Pacific

Journal of Mathematics

AN INDISPENSABLE CLASSIFICATION OF MONOMIAL CURVES IN $A^{4}(\mathbb{k})$

Anargyros Katsabekis and Ignacio Ojeda

AN INDISPENSABLE CLASSIFICATION OF MONOMIAL CURVES IN $A^{4}(\mathbb{k})$

Anargyros Katsabekis and Ignacio Ojeda

Abstract

We give a new classification of monomial curves in $\mathbb{A}^{4}(\mathbb{k})$. It relies on the detection of those binomials and monomials that have to appear in every system of binomial generators of the defining ideal of the monomial curve; these special binomials and monomials are called indispensable in the literature. This way to proceed has the advantage of producing a natural necessary and sufficient condition for the defining ideal of a monomial curve in $\mathbb{A}^{4}(\mathbb{k})$ to have a unique minimal system of binomial generators. Furthermore, some other interesting results on more general classes of binomial ideals with unique minimal system of binomial generators are obtained.

Introduction

Let $\mathbb{k}[x]:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over a field \mathbb{k}. As usual, we will denote by $\boldsymbol{x}^{\boldsymbol{u}}$ the monomial $x_{1}^{u_{1}} \cdots x_{n}^{u_{n}}$ of $\mathbb{k}[\boldsymbol{x}]$, with $\boldsymbol{u}=$ $\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{N}^{n}$, where \mathbb{N} stands for the set of non-negative integers. Recall that a pure difference binomial ideal is an ideal of $\mathbb{k}[x]$ generated by differences of monic monomials. Examples of pure difference binomial ideals are the toric ideals. Indeed, let $\mathscr{A}=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\} \subset \mathbb{Z}^{d}$ and consider the semigroup homomorphism $\pi: \mathbb{k}[x] \rightarrow \mathbb{k}[\mathscr{A}]:=\bigoplus_{a \in \mathscr{A}} \mathbb{k} t^{a} ; x_{i} \mapsto t^{a_{i}}$. The kernel of π is denoted by $I_{\mathscr{A}}$ and called the toric ideal of $\mathscr{A l}$. Notice that the toric ideal $I_{\mathscr{l}}$ is generated by all the binomials $\boldsymbol{x}^{u}-\boldsymbol{x}^{v}$ such that $\pi\left(\boldsymbol{x}^{u}\right)=\pi\left(\boldsymbol{x}^{v}\right)$, see, for example, [Sturmfels 1996, Lemma 4.1].

Defining ideals of monomial curves in the affine n-dimensional space $\mathbb{A}^{n}(\mathbb{k})$ serve as interesting examples of toric ideals. Of particular interest is to compute and describe a minimal generating set for such an ideal. Herzog [1970] provides a minimal system of generators for the defining ideal of a monomial space curve.

[^0]The case $n=4$ was treated in [Bresinsky 1988], where Gröbner bases techniques were used to obtain a minimal generating set of the ideal.

A recent topic arising in algebraic statistics is to study the problem when a toric ideal has a unique minimal system of binomial generators, see [Charalambous et al. 2007; Ojeda and Vigneron-Tenorio 2010a]. To deal with this problem, Ohsugi and Hibi [2005] introduced the notion of indispensable binomials, while Aoki, Takemura and Yoshida [Aoki et al. 2008] introduced the notion of indispensable monomials. The problem was considered for the case of defining ideals of monomial curves in [García and Ojeda 2010]. Although this work offers useful information, the classification of the ideals having a unique minimal system of binomial generators remains an unsolved problem for $n \geq 4$. For monomial space curves Herzog's result provides an explicit classification of those defining ideals satisfying the above property. The aim of this work is to classify all defining ideals of monomial curves in $\mathbb{A}^{4}(\mathbb{k})$ having a unique minimal system of generators. Our approach is inspired by the classification made by Pilar Pisón in her unpublished thesis.

The paper is organized as follows. In Section 1 we study indispensable monomials and binomials of a pure difference binomial ideal. We provide a criterion for checking whether a monomial is indispensable (Theorem 1.9) and a sufficient condition for a binomial to be indispensable (Theorem 1.10). As an application we prove that the binomial edge ideal of an undirected simple graph has a unique minimal system of binomial generators. Section 2 is devoted to special classes of binomial ideals contained in the defining ideal of a monomial curve. Corollary 2.5 underlines the significance of the critical ideal in the investigation of our problem. Theorem 2.12 and Proposition 2.13 provide necessary and sufficient conditions for a circuit to be indispensable in the toric ideal, while Corollary 2.16 will be particularly useful in the next section. In Section 3 we study defining ideals of monomial curves in $\mathbb{A}^{4}(\mathbb{k})$. Theorem 3.6 carries out a thorough analysis of a minimal generating set of the critical ideal. This analysis is used to derive a minimal generating set for the defining ideal of the monomial curve (Theorem 3.10). As a consequence we obtain the desired classification (Theorem 3.11). Finally we prove that the defining ideal of a Gorenstein monomial curve in $\mathbb{A}^{4}(\mathbb{k})$ has a unique minimal system of binomial generators, under the hypothesis that the ideal is not a complete intersection.

1. Generalities on indispensable monomials and binomials

Let $\mathbb{k}[x]$ be the polynomial ring over a field \mathbb{k}. The following result is folklore, but for a lack of reference we sketch a proof.

Theorem 1.1. Let $J \subset \mathbb{k}[x]$ be a pure difference binomial ideal. There exist a positive integer d and a vector configuration $\mathscr{A}=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\} \subset \mathbb{Z}^{d}$ such that the toric ideal $I_{\mathscr{A}}$ is a minimal prime of J.

Proof. By [Eisenbud and Sturmfels 1996, Corollary 2.5], $\left(J:\left(x_{1} \cdots x_{n}\right)^{\infty}\right)$ is a lattice ideal. More precisely, if $\mathscr{L}=\operatorname{span}_{\mathbb{Z}}\left\{\boldsymbol{u}-\boldsymbol{v} \mid \boldsymbol{x}^{\boldsymbol{u}}-\boldsymbol{x}^{v} \in J\right\}$, then

$$
\left(J:\left(x_{1} \cdots x_{n}\right)^{\infty}\right)=\left\langle\boldsymbol{x}^{u}-\boldsymbol{x}^{v} \mid \boldsymbol{u}-\boldsymbol{v} \in \mathscr{L}\right\rangle=: I_{\mathscr{L}} .
$$

Now, by [Eisenbud and Sturmfels 1996, Corollary 2.2], the only minimal prime of $I_{\mathscr{L}}$ that is a pure difference binomial ideal is $I_{\text {Sat }(\mathscr{L})}:=\left\langle\boldsymbol{x}^{u}-\boldsymbol{x}^{v} \mid \boldsymbol{u}-\boldsymbol{v} \in \operatorname{Sat}(\mathscr{L})\right\rangle$, where $\operatorname{Sat}(\mathscr{L}):=\left\{\boldsymbol{u} \in \mathbb{Z}^{n} \mid z \boldsymbol{u} \in \mathscr{L}\right.$ for some $\left.z \in \mathbb{Z}\right\}$. Since $\mathbb{Z}^{n} / \operatorname{Sat}(\mathscr{L}) \cong \mathbb{Z}^{d}$, for $d=n-\operatorname{rank}(\mathscr{L})$, then $\boldsymbol{e}_{i}+\operatorname{Sat}(\mathscr{L})=\boldsymbol{a}_{i} \in \mathbb{Z}^{d}$, for every $i=1, \ldots, n$, and hence the toric ideal of $\mathscr{A}=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ is equal to $I_{\text {Satt }}(\mathscr{L})$; see [Sturmfels 1996, Lemma 12.2].

Finally, in order to see that $I_{s l}$ is a minimal prime of J, it suffices to note that $J \subseteq P$ implies $\left(J:\left(x_{1} \cdots x_{n}\right)^{\infty}\right) \subseteq P$, for every prime ideal P of $\mathbb{k}[x]$.
Remark 1.2. If $J=\left\langle\boldsymbol{x}^{u_{j}}-\boldsymbol{x}^{v_{j}} \mid j=1, \ldots, s\right\rangle$, then $\mathscr{L}=\operatorname{span}_{\mathbb{Z}}\left\{\boldsymbol{u}_{j}-\boldsymbol{v}_{j} \mid j=\right.$ $1, \ldots, s\}$. So, it is easy to see that, in general, $J \neq I_{\mathscr{L}}$. For example, if $J=$ $\left\langle x-y, z-t, y^{2}-y t\right\rangle$, then $I_{\mathscr{L}}=\langle x-t, y-t, z-t\rangle$.

Given a vector configuration $\mathscr{A}=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\} \subset \mathbb{Z}^{d}$, we grade $\mathbb{k}[\boldsymbol{x}]$ by setting $\operatorname{deg}_{\mathscr{A}}\left(x_{i}\right)=\boldsymbol{a}_{i}, i=1, \ldots, n$. We define the \mathscr{A}-degree of a monomial \boldsymbol{x}^{u} to be

$$
\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{u}\right)=u_{1} \boldsymbol{a}_{1}+\cdots+u_{n} \boldsymbol{a}_{n} .
$$

A polynomial $f \in \mathbb{K}[x]$ is \mathscr{A}-homogeneous if the \mathscr{A}-degrees of all the monomials that occur in f are the same. An ideal $J \subset \mathbb{k}[x]$ is \mathscr{A}-homogeneous if it is generated by \mathscr{A}-homogeneous polynomials. The toric ideal $I_{\mathscr{A}}$ is \mathscr{A}-homogeneous; indeed, by [Sturmfels 1996, Lemma 4.1], a binomial $\boldsymbol{x}^{u}-\boldsymbol{x}^{v} \in I_{\mathscr{A}}$ if and only if it is A-homogeneous.

The proof of the following result is straightforward.
Corollary 1.3. Let $J \subset \mathbb{k}[x]$ be a pure difference binomial ideal and let $\mathscr{A}=$ $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\} \subset \mathbb{Z}^{d}$. Then J is \mathscr{A}-homogeneous if and only if $J \subseteq I_{\mathscr{A} 1}$.

Notice that the finest \mathscr{A}-grading on $\mathbb{k}[x]$ such that a pure difference binomial ideal $J \subset \mathbb{k}[x]$ is \mathscr{A}-homogeneous occurs when $I_{\mathscr{A}}$ is a minimal prime of J. Such an \mathscr{A}-grading does always exist by Theorem 1.1. Ideals with finest \mathscr{A}-grading are studied in much greater generality in [Katsabekis and Thoma 2010]. An \mathscr{A}-grading on $\mathbb{k}[x]$ such that a pure difference binomial ideal $J \subset \mathbb{K}[x]$ is \mathscr{A}-homogeneous is said to be positive if the quotient ring $\mathbb{k}[\boldsymbol{x}] / I_{\mathcal{A}}$ does not contain invertible elements or, equivalently, if the monoid $\mathbb{N} \mathscr{A}$ is free of units.

Recall (from [Sturmfels 1996, Chapter 12], for instance) that the number of polynomials of \mathscr{A}-degree $\boldsymbol{b} \in \mathbb{N} \mathscr{A}$ in any minimal system of \mathscr{A}-homogeneous generators is $\operatorname{dim}_{\mathfrak{k}} \operatorname{Tor}_{1}^{R}(\mathbb{k}, \mathbb{k}[\mathscr{A}])_{b}$. Thus, we say that $I_{\mathscr{A}}$ has minimal generators in degree \boldsymbol{b} when $\operatorname{dim}_{\mathfrak{k}} \operatorname{Tor}_{1}^{R}(\mathbb{k}, \mathbb{k}[\mathscr{A}])_{\boldsymbol{b}} \neq 0$. In this case, if $f \in I_{\mathscr{A}}$ has degree \boldsymbol{b} we say that f is a minimal generator of $I_{\mathscr{A}}$.

From now on, let $\mathscr{A}=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\} \subset \mathbb{Z}^{d}$ be such that the quotient ring $\mathbb{k}[\boldsymbol{x}] / I_{\mathscr{A}}$ does not contain invertible elements and let $J \subset \mathbb{k}[\boldsymbol{x}]$ be an \mathscr{A}-homogeneous pure difference binomial ideal.

Definition 1.4. A binomial $f=\boldsymbol{x}^{\boldsymbol{u}}-\boldsymbol{x}^{\boldsymbol{v}} \in J$ is called indispensable in J (or an indispensable binomial of J) if every system of binomial generators of J contains f or $-f$. A monomial $\boldsymbol{x}^{\boldsymbol{u}}$ is called indispensable in J if every system of binomial generators of J contains a binomial f such that \boldsymbol{x}^{u} is a monomial of f.

We will write M_{J} for the monomial ideal generated by all x^{u} for which there exists a nonzero $\boldsymbol{x}^{\boldsymbol{u}}-\boldsymbol{x}^{\boldsymbol{v}} \in J$.

The next proposition is the natural generalization of [Charalambous et al. 2007, Proposition 3.1], but for completeness, we give a proof.

Proposition 1.5. The indispensable monomials of J are precisely the minimal generators of M_{J}.

Proof. Let $\left\{f_{1}, \ldots, f_{s}\right\}$ be a system of binomial generators of J. Clearly, the monomials of the $f_{i}, i=1, \ldots, s$, generate M_{J}. Let \boldsymbol{x}^{u} be a minimal generator of M_{J}. Then $\boldsymbol{x}^{\boldsymbol{u}}-\boldsymbol{x}^{\boldsymbol{v}} \in J$, for some nonzero $\boldsymbol{v} \in \mathbb{N}^{n}$. Now, the minimality of $\boldsymbol{x}^{\boldsymbol{u}}$ assures that $\boldsymbol{x}^{\boldsymbol{u}}$ is a monomial of f_{j} for some j. Therefore every minimal generator of M_{J} is an indispensable monomial of J. Conversely, let \boldsymbol{x}^{u} be an indispensable monomial of J. If \boldsymbol{x}^{u} is not a minimal generator of M_{J}, then there is a minimal generator $\boldsymbol{x}^{\boldsymbol{w}}$ of M_{J} such that $\boldsymbol{x}^{\boldsymbol{u}}=\boldsymbol{x}^{w} \boldsymbol{x}^{\boldsymbol{u}^{\prime}}$ with $\boldsymbol{u}^{\prime} \neq \mathbf{0}$. By the previous argument $x^{\boldsymbol{w}}$ is an indispensable monomial of J, hence without loss of generality we may suppose that $f_{k}=\boldsymbol{x}^{\boldsymbol{w}}-\boldsymbol{x}^{z}$ for some k and $\mathbf{z} \in \mathbb{N}^{n}$. Thus, if $f_{j}=\boldsymbol{x}^{\boldsymbol{u}}-\boldsymbol{x}^{\boldsymbol{v}}$, then

$$
f_{j}^{\prime}=\boldsymbol{x}^{\boldsymbol{u}^{\prime}} \boldsymbol{x}^{z}-\boldsymbol{x}^{\boldsymbol{v}}=f_{j}-\boldsymbol{x}^{\boldsymbol{u}^{\prime}} f_{k} \in J
$$

and therefore we can replace f_{j} by f_{j}^{\prime} in $\left\{f_{1}, \ldots, f_{s}\right\}$. Repeating this argument as many times as necessary, we will find a system of binomial generators of J such that no element has $\boldsymbol{x}^{\boldsymbol{u}}$ as monomial, a contradiction to the fact that $\boldsymbol{x}^{\boldsymbol{u}}$ is indispensable.
Corollary 1.6. If $\boldsymbol{x}^{u} \in M_{J}$ is an indispensable monomial of $I_{\mathscr{A}}$, then it is also an indispensable monomial of J.

