR

GK;
zM
�

in its lowest, nonvanishing degree.

This improves a result of Rohlfs and Speh [2011] (see also our Remark 4.2) and
confirms an idea of Harder. Moreover, it may be viewed as a refinement of one of
our own results in [Grobner 2013]. Although we believe that it is interesting in its
own right, we hope that it will also be of use in a forthcoming work of Harder and
Raghuram on special values of Ranking–Selberg L-functions.

1. Notation

1A. Number fields and adeles. Let F denote an arbitrary number field with set
of places S . We write S1 D SR[SC for the subset of archimedean places, where
SR denotes the set of real archimedean places and SC denotes the set of complex
archimedean places of F . We use Fv for the topological completion of F at v 2 S .
As usual, A stands for its ring of adeles.

1B. Algebraic groups. In this paper,G WDGLn=F denotes the general linear group
over F . We fix the usual Borel subgroup B of upper triangular matrices with Levi
decomposition B D T U . This choice defines the standard parabolic F -subgroups
P with Levi decomposition P D LPNP , where LP � T and NP � U . Clearly,
LP ŠGLk1

�� � ��GLk`
, with

P`
iD1 ki D n. We let AP DZLP

be the maximal F -
split torus of LP , satisfying AP � T and denote by aP (resp., aP;C) its Lie algebra
(resp., its complexification aP;C D aP ˝C). The respective duals are denotes LaP
and LaP;C. The inclusion AP � T (resp., the restriction to P ) defines aP ! t (resp.,
LaP ! Lt), which leads to direct sum decompositions tD aP ˚aP and LtD LaP ˚ LaP .
We let aQP WD aP \ aQ and LaQP WD LaP \ La

Q for parabolic F -subgroups Q and P .
We write HP W LP .A/! aP;C for the standard Harish-Chandra height function
[Franke 1998, p. 185]. The group LP .A/1 WD kerHP , admits a direct complement
AR
P Š R

dim aP

C
D R`

C
in LP .A/ whose Lie algebra is isomorphic to aP Š R`. With

respect to a maximal compact subgroup KA �G.A/ in good position (see [Mœglin
and Waldspurger 1995, I.1.4]), we obtain an extension HP WG.A/! aP;C to all of
G.A/.
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1C. Lie groups and Lie algebras. The Lie algebra of a real Lie group is denoted
by the same letter in gothic lowercase; thus g1 D gln.R/

jSRj˚ gln.C/
jSCj is the

real Lie algebra of G1 WD RF=Q.G/.R/, and so on. We set mG WD g1=aG D

Lie.G.A/1 \G1/ and denote by Z.g1/ the center of the universal enveloping
algebra U.g1/ of g1;C WD g1˝R C. We will also use the notation Gv for G.Fv/,
v 2 S1, and similar for other local groups (such as LP;v etc.).

Let K1 � G1 be a maximal compact subgroup (the archimedean factor of
the maximal compact subgroup KA of G.A/ in good position) and set once and
for all K WDKı1, the connected component of the identity element. We refer the
reader to [Borel and Wallach 1980, Chapter I] for the basic facts and notations
concerning .mG ; K/-cohomology. If H is any subgroup of G1, we denote by KH
the intersection K \H .

1D. Algebraic representations. In this paper, M will always be a finite-dimensional
irreducible algebraic representation of G on a complex vector space. For simplicity,
we will assume thatAR

G (and so aG) acts trivially on M. There is hence no difference
between the .g1; K/-module and the .mG ; K/-module defined by M.

2. Automorphic representations

2A. Automorphic forms. Our notion of an automorphic form f WG.A/! C and
of an automorphic representation of G.A/ is the one from [Borel and Jacquet 1979,
4.2 and 4.6]. Let A.G/ be the space of all automorphic forms f WG.A/! C that
are constant on the real Lie subgroup AR

G . By its very definition, every automorphic
form is annihilated by some power of an ideal JCZ.g1/ of finite codimension. We
fix such an ideal J once and for all; as we will only be interested in cohomological
automorphic forms, we take J to be the ideal which annihilates the contragredient
representation M_ of M (see Section 1C) and denote by

AJ.G/�A.G/

the space consisting of those automorphic forms that are annihilated by some power
of J. Clearly, AJ.G/ carries commuting .g1; K/- and G.Af /-actions and hence
defines an .mG ; K;G.Af //-module. As such a module, any irreducible subquotient
(that is, any automorphic representation) … decomposes as …Š…1˝…f .

