
Pacific
Journal of
Mathematics

CONTROLLED CONNECTIVITY FOR SEMIDIRECT
PRODUCTS ACTING ON LOCALLY FINITE TREES

KEITH JONES

Volume 268 No. 1 March 2014



PACIFIC JOURNAL OF MATHEMATICS
Vol. 268, No. 1, 2014

dx.doi.org/10.2140/pjm.2014.268.79

CONTROLLED CONNECTIVITY FOR SEMIDIRECT
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KEITH JONES

In 2003 Bieri and Geoghegan generalized the Bieri–Neumann–Strebel in-
variant 61 by defining 61(ρ), ρ an isometric action by a finitely generated
group G on a proper CAT(0) space M. In this paper, we show how the
natural and well-known connection between Bass–Serre theory and cover-
ing space theory provides a framework for the calculation of 61(ρ) when
ρ is a cocompact action by G = B o A, A a finitely generated group, on a
locally finite Bass–Serre tree T for A. This framework leads to a theorem
providing conditions for including an endpoint in, or excluding an endpoint
from, 61(ρ). When A is a finitely generated free group acting on its Cayley
graph, we can restate this theorem from a more algebraic perspective, which
leads to some general results on 61 for such actions.

1. Introduction

In [Bieri and Geoghegan 2003b], the authors begin with the following:

Given a group G and a contractible metric space M , consider the set
Hom(G, Isom(M)) of all actions by G on M by isometries. Are there
invariants of such actions which distinguish one from another? Are there
topological properties which one such action might possess while another
might not?

The tool they apply to draw distinctions between such actions is controlled
n-connectivity, which is developed in [Bieri and Geoghegan 2003a], and which we
briefly describe here. Suppose ρ is an isometric action by a group G having type
Fn on a proper CAT(0) metric space M . Fixing a basepoint b ∈ M , the CAT(0)
boundary, ∂M , can be thought of as the set of geodesic rays τ emanating from b.1

For an end point e ∈ ∂M represented by a ray τ , there is a nested family of subsets

MSC2010: primary 20E08, 20F65, 57M07; secondary 05C05, 05C25.
Keywords: controlled connectivity, BNS, sigma invariants, tree actions, semidirect products.

1For background on the topological finiteness property “type Fn”, see [Geoghegan 2008, §7.2],
and for background on CAT(0) metric spaces and their boundaries see [Bridson and Haefliger 1999,
II.1 and II.8]. A metric space is proper if each closed metric ball is compact.
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HBk(τ ), k ∈ R, called “horoballs” which serve as metric balls (in M) “at e.”2

This provides a sense of direction in M , which can be “lifted to G” by ρ via a
G-equivariant map from the n-skeleton of the universal cover of a K (G, 1). For a
point e ∈ ∂M , if the lifts of the horoballs about e are (roughly) (n− 1)-connected,
then we say ρ is controlled (n− 1)-connected over e. Bieri and Geoghegan show
that this is independent of choice of K (G, 1) or equivariant map. The invariant
6n(ρ) is the subset of ∂M consisting of points over which ρ is controlled (n− 1)-
connected. This definition generalizes the Bieri–Neumann–Strebel–Renz (BNSR)
invariants 6n(G), which are open subsets of the CAT(0) boundary of the vector
space Gab⊗R. A key difference between 61(ρ) and the BNSR invariant 61(G)
is that 61(ρ) is in general not an open subset of ∂M .

Apart from enabling one to draw geometric distinctions between isometric actions
by a group on a proper CAT(0) space, the invariant can also provide group theoretical
information: if the orbits under an action ρ are discrete, then the point stabilizers
are finitely generated if and only if 61(ρ) = ∂M [Bieri and Geoghegan 2003a,
Theorem A and Boundary Criterion].

When M = T is a locally finite (simplicial) tree, the CAT(0) boundary is a metric
Cantor set. Initial results in [Bieri and Geoghegan 2003a] led the authors to ask
whether in this case 61(ρ) might always be one of ∅, a singleton, or the entire
boundary ∂T . Work in [Jones 2012] establishes a class of actions for which this is
the case. However, work by Ralf Lehnert in his diploma thesis demonstrates that
other subsets of ∂T can be realized as 61(ρ) for certain actions [Lehnert 2009].
This hints at a potentially rich world of61 invariants, which we further explore here.

1.1. Statement of results. We restrict our attention to 61, and study only the
following scenario:

Definition 1 (actions of interest). Let A be a finitely generated group with finite
generating set R, and let T be a locally finite3 simplicial tree on which A acts
cocompactly and with finitely generated stabilizers. For a group B, suppose we
have a homomorphism ϕ : A → Aut(B), and let G = B oϕ A be the resulting
semidirect product. Elements of G are of the form (b, a), where a ∈ A, b ∈ B, and
multiplication in G operates under the rule

(b1, a1)(b2, a2)= (b1a1b2a−1
1 , a1a2)= (b1ϕa1(b2), a1a2).

2For background on horoballs, see [Bieri and Geoghegan 2003a, §10.1]. The convention followed
there and in this paper is that as k increases, we approach e, the reverse of the convention in [Bridson
and Haefliger 1999].

