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AN INDISPENSABLE CLASSIFICATION OF MONOMIAL
CURVES IN A4(k)

ANARGYROS KATSABEKIS AND IGNACIO OJEDA

We give a new classification of monomial curves in A4(k). It relies on the
detection of those binomials and monomials that have to appear in every
system of binomial generators of the defining ideal of the monomial curve;
these special binomials and monomials are called indispensable in the lit-
erature. This way to proceed has the advantage of producing a natural
necessary and sufficient condition for the defining ideal of a monomial curve
in A4(k) to have a unique minimal system of binomial generators. Further-
more, some other interesting results on more general classes of binomial
ideals with unique minimal system of binomial generators are obtained.

Introduction

Let k[x] := k[x1, . . . , xn] be the polynomial ring in n variables over a field k.
As usual, we will denote by xu the monomial xu1

1 · · · x
un
n of k[x], with u =

(u1, . . . , un) ∈Nn , where N stands for the set of non-negative integers. Recall that
a pure difference binomial ideal is an ideal of k[x] generated by differences of
monic monomials. Examples of pure difference binomial ideals are the toric ideals.
Indeed, let A = {a1, . . . , an} ⊂ Zd and consider the semigroup homomorphism
π : k[x] → k[A] :=

⊕
a∈A k ta

; xi 7→ tai . The kernel of π is denoted by IA and
called the toric ideal of A. Notice that the toric ideal IA is generated by all the
binomials xu

− xv such that π(xu) = π(xv), see, for example, [Sturmfels 1996,
Lemma 4.1].

Defining ideals of monomial curves in the affine n-dimensional space An(k)
serve as interesting examples of toric ideals. Of particular interest is to compute
and describe a minimal generating set for such an ideal. Herzog [1970] provides
a minimal system of generators for the defining ideal of a monomial space curve.
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Junta de Extremadura (FEDER funds).
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The case n = 4 was treated in [Bresinsky 1988], where Gröbner bases techniques
were used to obtain a minimal generating set of the ideal.

A recent topic arising in algebraic statistics is to study the problem when a toric
ideal has a unique minimal system of binomial generators, see [Charalambous et al.
2007; Ojeda and Vigneron-Tenorio 2010a]. To deal with this problem, Ohsugi and
Hibi [2005] introduced the notion of indispensable binomials, while Aoki, Takemura
and Yoshida [Aoki et al. 2008] introduced the notion of indispensable monomials.
The problem was considered for the case of defining ideals of monomial curves
in [García and Ojeda 2010]. Although this work offers useful information, the
classification of the ideals having a unique minimal system of binomial generators
remains an unsolved problem for n ≥ 4. For monomial space curves Herzog’s
result provides an explicit classification of those defining ideals satisfying the above
property. The aim of this work is to classify all defining ideals of monomial curves
in A4(k) having a unique minimal system of generators. Our approach is inspired
by the classification made by Pilar Pisón in her unpublished thesis.

The paper is organized as follows. In Section 1 we study indispensable monomials
and binomials of a pure difference binomial ideal. We provide a criterion for
checking whether a monomial is indispensable (Theorem 1.9) and a sufficient
condition for a binomial to be indispensable (Theorem 1.10). As an application
we prove that the binomial edge ideal of an undirected simple graph has a unique
minimal system of binomial generators. Section 2 is devoted to special classes of
binomial ideals contained in the defining ideal of a monomial curve. Corollary 2.5
underlines the significance of the critical ideal in the investigation of our problem.
Theorem 2.12 and Proposition 2.13 provide necessary and sufficient conditions for a
circuit to be indispensable in the toric ideal, while Corollary 2.16 will be particularly
useful in the next section. In Section 3 we study defining ideals of monomial curves
in A4(k). Theorem 3.6 carries out a thorough analysis of a minimal generating set
of the critical ideal. This analysis is used to derive a minimal generating set for the
defining ideal of the monomial curve (Theorem 3.10). As a consequence we obtain
the desired classification (Theorem 3.11). Finally we prove that the defining ideal
of a Gorenstein monomial curve in A4(k) has a unique minimal system of binomial
generators, under the hypothesis that the ideal is not a complete intersection.