Proof. It suffices to note that $M_{J} \subseteq M_{I_{s l}}$ by Corollary 1.3.
Now, we will give a combinatorial necessary and sufficient condition for a monomial $\boldsymbol{x}^{\boldsymbol{u}} \in \mathbb{\mathbb { K }}[\boldsymbol{x}]$ to be indispensable in J.

Definition 1.7. Let $\boldsymbol{b} \in \mathbb{N} \mathscr{A}$. The graph $G_{\boldsymbol{b}}(J)$ has as its vertices the monomials of M_{J} of \mathscr{A}-degree \boldsymbol{b}; two vertices $\boldsymbol{x}^{\boldsymbol{u}}$ and $\boldsymbol{x}^{\boldsymbol{v}}$ are joined by an edge if $\operatorname{gcd}\left(\boldsymbol{x}^{\boldsymbol{u}}, \boldsymbol{x}^{\boldsymbol{v}}\right) \neq 1$ and there exists a monomial $1 \neq \boldsymbol{x}^{\boldsymbol{w}}$ dividing $\operatorname{gcd}\left(\boldsymbol{x}^{\boldsymbol{u}}, \boldsymbol{x}^{\boldsymbol{v}}\right)$ such that the binomial $\boldsymbol{x}^{\boldsymbol{u}-\boldsymbol{w}}-\boldsymbol{x}^{\boldsymbol{v}-\boldsymbol{w}}$ belongs to J.

Notice that $G_{\boldsymbol{b}}(J)=\varnothing$ exactly when M_{J} has no element of \mathscr{A}-degree \boldsymbol{b}; in particular, $G_{\boldsymbol{b}}(J)=\varnothing$ if $\boldsymbol{b}=\mathbf{0}$, because $1 \notin M_{J}$ (otherwise, $\mathbb{k}[\boldsymbol{x}] / I_{\mathscr{A}}$ would contain invertible elements). Moreover, since $J \subseteq I_{\mathscr{A}}$, we have that $G_{b}(J)$ is a subgraph of $G_{b}\left(I_{\mathscr{A}}\right)$, for all \boldsymbol{b}. Finally, we observe that the existence of $\boldsymbol{x}^{\boldsymbol{w}}$ as stated is trivially fulfilled for $J=I_{\mathscr{A}}$ because $\left(I_{\mathscr{A}}:\left(x_{1} \cdots x_{n}\right)^{\infty}\right)=I_{\mathscr{A}}$, in this case, if $G_{b}(J) \neq \varnothing$, the graph $G_{\boldsymbol{b}}(J)$ is nothing but the 1 -skeleton of the simplicial complex $\nabla_{\boldsymbol{b}}$ appearing in [Ojeda and Vigneron-Tenorio 2010a]. Thus, we have the following result.

Theorem 1.8. Let $\boldsymbol{x}^{u}-\boldsymbol{x}^{v} \in I_{\mathscr{A}}$ be a binomial of \mathscr{A}-degree \boldsymbol{b}. Then, f is a minimal generator of $I_{\mathscr{A}}$ if and only if $\boldsymbol{x}^{\boldsymbol{u}}$ and \boldsymbol{x}^{v} lie in two different connected components of $G_{\boldsymbol{b}}\left(I_{\mathscr{A}}\right)$, in particular, the graph is disconnected.

Proof. See, for example, [Ojeda and Vigneron-Tenorio 2010b, Section 2].
The next theorem provides a necessary and sufficient condition for a monomial to be indispensable in J.

Theorem 1.9. A monomial $\boldsymbol{x}^{\boldsymbol{u}}$ is indispensable in J if and only if $\left\{\boldsymbol{x}^{\boldsymbol{u}}\right\}$ is connected component of $G_{\boldsymbol{b}}(J)$, where $\boldsymbol{b}=\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{\boldsymbol{u}}\right)$.

Proof. Suppose that \boldsymbol{x}^{u} is an indispensable monomial of J and $\left\{\boldsymbol{x}^{u}\right\}$ is not a connected component of $G_{\boldsymbol{b}}(J)$. Then, there exists $\boldsymbol{x}^{v} \in M_{J}$ with \mathscr{A}-degree equal to \boldsymbol{b} such that $\operatorname{gcd}\left(\boldsymbol{x}^{\boldsymbol{u}}, \boldsymbol{x}^{v}\right) \neq 1$ and $\boldsymbol{x}^{u-\boldsymbol{w}}-\boldsymbol{x}^{v-\boldsymbol{w}} \in J$, where $1 \neq \boldsymbol{x}^{\boldsymbol{w}}$ divides $\operatorname{gcd}\left(\boldsymbol{x}^{\boldsymbol{u}}, \boldsymbol{x}^{v}\right)$. So $\boldsymbol{x}^{u-w} \in M_{J}$ and properly divides \boldsymbol{x}^{u}, a contradiction to the fact that $\boldsymbol{x}^{\boldsymbol{u}}$ is a minimal generator of M_{J} (see Proposition 1.5). Conversely, we assume that $\left\{\boldsymbol{x}^{\boldsymbol{u}}\right\}$ is connected component of $G_{\boldsymbol{b}}(J)$ with $\boldsymbol{b}=\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{\boldsymbol{u}}\right)$ and that $\boldsymbol{x}^{\boldsymbol{u}}$ is not an indispensable monomial of J. Then, by Proposition 1.5 , there exists a binomial $f=x^{w}-x^{z} \in J$, such that x^{w} properly divides x^{u}. Let $x^{u}=x^{w} x^{u^{\prime}}$, then $1 \neq x^{u^{\prime}}$ divides $\operatorname{gcd}\left(\boldsymbol{x}^{u}, \boldsymbol{x}^{u^{\prime}} \boldsymbol{x}^{z}\right)$ and hence $\left(\boldsymbol{x}^{u}-\boldsymbol{x}^{u^{\prime}} \boldsymbol{x}^{z}\right) /\left(\boldsymbol{x}^{u^{\prime}}\right)=f \in J$. Thus, $\left\{\boldsymbol{x}^{u}, \boldsymbol{x}^{u^{\prime}} \boldsymbol{x}^{z}\right\}$ is an edge of $G_{b}(J)$, a contradiction to the fact that $\left\{\boldsymbol{x}^{u}\right\}$ is a connected component of $G_{b}(J)$.

Now, we are able to give a sufficient condition for a binomial to be indispensable in J by using our graphs $G_{b}(J)$ (compare with [García and Ojeda 2010, Corollary 5]).

Theorem 1.10. Given $\boldsymbol{x}^{u}-\boldsymbol{x}^{v} \in J$ and let $\boldsymbol{b}=\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{u}\right)\left(=\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{v}\right)\right)$. If $G_{\boldsymbol{b}}(J)=$ $\left\{\left\{x^{u}\right\},\left\{x^{v}\right\}\right\}$, then $x^{u}-x^{v}$ is an indispensable binomial of J.

Proof. Assume that $G_{b}(J)=\left\{\left\{x^{u}\right\},\left\{x^{v}\right\}\right\}$. Then, by Theorem 1.9, both \boldsymbol{x}^{u} and \boldsymbol{x}^{v} are indispensable monomials of J. Let $\left\{f_{1}, \ldots, f_{s}\right\}$ be a system of binomial generators of J. Since $\boldsymbol{x}^{\boldsymbol{u}}$ is an indispensable monomial, $f_{i}=\boldsymbol{x}^{\boldsymbol{u}}-\boldsymbol{x}^{\boldsymbol{w}} \neq 0$, for some i. Thus $\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{\boldsymbol{u}}\right)=\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{w}\right)$ and therefore \boldsymbol{x}^{w} is a vertex of $G_{b}(J)$. Consequently, $\boldsymbol{w}=\boldsymbol{v}$ and we conclude that $\boldsymbol{x}^{u}-\boldsymbol{x}^{\boldsymbol{v}}$ is an indispensable binomial of J.

The converse of this theorem is not true in general: consider for instance the ideal $J=\left\langle x-y, y^{2}-y t, z-t\right\rangle=\langle x-t, y-t, z-t\rangle \cap\langle x, y, z-t\rangle$, then J is \mathscr{A}-homogeneous for $\mathscr{A}=\{1,1,1,1\}$. Both $x-y$ and $z-t$ are indispensable binomials of J, while $G_{\mathbf{1}}(J)=\{\{x\},\{y\},\{z\},\{t\}\}$.
Corollary 1.11. If $f=\boldsymbol{x}^{u}-\boldsymbol{x}^{v} \in J$ is an indispensable binomial of $I_{\mathcal{A}}$, then f is an indispensable binomial of J.

Proof. Let $\boldsymbol{b}=\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{\boldsymbol{u}}\right)\left(=\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{v}\right)\right)$. By [Ojeda and Vigneron-Tenorio 2010a, Corollary 7], if $\boldsymbol{x}^{u}-\boldsymbol{x}^{v}$ is an indispensable binomial of $I_{\mathfrak{A}}$, then $G_{\boldsymbol{b}}\left(I_{\mathfrak{A}}\right)=$ $\left\{\left\{\boldsymbol{x}^{u}\right\},\left\{\boldsymbol{x}^{v}\right\}\right\}$. Since \boldsymbol{x}^{u} and \boldsymbol{x}^{v} are vertices of $G_{\boldsymbol{b}}(J)$ and $G_{\boldsymbol{b}}(J)$ is a subgraph of $G_{b}\left(I_{\mathfrak{A l}}\right)$, then $G_{b}(J)=G_{b}\left(I_{\mathfrak{A}}\right)$ and therefore, by Theorem 1.10, we conclude that $\boldsymbol{x}^{u}-\boldsymbol{x}^{v}$ is an indispensable binomial of J.

Again we have that the converse is not true; for instance, $x-y$ and $z-t$ are indispensable binomials of $J=\left\langle x-y, y^{2}-y t, z-t\right\rangle$ and none of them is indispensable in the toric ideal $I_{s l}$.

We close this section by applying our results to show that the binomial edge ideals introduced in [Herzog et al. 2010] have unique minimal system of binomial generators.

Let G be an undirected connected simple graph on the vertex set $\{1, \ldots, n\}$ and let $\mathbb{k}[\boldsymbol{x}, \boldsymbol{y}]$ be the polynomial ring in $2 n$ variables, $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$, over \mathbb{k}.

Definition 1.12. The binomial edge ideal $J_{G} \subset \mathbb{k}[\boldsymbol{x}, \boldsymbol{y}]$ associated to G is the ideal generated by the binomials $f_{i j}=x_{i} y_{j}-x_{j} y_{i}$, with $i<j$, such that $\{i, j\}$ is an edge of G.

Let $J_{G} \subset \mathbb{k}[\boldsymbol{x}, \boldsymbol{y}]$ be the binomial edge ideal associated to G. By definition, J_{G} is contained in the determinantal ideal generated by the 2×2-minors of

$$
\left(\begin{array}{ccc}
x_{1} & \ldots & x_{n} \\
y_{1} & \ldots & y_{n}
\end{array}\right) .
$$

This ideal is nothing but the toric ideal associated to the Lawrence lifting, $\Lambda(\mathscr{A})$, of $\mathscr{A}=\{1, \ldots, 1\}$ (see [Sturmfels 1996, Chapter 7], for instance). Thus, $J_{G} \subseteq I_{\Lambda(\mathscr{A})}$ and the equality holds if and only if G is the complete graph on n vertices. By the way, since G is connected, the smallest toric ideal containing J_{G} has codimension $n-1$. So, the smallest toric ideal containing J_{G} is $I_{\Lambda(\Omega)}$, that is to say, $\Lambda(\mathscr{A})$ is the finest grading on $\mathbb{k}[\boldsymbol{x}, \boldsymbol{y}]$ such that J_{G} is $\Lambda(\mathscr{A})$-homogeneous.

Corollary 1.13. The binomial edge ideal J_{G} has unique minimal system of binomial generators.

Proof. By [Ojeda and Vigneron-Tenorio 2010a, Corollary 16], the toric ideal $I_{\Lambda(A))}$ is generated by its indispensable binomials, thus every $f_{i j} \in J_{G}$, is an indispensable
binomial of $I_{\Lambda(s)}$. Now, by Corollary 1.11, we conclude that J_{G} is generated by its indispensable binomials.

The above result can be viewed as a particular case of the following general result whose proof is also straightforward consequence of [Ojeda and Vigneron-Tenorio 2010a, Corollary 16] and Corollary 1.11.
Corollary 1.14. Let $\mathscr{A}=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\} \subseteq \mathbb{Z}^{d}$ be such that the monoid $\mathbb{N} \mathscr{A}$ is free of units. If $J \subseteq \mathbb{k}[\boldsymbol{x}, \boldsymbol{y}]$ is a binomial ideal generated by a subset of the minimal system of binomial generators of $I_{\Lambda(\Omega)}$, then J has unique minimal system of binomial generators.

2. Critical binomials, circuits and primitive binomials

This section deals with binomial ideals contained in the defining ideal of a monomial curve. Special attention should be paid to the critical ideal; this is due to the fact that the ideal of a monomial space curve is equal to the critical ideal, see [Herzog 1970] (see also the definition of neat numerical semigroup in [Komeda 1982]). Throughout this section $\mathscr{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ is a set of relatively prime positive integers and $I_{\mathscr{A}} \subset \mathbb{k}[\boldsymbol{x}]=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ is the defining ideal of the monomial curve $x_{1}=t^{a_{1}}, \ldots, x_{n}=t^{a_{n}}$ in the n-dimensional affine space over \mathfrak{k}.