3A simplicial tree is a proper metric space if and only if it is locally finite.
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Suppose G is finitely generated. Then it follows that B is finitely generated
as an A-group. By this, we mean there is a finite subset S ⊂ B such that the set
{ϕa(S) | a ∈ A} generates B, and so G is generated by S ∪R.

The natural projection G � A induces an action ρ by G on T which contains
the normal subgroup B in its kernel. We investigate 61(ρ).

Remark 2. As mentioned, if the point stabilizers under ρ are finitely generated,
then61(ρ)=∂T [Bieri and Geoghegan 2003a, Theorem A and Boundary Criterion].
Moreover, since T is locally finite, all point stabilizes are commensurable, so if any
one is finitely generated, then all are. Thus with the assumption that the stabilizers
under the A action on T are finitely generated, in order to obtain “interesting”
invariants (those with61(ρ) 6=∂T ), one must assume that B is not finitely generated,
since the stabilizers under ρ are simply semidirect products of B with the stabilizers
in A.

Main result. With the action ρ : G → Isom(T ) as defined above, we apply the
relationship between Bass–Serre theory and covering space theory to construct a
commutative diagram of G-equivariant cellular maps between CW-complexes:

X̃

p
��

r̃ // T

id
��

X̄

q
��

r̄ // T

mod G
��

X r // V = T \G

where X is a K (G, 1), X̄ is a K (B, 1), X̃ is a contractible universal cover, p and q
are covering projections, and r , r̄ , and r̃ are retracts.4 For a geodesic ray τ in T
and k ∈ Z, consider the horoball HBk(τ ).5 For W ⊂ X a finite subcomplex, set

X̄(τ,k,W ) = r̄−1(HBk(τ ))∩ q−1(W )⊂ X̄ .

Theorem 3. Let e ∈ ∂T be represented by a geodesic ray τ .

(i) If there exists a finite subcomplex W ⊂ X such that for every k ∈ Z, X̄(τ,k,W )

is connected and the map on π1 induced by the inclusion X̄(τ,k,W ) ↪→ X̄ is
surjective, then e ∈61(ρ).

(ii) If for every k ∈ Z and every finite subcomplex W ⊂ X such that X̄(τ,k,W ) is
connected, the induced map on π1 is not surjective, then e 6∈61(ρ).

4This is the topological construction of the Bass–Serre tree [Geoghegan 2008, §6.2; Scott and
Wall 1979], discussed further in Section 2.2.

5A precise description of HBk(τ ) is given in Equation (1-1).
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Consequences and examples. Theorem 3 has a number of consequences in the case
where A is a free group and T is its Cayley graph. In this case, the vertices of T
are the elements of A. Let e be an endpoint of T and suppose the geodesic ray τ
represents e. For an integer k, let Ak(τ ) be the elements of A that form the vertex
set of the horoball HBk(τ ). To avoid confusion with the group B, we will use the
notation Ballr (X, p) to refer to the metric ball of radius r in the space X about the
point p. Just as the horoball HBk(τ ) can be written as the nested union of closed
metric balls in T :

(1-1) HBk(τ )=
⋃

l≥max{0,k}

Balll−k(T, τ (l)),

the set Ak(τ ) can be written as a nested union of closed metric balls in the word
metric on A:
(1-2) Ak(τ )=

⋃
l≥max{0,k}

Balll−k(A, τ (l)).

We will say B is finitely generated over a subset A′ ⊆ A if there is a finite subset
S ⊆ B such that {asa−1

| s ∈ S, a ∈ A′} generates B.

In Section 4, we show that in this context Theorem 3 can be restated as follows:

Theorem 4. Let A be a finitely generated free group, and let T be its Cayley graph
with respect to a free basis. For the action ρ as in Theorem 3, and for e ∈ ∂T
represented by geodesic ray τ :

(i) If there is a finite set S ⊆ B such that for each k ∈ Z≥0, S generates B over
Ak(τ ), then e ∈61(ρ).

(ii) If for each k ∈ Z≤0, B is not finitely generated over Ak(τ ), then e 6∈61(ρ).

This is reminiscent of the invariant 6B(A) of [Bieri et al. 1987] and [Bieri and
Strebel 1980], but whereas 6B(A) is determined by the algebraic structure of G,
our sets Ak(τ ) are given by the geometry of T ; in particular, they are not monoids.

Since B is finitely generated over A, we have:

Corollary 5. If for each k ∈ Z≥0, ϕ(Ak(τ ))= ϕ(A), then e ∈61(ρ).

Let {a1, . . . , an} freely generate A. For a generator ai , let the function expsumai

map a reduced word w in {a1, . . . , an}
± to the corresponding exponent sum of ai

in w, and define the function expsuma−1
i

to be − expsumai
.

Corollary 6. Let t ∈ {a1, . . . , an}
±. Suppose there does not exist m ∈Z such that B

is finitely generated over A− expsum−1
t ([m,∞)), i.e any subset A′ ⊆ A must have

reduced words with arbitrarily large exponent sum of t in order for B to be finitely
generated over A′. Then any endpoint represented by a word eventually consisting
of only t−1 does not lie in 61(ρ).
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Example 7. This is a generalization of an example calculated by Ralf Lehnert,
although the methods used here are different from his. Consider the semidirect
product G = B o A, where B = Z[1/(p1 p2 . . . pn)], where the pi are prime with
pi 6= p j for 1≤ i, j ≤ n, and A is free on {a1, . . . , an}. The action is given by ai

acting by multiplication by 1/pi . For A′ ⊆ A, B is finitely generated over A′ if
and only if A′ contains reduced words with arbitrarily large exponent sum of each
ai . One can show that for any k ∈ Z, this will always be the case for A′ = Ak(τ )

unless τ eventually consists of only a−1
i (see Lemma 24). Thus, by Corollary 6,

any endpoint corresponding to an infinite word eventually consisting of a−1
i for

some i is not in 61. By Theorem 4, any other endpoint is in 61.