2B. L2-automorphic forms. The .mG ; K;G.Af //-submodule of all square-inte-
grable automorphic forms in AJ.G/ is denoted Adis;J.G/. An irreducible subrepre-
sentation of Adis;J.G/ will be called an L2-automorphic representation (see [Borel
2007, 9.6]). If ! W ZG.F /nZG.A/! C� is a continuous character of the center
ZG of G, we let Adis;J.G; !/ be the space of square-integrable automorphic forms
with central character !.
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We further recall that Adis;J.G; !/ decomposes as a direct sum of automorphic
representations …

Adis;J.G; !/Š
M

…;

which can be described as follows: According to [Mœglin and Waldspurger 1989],
every summand … in the above decomposition is of the form … Š J.P; �; �/,
where the latter stands for the (smooth, K-finite vectors in the) unique irreducible
quotient of the (normalized) induced representation IG.A/

P.A/
Œ�˝ ��, with inducing

data � , a cuspidal automorphic representation of LP .A/, and � 2 LaP;C. In fact, as
is well-known, by [Mœglin and Waldspurger 1989, Théorème, p. 606], more can
be said:

Theorem 2.1. Any L2-automorphic representation of G.A/ is given by a triple
.LP ; �; �/, where

(1) LP Š GLk � � � � �GLk , with `k D n;

(2) � Š � ˝ � � �˝ � , with � a cuspidal automorphic representation of GLk.A/;

(3) � D ..`� 1/=2; : : : ; .1� `/=2/ in the coordinates given by the absolute value
of the determinant of GLk.A/;

and no other triples determine an L2-automorphic representation. The datum
.LP ; �; �/ is unique.

As a matter of fact, the space of L2-automorphic forms decomposes as a direct
sum

Adis;J.G/ŠAcusp;J.G/˚Ares;J.G/;

where Acusp;J.G/ is the space of cuspidal automorphic forms in AJ.G/ and
Ares;J.G/ denotes the space of residual automorphic forms in AJ.G/. More
precisely, adding a central character ! to this datum, according to the theorem
above, Ares;J.G; !/ is the direct sum of all L2-automorphic representations given
by a triple .LP ; �; �/, with P proper.

2C. Parabolic supports. Let fP g be the associate class of the parabolicF -subgroup
P . It consists by definition of all parabolic F -subgroups Q D LQNQ of G for
which LQ and LP are conjugate by an element in G.F /. We denote by AJ;fP g.G/

the space of all f 2AJ.G/ that are negligible along every parabolic F -subgroup
Q … fP g. (For the sake of completeness, we recall that the latter condition means
that for all g 2G.A/, the function LQ.A/!C given by l 7! fQ.lg/ is orthogonal
to the space of cuspidal functions on LP .F /AR

GnLP .A/.) There is the following
decomposition of AJ.G/ as an .mG ; K;G.Af //-module (see [Borel et al. 1996,
Theorem 2.4] or [Borel 2007, 10.3]), first established by Langlands:

AJ.G/Š
M
fP g

AJ;fP g.G/:
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2D. Cuspidal supports. The various summands AJ;fP g.G/ can be decomposed
even further. To this end, recall from [Franke and Schwermer 1998, 1.2] the
notion of an associate class 'P of cuspidal automorphic representations of the Levi
subgroups of the elements in the class fP g. Therefore, let fP g be represented by
P D LN . Then the associate classes 'P may be parametrized by pairs of the form
.ƒ; Q�/, where

(1) Q� is a unitary cuspidal automorphic representation of L.A/, whose central
character vanishes on the group AR

P ;

(2) ƒ W AR
P ! C� is a Lie group character; and

(3) the infinitesimal character � Q� of Q�1 and the derivative dƒ 2 LaP;C of ƒ are
compatible with the action of J (see [loc. cit.]).