1. Generalities on indispensable monomials and binomials

Let k[x] be the polynomial ring over a field k. The following result is folklore, but
for a lack of reference we sketch a proof.

Theorem 1.1. Let J ⊂ k[x] be a pure difference binomial ideal. There exist a
positive integer d and a vector configuration A= {a1, . . . , an} ⊂ Zd such that the
toric ideal IA is a minimal prime of J .
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Proof. By [Eisenbud and Sturmfels 1996, Corollary 2.5],
(
J : (x1 · · · xn)

∞
)

is a
lattice ideal. More precisely, if L= spanZ{u− v | xu

− xv
∈ J }, then(

J : (x1 · · · xn)
∞
)
= 〈xu

− xv
| u− v ∈ L〉 =: IL.

Now, by [Eisenbud and Sturmfels 1996, Corollary 2.2], the only minimal prime of
IL that is a pure difference binomial ideal is ISat(L) := 〈xu

− xv
| u− v ∈ Sat(L)〉,

where Sat(L) := {u ∈ Zn
| z u ∈ L for some z ∈ Z}. Since Zn/Sat(L) ∼= Zd , for

d = n− rank(L), then ei +Sat(L)= ai ∈ Zd , for every i = 1, . . . , n, and hence the
toric ideal of A={a1, . . . , an} is equal to ISat(L); see [Sturmfels 1996, Lemma 12.2].

Finally, in order to see that IA is a minimal prime of J , it suffices to note that
J ⊆ P implies

(
J : (x1 · · · xn)

∞
)
⊆ P , for every prime ideal P of k[x]. �

Remark 1.2. If J = 〈xuj − xv j | j = 1, . . . , s〉, then L = spanZ{uj − v j | j =
1, . . . , s}. So, it is easy to see that, in general, J 6= IL. For example, if J =
〈x − y, z− t, y2

− yt〉, then IL = 〈x − t, y− t, z− t〉.

Given a vector configuration A= {a1, . . . , an} ⊂ Zd , we grade k[x] by setting
degA(xi )= ai , i = 1, . . . , n. We define the A-degree of a monomial xu to be

degA(x
u)= u1a1+ · · ·+ un an.

A polynomial f ∈ k[x] is A-homogeneous if the A-degrees of all the monomials
that occur in f are the same. An ideal J ⊂ k[x] is A-homogeneous if it is generated
by A-homogeneous polynomials. The toric ideal IA is A-homogeneous; indeed,
by [Sturmfels 1996, Lemma 4.1], a binomial xu

− xv
∈ IA if and only if it is

A-homogeneous.
The proof of the following result is straightforward.

Corollary 1.3. Let J ⊂ k[x] be a pure difference binomial ideal and let A =

{a1, . . . , an} ⊂ Zd . Then J is A-homogeneous if and only if J ⊆ IA.

Notice that the finest A-grading on k[x] such that a pure difference binomial
ideal J ⊂ k[x] is A-homogeneous occurs when IA is a minimal prime of J . Such
an A-grading does always exist by Theorem 1.1. Ideals with finest A-grading are
studied in much greater generality in [Katsabekis and Thoma 2010]. An A-grading
on k[x] such that a pure difference binomial ideal J ⊂ k[x] is A-homogeneous is
said to be positive if the quotient ring k[x]/IA does not contain invertible elements
or, equivalently, if the monoid NA is free of units.