Example 8. Let G=Z oZ=⊕i∈Z〈bi 〉o〈t〉. The action is by shifting: t bi=bi+1. Let
T be the Cayley graph of 〈t〉, a simplicial line. The action 〈t〉y T induces an action
G

ρ
y T . It is known from previous work that 61(ρ) is empty, as follows. Because

the endpoints of the action are fixed, we can relate ∂T to homomorphisms G � Z,
and an end point lies in 61(ρ) if and only if the corresponding homomorphism
represents a point of the BNSR invariant 61(G) [Bieri and Geoghegan 2003a,
§10.6]. These homomorphisms do not represent points of 61(G) because they
are not homomorphisms associated to HNN extension decompositions of G over
finitely generated base groups [Brown 1987, Proposition 3.1]. Here it follows from
Theorem 4, because B is not finitely generated over any proper subset of 〈t〉.

Corollary 5 can be applied to determine a nice criterion for finding endpoints of
T lying in 61(ρ).

Theorem 9. With notation as in Theorem 4, viewing endpoints of T as infinite
words in the generators of A, 61(ρ) contains any endpoint represented by an
infinite word containing infinitely many mutually distinct subwords lying in kerϕ.

Corollary 10. If ϕ(A) ≤ Aut(B) is abelian and A has rank n ≥ 2, then 61(ρ) is
nonempty.

For example, any endpoint represented by an infinite word containing infinitely
many commutators will be contained in 61(ρ).

Example 11. Let m and n be positive integers with m ≥ n. Let C = 〈a1, . . . , an〉

and D= 〈an+1, . . . , am〉 be free groups, and set A=C ∗D. For a finitely generated
group K , let G be the restricted wreath product K wrC A, where the A-action on the
indexing set C is defined by the composition of the natural projection π : A→ C
and left multiplication. In other words, G = B oϕ A, where B = ⊕ω∈C Kω with
each Kω a copy of K . The elements of B are sequences (xω), xω ∈ Kω, ω ∈ C ,
with only finitely many xω nontrivial, and C acts on B by permuting the indices
(by left multiplication on itself) while D ≤ ker ϕ. The projection G � A followed
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by the natural action by A on its Cayley graph T = 0(A, {a1, a2, . . . , am}) induces
an action ρ on T .

By Theorem 9, any endpoint containing infinitely many letters a±i , n < i ≤ m
will lie in 61(ρ), while Corollary 6 ensures that any endpoint eventually consisting
of a single letter a±j , 1 ≤ j ≤ n, will not lie in 61(ρ). In fact, any end point
represented by a geodesic ray that eventually consists of only letters from C lies
outside 61(ρ), as is argued in Section 4.2. So an endpoint lies in 61(ρ) if and only
if a representative geodesic ray contains infinitely many letters from D.

Example 12. One can also perform calculations in the case where A is not free.
For example, let H be any finitely generated group and consider the group

(1-3) G = B oϕ A, where B =
∏
i∈Z

H and A = 〈a | a4
〉 ∗ 〈b | b4

〉,

where ϕ : A→ Aut(B) consists first of the projection onto D∞ collapsing a2 and
b2 to the identity, followed by permutation of the indices i ∈ Z given by the natural
action by D∞ on Z. Let ρ be the action by G on the regular 4-valent Bass–Serre
tree T4 corresponding to the free product structure of A. Notice, since this is the
Bass–Serre tree corresponding to a free product, any point e ∈ ∂T4 corresponds to a
word in the normal form for the free product. One can apply Theorem 3 to calculate
61(ρ) directly to determine that a given e ∈ ∂T4 if and only if it corresponds to
an infinite normal form word containing infinitely many subwords of the form a2

or b2.
There is a stark similarity between this result and Theorem 9, and indeed a

statement similar to Theorem 9 can be made in the case where A is a free product.
However, only when A is a free product of finite groups will its corresponding Bass–
Serre tree be locally finite (and hence proper); in this case the Kurosh subgroup
theorem implies that A has a free subgroup A′ of finite index. If G = B o A,
then G ′ = B o A′ is a finite index subgroup of G, and the action ρ by G on the
Bass–Serre tree corresponding to the free product decomposition of A restricts
to an action by G ′ on the same tree. It follows from Theorem 12.1 of [Bieri and
Geoghegan 2003a] that the invariant is the same for both actions. Hence, it is not
clear that such an endeavor will add anything new to the discussion.

1.2. Defining 61. In general, there is a family of invariants 6n , n ≥ 0, correspond-
ing to the notion of controlled (n−1)-connectivity. The discussion below refers
only to 61 and controlled connectivity, but a similar discussion can be had in full
generality.