Critical binomials.

Definition 2.1. A binomial $x_{i}^{c_{i}}-\prod_{j \neq i} x_{j}^{u_{i j}} \in I_{\mathscr{A}}$ is called critical with respect to x_{i} if c_{i} is the least positive integer such that $c_{i} a_{i} \in \sum_{j \neq i} \mathbb{N} a_{j}$. The critical ideal of \mathscr{A}, denoted by $C_{\mathscr{A}}$, is the ideal of $\mathbb{k}[x]$ generated by all the critical binomials of $I_{\mathscr{A}}$.

Observe that the critical ideal of \mathscr{A} is \mathscr{A}-homogeneous.
Notation 2.2. From now on and for the rest of the paper, we will write c_{i} for the least positive integer such that $c_{i} a_{i} \in \sum_{j \neq i} \mathbb{N} a_{j}$, for each $i=1, \ldots, n$.
Proposition 2.3. The monomials $x_{i}^{c_{i}}$ are indispensable in $I_{s l}$, for every i. Equivalently, $\left\{x_{i}^{c_{i}}\right\}$ is a connected component of $G_{b}\left(I_{\mathcal{A}}\right)$, where $b=c_{i} a_{i}$,for every i.
Proof. The proof follows immediately from the minimality of c_{i}, Theorem 1.8 and Theorem 1.9.

We now characterize the indispensable critical binomials of the toric ideal $I_{\mathcal{A}}$.
Theorem 2.4. Let $f=x_{i}^{c_{i}}-\prod_{j \neq i} x_{j}^{u_{i j}}$ be a critical binomial of $I_{\mathscr{A}}$, then f is indispensable in $I_{s l}$ if, and only if, f is indispensable in $C_{s l}$.
Proof. By Corollary 1.11, we have that if f is indispensable in $I_{\mathscr{A}}$, then it is indispensable in $C_{\mathscr{A}}$. Conversely, assume that f is indispensable in $C_{\mathscr{A}}$. Let $\left\{f_{1}, \ldots, f_{s}\right\}$ be a system of binomial generators of $I_{s l}$ not containing f. Then, by Proposition 2.3, $f_{l}=x_{i}^{c_{i}}-\prod_{j \neq i} x_{j}^{v_{j}}$ for some l. So, f_{l} is a critical binomial, that
is to say, $f_{l} \in C_{\mathscr{A}}$. Therefore, we may replace f by f_{l} and $f-f_{l} \in C_{\mathscr{A}}$ in a system of binomial generators of $C_{\mathscr{A}}$, a contradiction to the fact that f is indispensable in $C_{\mathscr{A}}$.

Corollary 2.5. If $I_{\mathscr{A}}$ has a unique minimal system of binomial generators, then $C_{\mathscr{A}}$ also does.

Proof. The monomials $x_{i}^{c_{i}}$ are indispensable in $I_{\mathscr{A}}$, for each i (see Proposition 2.3). Thus, for every i, there exists a unique binomial in $I_{\mathscr{A}}$ of the form $x_{i}^{c_{i}}-\prod_{j \neq i} x_{j}^{u_{i j}}$ and we conclude that $C_{\mathscr{A}}$ has unique minimal system of binomial generators.

Example 2.6. Let $\mathscr{A}=\{4,6,2 a+1,2 a+3\}$ where a is a natural number. For $a=0$, it is easy to see that $I_{\mathscr{A}}$ does not have a unique minimal system of binomial generators. If $a \geq 1$, then $x_{4}^{2}-x_{1}^{a} x_{2}$ and $x_{4}^{2}-x_{1} x_{3}^{2} \in C_{\mathscr{A l}}$. Thus $C_{\mathscr{A}}$ is not generated by its indispensable binomials and therefore $I_{\mathscr{A}}$ does not have a unique minimal system of binomial generators.

Circuits.

Recall that the support of a monomial \boldsymbol{x}^{u} is the set $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{u}}\right)=\{i \in\{1, \ldots, n\}$ | $\left.u_{i} \neq 0\right\}$. The support of a binomial $f=\boldsymbol{x}^{u}-\boldsymbol{x}^{v} \in I_{\mathscr{A}}$, denoted by $\operatorname{supp}(f)$, is defined as the union $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{u}}\right) \cup \operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{v}}\right)$. We say that f has full support when $\operatorname{supp}(f)=\{1, \ldots, n\}$.
Definition 2.7. An irreducible binomial $\boldsymbol{x}^{u}-\boldsymbol{x}^{v} \in I_{\mathscr{A}}$ is called a circuit if its support is minimal with respect the inclusion.

Recall that a polynomial in $\mathbb{k}[\boldsymbol{x}]$ is said to be irreducible if it cannot be factored into the product of two (or more) non-trivial polynomials in $\mathbb{K}[x]$.
Lemma 2.8. Let $u_{j}(i)=\frac{a_{i}}{\operatorname{gcd}\left(a_{i}, a_{j}\right)}$, for $i \neq j$. The set of circuits in $I_{A 1}$ is equal to

$$
\left\{x_{i}^{u_{i}(j)}-x_{j}^{u_{j}(i)} \mid i \neq j\right\} .
$$

Proof. See [Sturmfels 1996, Chapter 4]
The next theorem provides a class of toric ideals generated by critical binomials that, moreover, are circuits.

Theorem 2.9. If $C_{\mathscr{A}}=\left\langle x_{1}^{c_{1}}-x_{2}^{c_{2}}, \ldots, x_{n-1}^{c_{n-1}}-x_{n}^{c_{n}}\right\rangle$, then $C_{\mathscr{A}}=I_{\mathscr{A}}$.
Proof. From the hypothesis the binomial $x_{i}^{c_{i}}-x_{i+1}^{c_{i+1}}$ belongs to $I_{\mathscr{A}}$, for each $i \in$ $\{1, \ldots, n-1\}$. So, every circuit of $I_{\mathcal{A l}}$ is of the form $x_{k}^{c_{k}}-x_{l}^{c_{l}}$, since $\operatorname{gcd}\left(c_{k}, c_{l}\right)=1$. Now, from Proposition 2.2 in [Alcántar and Villarreal 1994], the lattice $L=$ $\operatorname{ker}_{\mathbb{Z}}(\mathscr{A})=\left\{\boldsymbol{u} \in \mathbb{Z}^{n} \mid u_{1} a_{1}+\ldots+u_{n} a_{n}=0\right\}$ is generated by $\left\{c_{i} \boldsymbol{e}_{i}-c_{j} \boldsymbol{e}_{j} \mid 1 \leq i \leq j \leq n\right\}$, where \boldsymbol{e}_{i} is the vector with 1 in the i-th position and zeros elsewhere. The rank of L equals $n-1$ and a lattice basis is $\left\{\boldsymbol{v}_{i}=c_{i} \boldsymbol{e}_{i}-c_{i+1} \boldsymbol{e}_{i+1} \mid 1 \leq i \leq n-1\right\}$. Thus $C_{\mathscr{\&}}$ is
a lattice basis ideal. Let M be the matrix with rows $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n-1}$, then M is a mixed dominating matrix and therefore, from [Fischer and Shapiro 1996, Theorem 2.9], the equality $C_{\mathscr{A}}=I_{\mathscr{A}}$ holds.

Remarks 2.10.

(1) For $n=4$, a different proof of the above result can be found in [Bresinsky 1975].
(2) The converse of Theorem 2.9 is not true in general (see [Alcántar and Villarreal 1994], for instance).
(3) If every critical binomial of $I_{\mathscr{A}}$ is a circuit and the critical ideal has codimension $n-1$, then $c_{i} a_{i}=c_{j} a_{j}$, for every $i \neq j$. In particular, all minimal generators of $I_{\mathscr{A}}$ have the same \mathscr{A}-degree. This situation is explored in some detail in [García Sánchez et al. 2013] from a semigroup viewpoint.

The rest of this subsection is devoted to the investigation of necessary and sufficient conditions for a circuit to be indispensable in $I_{\mathscr{A l}}$.
Lemma 2.11. Let $f=x_{i}^{u_{i}(j)}-x_{j}^{u_{j}(i)} \in I_{\mathscr{A}}$ be a circuit and let $b=u_{i}(j) a_{i}$. Then there is no monomial \boldsymbol{x}^{v} in the fiber $\operatorname{deg}_{\mathscr{A}}^{-1}(b)$ such that $\operatorname{supp}\left(\boldsymbol{x}^{v}\right)=\{i, j\}$.
Proof. Suppose to the contrary that there exists such a \boldsymbol{v}. Observe that $x_{i}^{u_{i}(j)}-x_{j}^{u_{j}(i)}$ is also a circuit of $I_{\left\{a_{i} / d, a_{j} / d\right\}}$, and $\boldsymbol{v} \in \operatorname{deg}_{\left\{a_{i} / d, a_{j} / d\right\}}^{-1}(b / d)$, with $d=\operatorname{gcd}\left(a_{i}, a_{j}\right)$. But $\operatorname{deg}_{\left\{a_{i} / d, a_{j} / d\right\}}^{-1}(b / d)=\left\{x_{i}^{u_{i}(j)}, x_{j}^{u_{j}(i)}\right\}$; see, for instance, [Rosales and García 2009, Example 8.22].
Theorem 2.12. Let $f=x_{i}^{u_{i}(j)}-x_{j}^{u_{j}(i)} \in I_{\mathscr{A}}$ be a circuit and let $b=u_{i}(j) a_{i}$. Then, f is indispensable in $I_{\mathscr{A}}$ if, and only if, $b-a_{k} \notin \mathbb{N} \mathscr{A}$, for every $k \neq i$, j. In particular, $u_{i}(j)=c_{i}$ and $u_{j}(i)=c_{j}$.
Proof. First of all, we observe that $\operatorname{deg}_{\mathscr{A}}^{-1}(b) \supseteq\left\{x_{i}^{u_{i}(j)}, x_{j}^{u_{j}(i)}\right\}$ and equality holds if and only if f is indispensable. So, the sufficiency condition follows. Conversely, since $b \notin \sum_{k \neq i, j} \mathbb{N} a_{k}$, the supports of the monomials in $\operatorname{deg}_{9 l}^{-1}(b)$ are included in $\{i, j\}$ and then, by Lemma 2.11, we are done.

From this result it follows that if a circuit is indispensable, then it is a critical binomial.

Let $\prec_{i j}$ be an \mathscr{A}-graded reverse lexicographical monomial order on $\mathbb{K}[\boldsymbol{x}]$ such that $x_{k} \prec_{i j} x_{i}$ and $x_{k} \prec_{i j} x_{j}$ for every $k \neq i, j$.
Proposition 2.13. A circuit $f=x_{i}^{u_{i}(j)}-x_{j}^{u_{j}(i)} \in I_{\mathscr{A}}$ is indispensable in $I_{\mathscr{A}}$ if and only if it belongs to the reduced Gröbner basis of $I_{\mathcal{A l}}$ with respect to $<_{i j}$.
Proof. If f is indispensable, then, by Theorem 13 of [Ojeda and Vigneron-Tenorio 2010a], it belongs to every Gröbner basis of $I_{\mathscr{l}}$. Now, suppose that f belongs to the reduced Gröbner basis of $I_{\mathcal{A}}$ with respect to $\prec_{i j}$ and it is not indispensable. Since
f is not indispensable, there exists a monomial \boldsymbol{x}^{u} in the fiber of $u_{i}(j) a_{i}$ different from $x_{i}^{u_{i}(j)}$ and $x_{j}^{u_{j}(i)}$. By Lemma 2.11, we have that $\operatorname{supp}\left(\boldsymbol{x}^{u}\right) \not \subset\{i, j\}$, so there is $k \in \operatorname{supp}\left(\boldsymbol{x}^{u}\right)$ and $k \notin\{i, j\}$. Hence, both $f_{i}=x_{i}^{u_{i}(j)}-\boldsymbol{x}^{u}$ and $f_{j}=x_{j}^{u_{j}(i)}-\boldsymbol{x}^{u}$ belong to $I_{\mathscr{A}}$. Since the leading terms of f_{i} and f_{j} with respect to $\prec_{i j}$ equal to $x_{i}^{u_{i}(j)}$ and $x_{j}^{u_{j}(i)}$, respectively, we conclude that $f=x_{i}^{u_{i}(j)}-x_{j}^{u_{j}(i)} \in I_{\mathscr{A}}$ is not in the reduced Gröbner basis of $I_{\mathcal{A}}$ with respect to $\prec_{i j}$, a contradiction.

Primitive binomials.

Definition 2.14. A binomial $\boldsymbol{x}^{u}-\boldsymbol{x}^{v} \in I_{\mathscr{A}}$ is called primitive if there exists no other binomial $\boldsymbol{x}^{\boldsymbol{u}^{\prime}}-\boldsymbol{x}^{\boldsymbol{v}^{\prime}}$ such that $\boldsymbol{x}^{u^{\prime}}$ divides $\boldsymbol{x}^{\boldsymbol{u}}$ and $\boldsymbol{x}^{\boldsymbol{v}^{\prime}}$ divides $\boldsymbol{x}^{\boldsymbol{v}}$. The set of all primitive binomials is called the Graver basis of \mathscr{A} and it is denoted by $\operatorname{Gr}(\mathscr{A})$.
Theorem 2.15. Let $f=x_{i}^{u_{i}} x_{j}^{u_{j}}-x_{k}^{u_{k}} x_{l}^{u_{l}} \in \operatorname{Gr}(\mathscr{A})$ be such that $u_{i}<c_{i}, u_{j}<c_{j}$, $u_{k}<c_{k}$ and $u_{l}<c_{l}$ with i, j, k and l pairwise different. Then f is indispensable in $J=I_{\mathfrak{A}} \cap \mathbb{k}\left[x_{i}, x_{j}, x_{k}, x_{l}\right]$.