Each associate class 'P may thus be represented by a cuspidal automorphic
representation

� WD Q� ˝ ehdƒ;HP . �/i

of L.A/. Given 'P , represented by a cuspidal representation � of the above form,
an .mG ; K;G.Af //-submodule

AJ;fP g;'P
.G/

of AJ;fP g.G/ was defined in Section 1.3 of [Franke and Schwermer 1998] as
the span of all possible holomorphic values or residues of all Eisenstein series
attached to Q� , evaluated at the point � D dƒ, together with all their derivatives.
This definition is independent of the choice of the representatives P and � , thanks
to the functional equations satisfied by the Eisenstein series considered. For details,
we refer the reader to Sections 1.2–1.4 of the same paper.

The following refined decomposition as .mG ; K;G.Af //-modules of the spaces
AJ;fP g.G/ of automorphic forms was obtained in [Franke and Schwermer 1998,
Theorem 1.4]:

AJ;fP g.G/Š
M
'P

AJ;fP g;'P
.G/:

2E. Quadruples in the refined version of Franke’s filtration. A definition of the
integer-valued function T on the set of automorphic exponents is given in [Franke
1998, p. 233]. Because the technicalities are of little consequence to this paper,
we won’t repeat this definition here, but refer the reader to the original paper.
The important fact is that we may assume a fixed choice of T making the length
mDm.fP g/ of the corresponding filtration of AJ;fP g.G/ minimal, as in our paper
[Grobner 2013, 3.1 on p. 1072].

Given a cuspidal support 'P , we will need the following collection of data,
as was already introduced in [Grobner 2013, 3.2]. Let MJ;fP g;'P

be the set of
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quadruples .R;…; �; �/, with

(1) R a standard parabolic F -subgroup of G containing a representative of fP g;

(2) … a unitary discrete series automorphic representation of LR.A/ with cuspidal
support determined by 'P , spanned by iterated residues of Eisenstein series at
the point � 2 LaRP;C; and

(3) � 2 LaR;C such that <e.�/ 2 LaGCR , the closed positive Weyl chamber in LaGR ,
and such that �C �C� Q� is annihilated by J.

We point out that with this definition, although not entirely obvious, one can show
that T is well-defined on <e.�/C; [Franke 1998, p. 233]. Therefore, taking this
for granted, it makes sense to define

M
.j /

J;fP g;'P

WD f.R;…; �; �/ j T .<e.�/C/D j g:

These sets of quadruplesM .j /

J;fP g;'P

originate from [Franke 1998, pp. 218, 233–234].
There, however, only the parabolic support fP g and not the cuspidal support 'P
was taken into account.

3. Automorphic cohomology

3A. Cohomology of locally symmetric spaces. We let

S WDG.F /AR
GnG.A/=K

be the projective limit of the “locally symmetric spaces” attached to G. Starting
from the algebraic representation M, one obtains a sheaf zM on S by letting zM be the
sheaf with espace étalé G.A/=AR

GK �G.F /M with the discrete topology on M. We
write H q.S; zM/ for the corresponding space of sheaf cohomology (in degree q).

3B. Automorphic cohomology. We recall that the G.Af /-module

H q.mG ; K; AJ.G/˝M/

is called the automorphic cohomology of G in degree q. From Sections 2C and 2D
we know that it inherits a direct sum decomposition

H q.mG ; K; AJ.G/˝M/Š
M
fP g

H q.mG ; K; AJ;fP g.G/˝M/

Š

M
fP g

M
'P

H q.mG ; K; AJ;fP g;'P
.G/˝M/ :

The summand H q.mG ; K; AJ;fGg.G/˝M/ attached to fGg consists precisely of
all cuspidal automorphic forms in AJ.G/.
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Conjectured by Harder and Borel and proved by Franke [1998, Theorem 18], the
following result which links automorphic cohomology with the sheaf cohomology
of S :

Theorem 3.1. There is an isomorphism of G.Af /-modules

H q.S; zM/ŠH q.mG ; K; AJ.G/˝M/:

The latter results brings us back to the more geometric point of view of coho-
mology, presented in Section 3A.