Recall (from [Sturmfels 1996, Chapter 12], for instance) that the number of poly-
nomials of A-degree b ∈ NA in any minimal system of A-homogeneous generators
is dimk TorR

1 (k, k[A])b. Thus, we say that IA has minimal generators in degree b
when dimk TorR

1 (k, k[A])b 6= 0. In this case, if f ∈ IA has degree b we say that f
is a minimal generator of IA.
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From now on, let A= {a1, . . . , an} ⊂ Zd be such that the quotient ring k[x]/IA

does not contain invertible elements and let J ⊂ k[x] be an A-homogeneous pure
difference binomial ideal.

Definition 1.4. A binomial f = xu
− xv

∈ J is called indispensable in J (or an
indispensable binomial of J ) if every system of binomial generators of J contains
f or −f . A monomial xu is called indispensable in J if every system of binomial
generators of J contains a binomial f such that xu is a monomial of f .

We will write MJ for the monomial ideal generated by all xu for which there
exists a nonzero xu

− xv
∈ J .

The next proposition is the natural generalization of [Charalambous et al. 2007,
Proposition 3.1], but for completeness, we give a proof.

Proposition 1.5. The indispensable monomials of J are precisely the minimal
generators of MJ .

Proof. Let { f1, . . . , fs} be a system of binomial generators of J . Clearly, the
monomials of the fi , i = 1, . . . , s, generate MJ . Let xu be a minimal generator
of MJ . Then xu

− xv
∈ J , for some nonzero v ∈ Nn . Now, the minimality of xu

assures that xu is a monomial of f j for some j . Therefore every minimal generator
of MJ is an indispensable monomial of J . Conversely, let xu be an indispensable
monomial of J . If xu is not a minimal generator of MJ , then there is a minimal
generator xw of MJ such that xu

= xwxu′ with u′ 6= 0. By the previous argument
xw is an indispensable monomial of J , hence without loss of generality we may
suppose that fk = xw

− x z for some k and z ∈ Nn . Thus, if f j = xu
− xv, then

f ′j = xu′x z
− xv

= f j − xu′ fk ∈ J

and therefore we can replace f j by f ′j in { f1, . . . , fs}. Repeating this argument
as many times as necessary, we will find a system of binomial generators of J
such that no element has xu as monomial, a contradiction to the fact that xu is
indispensable. �

Corollary 1.6. If xu
∈ MJ is an indispensable monomial of IA, then it is also an

indispensable monomial of J .

Proof. It suffices to note that MJ ⊆ MIA by Corollary 1.3. �

Now, we will give a combinatorial necessary and sufficient condition for a
monomial xu

∈ k[x] to be indispensable in J .

Definition 1.7. Let b ∈NA. The graph Gb(J ) has as its vertices the monomials of
MJ of A-degree b; two vertices xu and xv are joined by an edge if gcd(xu, xv) 6= 1
and there exists a monomial 1 6= xw dividing gcd(xu, xv) such that the binomial
xu−w

− xv−w belongs to J .
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Notice that Gb(J ) = ∅ exactly when MJ has no element of A-degree b; in
particular, Gb(J )=∅ if b= 0, because 1 6∈ MJ (otherwise, k[x]/IA would contain
invertible elements). Moreover, since J ⊆ IA, we have that Gb(J ) is a subgraph of
Gb(IA), for all b. Finally, we observe that the existence of xw as stated is trivially
fulfilled for J = IA because

(
IA : (x1 · · · xn)

∞
)
= IA, in this case, if Gb(J ) 6=∅, the

graph Gb(J ) is nothing but the 1-skeleton of the simplicial complex ∇b appearing
in [Ojeda and Vigneron-Tenorio 2010a]. Thus, we have the following result.

Theorem 1.8. Let xu
− xv
∈ IA be a binomial of A-degree b. Then, f is a minimal

generator of IA if and only if xu and xv lie in two different connected components
of Gb(IA), in particular, the graph is disconnected.

Proof. See, for example, [Ojeda and Vigneron-Tenorio 2010b, Section 2]. �

The next theorem provides a necessary and sufficient condition for a monomial
to be indispensable in J .