Proof. By [Sturmfels 1996, Proposition 4.13(a)], $J=I_{\mathscr{A}} \cap \mathbb{k}\left[x_{i}, x_{j}, x_{k}, x_{l}\right]$ is the toric ideal associated to $\mathscr{l}^{\prime}=\left\{a_{i}, a_{j}, a_{k}, a_{l}\right\}$. Thus, without loss of generality we may assume $n=4$, then $J=I_{\mathscr{A}}$. We prove that $G_{b}\left(I_{\mathscr{A}}\right)=\left\{x_{i}^{u_{i}} x_{j}^{u_{j}}, x_{k}^{u_{k}} x_{l}^{u_{l}}\right\}$, where $b=u_{i} a_{i}+u_{j} a_{j}$. Let $\boldsymbol{x}^{v} \in \operatorname{deg}_{\mathscr{A}}^{-1}(b)$ be different from $x_{i}^{u_{i}} x_{j}^{u_{j}}$ and $x_{k}^{u_{l}} x_{l}^{u_{l}}$. If $u_{i}<v_{i}$, then $x_{i}^{u_{i}}\left(x_{j}^{u_{j}}-x_{i}^{v_{i}-u_{i}} x_{j}^{v_{j}} x_{k}^{v_{k}} x_{l}^{v_{l}}\right) \in I_{\mathscr{A}}$, thus $x_{j}^{u_{j}}-x_{i}^{v_{i}-u_{i}} x_{j}^{v_{j}} x_{k}^{v_{k}} x_{l}^{v_{l}} \in I_{\mathscr{A}}$ which is impossible by the minimality of c_{j} (see Proposition 2.3). Analogously, we can prove that $u_{j} \geq v_{j}, u_{k} \geq v_{k}$ and $u_{l} \geq v_{l}$. Therefore $x_{i}^{v_{i}} x_{j}^{v_{j}}\left(x_{i}^{u_{i}-v_{i}} x_{j}^{u_{j}-v_{j}}-x_{k}^{v_{k}} x_{l}^{v_{l}}\right) \in I_{\mathscr{A}}$ and so $x_{i}^{u_{i}-v_{i}} x_{j}^{u_{j}-v_{j}}-x_{k}^{v_{k}} x_{l}^{v_{l}} \in I_{\mathscr{L}}$, a contradiction with the fact that f is primitive. This shows that $G_{b}(J)=\left\{\left\{x_{i}^{u_{i}} x_{j}^{u_{j}}\right\},\left\{x_{k}^{u_{k}} x_{l}^{u_{l}}\right\}\right\}$ and, by Theorem 1.10, we are done.

Corollary 2.16. Let $f=x_{i}^{u_{i}} x_{j}^{u_{j}}-x_{k}^{u_{k}} x_{l}^{u_{l}} \in I_{\mathscr{A}}$ be such that $u_{i}<c_{i}, u_{j}<c_{j}$, $u_{k}>0$ and $u_{l}>0$ with i, j, k and l pairwise different. If $x_{k}^{u_{k}} x_{l}^{u_{l}}$ is indispensable in $J=I_{\mathscr{A}} \cap \mathbb{k}\left[x_{i}, x_{j}, x_{k}, x_{l}\right]$, then f is indispensable in J.

Proof. Since, by Theorem 1.9, $\left\{x_{k}^{u_{k}} x_{l}^{u_{l}}\right\}$ is a connected component of $G_{b}\left(I_{\mathfrak{l}}\right)$, where $b=u_{k} a_{k}+u_{l} a_{l}$, the monomial $\boldsymbol{x}^{v} \in \operatorname{deg}_{9}^{-1}(b)$ in the above proof has its support in $\{i, j\}$. Thus, repeating the arguments of the proof of Theorem 2.15, we deduce that $u_{i} \geq v_{i}$ and $u_{j} \geq v_{j}$. But $x_{i}^{u_{i}} x_{j}^{u_{j}}-x_{i}^{v_{i}} x_{j}^{v_{j}} \in I_{\mathfrak{A l}}$, so $u_{i} a_{i}+u_{j} a_{j}=v_{i} a_{i}+v_{j} a_{j}$ which implies that $u_{i}=v_{i}$ and $u_{j}=v_{j}$. By Theorem 1.10 we have that f is indispensable in J.

Combining Theorem 2.15 with Corollary 1.11 we get:
Corollary 2.17. Given i, j, k and $l \in\{1, \ldots, n\}$ pairwise different, let J be the ideal of $\mathbb{k}\left[x_{i}, x_{j}, x_{k}, x_{l}\right]$ generated by all Graver binomials of $I_{\mathscr{A}}$ of the form $x_{i}^{u_{i}} x_{j}^{u_{j}}-$ $x_{k}^{u_{k}} x_{l}^{u_{l}}$ with $u_{i}<c_{i}, u_{j}<c_{j}, u_{k}<c_{k}$ and $u_{l}<c_{l}$. Then J has unique minimal system of binomial generators.

Finally we provide another class of primitive binomials that are indispensable in a toric ideal.
Corollary 2.18. Let $f=x_{i}^{u_{i}} x_{j}^{u_{j}}-x_{k}^{u_{k}} x_{l}^{u_{l}} \in \operatorname{Gr}(\mathscr{A})$ such that $0<u_{i}<c_{i}$ and $0<u_{k}<c_{k}$, for i, j, k and l pairwise different. If $u_{i} a_{i}+u_{j} a_{j}$ is minimal among all Graver \mathscr{A}-degrees, then f is indispensable in $I_{\mathscr{A}} \cap \mathbb{k}\left[x_{i}, x_{j}, x_{l}, x_{k}\right]$.
Proof. Since $c_{j} a_{j}$ is a Graver \mathscr{A}-degree, we have $u_{i} a_{i}+u_{j} a_{j} \leq c_{j} a_{j}$, so it follows $u_{j}<c_{j}$. Similarly, we can prove $u_{l}<c_{l}$. Therefore, by Theorem 2.15, we conclude that f is indispensable in $I_{\mathcal{A}} \cap \mathbb{k}\left[x_{i}, x_{j}, x_{l}, x_{k}\right]$.

It is worth to noting here that [García Sánchez et al. 2013, Theorem 6] offers a characterization of the family of affine semigroups for which $C_{\mathscr{A}}=\operatorname{Gr}(\mathscr{A})$.

3. Classification of monomial curves in $\mathbb{A}^{\mathbf{4}}(\mathbb{k})$

Let $\mathscr{A}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ be a set of relatively prime positive integers. First we will provide a minimal system of binomial generators for the critical ideal $C_{\mathscr{A}}$. This will be done by comparing the A-degrees of the monomials $x_{i}^{c_{i}}$, for $i=1, \ldots, 4$.
Lemma 3.1. Let $f_{i}=x_{i}^{c_{i}}-\prod_{j \neq i} x_{j}^{u_{i j}}, i=1, \ldots, 4$, be a set of critical binomials of $I_{I_{l}}$ and let $g_{l} \in I_{s_{l}}$ be a critical binomial with respect to x_{l}, for some $l \in\{1, \ldots, 4\}$. If $f_{l} \neq-f_{i}$ for every i, then $g_{l} \in\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle$.
Proof. For simplicity we assume $l=1$. Let $g_{1}=x_{1}^{c_{1}}-x_{2}^{v_{2}} x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$ be a critical binomial. If $g_{1}=f_{1}$, there is nothing to prove. If $g_{1} \neq f_{1}$, without loss of generality we may assume that $u_{12}>v_{2}, u_{13} \leq v_{3}$ and $u_{14} \leq v_{4}$, so $g_{1}-f_{1}=$ $m_{1} g_{2}$, with $m_{1}=x_{2}^{v_{2}} x_{3}^{u_{13}} x_{4}^{u_{14}}$ and $g_{2}=x_{2}^{u_{12}-v_{2}}-x_{3}^{v_{3}-u_{13}} x_{4}^{v_{4}-u_{14}} \in I_{\mathscr{A}}$ (in particular $u_{12}-v_{2} \geq c_{2}$). But $x_{1}^{c_{1}}-x_{1}^{u_{21}} x_{2}^{u_{12}-c_{2}} x_{3}^{u_{13}+u_{23}} x_{4}^{u_{14}+u_{24}} \in I_{\mathscr{A}}$ and also $f_{1} \neq-f_{2}$, thus from the minimality of c_{1} it follows that $u_{21}=0$, that is to say, $f_{2} \in \mathbb{K}\left[x_{2}, x_{3}, x_{4}\right]$. For the sake of simplicity, write $g_{2}=x_{2}^{b}-x_{3}^{c} x_{4}^{d}$ with $b, c, d \in \mathbb{N}$ and $b \geq c_{2}$. Hence $g_{2}-x_{2}^{b-c_{2}} f_{2}=x_{2}^{b-c_{2}} x_{3}^{u_{23}} x_{4}^{u_{24}}-x_{3}^{c} x_{4}^{d}$. If $b-c_{2} \geq c_{2}$, we repeat the process. After a finite number of steps, $g_{2}-h_{2} f_{2}=x_{2}^{b-k c_{2}} x_{3}^{k u_{23}} x_{4}^{k u_{24}}-x_{3}^{c} x_{4}^{d}$ with $0 \leq$ $b-k c_{2}<c_{2}$ and $h_{2} \in \mathbb{k}\left[x_{2}, x_{3}, x_{4}\right]$. Then $\left(b-k c_{2}\right) a_{2}+k u_{23} a_{3}+k u_{24} a_{4}=$ $c a_{3}+d a_{4}$. Since $0 \leq b-k c_{2}<c_{2}$ then $x_{3}^{k u_{23}} x_{4}^{k u_{24}}$ does not divide $x_{3}^{c} x_{4}^{d}$. The case $x_{3}^{c} x_{4}^{d}$ divides $x_{3}^{k u_{23}} x_{4}^{k u_{24}}$ leads to $b=k c_{2}, c=k u_{23}$ and $d=k u_{24}$. In this setting, $g_{2}=h_{2} f_{2}, g_{1}=f_{1}+m_{1} h_{2} f_{2}$ and we are done. The remaining cases are $k u_{23} \geq c$ and $d \geq k u_{24}$, or $k u_{23} \leq c$ and $d \geq k u_{24}$. Without loss of generality (by swapping variables if necessary), we may assume that $k u_{23} \leq c$ and $d \leq k u_{24}$. Hence $\left(b-k c_{2}\right) a_{2}+\left(k u_{24}-d\right) a_{4}=\left(c-k u_{23}\right) a_{3}$, and consequently $c-k u_{23} \geq c_{3}$. We also deduce that $g_{2}-h_{2} f_{2}=x_{3}^{k u_{23}} x_{4}^{d}\left(x_{2}^{b-k c_{2}} x_{4}^{k u_{24}-d}-x_{3}^{c-k u_{23}}\right)$. Set $m_{3}=x_{3}^{k u_{23}} x_{4}^{d}$ and $g_{3}=x_{2}^{b-k c_{2}} x_{4}^{k u_{24}-d}-x_{3}^{c-k u_{23}}$. Since $v_{3}-u_{13}-k u_{23}=c-k u_{23} \geq c_{3}$, we have that $v_{2} \geq c_{3}$. Thus $x_{1}^{c_{1}}-x_{1}^{u_{31}} x_{2}^{u_{32}+v_{2}} x_{3}^{v_{3}-c_{3}} x_{4}^{u_{34}+v_{4}} \in I_{\mathscr{A}}$ and $f_{1} \neq-f_{3}$, from
the minimality of c_{1} it follows that $u_{31}=0$, that is to say, $f_{3} \in \mathbb{K}\left[x_{2}, x_{3}, x_{4}\right]$. Analogously, by using a similar argument as before (and by swapping variables x_{2} and x_{4}, if necessary), we obtain $h_{3} \in \mathbb{k}\left[x_{2}, x_{3}, x_{4}\right]$ such that either $g_{3}=h_{3} f_{3}$ or $g_{3}-h_{3} f_{3}=m_{3} g_{4}$, with $m_{3}=-x_{2}^{v_{2}^{\prime}} x_{4}^{v_{4}^{\prime \prime}}, g_{4}=x_{4}^{v_{4}^{\prime}-v_{4}+u_{14}-v_{4}^{\prime \prime}-x_{2}^{v_{2}^{\prime \prime}-v_{2}^{\prime}} x_{3}^{v_{3}^{\prime \prime}}}$ and $v_{3}^{\prime \prime}<c_{3}$. If $g_{3}=h_{3} f_{3}$, then $g_{1}=f_{1}+m_{1} h_{2} f_{2}+m_{1} m_{2} h_{3} f_{3}$ and we are done. Otherwise, since $x_{1}^{c_{1}}-x_{1}^{u_{41}} x_{2}^{v_{2}^{\prime}+v_{2}+u_{42}} x_{3}^{v_{3}^{\prime}+u_{13}+u_{43}} x_{4}^{v_{4}^{\prime}+u_{14}-c_{4}} \in I_{\mathscr{}}$ and $f_{1} \neq-f_{4}$, the minimality of c_{1} implies that $u_{41}=0$, that is to say, $f_{4} \in \mathbb{K}\left[x_{2}, x_{3}, x_{4}\right]$. Therefore, we have $f_{2}, f_{3}, f_{4} \in$ $\mathbb{k}\left[x_{2}, x_{3}, x_{4}\right]$. Taking into account that $I_{\mathscr{A}} \cap \mathbb{k}\left[x_{2}, x_{3}, x_{4}\right]$ is generated by f_{2}, f_{3} and f_{4} (see [Sturmfels 1996, Proposition 4.13(a)] and [Ojeda and Pisón Casares 2004, Theorem 2.2], for instance), we conclude that $g_{2}=g_{21} f_{2}+g_{23} f_{3}+g_{24} f_{4}$ and hence $g_{1}=f_{1}+m_{1} g_{21} f_{2}+m_{1} g_{23} f_{3}+m_{1} g_{24} f_{4}$, with $g_{2 j} \in \mathbb{K}\left[x_{2}, x_{3}, x_{4}\right], j=1,3,4$.

Proposition 3.2. Let $f_{i}=x_{i}^{c_{i}}-\prod_{j \neq i} x_{j}^{u_{i j}}, i=1, \ldots, 4$, be a set of critical binomials. If $f_{i} \neq-f_{j}$ for every $i \neq j$, then $C_{\mathscr{A}}=\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle$.

Proof. The proof follows directly from Lemma 3.1.
Observe that $f_{i}=-f_{j}$ if and only if $f_{i}=x_{i}^{c_{i}}-x_{j}^{c_{j}}$ and $f_{j}=x_{j}^{c_{j}}-x_{i}^{c_{i}}$; in particular, f_{i} and f_{j} are circuits. The following proposition provides an upper bound for the minimal number of generators of the critical ideal.

Proposition 3.3. The minimal number of generators $\mu\left(C_{\& A}\right)$ of $C_{\& A}$ is less than or equal to four.