3C. Certain bounds in cohomology. Let R D LRNR be a standard parabolic
subgroup of G and v an archimedean place of F . We write

lR;v \mG D lss
R;v˚ .aR;v \mG/ and kss

LR
WD kLR;v

\ lss
R;v:

Now, given an irreducible, admissible LR;v-representation �v , let q.LR;v; �v/ be
the smallest degree in which �v has nontrivial .lss

R;v; k
ss
LR;v

/-cohomology, twisted
by an irreducible, finite-dimensional, algebraic representation of LR;v. If there
is no such coefficient module, then we let q.LR;v; �v/ D 0. (This number was
denoted “m.LR;v; �v/” in [Grobner 2013].) Similarly, we write q.LR;1; �1/ WDP
v2S1

q.LR;v; �v/.
Let fP g be an associate class of proper parabolic F -subgroups of G, and 'P an

associate class of cuspidal automorphic representations of LP .A/. We define

qres WD min
0�j<m

�
min

.R;…;�;�/2M
.j /

J;fP g;'
P

� X
v2S1

˙
1
2

dimRNR.Fv/
�
C q.LR;v;…v/

��
:

Of course, although not reflected in the notation, qres depends on the support
fP g and 'P . This rather complicatedly defined number (see [Grobner 2013, 6.1]
for the original source) serves as a certain bound of degrees of cohomology, as we
proved in the same paper. Indeed, boiled down to the case of G D GLn here, in
Corollary 17 of that paper, we showed the following result:

Theorem 3.2. Let G D GLn=F and let M be an irreducible, finite-dimensional,
algebraic representation of G on a complex vector space. Let fP g be an associate
class of proper parabolic F -subgroups of G and let 'P be an associate class of
cuspidal automorphic representations of LP .A/. Let … ,!Ares;J.G/ be a residual
automorphic representation of G.A/ with cuspidal support � 2 'P , spanned by
iterated residues of Eisenstein series at a point � 2 LaGP;C, for which � C � Q� is
annihilated by J. Then, the map in cohomology

H q.mG ; K; …˝M/ �!H q.mG ; K; AJ;fP g;'P
.G/˝M/;

induced from the natural inclusion … ,!AJ;fP g;'P
.G/, is injective in all degrees

0� q < qres D qres.fP g; 'P /.



40 HARALD GROBNER

The latter theorem will be the key result for the proof of our main result of this
article in the next section.

4. The main result

4A. Let … ,!Ares;J.G/ be a residual automorphic representation of G.A/. Recall
from Section 3C our notation q.G1;…1/ for the minimal degree in which…1 has
nontrivial .mG ; K/-cohomology with respect to an irreducible, finite-dimensional,
algebraic representation of G. For sake of simplicity, since the group G and the
representation … are clear from the context, we will write qmin WD q.G1;…1/ for
this minimal degree.

Theorem 4.1. Let G D GLn=F and let M be an irreducible, finite-dimensional,
algebraic representation of G on a complex vector space. Let fP g be an associate
class of proper parabolic F -subgroups of G and let 'P be an associate class of
cuspidal automorphic representations of LP .A/. Let … ,!Ares;J.G/ be a residual
automorphic representation of G.A/ with cuspidal support � 2 'P , spanned by
iterated residues of Eisenstein series at a point � 2 LaGP;C, for which � C � Q� is
annihilated by J. The map in cohomology

H qmin.mG ; K; …˝M/ �!H qmin.mG ; K; AJ;fP g;'P
.G/˝M/;

induced from the natural inclusion… ,!AJ;fP g;'P
.G/, is injective. In other words,

the .mG ; K/-cohomology of a residual automorphic representation of GLn.A/
always embeds into H �.S; zM/ in its lowest, nonvanishing degree.

Remark 4.2. The reader should not confuse this theorem with [Rohlfs and Speh
2011, Theorem IV.4] and with [Grobner 2013, Theorem 22], where seemingly
similar results were shown. In fact, Theorem 4.1 above is a improvement as
well as a refinement of both of these theorems: First of all, here we show that the
cohomology of a residual automorphic representation of GLn.A/ always injects into
H q.S; zM/ in its lowest nonvanishing degree and hence give a precise description
of its nontrivial contribution. (Moreover, in contrast to [Rohlfs and Speh 2011], we
allow any number field F and any coefficient module M.) Secondly, we also obtain
an improvement of the bound of degrees of cohomology given in [Grobner 2013,
Theorem 22].