We start with Bieri and Geoghegan’s original definition of controlled connectivity.

Definition 13 [Bieri and Geoghegan 2003a]. Let ρ be an action by a finitely gen-
erated group G on a proper CAT(0) metric space (M, d). Choose a K (G, 1)
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complex X whose universal cover X̃ has a cocompact 1-skeleton (X̃)(1), and a
continuous G-map h : (X̃)(1)→M . Given a geodesic ray τ in M , τ(∞) denotes the
point of ∂M represented by τ . For t ∈ R, let X̃(τ,t) denote the largest subcomplex
contained in h−1(HBt(τ )). Then h is controlled connected over τ(∞) if there exists
λ : R→ [0,∞) such that for all t ∈ R, any two points of X̃(τ,t) can be connected
by a path in X̃(τ,t−λ(t)), and t − λ(t)→∞ as t→∞.

The same authors also gave an “extended” definition, which we will show
coincides with Definition 13 when G is finitely generated.

Definition 14 [Bieri and Geoghegan 2003b, p. 143]. Let ρ be an action by a (not
necessarily finitely generated!) group G on a proper CAT(0) metric space (M, d).
Choose a nonempty free contractible G-CW-complex X̃ and a continuous G-map
h : X̃ → M . Fix a geodesic ray τ in M . For t ∈ R, define X̃(τ,t) to be the largest
subcomplex of h−1(HBt(τ )). Then h is controlled connected over τ(∞) if for
every cocompact G-subspace W̃ ⊆ X̃ , there exists a cocompact G-subspace W̃ ′

containing W̃ such that for all t ∈ R, there exists λ(t)≥ 0 satisfying:

(∗) Any two points of X̃(τ,t)∩W̃ can be connected by a path through X̃(τ,t−λ(t))∩W̃ ′.

(∗∗) Any two points of X̃(τ,t+λ(t))∩W̃ can be connected by a path through X̃(τ,t)∩W̃ ′.

Both Definitions 13 and 14 are independent of choice of G-space X̃ or G-map
h : X̃→ M , as is proved in [Bieri and Geoghegan 2003a; 2003b], respectively, in
what the authors commonly refer to as the invariance theorem. For Definition 14,
this is proved for the related concept of controlled connectivity over a∈M [Bieri and
Geoghegan 2003b, Theorem 2.3]; the proof carries over to controlled connectivity
over an end point [ibid., p. 143].

The parameter λ(t) is called a lag. In nice cases, λ may be constant, or even 0.
A lag is necessary for invariance, but an arbitrarily generous lag would defeat
the point. In Definition 14, condition (∗∗) effectively replaces the condition that
t − λ(t)→∞ found in Definition 13.

Suppose now that G is finitely generated and h : X̃→ M satisfies Definition 14,
but X̃ has noncocompact 1-skeleton. There is h′ : X̃ ′→M , where X̃ ′ has cocompact
1-skeleton, which by the invariance theorem also satisfies Definition 14. We now
show that Definition 13 is satisfied by h′|(X̃)(1) .

Proposition 15. Let G be a finitely generated group, X̃ a contractible free G-
complex with cocompact 1-skeleton (X̃)(1), and geodesic ray τ in a proper CAT(0)
space M. A G-map h : X̃→ M satisfies Definition 14 if and only if the restriction
h| : (X̃)(1)→ M satisfies Definition 13.

Proof. If h| satisfies Definition 13 over τ(∞), then there is a lag λ(t) satisfying
t − λ(t)→∞ as t →∞ such that for each t , any two points in (X̃)(1)(τ,t) may be
joined in (X̃)(1)(τ,t−λ(t)). Let W̃ be any cocompact G-subset of X̃ . Let Y be the
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smallest subcomplex of X̃ containing W̃ . Then Y is still a cocompact G-set. Take
W̃ ′=Y∪(X̃)(1). Then any two points of X̃(τ,t)∩W̃ may be joined in X̃(τ,t−λ(t))∩W̃ ′

by first moving into the 1-skeleton of X̃(τ,t) ∩ Y . We now replace λ(t) with a lag
function λ′(t) satisfying both (∗) and (∗∗). For any t , there exists r > t such that
for all s ≥ r , s− λ(s) > t . (So points of (X̃)(1)

[τ,s) can be connected through a path
in (X̃)(1)

[τ,t).) Let λ′(t)=max{λ(t), r − t}.
Now suppose h satisfies Definition 14 over τ(∞). For W̃ = W̃ ′ = (X̃)(1), there

is λ : R → [0,∞) such that by (∗), any two points of X̃(τ,t) ∩ (X̃)(1) may be
joined through a path in X̃(τ,t−λ(t)) ∩ (X̃)(1), since a path may be chosen which
does not leave (X̃)(1). We now find a lag λ′(t) satisfying t − λ′(t)→∞. Since
HBs(τ )⊆ HBr (τ ) when s > r , (∗∗) says that for all r ∈ R, for all t > r + λ(r), a
lag of (t − r) suffices for HBt(τ ). Hence, we may choose a real-valued sequence
s1 < s2 < · · · satisfying sn→∞ and for t ∈ [sn, sn+1) a lag of t−n suffices. Define
λ′(t) by:

λ′(t)=
{
λ(t) if t < s1,

t − n if sn ≤ t < sn+1, n = 1, 2, . . .