Proof. Let $\mathscr{F}=\left\{f_{1}, \ldots, f_{4}\right\} \subset I_{\mathscr{A}}$ be such that f_{i} is critical with respect to x_{i}. If $f_{i} \neq-f_{j}$, for every $i \neq j$, then we are done by Proposition 3.2. Otherwise, without loss of generality we may assume $f_{1}=-f_{2}$, that is to say, $f_{1}=x_{1}^{c_{1}}-x_{2}^{c_{2}}$. Suppose that \mathscr{F} is not a generating set of $C_{\mathscr{A}}$. We distinguish the following cases:
(1) f_{1} is indispensable in $I_{\mathscr{A}}$. Then there exists a critical binomial $g \in I_{\mathscr{A}}$ with respect to at least one of the variables x_{3} and x_{4}, say x_{4}, such that $g \neq \pm f_{i}$, for every i. By substitution of f_{4} with g in \mathscr{F} we have, from Lemma 3.1, that every critical binomial with respect to x_{3} or x_{4} is in the ideal generated by the binomials of \mathscr{F}. Consequently the new set \mathscr{F} generates $I_{\mathscr{A}}$.
(2) f_{1} is not indispensable in $I_{s l}$. Then there exists a critical binomial $g \in I_{s d}$ with respect to al least one of the variables x_{1} and x_{2}, for instance x_{2}, such that $g \neq \pm f_{i}$, for every i. We substitute f_{2} with g in \mathscr{F}. If $f_{3} \neq-f_{4}$, then we have, from Proposition 3.2, that the new set \mathscr{F} generates $I_{\mathscr{l}}$. Otherwise, we substitute f_{3} with a critical binomial h with respect to x_{3} in \mathscr{F} such that $h \neq \pm f_{i}$, for every i, when f_{3} is not indispensable. So, in this case, $C_{\mathscr{A}}$ is generated by a set of four critical binomials.

Lemma 3.4. If $c_{i} a_{i} \neq c_{k} a_{k}$ and $c_{i} a_{i} \neq c_{l} a_{l}$, where $k \neq l$, then either the only critical binomial of $I_{\mathscr{A}}$ with respect to x_{i} is $f=x_{i}^{c_{i}}-x_{j}^{c_{j}}$ or there exists a critical binomial $f \in I_{\mathcal{A}}$ with respect to x_{i} such that $\operatorname{supp}(f)$ has cardinality greater than or equal to three, where $\{i, j, k, l\}=\{1,2,3,4\}$.

Proof. Suppose the contrary and let $f_{i}=x_{i}^{c_{i}}-x_{j}^{u_{j}} \in I_{\mathscr{A}}$ where $u_{j}>c_{j}$. We define $f=x_{i}^{c_{i}}-x_{i}^{v_{i}} x_{j}^{u_{j}}-c_{j} x_{k}^{v_{k}} x_{l}^{v_{l}}=f_{i}+x_{j}^{u_{j}-c_{j}} f_{j} \in I_{\mathscr{A}}$ with $f_{j}=x_{j}^{c_{j}}-x_{i}^{v_{i}} x_{k}^{v_{k}} x_{l}^{v_{l}} \in I_{\mathscr{A}}$. Now, from the minimality of c_{i} it follows that $v_{i}=0$, thus at least one of v_{k} or v_{l} is different from zero since $f_{j} \in I_{\mathscr{l}}$, otherwise $f-f_{i}=x_{j}^{u_{j}}-x_{j}^{u_{j}-c_{j}} \in I_{\mathscr{A}}$, and this is impossible. Therefore we conclude that $\operatorname{supp}(f)$ has cardinality greater than or equal to 3 , a contradiction. The cases $f_{i}=x_{i}^{c_{i}}-x_{k}^{u_{k}} \in I_{\mathscr{A}}$ and $f_{i}=x_{i}^{c_{i}}-x_{l}^{u_{l}} \in I_{\mathscr{A}}$ are analogous, by using that $c_{i} a_{i} \neq c_{k} a_{k}$ and $c_{i} a_{i} \neq c_{l} a_{l}$, respectively.
Lemma 3.5. There is no minimal generating set of $C_{\mathscr{A}}$ of the form $\mathscr{S}=\left\{x_{i}^{c_{i}}-\right.$ $\left.x_{j}^{c_{j}}, x_{j}^{c_{j}}-\boldsymbol{x}^{u_{j}}, x_{k}^{c_{k}}-x_{l}^{c_{l}}, x_{l}^{c_{l}}-\boldsymbol{x}^{u_{l}}\right\}$, where $\{i, j, k, l\}=\{1,2,3,4\}$. In particular, if $c_{i} a_{i}=c_{j} a_{j}$ and $c_{k} a_{k}=c_{l} a_{l}$, then $\mu\left(C_{\text {sl }}\right)<4$.

Proof. Set $\boldsymbol{u}_{j}=\left(u_{j 1}, \ldots, u_{j 4}\right)$ and $\boldsymbol{u}_{l}=\left(u_{l 1}, \ldots, u_{l 4}\right)$. The minimality of $c_{i}, i \in$ $\{1,2,3,4\}$, forces $u_{j i}=0=u_{j j}, 0<u_{j k}<c_{k}, 0<u_{j l}<c_{l}, 0<u_{l i}<c_{i}, 0<u_{l j}<c_{j}$, $u_{l k}=0=u_{l l}$.

Set $d_{n}=\operatorname{gcd}\left(\mathscr{A} \backslash\left\{a_{n}\right\}\right), n \in\{1,2,3,4\}$. By [Herzog 1970, Theorem 3.10], the numerical semigroup generated by $\left\{a_{i} / d_{l}, a_{j} / d_{l}, a_{k} / d_{l}\right\}$ is symmetric and, from the proof of [Theorem 10.6,23], it is derived that $a_{i} / d_{l}=c_{j} c_{k}, a_{j} / d_{l}=c_{i} c_{k}, c_{k}=$ $\operatorname{gcd}\left(a_{i} / d_{l}, a_{j} / d_{l}\right)$ and $c_{k} a_{k} / d_{l}=u_{l i} a_{i} / d_{l}+u_{l j} a_{j} / d_{l}$. Hence $a_{i}=c_{j} c_{k} d_{l}, a_{j}=c_{i} c_{k} d_{l}$ and $a_{k}=\left(u_{l i} c_{j}+u_{l j} c_{i}\right) d_{l}$. Arguing analogously with $\left\{a_{i} / d_{k}, a_{j} / d_{k}, a_{l} / d_{k}\right\}$, we get $a_{i}=c_{j} c_{l} d_{k}, a_{j}=c_{i} c_{l} d_{k}$ and $a_{l}=\left(u_{l i} c_{j}+u_{l j} c_{i}\right) d_{k}$. Thus, since $\operatorname{gcd}\left(c_{i}, c_{j}\right)=$ $\operatorname{gcd}\left(c_{k}, c_{l}\right)=1$, we conclude that $d_{k}=c_{k}$ and $d_{l}=c_{l}$. By considering now the symmetric semigroups $\left\{a_{i} / d_{j}, a_{k} / d_{j}, a_{l} / d_{j}\right\}$ and $\left\{a_{j} / d_{i}, a_{k} / d_{i}, a_{l} / d_{i}\right\}$, we get $a_{i}=$ $\left(u_{j k} c_{l}+u_{j l} c_{k}\right) c_{j}, a_{j}=\left(u_{j k} c_{l}+u_{j l} c_{k}\right) c_{i}, a_{k}=c_{i} c_{j} c_{l}$ and $a_{l}=c_{i} c_{j} c_{k}$.

Putting all this together, we obtain that $u_{j k} c_{l}+u_{j l} c_{k}=c_{l} c_{k}$ which forces either $u_{j k}=0$ or $u_{j k} \geq c_{k}$, and this is a contradiction in both cases.

Theorem 3.6. After permuting variables, if necessary, there exists a minimal system of binomial generators \mathscr{S} of $C_{\mathscr{A}}$ of the following form:
Case 1: If $c_{i} a_{i} \neq c_{j} a_{j}$, for every $i \neq j$, then $\mathscr{S}=\left\{x_{i}^{c_{i}}-\boldsymbol{x}^{u_{i}}, i=1, \ldots, 4\right\}$.
Case 2: If $c_{1} a_{1}=c_{2} a_{2}$ and $c_{3} a_{3}=c_{4} a_{4}$, then either $c_{2} a_{2} \neq c_{3} a_{3}$ and
(a) $\mathscr{\mathscr { P }}=\left\{x_{1}^{c_{1}}-x_{2}^{c_{2}}, x_{3}^{c_{3}}-x_{4}^{c_{4}}, x_{4}^{c_{4}}-\boldsymbol{x}^{u_{4}}\right\}$ when $\mu\left(C_{\mathscr{A l}}\right)=3$,
(b) $\mathscr{S}=\left\{x_{1}^{c_{1}}-x_{2}^{c_{2}}, x_{3}^{c_{3}}-x_{4}^{c_{4}}\right\}$ when $\mu\left(C_{\mathscr{A}}\right)=2$,
or $c_{2} a_{2}=c_{3} a_{3}$ and
(c) $\mathscr{P}=\left\{x_{1}^{c_{1}}-x_{2}^{c_{2}}, x_{2}^{c_{2}}-x_{3}^{c_{3}}, x_{3}^{c_{3}}-x_{4}^{c_{4}}\right\}$.

Case 3: If $c_{1} a_{1}=c_{2} a_{2}=c_{3} a_{3} \neq c_{4} a_{4}$, then $\mathscr{S}=\left\{x_{1}^{c_{1}}-x_{2}^{c_{2}}, x_{2}^{c_{2}}-x_{3}^{c_{3}}, x_{4}^{c_{4}}-\boldsymbol{x}^{u_{4}}\right\}$.

Case 4: If $c_{1} a_{1}=c_{2} a_{2}$ and $c_{i} a_{i} \neq c_{j} a_{j}$ for all $\{i, j\} \neq\{1,2\}$, then
(a) $\mathscr{S}=\left\{x_{1}^{c_{1}}-x_{2}^{c_{2}}, x_{i}^{c_{i}}-\boldsymbol{x}^{u_{i}} \mid i=2,3,4\right\}$ when $\mu\left(C_{\mathscr{A}}\right)=4$,
(b) $\mathscr{S}=\left\{x_{1}^{c_{1}}-x_{2}^{c_{2}}, x_{i}^{c_{i}}-\boldsymbol{x}^{u_{i}} \mid i=3,4\right\}$ when $\mu\left(C_{\mathscr{A}}\right)=3$
where, in each case, $\boldsymbol{x}^{\boldsymbol{u}_{i}}$ denotes an appropriate monomial whose support has cardinality greater than or equal to two.
Proof. First, we observe that our assumption on the cardinality of $\boldsymbol{x}^{\boldsymbol{u}_{i}}$ follows from Lemma 3.4. We also notice that $C_{\mathscr{A}}$ has no minimal generating set of the form $\mathscr{G}=\left\{x_{1}^{c_{1}}-x_{2}^{c_{2}}, x_{2}^{c_{2}}-\boldsymbol{x}^{u_{2}}, x_{3}^{c_{3}}-x_{4}^{c_{4}}, x_{4}^{c_{4}}-\boldsymbol{x}^{u_{4}}\right\}$, by Lemma 3.5.

Let J be the ideal generated by \mathscr{S}. For the cases 1, 2(a-c), 3 and 4(a), it easily follows that $J=C_{\mathscr{A}}$ by Proposition 3.2. Indeed, in order to satisfy the hypothesis of Proposition 3.2, we may take $f_{4}=x_{4}^{c_{4}}-x_{1}^{c_{1}} \in J$ and $f_{3}=x_{3}^{c_{3}}-x_{1}^{c_{1}} \in J$ in the cases 2(c) and 3, respectively. The cases 2(a) and 4(b) happen when the only critical binomials of $I_{\mathscr{A}}$ with respect to x_{1} and x_{2} are $f_{1}=x_{1}^{c_{1}}-x_{2}^{c_{2}}$ and $f_{2}=-f_{1}$, respectively, then our claim follows from Lemma 3.1. Furthermore, the case 2(b) occurs when the only critical binomials of $I_{\mathscr{A}}$ are $\pm\left(x_{1}^{c_{1}}-x_{2}^{c_{2}}\right)$ and $\pm\left(x_{3}^{c_{3}}-x_{4}^{c_{4}}\right)$, so $J=C_{\mathscr{A}}$ by definition. On the other hand, since $x_{i}^{c_{i}}$ is an indispensable monomial of $I_{\mathscr{A}}$, for every i, by Corollary 1.6, we have that $x_{i}^{c_{i}}$ is an indispensable monomial of the ideal J, for every i. Then, we conclude that \mathscr{S} is minimal in the sense that no proper subset of \mathscr{G} generates J.
Example 3.7. This example illustrates all possible cases of Theorem 3.6.

Case 1:	$\mathscr{A}=\{17,19,21,25\}$.
Case 2(a):	$\mathscr{A}=\{30,34,42,51\}$.
Case 2(b):	$\mathscr{A}=\{39,91,100,350\}$.
Case 2(c):	$\mathscr{A}=\{60,132,165,220\}$.
Case 3:	$\mathscr{A}=\{12,19,20,30\}$.
Case 4(a):	$\mathscr{A}=\{12,13,17,20\}$.
Case 4(b):	$\mathscr{A}=\{4,6,11,13\}$.

The reader may perform the computations in detail by using the GAP package NumericalSgps ([Delgado et al. 2013]).

Since $C_{\mathscr{A}} \subseteq I_{\mathscr{A}}$, any minimal system of generators of $I_{\mathscr{A}}$ can not contain more than 4 critical binomials. This provides an affirmative answer to the question after Corollary 2 in [Bresinsky 1988]. Notice that the only cases in which $C_{\mathscr{A}}$ can have a unique minimal system of generators are 1,2(b) and 4(b); in these cases $C_{\mathscr{A}}$ has a unique minimal system of binomial generators if and only if the monomials $\boldsymbol{x}^{\boldsymbol{u}_{i}}$ are indispensable.

Now we focus our attention on finding a minimal set of binomial generators of $I_{\mathcal{A}}$, that will help us to solve the classification problem. The following lemma will be useful in the proof of Proposition 3.9 and Theorem 3.10.

Lemma 3.8. (i) If $f=x_{i}^{u_{i}}-x^{v}$ is a minimal generator of $I_{\mathscr{A}}$ that is not critical, then there exists $j \neq i$ such that $\operatorname{supp}\left(\boldsymbol{x}^{v}\right) \cap\{i, j\}=\varnothing$ and $c_{i} a_{i}=c_{j} a_{j}$. Moreover, if $\boldsymbol{x}^{\boldsymbol{v}}$ is not indispensable, then $c_{k} a_{k}=c_{l} a_{l}$, with $\{i, j, k, l\}=\{1,2,3,4\}$.
(ii) If $f=x_{i}^{u_{i}} x_{j}^{u_{j}}-x^{v}$ is a minimal generator of $I_{\mathscr{A}}$ with $u_{i} \neq 0$ and $u_{j} \geq c_{j}$, then $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{v}}\right) \cap\{i, j\}=\varnothing$ and $c_{i} a_{i}=c_{j} a_{j}$. In addition, if $\boldsymbol{x}^{\boldsymbol{v}}$ is not indispensable, then $c_{k} a_{k}=c_{l} a_{l}$, with $\{i, j, k, l\}=\{1,2,3,4\}$.