The proof of this theorem consists of two steps. First, we determine the minimal
degree qmin explicitly for all cohomological residual automorphic representations of
G.A/. Secondly, we make the effort and calculate our bound qres D qres.fP g; 'P /
for given support fP g, 'P and show that it is always strictly greater than qmin. The
theorem is then a consequence from Theorem 3.2. As the reader will see, we will
have to distinguish the case of a real archimedean place and a complex archimedean
place.
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5. Proof of main theorem: determination of qmin

5A. Let … ,! Ares;J.G/ be a residual automorphic representation of G.A/. By
Theorem 2.1 it is given by a triple .LP ; �; �/, whereLP ŠGLk�� � ��GLk , `kDn,
and � Š � ˝ � � � ˝ � is a cuspidal automorphic representation of LP .A/. If …1
is cohomological with respect to M, then �1 is cohomological, too. As the only
cohomological generic representations of G1 are essentially tempered, we see that
�1 is essentially tempered. Hence, by its very construction, …1 is the Langlands
quotient given by the triple .LP;1; �1; �/. Of course this also holds locally at
v 2 S1.

Let now be v 2 SR. Then …v comes under the purview of the Vogan–Zuckerman
classification of cohomological representations in terms of Aq.�/-modules. We
assume that the reader is familiar with this theory and refer to [Vogan and Zuckerman
1984] and [Knapp and Vogan 1995]. We write qD l˚u for the Levi decomposition
of the complex parabolic subalgebra q of gv;C. By [Knapp and Vogan 1995, Chapter
IV, Proposition 4.76], u is the direct sum of certain root-eigenspaces, all of them
one-dimensional. Hence, dimC u is the number of roots appearing in u. Moreover,
from…v being the Langlands quotient given by the triple .LP .R/; �v; �/, we derive
that

lŠ

�
gl`.C/

k=2 for k even;
gl`.C/

.k�1/=2˚ gl`.R/ for k oddI

see [Vogan and Zuckerman 1984, Theorem 6.16]. It is now an easy combinatorial
exercise, using [Knapp and Vogan 1995, IV, Proposition 4.76] to show that the
number of roots appearing in u (and hence dimC u) equals

dimC uD

�1
4
n.n� `C 1/ for k even;
1
4
.n.n� `C 1/� `/ for k odd:

Because in the case of g D gln.R/ all roots showing up in u are noncompact,
Theorem 5.5 of [Vogan and Zuckerman 1984] implies that the minimal degree in
which …v Š Aq.�/ has nontrivial cohomology is precisely dimC u.

Now let v 2SC. Then, by [Enright 1979],…v is fully induced and so the minimal
degree in which …v has nontrivial cohomology is readily computed using [Borel
and Wallach 1980, Chapter III, Theorem 3.3]. Summarizing, we have shown:

Proposition 5.1. Let … ,!Ares;J.G/ be a residual automorphic representation of
G.A/ that is .mG ; K/-cohomological with respect to M. Assume that … is given by
the triple .LP ; �; �/, where LP Š GLk � � � � �GLk , `k D n. Then

qmin D

(
jSRj �

1
4
n.n� `C 1/CjSCj �

1
2
n.n� `/ for k even;

jSRj �
1
4
.n.n� `C 1/� `/CjSCj �

1
2
n.n� `/ for k odd:
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6. Proof of main theorem: determination of qres

6A. Reduction to maximal parabolics. This step is much more technical in nature.
We will have to make many case-by-case distinctions to actually calculate qres. As
a first result towards the determination of qres, we shall need the following result:

Lemma 6.1. For every proper support fP g, LP ŠGL`k , 'P and every j , 0�j <m,
the minimum

min
.R;…;�;�/2M

.j /

J;fP g;'
P

� X
v2S1

˙
1
2

dimRNR.Fv/
�
C q.LR;v;…v/

�
is obtained at a maximal parabolic subgroup R.