Then t − λ′(t)= n when sn ≤ t < sn+1, so t − λ′(t)→∞ as t→∞. �

This means that one may test for controlled connectivity of a finitely generated
group in the traditional sense by applying the more general definition with a space
X̃ , even when (X̃)(1) is not cocompact.

Definition 16 (61). the invariance theorem ensures controlled connectivity is a
property of the action ρ, so we define

61(ρ)= {e ∈ ∂M | ρ is controlled connected over e}.

The action ρ induces an action on ∂M , and under this action 61(ρ) is a G-
invariant set.

2. Covering spaces and Bass–Serre theory

2.1. Some facts about covering spaces. The following proposition counts the num-
ber of components over a connected subset in a covering projection.

Proposition 17 [Geoghegan 2008, Theorem 3.4.10]. Let (X, Z) be a pair of path
connected CW complexes, both containing a point z. Let i : (Z , z)→ (X, z) be the
inclusion map, and let p : (X̄ , z̄)→ (X, z) be a covering projection. Let H1= im p#

and H2 = im i#. Then the number of path components of p−1(Z) equals the order
of the set of double cosets

{H1gH2 | g ∈ π1(X, z)}.
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In particular, if X̄ = X̃ is the universal cover of X , then the number of components
of p−1(Z) is the index of H2 in π1(X, z).

For us the interesting case for us will be when Z has connected preimage in X̃ .
With this in mind, we will say Z is π1-surjective when the inclusion (Z , z) ↪→ (X, z)
induces a surjection on π1.

A second fact we will need is a consequence of path lifting:

Proposition 18. Let (X, Z) be a pair of path connected CW complexes. Let p :
X̄→ X be a covering projection. Then each component of p−1(Z) surjects onto Z.

2.2. Bass–Serre theory via covering spaces. We are concerned with cocompact
actions by finitely generated groups on locally finite simplicial trees, particularly
those without global fixed points. Thus all actions we consider can be understood
though Bass–Serre theory [Bass 1993; Serre 1980]. There is a beautiful connection
between Bass–Serre theory and covering space theory [Geoghegan 2008, §6.2; Scott
and Wall 1979], which we take advantage of in order to calculate 61 for actions as
described by Definition 1. Here we briefly recount this topological construction of
the Bass–Serre tree in the context of such actions, and in the process introduce an
intermediary covering space which will be important for calculations.

Given an action ρ as in Definition 1, set V = G\T , a finite graph since ρ is
cocompact. Fix a base vertex v0 of V . Choose a connected fundamental domain F
for ρ, and let V be the system of stabilizers for F . (Here a fundamental domain is
not a subgraph if V has loops.) Let v̄0 be the vertex of F over v0. Let V= (V,V, v0)

be the corresponding graph of groups associated with ρ.
For a cell (vertex or edge) c of V , the stabilizer Gc ∈ V is of the form B o Ac

(where Ac ≤ A is the stabilizer of c under the action by A). Following Remark 2,
we assume Gc is not finitely generated. Let Rc be a finite generating set for Ac,
and let Sc be an infinite generating set of B which contains a finite set S such that
S generates B over A, as described in Definition 1. Let Xc be a K (Gc, 1)-complex
having a single 0-cell and 1-cells in correspondence with Rc∪ Sc [Geoghegan 2008,
Chapter 7]; this is called a “vertex (or edge) space,” depending on whether c is a
vertex or edge. There is covering space X̄c � Xc which is a K (B, 1), since B ≤Gc.

As in [Geoghegan 2008, Theorem 7.1.9], we assemble a K (G, 1)-complex
(X, x0) as a total space for the graph of groups (V,V, v0). This is formed as
a disjoint union of the vertex spaces Xv, to which we attach Xe × I for each
edge e. The attaching maps are such that the induced maps on π1 induce inclusions
Ge ↪→ Gv when v is an endpoint of e. There is a retraction r : (X, x0)→ (V, v0)

collapsing Xc (or Xc× I if c is an edge) to c for each cell c of V . There is a covering
space q : (X̄ , x̄0)→ (X, x0) corresponding to B. This, too, can be described as
a total space of a graph of groups where the graph is the tree T itself, and each
stabilizer is isomorphic to B, since T = B\T .
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We then have the universal cover p : (X̃ , x̃)� (X̄ , x̄). Above the map r are
maps r̄ : (X̄ , x̄0)→ (T, v̄0) and r̃ : (X̃ , x̃0)→ (T, v̄0).

All maps are G-equivariant and continuous. We arrive at the commutative
diagram given before the statement of Theorem 3.

3. Analysis of 61 via subcomplexes of X̄

We continue using the notation of the previous section.

Remark 19. Let the end point e be represented by the geodesic ray τ . Because τ
emanates from a vertex, the horoball HBt(τ ) is a subtree of T if and only if t ∈ Z.
We are interested in X̃(τ,t) ⊂ X̃ , which is by definition the largest subcomplex of
(r̄ ◦ p)−1(HBt(τ )); by choice of τ , X , r̄ , and p, X̃(τ,t)= (r̄ ◦ p)−1(HBt(τ )) exactly
when t ∈Z. (There are no 0-cells of X̄ mapped by r̄ to the interior of an edge of T .)
Hence, it is enough to look at horoballs of the form HBk(τ ), k ∈ Z. Similarly, the
lag λ can always be taken to be in Z, so that all horoballs under consideration are
subtrees of T .