Proof. (i) Let $b=c_{i} a_{i}$. Since f is not a critical binomial, we have that $u_{i}>c_{i}$. If $c_{i} a_{i} \neq c_{j} a_{j}$, for every $j \neq i$, then, from Lemma 3.4, there exists a critical binomial $f=x_{i}^{c_{i}}-\boldsymbol{x}^{\boldsymbol{w}} \in I_{\mathscr{A}}$ such that $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{w}}\right)$ has cardinality greater than or equal to two. If $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{v}}\right) \cap \operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{w}}\right) \neq \varnothing$, then $x_{i}^{u_{i}} \leftrightarrow x_{i}^{u_{i}-c_{i}} \boldsymbol{x}^{\boldsymbol{w}} \leftrightarrow \boldsymbol{x}^{\boldsymbol{v}}$ is a path in $G_{b}\left(I_{\mathscr{A}}\right)$, a contradiction to the fact that f is a minimal generator by Theorem 1.8. Hence $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{v}}\right) \cap \operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{w}}\right)=\varnothing$. We have that $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{v}+\boldsymbol{w}}\right) \subseteq$ $\{j, k, l\}, \operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{v}}\right) \cap \operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{w}}\right)=\varnothing$ and the cardinality of $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{w}}\right)$ is at least two. This implies that \boldsymbol{x}^{v} is a power of a variable, say $\boldsymbol{x}^{v}=x_{l}^{v_{l}}$. Observe that $v_{l} \geq c_{l}$ and as f is not a critical binomial, $v_{l} \neq c_{l}$, whence $\boldsymbol{x}^{z}=x_{l}^{v_{l}-c_{l}} x_{i}^{u_{l i}} x_{k}^{u_{l k}} \in \operatorname{deg}_{\mathscr{A}}^{-1}(b)$ is a monomial such that $\operatorname{supp}\left(\boldsymbol{x}^{z}\right)$ has cardinality greater than or equal to 2 and $l \in \operatorname{supp}\left(\boldsymbol{x}^{z}\right)$. Then $x_{i}^{u_{i}} \leftrightarrow x_{i}^{u_{i}-c_{i}} \boldsymbol{x}^{w} \leftrightarrow \boldsymbol{x}^{z} \leftrightarrow \boldsymbol{x}^{\boldsymbol{v}}$ is a path in $G_{b}\left(I_{\mathscr{A}}\right)$, a contradiction. Thus $c_{i} a_{i}=c_{j} a_{j}$, for an $j \neq i$. We have that $\operatorname{supp}\left(\boldsymbol{x}^{v}\right) \cap\{i, j\}=\varnothing$; otherwise $x_{i}^{u_{i}} \leftrightarrow x_{i}^{u_{i}-c_{i}} x_{j}^{c_{j}} \leftrightarrow \boldsymbol{x}^{v}$ is a path in $G_{b}\left(I_{\mathscr{A}}\right)$, a contradiction again.

Finally, if $\boldsymbol{x}^{\boldsymbol{v}}$ is not indispensable, then, by Theorem 1.9, there exists a monomial $\boldsymbol{x}^{\boldsymbol{w}} \in \operatorname{deg}_{\mathscr{A}}^{-1}(b) \backslash\left\{\boldsymbol{x}^{\boldsymbol{v}}\right\}$ such that $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{w}}\right) \cap \operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{v}}\right) \neq \varnothing$. If $j \in \operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{w}}\right)$, then $x_{i}^{u_{i}} \leftrightarrow x_{i}^{u_{i}-c_{i}} x_{j}^{c_{j}} \leftrightarrow \boldsymbol{x}^{\boldsymbol{w}} \leftrightarrow \boldsymbol{x}^{v}$ is a path in $G_{b}\left(I_{\mathscr{A}}\right)$, a contradiction to the fact that f is a minimal generator. Moreover $i \notin \operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{w}}\right)$, by the minimality of c_{i}. Thus $\operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{w}}\right) \subseteq\{k, l\}$ and also $x_{k}^{v_{k}} x_{l}^{v_{l}}-x_{k}^{w_{k}} x_{l}^{w_{l}} \in I_{\mathscr{A}}$. Suppose that $c_{k} a_{k} \neq c_{l} a_{l}$ Then $v_{k} a_{k}+v_{l} a_{l}=w_{k} a_{k}+w_{l} a_{l}$. Assume without loss of generality that $w_{l} \geq v_{l}$. We have that $\left(v_{k}-w_{k}\right) a_{k}=\left(w_{l}-v_{l}\right) a_{l} \neq 0$. Hence $v_{k}-w_{k} \geq c_{k}$. If $w_{k} \neq 0$, then $v_{k}>c_{k}$. If $w_{k}=0, v_{k} a_{k}=\left(w_{l}-v_{l}\right) a_{l}$ and $v_{l} \neq 0, \operatorname{since} \operatorname{supp}\left(\boldsymbol{x}^{w}\right) \cap \operatorname{supp}\left(\boldsymbol{x}^{\boldsymbol{v}}\right) \neq \varnothing$. Thus $w_{l}-v_{l} \geq c_{l}$ and $w_{l}>c_{l}$. By using similar arguments as in the first part of the proof we arrive at a contradiction. Consequently $c_{k} a_{k}=c_{l} a_{l}$.
(ii) The proof is an easy adaptation of the arguments used in (i).

For the rest of this section we keep the same notation as in Theorem 3.6.
The following result was first proved by Bresinsky [1988, Theorem 3], but our argument seems to be shorter and more appropriate in our context.

Proposition 3.9. There exists a minimal system of binomial generators of $I_{\mathscr{A}}$ consisting of the union of \mathscr{S} and a set of binomials in $I_{\mathscr{A}}$ with full support.

Proof. By Lemma 3.8(i), if for instance $f=x_{i}^{u_{i}}-\boldsymbol{x}^{v}$ is in a minimal generating set of $I_{\mathscr{A}}$ and it is not a critical binomial with respect to any variable, then $c_{i} a_{i}=c_{j} a_{j}$, for $j \neq i$. We replace f by $g=f-x_{i}^{u_{i}-c_{i}}\left(x_{i}^{c_{i}}-x_{j}^{c_{j}}\right)=x_{i}^{u_{i}-c_{i}} x_{j}^{c_{j}}-x^{v} \in I_{\mathscr{A}}$ in the minimal
generating set of $I_{\mathscr{A}}$. Moreover, either $\operatorname{supp}\left(\boldsymbol{x}^{v}\right)=\{k, l\}$ and $\{k, l\} \cap\{i, j\}=\varnothing$, so g has full support, or $\boldsymbol{x}^{\boldsymbol{v}}$ is a power of a variable, say $\boldsymbol{x}^{v}=x_{k}^{v_{k}}$, with $v_{k}>c_{k}$. In this case, by using again Lemma 3.8(i), we replace g with $h=g+x_{k}^{v_{k}-c_{k}}\left(x_{k}^{c_{k}}-x_{l}^{c_{l}}\right)=$ $x_{i}^{u_{i}-c_{i}} x_{j}^{c_{j}}-x_{k}^{v_{k}-c_{k}} x_{l}^{c_{l}} \in I_{\mathscr{A}}$ with $\{k, l\} \cap\{i, j\}=\varnothing$. Hence, there exists a system of generators of $I_{\mathscr{A}}$ consisting of the union of a system of binomials generators of $C_{\mathscr{A}}$ and a set \mathscr{S}^{\prime} of binomials in $I_{\mathscr{A}}$ with full support. Furthermore, by Theorem 3.6, we may assume that \mathscr{S} is a system of binomials generators of $C_{\mathscr{A}}$.

Now, let $f=x_{i}^{c_{i}}-\boldsymbol{x}^{\boldsymbol{u}} \in \mathscr{S}$ and suppose that $f=\sum_{n=1}^{s} g_{n} f_{n}$ where every $f_{n} \in(\mathscr{S} \backslash\{f\}) \cup \mathscr{S}^{\prime}$. From the minimality of c_{i} we have that $f_{n}= \pm\left(x_{i}^{c_{i}}-\boldsymbol{x}^{v}\right)$ and $\left|g_{n}\right|=1$, for some n. Then, according to the cases in Theorem 3.6, either \boldsymbol{x}^{u} or \boldsymbol{x}^{v} is equal to $x_{j}^{c_{j}}$, for some $j \neq i$. Now in the above expression of f the term $x_{j}^{c_{j}}$ should be canceled, so, from the minimality of c_{j}, we have $f_{m}= \pm\left(x_{j}^{c_{j}}-\boldsymbol{x}^{\boldsymbol{w}}\right)$ and $\left|g_{m}\right|=1$, for an $m \neq n$. Therefore, we conclude that either $\left\{x_{i}^{c_{i}}-x_{j}^{c_{j}}, \pm\left(x_{i}^{c_{i}}-\boldsymbol{x}^{\boldsymbol{v}}\right), \pm\left(x_{j}^{c_{j}}-\boldsymbol{x}^{\boldsymbol{w}}\right)\right\}$ or $\left\{x_{i}^{c_{i}}-\boldsymbol{x}^{\boldsymbol{u}}, \pm\left(x_{i}^{c_{i}}-x_{j}^{c_{j}}\right), \pm\left(x_{j}^{c_{j}}-\boldsymbol{x}^{\boldsymbol{w}}\right)\right\}$ is a subset of \mathscr{G}. So, the only possible case is $\mathscr{S}=\left\{x_{1}^{c_{1}}-x_{2}^{c_{2}}, x_{2}^{c_{2}}-x_{3}^{c_{3}}, x_{3}^{c_{3}}-x_{4}^{c_{4}}\right\}$. Since, in this case, $I_{\mathscr{A}}=C_{\mathscr{A}}$ by Theorem 2.9, and $\mathscr{S}^{\prime}=\varnothing$, we are done.

From the above proposition it follows that $I_{\mathscr{A}}$ is generic (see [Ojeda 2008], for instance) only in Case 1. The next theorem provides a minimal generating set for $I_{\mathscr{A}}$.

Theorem 3.10. A minimal system of generators of $I_{\mathscr{A}}$ (up to permutation of indices) is provided by the union of \mathscr{S}, the set \mathscr{I} of all binomials $x_{i_{1}}^{u_{i_{1}}} x_{i_{2}}^{u_{i_{2}}}-x_{i_{3}}^{u_{i_{3}}} x_{i_{4}}^{u_{i_{4}}} \in I_{\mathscr{A}}$ with $0<u_{i_{j}}<c_{j}, j=1,2, u_{i_{3}}>0, u_{i_{4}}>0$ and $x_{i_{3}}^{u_{i_{3}}} x_{i_{4}}^{u_{i_{4}}}$ indispensable, and the set \mathscr{R} of all binomials $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}} \in I_{\mathscr{A}} \backslash \mathscr{I}$ with full support and satisfying the following conditions:

- $u_{1} \leq c_{1}$ and $x_{3}^{u_{3}} x_{4}^{u_{4}}$ is indispensable, in Cases 2(a) and 4(b).
- $u_{1} \leq c_{1}$ and/or $u_{3} \leq c_{3}$ and there is no $x_{1}^{v_{1}} x_{2}^{v_{2}}-x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$ with full support such that $x_{1}^{v_{1}} x_{2}^{v_{2}}$ properly divides $x_{1}^{u_{1}+\alpha c_{1}} x_{2}^{u_{2}-\alpha c_{2}}$ or $x_{3}^{v_{3}} x_{4}^{v_{4}}$ properly divides $x_{3}^{u_{3}+\alpha c_{3}} x_{4}^{u_{4}-\alpha u_{4}}$ for some $\alpha \in \mathbb{N}$, in Case 2(b).

Proof. By Proposition 3.9, there exists a minimal system of binomial generators $\mathscr{S} \cup \mathscr{S}^{\prime}$ of $I_{\mathscr{A}}$ such that \mathscr{S} is a minimal system of generators of $C_{\mathscr{A}}$ and $\operatorname{supp}(f)=$ $\{1,2,3,4\}$, for every $f \in \mathscr{S}^{\prime}$. Moreover, since all the binomials in the set \mathscr{I} are indispensable by Corollary 2.16 , we have $\mathscr{S}^{\prime}=\mathscr{I} \cup \mathscr{R}$, where \mathscr{R} is a set of binomials of $I_{\mathscr{A}}$ of the form $x_{i_{1}}^{u_{i_{1}}} x_{i_{2}}^{u_{i_{2}}}-x_{i_{3}}^{u_{i_{3}}} x_{i_{4}}^{u_{i_{4}}}$ with $u_{i_{j}} \neq 0$, for every j, and $u_{i_{j}} \geq c_{j}$ for some j.

Observe that if $\mathscr{R}=\varnothing$, then the set defined in the statement of the theorem coincides with $\mathscr{S} \cup \mathscr{S}^{\prime}$ and therefore it is a minimal set of generators. So, we assume that $\mathscr{R} \neq \varnothing$, that is to say, there exists a minimal generator $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}} \in \mathscr{R}$ with $u_{2} \geq c_{2}$ (by permuting variables if necessary). By Lemma 3.8(ii) we have
$c_{1} a_{1}=c_{2} a_{2}$, so in Case 1 we have $\mathscr{R}=\varnothing$ and therefore we are done. Moreover, if $c_{2} a_{2}=c_{i} a_{i}$, for an $i \in\{3,4\}$, then $x_{1}^{u_{1}} x_{2}^{u_{2}} \leftrightarrow x_{1}^{u_{1}} x_{2}^{u_{2}-c_{2}} x_{i}^{c_{i}} \leftrightarrow x_{3}^{u_{3}} x_{4}^{u_{4}}$ is a path in $G_{b}\left(I_{\mathscr{A}}\right)$, where $b=u_{1} a_{1}+u_{2} a_{2}$, a contradiction with Theorem 1.8. Therefore, we conclude that the theorem is also true in Case 2(c) and Case 3. Notice that, in Case 4(a), we can proceed similarly to reach a contradiction; indeed, since $x_{2}^{c_{2}}-\boldsymbol{x}^{v} \in \mathscr{S}$, where $\operatorname{supp}\left(\boldsymbol{x}^{v}\right)=\{3,4\}$, then $x_{1}^{c_{1}}-\boldsymbol{x}^{v} \in I_{\mathscr{A}}$ and therefore $x_{1}^{u_{1}} x_{2}^{u_{2}} \leftrightarrow x_{1}^{u_{1}+c_{1}} x_{2}^{u_{2}-c_{2}} \leftrightarrow$ $x_{1}^{u_{1}} x_{2}^{u_{2}-c_{2}} \boldsymbol{x}^{v} \leftrightarrow x_{3}^{u_{3}} x_{4}^{u_{4}}$ is a path in $G_{b}\left(I_{\mathfrak{A}}\right)$, a contradiction with Theorem 1.8. Thus $\mathscr{R}=\varnothing$ in Case 4(a), too.