Proof. We will prove this by checking that the number

(6.2) n.Rv/ WD
˙
1
2

dimRNR.Fv/
�
C q.LR;v;…v/

decreases for all v 2 S1 as we increase the parabolic subgroup R, that is, as we
form the union of two diagonal blocks a � k and b � k to a block of size .aC b/ � k.
We will write R.a; b/ for the first parabolic subgroup, that is, the one having two
diagonal blocks of size a � k and b � k, and R.a C b/ for the second parabolic
subgroup, that is, the one having a diagonal block of size .aCb/ �k, containing the
two diagonal blocks of size a � k and b � k, instead.

Now, let v 2 SR. We have to distinguish several cases. The first three, where
both a and b are assumed to be greater than or equal to one, are checked using
Proposition 5.1: As cohomology satisfies the Künneth rule, we computed the degree
q.LR;v;…v/ for a given quadruple .R;…; �; �/ 2M .j /

J;fP g;'P

in this proposition.
The dimension of the unipotent radical is easily computed for each parabolic
subgroups R.a; b/ and R.aC b/. Putting this together, we obtain:

Case 1: k even, a; b � 2.

n.R.a; b/v/�n.R.aC b/v/D
1
4
ak.ak� aC 1/C 1

4
bk.bk� bC 1/C

˙
1
2
abk2

�
�
1
4
.aC b/k

�
.aC b/k� .aC b/C 1

�
D

1
2
abk:

Case 2: k odd, a; b � 2, a or b even.

n.R.a; b/v/�n.R.aC b/v/D
1
2
abk:

Case 3: k odd, a; b � 2, a and b odd.

n.R.a; b/v/�n.R.aC b/v/D
1
2
.abkC 1/:

The remaining cases, namely when b D 1, have a cuspidal automorphic compo-
nent at the single k-block of LR. This cuspidal automorphic representation has to
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be cohomological, whence its archimedean component at v is tempered. The degree
q.LR;v;…v/ is now computed by Proposition 5.1 (for the residual representation
of the block of size a � k) and using [Borel and Wallach 1980, III, Proposition 5.3]
(for the cuspidal representation of the block of size k), where the lowest degree of
cohomology of tempered representations is determined. Finally, we obtain:

Case 4: k even, a � 2, b D 1.

n.R.a; b/v/�n.R.aCb/v/D
1
4
ak.ak�aC1/C 1

2

�
1
2
k.kC1/�kC

�
1
2
k
˘�

C
˙
1
2
ak2

�
�
1
4
.aC1/k

�
.aC1/k�.aC1/C1

�
D

1
2
ak:

Case 5: k odd, a � 2 even, b D 1.

n.R.a; b/v/�n.R.aC b/v/D
1
2
ak:

Case 6: k odd, a � 2 odd, b D 1.

n.R.a; b/v/�n.R.aC b/v/D
1
2
.akC 1/:

Case 7: k even, aD b D 1.

n.R.a; b/v/�n.R.aCb/v/D
�
1
2
k.kC1/�kC

�
1
2
k
˘
C
˙
1
2
ak2

��
�
1
4
2k.2k�1/

D
1
2
k:

Case 8: k odd, aD b D 1.

n.R.a; b/v/�n.R.aC b/v/D
1
2
.kC 1/:

Summarizing all eight cases, we see that

n.R.a; b/v/�n.R.aC b/v/ > 0I

that is, n.Rv/ decreases, if R increases.
Now, let v 2 SC. This is the simple case, since …v is fully induced and the

cohomology of such representations is determined in [Borel and Wallach 1980,
III, Theorem 3.3]. This is what we used in the proof of Proposition 5.1, where
we also computed q.LR;v;…v/ for a given quadruple .R;…; �; �/ 2M .j /

J;fP g;'P

.
Again, the dimension of the unipotent radical of the parabolic subgroups R.a; b/
and R.aC b/ is easily calculated. We obtain

n.R.a; b/v/�n.R.aC b/v/D
1
2
ak.ak� a/C 1

2
bk.bk� b/C abk2

�
1
2
.aC b/k

�
.aC b/k� .aC b/

�
D abk;
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now really for all cases of a and b. Therefore, n.R.a; b/v/� n.R.aC b/v/ > 0,
that is, n.Rv/ decreases, if R increases also for v 2 SC. This proves the lemma. �

Proposition 6.3. For every proper support fP g, LP Š GL`k , 'P and every j ,
0� j < m, the minimum

min
.R;…;�;�/2M

.j /

J;fP g;'
P

� X
v2S1

˙
1
2

dimRNR.Fv/
�
C q.LR;v;…v/

�
occurs at the standard parabolic subgroupRDLRNR with LRŠGL.`�1/k�GLk .