Definition 20. A finite subcomplex W will be called suitable if for each subtree U
of T , the set r̄−1(U ) ∩ q−1(W )⊂ X̄ is connected. By Remark 19, it follows that if
W is suitable, then the set X̄(τ,k,W ) = r̄−1(HBk(τ ))∩ q−1(W ) is connected for any
horoball HBk(τ ).

Lemma 21. Suppose W is a connected subcomplex of X such that for each vertex v
of F , W contains the 1-cells of Xv ⊂ X corresponding to Rv. Moreover, for each
edge e of F , let xe ∈ Xe be the basepoint, and suppose W contains the 1-cell
{xe}× [0, 1] ∈ X. Then W is suitable.

Proof. Let U be a subtree of T . We show that q−1(W )∩ r̄−1(U ) is connected. For
a given vertex v of F , W contains loops generating Av, and the image of the map
X̄v ↪→ Xv is B. By Proposition 17 (with H1 ≥ Av and H2 = B), q−1(W )∩ X̄v is
connected. Hence the lemma holds if U is any vertex of T . If U contains edges,
then since W contains all edges of X corresponding to base points of Xe, e ∈ F ,
there must be a path in q−1(W )∩ r̄−1(U ) from the r̄-preimage of any one vertex
of U to any other. Furthermore, the fact that there is no cell of X̄ lying completely
over the interior of an edge of T ensures that there can be no components of
q−1(W )∩ r̄−1(U ) over the interior of an edge. �

Because each stabilizer Av is finitely generated and V is finite, the following
observation follows from Lemma 21.

Observation 22. If W ⊆ X is compact, then there exists a suitable subcomplex
W ′ ⊆ X such that W ⊆W ′.

For convenience, we restate Theorem 3 before proving it. Recall that X̄(τ,k,W )

denotes r̄−1(HBk(τ ))∩ q−1(W )⊂ X̄ .



CONTROLLED CONNECTIVITY FOR SEMIDIRECT PRODUCTS 89

Theorem. Let e ∈ ∂T be represented by a geodesic ray τ .

(i) If there exists a finite subcomplex W ⊂ X such that for every k ∈ Z, X̄(τ,k,W )

is connected and the map on π1 induced by the inclusion X̄(τ,k,W ) ↪→ X̄ is
surjective, then e ∈61(ρ).

(ii) If for every k ∈ Z and every finite subcomplex W ⊂ X such that X̄(τ,k,W ) is
connected, the induced map on π1 is not surjective, then e 6∈61(ρ).

Proof. (i) We show that Definition 14 is satisfied with lag λ = 0; in this case,
conditions (∗) and (∗∗) are the same. Let L̃ ⊆ X̃ be a cocompact G-subcomplex
and set L = q(p(L̃)). Let k ∈ Z. By Observation 22, there is a suitable subcomplex
W ′ ⊆ X with L ∪W ⊆W ′. Since X̄(τ,k,W ) is π1-surjective onto X̄ , it follows that
X̄(τ,k,W ′) is as well. Because W ′ is suitable, Proposition 17 applies to X̄(τ,k,W ′) ⊂ X̄
to ensure that p−1(q−1(W ′))∩ X̃(τ,k) is connected. Moreover this contains L∩X̃(τ,k),
so condition (∗) is satisfied.

(ii) Let L̃ be a cocompact G-subcomplex of X̃ , and let L̃ ′ be any cocompact G-
subcomplex of X̃ containing L̃ . We show that for any lag k ≥ 0 ∈ Z, there exist
points of L̃ ∩ X̃(τ,0) lying in distinct components of L̃ ′ ∩ X̃(τ,−k).

Let L = p(q(L̃)) and L ′ = p(q(L̃ ′)). By Observation 22 there exists a suitable
complex W ⊆ X with L ′ ⊆W . Then X̄(τ,−k,W ) is connected, and by assumption it
is not π1-surjective. Set W̃ = q−1(p−1(W )). Then W̃ ∩ X̃(τ,−k) is disconnected by
Proposition 17. Furthermore, Proposition 18 ensures that each of its components
contains components of L̃ ′∩ X̃(τ,−k), which in turn contain points of L̃∩ X̃(τ,−k). �

4. A a free group

Let the action ρ by G on T be as defined in Definition 1, with the additional
restriction that A is a free group on the set {a1, . . . , an} and T is its Cayley graph
with respect to this set. Then the vertices of T are the elements of A. Let X ,
q : (X̄ , x̄0) → (X, x̄), p : (X̃ , x̃0) → (X̄ , x̄0), r : X → V , and r̄ : X̄ → T be
as defined in Section 2.2. The graph V = A\T has a unique vertex v0, so the
K (G, 1)-complex X can be chosen to have a unique 0-cell x0, which we naturally
choose as basepoint for X . In this case, for any cell c of V , Xc and X̄c are both
K (B, 1)-complexes. In fact, we can take X̄c = Xc = Xv0 for all c, since passing
from X to X̄ simply “unwraps” loops in A ⊆ G = π1(X, x0). Choose the base
point x̄0 of X̄ to be the unique 0-cell of X̄ mapped to 1 ∈ A = vert T .