Suppose now that $x_{1}^{v_{1}} x_{i}^{v_{i}}-x_{2}^{v_{2}} x_{j}^{v_{j}} \in \mathscr{R}$. By Lemma 3.8(ii) again, we obtain that at least one of the equalities $c_{1} a_{1}=c_{i} a_{i}$ and $c_{2} a_{2}=c_{j} a_{j}$ holds. But, as we proved above, these equalities are incompatible with the condition $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}} \in \mathscr{R}$ with $u_{2} \geq c_{2}$. Hence, all the binomials in \mathscr{R} are of the form $x_{1}^{\boldsymbol{\bullet}} x_{2}^{\bullet}-x_{3}^{\boldsymbol{\bullet}} x_{4}^{\boldsymbol{\bullet}}$ and x_{2} arises, with exponent greater than or equal to 2 , in at least one of the variables.

We distinguish the following cases:
Case 2(a) or 4(b). If there exists $x_{1}^{v_{1}} x_{2}^{\nu_{2}}-x_{3}^{\nu_{3}} x_{4}^{v_{4}} \in \mathscr{R}$ such that for instance $v_{4} \geq c_{4}$, then $c_{3} a_{3}=c_{4} a_{4}$ by Lemma 3.8(ii). This is clearly incompatible with Cases 2(a) and 4(b), since $x_{3}^{v_{3}} x_{4}^{v_{4}} \leftrightarrow x_{3}^{v_{3}} x_{4}^{v_{4}-c_{4}} \boldsymbol{x}^{u_{4}} \leftrightarrow x_{1}^{v_{1}} x_{2}^{v_{2}}$ is a path in $G_{d}\left(I_{\mathscr{A}}\right), d=$ $a_{1} v_{1}+a_{2} v_{2}$, a contradiction with Theorem 1.8. Thus the binomials in \mathscr{R} are of the form $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}}$ with $u_{i}<c_{i}, i=3$, 4. If $x_{3}^{u_{3}} x_{4}^{u_{4}}$ is not indispensable, then there exists $x^{v}-x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$ such that $0<v_{i} \leq u_{i}$, for $i=3,4$, with at least one inequality strict and $\operatorname{supp}\left(x^{v}\right) \subseteq\{1,2\}$. So, $x_{3}^{u_{3}} x_{4}^{u_{4}} \leftrightarrow x_{3}^{u_{3}-v_{3}} x_{4}^{u_{4}-v_{4}} \boldsymbol{x}^{v} \leftrightarrow x_{1}^{u_{1}} x_{2}^{u_{2}}$ is a path in $G_{b}\left(I_{\mathscr{A}}\right)$ where $b=a_{3} u_{3}+a_{4} u_{4}$, a contradiction with Theorem 1.8. Moreover, since $x_{1}^{c_{1}}-x_{2}^{c_{2}} \in I_{\mathscr{A}}$, we may change, if it is necessary, \mathscr{R} by replacing every binomial $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}}$, where $u_{1}>c_{1}$, with $x_{1}^{u_{1}-\alpha c_{1}} x_{2}^{u_{2}+\alpha c_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}} \in I_{\mathcal{A}}$
 desired form. We have that

$$
x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}}=\left(x_{1}^{u_{1}-\alpha c_{1}} x_{2}^{u_{2}+\alpha c_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}}\right)+x_{1}^{u_{1}-\alpha c_{1}} x_{2}^{u_{2}}\left(x_{1}^{\alpha c_{1}}-x_{2}^{\alpha c_{2}}\right),
$$

so $\mathscr{\mathscr { I }} \cup \mathscr{R}$ is a generating set of $I_{\mathscr{A}}$. To see that this is actually minimal, by indispensability reasons, it suffices to show that if $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}} \in \mathscr{R}$ and $x_{1}^{v_{1}} x_{2}^{v_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}} \in \mathscr{G} \cup \mathscr{\mathscr { R }}$, then $x_{1}^{u_{1}} x_{2}^{u_{2}}=x_{1}^{v_{1}} x_{2}^{v_{2}}$. Otherwise $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{1}^{v_{1}} x_{2}^{v_{2}} \in I_{\mathscr{A}}$, but $0<u_{1} \leq c_{1}$ and $v_{1} \leq c_{1}$. Thus $\left|u_{1}-v_{1}\right| \leq c_{1}$, so $u_{1}=c_{1}, v_{1}=0$ and therefore
 We have that $c_{1} a_{1}+a_{2} u_{2}=c_{2} a_{2}$ and also $c_{1} a_{1}=c_{2} a_{2}$, so $u_{2}=0$ a contradiction.

Case 2(b). Now, by modifying \mathscr{R} as in the previous case if necessary, we have that the binomials in \mathscr{R} are of the following form: $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}}$ with $0<u_{1} \leq$ $c_{1}, u_{2} \neq 0$ and/or $0<u_{3} \leq c_{3}, u_{4} \neq 0$. If there exists $\alpha \in \mathbb{N}$ and $x_{1}^{v_{1}} x_{2}^{v_{2}}-x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$ with full support such that $x_{1}^{u_{1}+\alpha c_{1}} x_{2}^{u_{2}-\alpha c_{2}}=m x_{1}^{\nu_{1}} x_{2}^{\nu_{2}}$ (or $x_{3}^{u_{3}+\alpha c_{3}} x_{4}^{u_{4}-\alpha c_{4}}=m x_{3}^{v_{3}} x_{4}^{v_{4}}$, respectively) with $m \neq 1$, then $x_{1}^{u_{1}} x_{2}^{u_{2}} \leftrightarrow m x_{3}^{v_{3}} x_{4}^{v_{4}} \leftrightarrow x_{3}^{u_{3}} x_{4}^{u_{4}}\left(\right.$ or $x_{1}^{u_{1}} x_{2}^{u_{2}} \leftrightarrow x_{1}^{v_{1}} x_{2}^{v_{2}} m \leftrightarrow$
$x_{3}^{u_{3}} x_{4}^{u_{4}}$, respectively) is a path in $G_{b}\left(I_{\mathscr{A}}\right)$, where $b=u_{1} a_{1}+u_{2} a_{2}$, a contradiction with Theorem 1.8. So, we conclude that all the binomials in \mathscr{R} are of the desired form. Moreover, given $f=x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}} \in \mathscr{R}$ and a monomial \boldsymbol{x}^{v} with $\operatorname{deg}_{\mathscr{A}}\left(\boldsymbol{x}^{\boldsymbol{v}}\right)=$ $u_{1} a_{1}+u_{2} a_{2}$, then either $v_{1}=v_{2}=0$ or $v_{1}=v_{3}=v_{4}=0$ and $v_{2}>c_{2}$. Indeed, since $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{1}^{v_{1}} x_{2}^{v_{2}} x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$, we have the following possibilities:
(i) $g=x_{1}^{u_{1}-v_{1}} x_{2}^{u_{2}-v_{2}}-x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$, when $v_{1} \leq u_{1}$ and $v_{2}<u_{2}$. If g has full support, then $v_{1}=v_{2}=0$, otherwise $f \notin \mathscr{R}$. If for instance $u_{1}-v_{1}=0$, then $u_{2}-v_{2} \geq c_{2}$, because of the minimality of c_{2}. Thus, $g^{\prime}=x_{1}^{u_{1}-v_{1}+c_{1}} x_{2}^{u_{2}-v_{2}-c_{2}}-$ $x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$. If g^{\prime} has full support, then $v_{1}=v_{2}=0$; otherwise the monomial $x_{1}^{u_{1}-v_{1}+c_{1}} x_{2}^{u_{2}-v_{2}-c_{2}}$ properly divides $x_{1}^{u_{1}+c_{1}} x_{2}^{u_{2}-c_{2}}$, that is to say, $f \notin \mathscr{R}$. If g^{\prime} does not have full support, say $v_{3}=0$, then $v_{4} \geq c_{4}$ (due to the minimality of c_{4}). So, we may define $g^{\prime \prime}=x_{1}^{u_{1}-v_{1}+c_{1}} x_{2}^{u_{2}-v_{2}-c_{2}}-x_{3}^{c_{3}} x_{4}^{v_{4}-c_{4}} \in I_{\mathscr{A}}$ and conclude that $v_{1}=v_{2}=0$, as before.
(ii) $g=x_{1}^{u_{1}-v_{1}}-x_{2}^{v_{2}-u_{2}} x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$, when $v_{1}<u_{1}$ and $v_{2} \geq u_{2}$. Since $0<u_{1} \leq c_{1}$, we have that $v_{1}=0$ and also $u_{1}=c_{1}$. Thus $v_{2}-u_{2}=c_{2}$ and $v_{3}=v_{4}=0$, since $x_{1}^{c_{1}}-x_{2}^{c_{2}}$ is the only critical binomial with respect to x_{1}.
(iii) $g=x_{2}^{u_{2}-v_{2}}-x_{1}^{v_{1}-u_{1}} x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$, when $v_{1} \geq u_{1}$ and $v_{2}<u_{2}$. Now, by the minimality of c_{2}, we have that $u_{2}-v_{2} \geq c_{2}$ and therefore $h=x_{1}^{c_{1}} x_{2}^{u_{2}-v_{2}-c_{2}}-$ $x_{1}^{v_{1}-u_{1}} x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$. So, either $x_{1}^{c_{1}+u_{1}-v_{1}} x_{2}^{u_{2}-v_{2}-c_{2}}-x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$, when $c_{1} \geq$ $v_{1}-u_{1}$, or $x_{2}^{u_{2}-v_{2}-c_{2}}-x_{1}^{v_{1}-u_{1}-c_{1}} x_{3}^{\nu_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$, when $c_{1}<v_{1}-u_{1}$. In the first case we proceed as in (i), while in the other we repeat the same argument and so on. This process can not continue indefinitely, since there exists $\alpha \in \mathbb{N}$ such that $\alpha c_{1}<v_{1}-u_{1}$, and thus we are done.

From Theorem 1.8 we have that there exists a minimal generator of \mathscr{A}-degree $\operatorname{deg}_{\mathscr{A}}(f)$ for each $f \in \mathscr{R}$. Furthermore, by direct checking one can show that all the binomials in $\mathscr{I} \cup \mathscr{R}$ have a different \mathscr{A}-degree, and all these \mathscr{A}-degrees are different from both $c_{1} a_{1}$ and $c_{2} a_{2}$. Thus, we conclude that $\mathscr{G} \cup \mathscr{\mathscr { R }}$ is a minimal system of generators of $I_{\mathscr{A}}$.

Combining Theorem 3.10 with Corollaries 2.5 and 2.16 yields the following theorem.

Theorem 3.11. With the same notation as in Theorem 3.10, the ideal $I_{\mathscr{A}}$ has a unique minimal system of generators if and only if $C_{\mathscr{A}}$ has a unique minimal system of generators and $\mathscr{R}=\varnothing$.

In [Ojeda 2008], it is shown that there exist semigroup ideals of $\mathbb{k}\left[x_{1}, \ldots, x_{4}\right]$ with unique minimal system of binomial generators of cardinality m, for every $m \geq 7$.
Example 3.12. Let $\mathscr{A}=\{6,8,17,19\}$. The critical binomial $x_{1}^{4}-x_{2}^{3}$ of $I_{\mathscr{A}}$ is indispensable, while the critical binomial $x_{4}^{2}-x_{1} x_{2}^{4}$ is not indispensable. Thus
we are in Case $4(\mathrm{~b})$. The binomial $x_{1}^{2} x_{2}^{3}-x_{3} x_{4}$ belongs to \mathscr{R} and therefore, from Theorem 3.11, the toric ideal $I_{\mathscr{A}}$ does not have a unique minimal system of binomial generators.

Example 3.13. Let $\mathscr{A}=\{25,30,57,76\}$, then the minimal number of generators of $I_{\mathscr{A}}$ equals 8 . The only critical binomials of $I_{\mathscr{A}}$ are $\pm\left(x_{1}^{6}-x_{2}^{5}\right)$ and $\pm\left(x_{3}^{4}-x_{4}^{3}\right)$, so we are in Case 2(b). The binomial $x_{1}^{3} x_{2}^{7}-x_{3} x_{4}^{3}$ belongs to \mathscr{R} and therefore, from Theorem 3.11, the toric ideal $I_{\mathscr{A}}$ does not have a unique minimal system of binomial generators.

Observe that $I_{\mathscr{A}}$ is a complete intersection only in cases 2(a-c), 3 and 4(b). Moreover, except from 2(b), in all the other cases $I_{\mathscr{A}}=C_{\mathscr{A}}$. In the case 2(b) a minimal system of binomial generators is $x_{1}^{c_{1}}-x_{2}^{c_{2}}, x_{3}^{c_{3}}-x_{4}^{c_{4}}$ and $x_{1}^{u_{1}} x_{2}^{u_{2}}-x_{3}^{u_{3}} x_{4}^{u_{4}}$ where $a_{1} u_{1}+a_{2} u_{2}=a_{3} u_{3}+a_{4} u_{4}=\operatorname{lcm}\left(\operatorname{gcd}\left(a_{1}, a_{2}\right), \operatorname{gcd}\left(a_{3}, a_{4}\right)\right)$; [Delorme 1976].

It is well known that the ring $\mathbb{k}[x] / I_{\mathscr{A}}$ is Gorenstein if and only if the semigroup $\mathbb{N} \mathscr{A}$ is symmetric, see [Kunz 1970]. We will prove that if $\mathbb{N} \mathscr{A}$ is symmetric and $I_{\mathscr{A}}$ is not a complete intersection, then $I_{\mathscr{A}}$ has a unique minimal system of binomial generators.