Proof. By Lemma 6.1, we only need to check that for R D R..`� 1/k; k/, the
number n.Rv/ is minimal among all maximal parabolic subgroups R..`�a/k; ak/
for all places v 2S1. Precisely as in the proof of Lemma 6.1, this is again a lengthy
exercise using Proposition 5.1 and [Borel and Wallach 1980, III, Proposition 5.3].
Their use is justified step-by-step, as in the proof of Lemma 6.1.

Let v 2 SR. First of all, we check that

n
�
R..`� 1/k; k/

�
D

8̂<̂
:
1
4
.n2C .3� `/n� 2k/ for k even;
1
4
.n2C .3� `/n� 2k� `/ for k odd, ` odd;
1
4
.n2C .3� `/n� 2k� `C 2/ for k odd, ` even:

Moreover, if a � 2, then n
�
R..`� a/k; ak/

�
is given by

1
4

�
a2k2� a2kC akC .`� a/2k2� .`� a/2kC .`� a/kC 2a.`� a/k2

�
for k even, by

1
4

�
a2k2� a2kC akC .`� a/2k2� .`� a/2kC .`� a/k� `C 2a.`� a/k2

�
for k odd and a or `� a even, and by

1
4

�
a2k2� a2kC akC .`� a/2k2� .`� a/2kC .`� a/k� `C 2a.`� a/k2C 2

�
for k, a and `� a odd.

The expression n
�
R..`� a/k; ak/

�
is a quadratic polynomial in a, with strictly

negative leading coefficient. Hence, for a � 2, n
�
R..`� a/k; ak/

�
is minimal at

aD 2 (and aD `� 2). We obtain

n
�
R..`� 2/k; 2k/

�
D

�1
4
.n2C .5� `/n� 8k/ for k even;
1
4
.n2C .5� `/n� 8k� `/ for k odd:

Comparing n
�
R..`� 2/k; 2k/

�
to n

�
R..`� 1/k; k/

�
, in the cases when either k is

even or k is odd and ` is odd, we see that n
�
R..`�2/k; 2k/

�
� n

�
R..`�1/k; k/

�
if

and only if `� 3. But this is fine without loss of generality, since for `D 2 the result
holds trivially. If k is odd and ` is even, n

�
R..`�2/k; 2k/

�
� n

�
R..`�1/k; k/

�
if
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and only if `� 4. This is satisfied by the same reason, since `� 3 is assumed to be
even, hence without loss of generality already `� 4.

Now, let v 2 SC. Then

n
�
R..`� a/k; ak/

�
D
n2� .2a� `/n� 2a2k

2
;

for all a � 1. Clearly, this is minimal at aD 1 (and aD `� 1). �
Proposition 6.4. Let … ,!Ares;J.G/ be a residual automorphic representation of
G.A/, which is .mG ; K/-cohomological with respect to M. Assume that … is given
by the triple .LP ; �; �/, where LP Š GLk � � � � �GLk , `k D n. Then qres is given
by

jSRj �
1
4
.n2C .3� `/n� 2k/CjSCj �

1
2
.n2� .2� `/n� 2k/

for k even, by

jSRj �
1
4
.n2C .3� `/n� 2k� `/CjSCj �

1
2
.n2� .2� `/n� 2k/

for k odd and ` odd, and by

jSRj �
1
4
.n2C .3� `/n� 2k� `C 2/CjSCj �

1
2
.n2� .2� `/n� 2k/

for k odd and ` even.

Proof. This holds by the definition of qres and Proposition 6.3. �

6B. End of the proof of the Theorem 4.1. A direct comparison of qmin and qres
shows that if … ,!Ares;J.G/ is a residual automorphic representation of G.A/ that
is .mG ; K/-cohomological with respect to M, then qmin <qres. Hence, Theorem 4.1
follows from our Theorem 3.2. �
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