We uniquely represent ∂T by geodesic rays τ , with τ(0) = 1 ∈ A and τ(n) a
freely reduced word on n letters. Thus each geodesic ray τ corresponds to a unique
infinite freely reduced word

∏
i∈Z≥0

ci .

4.1. From suitable complexes to subgroups. From here on, we identify B with
π1(X̄ , x̄0). Let W be a suitable subcomplex of X . Since W is finite, the subgroup
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B(W )= inclusion#(q−1(W )∩ r̄−1(1), x̄0)≤ B

is finitely generated. Let S(W ) be a finite generating set for B(W ). Let T ′ be a
subtree of T . Fix v ∈ vert T ′ ⊆ A. Then r̄−1(v)∼= X̄c has a single 0-cell; call it x ′.
Let B(W, T ′, v) be the image of π1

(
q−1(W )∩ r̄−1(T ′), x ′

)
in π1(X̄ , x ′). Let

9v : π1(X̄ , x ′)→ π1(X̄ , x̄0)= B

be the change-of-basepoint isomorphism. Then for g ∈ π1(X̄ , x ′), 9v(g)= vgv−1.

Lemma 23. The subgroup of B generated by {usu−1
| s ∈ S(W ), u ∈ T ′} is

9v(B(W, T ′, v)).

Proof. Any element h ∈ B(W, T ′, v) can represented by a loop σh in the 1-skeleton
of q−1(W )∩ r̄−1(T ′) based at x ′. Because X̄ has no 0-cells over the interiors of
edges of T , and because each vertex space is a copy of Xv0 and each edge space a
copy of Xv0 ×[0, 1], the loop σh may be decomposed as concatenation of subpaths
σ 0

h , σ
1
h , . . . , σ

m
h , m ∈ N, where each σ i

h , 0 ≤ i ≤ m, is either a 1-cell joining one
vertex space to another (a “base edge” for an edge space) or a loop contained
entirely in a vertex space and corresponding to some s ∈ S(W ). Between each
pair of subpaths, we may introduce a path which returns straight back to x ′ (i.e.,
via 1-cells over lying over edges of T ′ exclusively). This process rewrites h as a
product of conjugates of the form v−1usu−1v, s ∈ S(W ), u ∈ T ′. �

Combining Theorem 3 with Lemma 23, we obtain a purely algebraic condition for
determining whether an endpoint lies in 61(ρ). For a geodesic ray τ corresponding
to the infinite word

∏
i ci and k ∈Z, define Ak(τ )= vert(HBk(τ )) and wk = τ(k)=

c1c2 . . . ck . Then

π1
(
q−1(W )∩ r̄−1(HBk(τ )), wk

)
= B(W,HBk(τ ), wk).

Theorem. Let A be a finitely generated free group, and let T be its Cayley graph
with respect to a free basis. For the action ρ as in Theorem 3, and for e ∈ ∂T
represented by a geodesic ray τ ,

(i) If there is a finite set S ⊆ B such that for each k ∈ Z≥0, S generates B over
Ak(τ ), then e ∈61(ρ).

(ii) If for each k ∈ Z≤0, B is not finitely generated over Ak(τ ), then e 6∈61(ρ).

Proof. (i) If there is such a finite set S, then we can choose a suitable subcomplex W
containing loops corresponding to S. For any k ∈ Z≥0, let x ′ be the unique vertex
of r̄−1(wk), and we have

B(W,HBk(τ ), wk)=9
−1
wk
(B)= π1(X̄ , x ′).

Thus by Theorem 3(i) we obtain e ∈61(ρ).
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(ii) Given a suitable subcomplex W of X and k ∈ Z≤0, by assumption the subgroup
9(B(W,HBk(τ ), wk)) is a proper subgroup of B. Hence, B(W,HBk(τ ), wk) is a
proper subgroup of π1(X̄ , x ′). Thus, by part (ii) of Theorem 3, e 6∈61(ρ). �

Recall that for t ∈ {a1, . . . , an}
±, the function expsumt maps a reduced word w

in {a1, . . . , an}
± to the corresponding exponent sum of t in w. Also, recall we use

the notation Ballr (A, v) to refer to the r -ball around v in A (in the word metric), to
avoid confusion with the subgroup B.

Lemma 24. For an endpoint e represented by the geodesic ray τ , let

Qt,k(τ )= {expsumt(v) | v ∈ Ak(τ )} ⊆ Z.

Then Qt,k(τ ) is bounded above if and only if τ eventually consists of only t−1.
Moreover, Qt,k(τ ) contains every integer within its bounds.

Proof. Let τ be represented by the infinite word c1c2 . . . , and fix k ∈ Z. Recall that
Ak(τ )=

⋃
l≥max{0,k} Balll−k(A, c1c2 . . . cl).

Suppose for N ∈ Z, ci = t−1 for all i > N . For j = 0, 1, 2, . . . , the words
g j = c1c2 . . . cN+ j t N+ j−k all represent the same element of A, and g j has maximal
expsumt among elements of BallN+ j−k(A, c1c2 . . . cN+ j ). Since Ak(τ ) is the union
of these subsets, it follows that Qt,k(τ ) is bounded above.