Theorem 3.14. If $f_{1}=x_{1}^{c_{1}}-x_{3}^{u_{13}} x_{4}^{u_{14}}, f_{2}=x_{2}^{c_{2}}-x_{1}^{u_{21}} x_{4}^{u_{24}}, f_{3}=x_{3}^{c_{3}}-x_{1}^{u_{31}} x_{2}^{u_{32}}$ and $f_{4}=x_{4}^{c_{4}}-x_{2}^{u_{42}} x_{3}^{u_{43}}$ are critical binomials of $I_{\mathscr{A}}$ such that $\operatorname{supp}\left(f_{i}\right)$ has cardinality equal to 3 , for every $i \in\{1, \ldots, 4\}$, then $I_{\mathscr{A}}$ has a unique minimal system of binomial generators.

Proof. Every exponent $u_{i j}$ of x_{j} is strictly less than c_{j}, for each $j=1, \ldots, 4$. If for instance $u_{13} \geq c_{3}$, then $x_{1}^{c_{1}}-x_{1}^{u_{31}} x_{2}^{u_{32}} x_{3}^{u_{13}-c_{3}} x_{4}^{u_{14}}=f_{1}+x_{3}^{u_{13}-c_{3}} x_{4}^{u_{14}} f_{3} \in I_{\mathscr{A}}$ and therefore $x_{1}^{c_{1}-u_{31}}-x_{2}^{u_{32}} x_{3}^{u_{13}-c_{3}} x_{4}^{u_{14}} \in I_{\mathscr{A}}$, a contradiction to the minimality of c_{1}. By Proposition 2.3 we have that $c_{i} a_{i} \neq c_{j} a_{j}$, for every $i \neq j$. We will prove that every f_{i} is indispensable in $C_{\mathscr{A}}$. Suppose for example that f_{1} is not indispensable in $C_{\mathscr{A}}$, then there is a binomial $g=x_{1}^{c_{1}}-x_{2}^{v_{2}} x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$. So $x_{3}^{u_{13}} x_{4}^{u_{14}}-x_{2}^{v_{2}} x_{3}^{v_{3}} x_{4}^{v_{4}} \in I_{\mathscr{A}}$, and thus $v_{3}<u_{13}$ and $v_{4}<u_{14}$, since $u_{13}<c_{3}$ and $u_{14}<c_{4}$. We have that $x_{2}^{v_{2}}-x_{3}^{u_{13}-v_{3}} x_{4}^{u_{14}-v_{4}} \in I_{\mathscr{A}}$ and also $x_{1}^{c_{1}}-x_{1}^{u_{21}} x_{2}^{v_{2}-c_{2}} x_{3}^{v_{3}} x_{4}^{u_{24}+v_{4}}=g+x_{2}^{v_{2}-c_{2}} x_{3}^{v_{3}} x_{4}^{v_{4}} f_{2} \in$ $I_{\mathscr{A}}$. Therefore $x_{1}^{c_{1}-u_{21}}-x_{2}^{v_{2}-c_{2}} x_{3}^{v_{3}} x_{4}^{u_{24}+v_{4}} \in I_{\mathscr{A}}$, a contradiction to the minimality of c_{1}. Analogously we can prove that f_{2}, f_{3} and f_{4} are indispensable in $C_{\mathscr{A}}$. Thus $C_{\mathscr{A}}$ is generated by its indispensable binomials and therefore, from Theorem 3.11, the toric ideal $I_{\mathscr{A}}$ has a unique minimal system of binomial generators.

Corollary 3.15. Let $\mathbb{N} \mathscr{A}$ be a symmetric semigroup. If $I_{\mathscr{A}}$ is not a complete intersection, then it has a unique minimal system of binomial generators.

Proof. From [Bresinsky 1975, Theorem 3] the toric ideal $I_{\mathscr{A}}$ has a minimal generating set consisting of five binomials, namely four critical binomials of the form defined in the above theorem and a non critical binomial. By Theorem 3.14 the toric ideal $I_{\mathscr{A}}$ is generated by its indispensable binomials.

According to [Bresinsky 1975, Theorem 4] the integers a_{i} are polynomials in the exponents of the binomial in a minimal generating system of $I_{\mathscr{A}}$. We can see these expressions as a system of four polynomial equations, which in light of Corollary 3.15, has a unique solution over the positive integers.

Remark 3.16. Theorem 6.4 of [Komeda 1982] shows that if $\mathbb{N} \mathscr{A}$ is pseudosymmetric (see [Rosales and García 2009] for a definition), then $f_{1}=x_{1}^{c_{1}}-x_{3} x_{4}^{c_{4}-1}$, $f_{2}=x_{2}^{c_{2}}-x_{1}^{u_{21}} x_{4}, f_{3}=x_{3}^{c_{3}}-x_{1}^{c_{1}-u_{21}-1} x_{2}, \quad f_{4}=x_{4}^{c_{4}}-x_{1} x_{2}^{c_{2}-1} x_{3}^{c_{3}-1}$ and $g=$ $x_{1}^{u_{21}+1} x_{3}^{c_{3}-1}-x_{2} x_{4}^{c_{4}-1}$ with $c_{i}>1$ for $i=1, \ldots, 4$, and $u_{21}-1<c_{1}$, is a minimal system of generators of $I_{\mathcal{A}}$. Now, an easy check shows that $c_{i} a_{i} \neq c_{j} a_{j}$ for every $i \neq j$. The interested reader may prove that $C_{\mathscr{A}}$ has a unique minimal system of generators if and only if $u_{21}=c_{1}-2$. Thus, since $\mathscr{R}=\varnothing$, by Theorem 3.11, we conclude that $I_{\mathscr{A}}$ is generated by its indispensable binomials if and only if $c_{2} n_{2} \neq\left(c_{1}-2\right) n_{1}+n_{4}$.

If the cardinality of \mathscr{A} is greater than 4 , the analogous of Corollary 3.15 is not true in general. In [Rosales 2001] it is shown that the semigroup generated by $\mathscr{A}=\{15,16,81,82,83,84\}$ is symmetric. Since the monomials $x_{1}^{11}, x_{3} x_{6}$ and $x_{4} x_{5}$ have the same \mathscr{A}-degree, we conclude, by Theorem 1.8, that the ideal $I_{\mathscr{A}}$ does not have a unique minimal system of binomial generators.

Acknowledgments

Part of this work was done during a visit of the first author to the University of Extremadura financed by the Plan Propio 2010 of the University of Extremadura. We thank the referee for helpful comments and suggestions that improved the paper.

References

[Alcántar and Villarreal 1994] A. Alcántar and R. H. Villarreal, "Critical binomials of monomial curves", Comm. Algebra 22:8 (1994), 3037-3052. MR 95c:13022 Zbl 0855.13014
[Aoki et al. 2008] S. Aoki, A. Takemura, and R. Yoshida, "Indispensable monomials of toric ideals and Markov bases", J. Symbolic Comput. 43:6-7 (2008), 490-507. MR 2009c:13065 Zbl 1170.13008
[Bresinsky 1975] H. Bresinsky, "Symmetric semigroups of integers generated by 4 elements", Manuscripta Math. 17:3 (1975), 205-219. MR 54 \#2660 Zbl 0317.10061
[Bresinsky 1988] H. Bresinsky, "Binomial generating sets for monomial curves, with applications in A ${ }^{4} "$, Rend. Sem. Mat. Univ. Politec. Torino 46:3 (1988), 353-370. MR 92e:13004 Zbl 0738.14017
[Charalambous et al. 2007] H. Charalambous, A. Katsabekis, and A. Thoma, "Minimal systems of binomial generators and the indispensable complex of a toric ideal", Proc. Amer. Math. Soc. 135:11 (2007), 3443-3451. MR 2009a: 13033 Zbl 1127.13018
[Delgado et al. 2013] M. Delgado, P. A. García Sánchez, and J. Morais, "NumericalSgps: a GAP package", 2013, Available at http://cmup.fc.up.pt/cmup/mdelgado/numericalsgps. Version 0.980.
[Delorme 1976] C. Delorme, "Sous-monoïdes d'intersection complète de N", Ann. Sci. École Norm. Sup. (4) 9:1 (1976), 145-154. MR 53 \#10821 Zbl 0325.20065
[Eisenbud and Sturmfels 1996] D. Eisenbud and B. Sturmfels, "Binomial ideals", Duke Math. J. 84:1 (1996), 1-45. MR 97d:13031 Zbl 0873.13021
[Fischer and Shapiro 1996] K. G. Fischer and J. Shapiro, "Mixed matrices and binomial ideals", J. Pure Appl. Algebra 113:1 (1996), 39-54. MR 97h:13008 Zbl 0864.15016
[García and Ojeda 2010] P. A. García Sánchez and I. Ojeda, "Uniquely presented finitely generated commutative monoids", Pacific J. Math. 248:1 (2010), 91-105. MR 2011j:20139 Zbl 1208.20052
[García Sánchez et al. 2013] P. A. García Sánchez, I. Ojeda, and J. C. Rosales, "Affine semigroups having a unique Betti element", J. Algebra Appl. 12:3 (2013), Article ID \#1250177. MR 3007913 Zbl 06155975
[Herzog 1970] J. Herzog, "Generators and relations of abelian semigroups and semigroup rings", Manuscripta Math. 3 (1970), 175-193. MR 42 \#4657 Zbl 0211.33801
[Herzog et al. 2010] J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, and J. Rauh, "Binomial edge ideals and conditional independence statements", Adv. in Appl. Math. 45:3 (2010), 317-333. MR 2011j:13041 Zbl 1196.13018
[Katsabekis and Thoma 2010] A. Katsabekis and A. Thoma, "Specializations of multigradings and the arithmetical rank of lattice ideals", Comm. Algebra 38:5 (2010), 1904-1918. MR 2011e:13045 Zbl 1197.14054
[Komeda 1982] J. Komeda, "On the existence of Weierstrass points with a certain semigroup generated by 4 elements", Tsukuba J. Math. 6:2 (1982), 237-270. MR 85d:14039 Zbl 0546.14011
[Kunz 1970] E. Kunz, "The value-semigroup of a one-dimensional Gorenstein ring", Proc. Amer. Math. Soc. 25 (1970), 748-751. MR 42 \#263 Zbl 0197.31401
[Ohsugi and Hibi 2005] H. Ohsugi and T. Hibi, "Indispensable binomials of finite graphs", J. Algebra Appl. 4:4 (2005), 421-434. MR 2006e:13023 Zbl 1093.13020
[Ojeda 2008] I. Ojeda, "Examples of generic lattice ideals of codimension 3", Comm. Algebra 36:1 (2008), 279-287. MR 2008j:13027 Zbl 1133.13014
[Ojeda and Pisón Casares 2004] I. Ojeda and P. Pisón Casares, "On the hull resolution of an affine monomial curve", J. Pure Appl. Algebra 192:1-3 (2004), 53-67. MR 2005e:13018 Zbl 1079.13007
[Ojeda and Vigneron-Tenorio 2010a] I. Ojeda and A. Vigneron-Tenorio, "Indispensable binomials in semigroup ideals", Proc. Amer. Math. Soc. 138:12 (2010), 4205-4216. MR 2011i:13023 Zbl 1204.13014
[Ojeda and Vigneron-Tenorio 2010b] I. Ojeda and A. Vigneron-Tenorio, "Simplicial complexes and minimal free resolution of monomial algebras", J. Pure Appl. Algebra 214:6 (2010), 850-861. MR 2011g:13032 Zbl 1195.13015
[Rosales 2001] J. C. Rosales, "Symmetric numerical semigroups with arbitrary multiplicity and embedding dimension", Proc. Amer. Math. Soc. 129:8 (2001), 2197-2203. MR 2002b:20091 Zbl 0972.20036
[Rosales and García 2009] J. C. Rosales and P. A. García-Sánchez, Numerical semigroups, Developments in Mathematics 20, Springer, New York, 2009. MR 2010j:20091 Zbl 1220.20047
[Sturmfels 1996] B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series 8, American Mathematical Society, Providence, RI, 1996. MR 97b:13034 Zbl 0856.13020

Received July 26, 2012. Revised October 7, 2013.

Anargyros Katsabekis
Centrum Wiskunde \& Informatica (CWI)
Postbus 94079
1090 GB Amsterdam
The Netherlands
katsabek@aegean.gr
Ignacio Ojeda
Departamento de Matematicas
Universidad de Extremadura
Facultad de Ciencias
Avenida de Elvas s/n
06071 BADAJOZ
SpAIN
ojedamc@unex.es

PACIFIC JOURNAL OF MATHEMATICS
 msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

V. S. Varadarajan (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
pacific@math.ucla.edu
Don Blasius
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu
Robert Finn
Department of Mathematics
Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu
Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu
Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu
Vyjayanthi Chari
Department of Mathematics University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Paul Balmer
Department of Mathematics University of California Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Daryl Cooper
Department of Mathematics University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu
Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2014 is US $\$ 410 /$ year for the electronic version, and $\$ 535 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2014 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 268 No. $1 \quad$ March 20141
Alexandre Paiva Barreto
A transport inequality on the sphere obtained by mass transport 23
Dario Cordero-Erausquin
A cohomological injectivity result for the residual automorphic spectrum of GL_{n} 33
Harald Grobner
Gradient estimates and entropy formulae of porous medium and fast diffusion 47 equations for the Witten LaplacianGuangyue Huang and Haizhong li
Controlled connectivity for semidirect products acting on locally finite trees 79
Keith Jones
An indispensable classification of monomial curves in $\mathbb{A}^{4}(\mathbb{k})$ 95
anargyros Katsabekis and Ignacio Ojeda
anargyros Katsabekis and Ignacio Ojeda
Contracting an axially symmetric torus by its harmonic mean curvature 117
Christopher Kim
Composition operators on strictly pseudoconvex domains with smooth symbol 135Hyungwoon Koo and Song-Ying Li
The Alexandrov problem in a quotient space of $\mathbb{H}^{2} \times \mathbb{R}$ 155
Ana Menezes
Twisted quantum Drinfeld Hecke algebras 173
Deepak Naidu
L^{p} harmonic 1 -forms and first eigenvalue of a stable minimal hypersurface 205
Keomkyo Seo
Reconstruction from Koszul homology and applications to module and derived 231
categoriesRyo Takahashi
A virtual Kawasaki-Riemann-Roch formula 249
Valentin Tonita

[^0]: Ojeda is partially supported by the project MTM2012-36917-C03-01, National Plan I+D+i and by Junta de Extremadura (FEDER funds).
 MSC2010: primary 13F20; secondary 16W50, 13F55.
 Keywords: binomial ideal, toric ideal, monomial curve, minimal systems of generators, indispensable monomials, indispensable binomials.