On the other hand, suppose that there are infinitely many i ∈Z such that ci 6= t−1.
For j ∈ Z, j ≥ max{0, k}, let m( j) be the number of letters ci in c1c2 . . . c j with
ci 6= t−1. By assumption m( j)→∞ as j→∞. Let g j = c1 . . . c j t j−k . Then

g j ∈ Ball j−k(A, c1c2 . . . c j )⊆ Ak(τ ).

Since expsumt(c1c2 . . . c j )≥−( j −m( j)),

expsumt(g j )= expsumt(c1c2 . . . c j )+ j − k ≥ m( j)− k.

Letting j→∞, we have that Qt,k(τ ) is not bounded above.
The fact that Qt,k(τ ) contains every integer within its bounds follows from the

observation that for v,w ∈ Ak(τ ), if

expsumt(v) < m < expsumt(w),

the path connecting v to w contains a vertex u with expsumt(u)= m. �

Proof of Corollary 6. Let t ∈ {a1, . . . , an}
±. Suppose e ∈ ∂T is represented by an

infinite word eventually consisting of only t−1, and suppose there exists no m ∈ Z

such that B is finitely generated over A − expsum−1
t ([m,∞)). By Lemma 24,

{expsumt(a) | a ∈ Ak(τ )} is bounded above. Hence, B cannot be finitely generated
over Ak(τ ), and so by Theorem 4, part (ii), e 6∈61(ρ). �
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Proof of Theorem 9. Let e= τ(∞), with τ corresponding to the infinite word
∏

i ci .
By Corollary 5, it is enough to show that ϕ(Ak(τ ))= ϕ(A) for each k ≥ 0 ∈ Z.

Let w ∈A∗ be a freely reduced word, and let l be the reduced length of w. We
will find w′ ∈ Ak(τ ) with ϕ(w′)= ϕ(w). Choose m ∈ Z≥0 large enough to ensure
that the word c1 . . . cm has k+ l distinct subwords in kerϕ. Call these subwords ζi ,
1≤ i ≤ k+ l, and let the remaining letters form subwords χi , 1≤ i ≤ k+ l, so that
we have the decomposition

c1 . . . cm = χ1ζ1χ2ζ2 . . . χk+lζk+l,

where each ϕ(ζi ) is trivial, and each χi is possibly empty.
Now

ϕ(c1c2 . . . cm)= ϕ(χ1χ2 . . . χk+l),

and the reduced length of χ1χ2 . . . χk+l is no greater than m − l − k. Thus the
word ξ = c1c2 . . . cmχ

−1
k+l . . . χ

−1
2 χ−1

1 is in both kerϕ and Ballm−l−k(A, c1 . . . cm);
moreover

ξw ∈ Ballm−k(A, c1 . . . cm)⊆ Ak(τ ) and ϕ(w)= ϕ(ξw). �

4.2. Argument for Example 11. In Example 11, G = B oϕ A, where A = C ∗ D
for free groups C = 〈a1, . . . , an〉, D = 〈an+1, . . . , am〉, and B = ⊕ω∈C Kω for
some finitely generated group K . The claim is made that any endpoint of T =
0(A, {a1, a2, . . . , am}) represented by a ray τ whose letters are eventually selected
only from C does not lie in 61. Since 61 is G-invariant, we can assume τ consists
of letters entirely in C . Then π : A � C fixes each vertex of τ . Moreover, it makes
sense to discuss the subset Ck(τ )⊆ C .

Let k ∈ Z≤0 be given, and let S be any finite subset of B. We will show that the
set S′ = {ϕa(s) | s ∈ S, a ∈ Ak(τ )} does not generate B. Part (ii) of Theorem 4
thereby ensures that τ(∞) 6∈61(ρ).

To show that S′ does not generate B, we will find an index ψ ∈C such that every
s ∈ S′ is trivial at index ψ .

Observation 25. If a ∈ A is in Ak(τ ), then π(a) is in Ck(τ ).

Proof. Since a ∈ Ak(τ ) and k≤0, there exists l≥0 such that a ∈Balll−k(A, τ (l)) by
(1-2), so π(a) ∈Balll−k(C, τ (l)). But this is contained in Ck(τ ), again by (1-2). �

Define the set

I(S)= {ω ∈ C | ∃ s ∈ S such that s is nontrivial at index ω}.

Note that I(S) is a finite set, since S is finite and each s ∈ S is nontrivial at only
finitely many indices. Define

R(S)=max{reduced length of ω | ω ∈ I(S)}.
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Since I(S) is finite, R(S) is a nonnegative integer representing the maximum
distance (in C) from any index of any nontrivial component of any element of S to
the identity index 1 ∈ C .

Since left multiplication by c∈C is an isometry on C , it follows that the maximal
distance in C from any nontrivial index of any element of ϕc(S) to c is also R(S).
Observation 25 therefore ensures that the set of nontrivial indices of elements of S′ is
a subset of the closed R(S)-neighborhood of Ck(τ ) in C . In fact, this neighborhood
is the set Ck−R(S)(τ ). This is a proper subset of C (simply choose any geodesic ray
other than τ and follow it far enough). For any ψ ∈ C with ψ 6∈ Ck−R(S)(τ ), all
s ∈ S′ will be trivial at index ψ . So S′ can not generate B.
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