Theorem 1.9. A monomial xu is indispensable in J if and only if {xu
} is connected

component of Gb(J ), where b= degA(xu).

Proof. Suppose that xu is an indispensable monomial of J and {xu
} is not a

connected component of Gb(J ). Then, there exists xv
∈ MJ with A-degree equal

to b such that gcd(xu, xv) 6= 1 and xu−w
− xv−w

∈ J , where 1 6= xw divides
gcd(xu, xv). So xu−w

∈ MJ and properly divides xu, a contradiction to the fact
that xu is a minimal generator of MJ (see Proposition 1.5). Conversely, we assume
that {xu

} is connected component of Gb(J ) with b= degA(xu) and that xu is not
an indispensable monomial of J . Then, by Proposition 1.5, there exists a binomial
f = xw

− x z
∈ J , such that xw properly divides xu. Let xu

= xwxu′ , then 1 6= xu′

divides gcd(xu, xu′x z) and hence (xu
− xu′x z)/(xu′)= f ∈ J . Thus, {xu, xu′x z

}

is an edge of Gb(J ), a contradiction to the fact that {xu
} is a connected component

of Gb(J ). �

Now, we are able to give a sufficient condition for a binomial to be indispens-
able in J by using our graphs Gb(J ) (compare with [García and Ojeda 2010,
Corollary 5]).

Theorem 1.10. Given xu
−xv
∈ J and let b=degA(xu)

(
=degA(xv)

)
. If Gb(J )={

{xu
}, {xv

}
}
, then xu

− xv is an indispensable binomial of J .

Proof. Assume that Gb(J ) =
{
{xu
}, {xv

}
}
. Then, by Theorem 1.9, both xu and

xv are indispensable monomials of J . Let { f1, . . . , fs} be a system of binomial
generators of J . Since xu is an indispensable monomial, fi = xu

−xw
6= 0, for some

i . Thus degA(xu)=degA(xw) and therefore xw is a vertex of Gb(J ). Consequently,
w = v and we conclude that xu

− xv is an indispensable binomial of J . �
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The converse of this theorem is not true in general: consider for instance the
ideal J = 〈x − y, y2

− yt, z − t〉 = 〈x − t, y − t, z − t〉 ∩ 〈x, y, z − t〉, then J
is A-homogeneous for A = {1, 1, 1, 1}. Both x − y and z − t are indispensable
binomials of J , while G1(J )=

{
{x}, {y}, {z}, {t}

}
.

Corollary 1.11. If f = xu
− xv

∈ J is an indispensable binomial of IA, then f is
an indispensable binomial of J .

Proof. Let b= degA(xu)
(
= degA(xv)

)
. By [Ojeda and Vigneron-Tenorio 2010a,

Corollary 7], if xu
− xv is an indispensable binomial of IA, then Gb(IA) ={

{xu
}, {xv

}
}
. Since xu and xv are vertices of Gb(J ) and Gb(J ) is a subgraph

of Gb(IA), then Gb(J ) = Gb(IA) and therefore, by Theorem 1.10, we conclude
that xu

− xv is an indispensable binomial of J . �

Again we have that the converse is not true; for instance, x − y and z − t
are indispensable binomials of J = 〈x − y, y2

− yt, z − t〉 and none of them is
indispensable in the toric ideal IA.

We close this section by applying our results to show that the binomial edge
ideals introduced in [Herzog et al. 2010] have unique minimal system of binomial
generators.

Let G be an undirected connected simple graph on the vertex set {1, . . . , n} and
let k[x, y] be the polynomial ring in 2n variables, x1, . . . , xn , y1, . . . , yn , over k.

Definition 1.12. The binomial edge ideal JG ⊂ k[x, y] associated to G is the ideal
generated by the binomials fi j = xi y j − x j yi , with i < j , such that {i, j} is an edge
of G.

Let JG ⊂ k[x, y] be the binomial edge ideal associated to G. By definition, JG

is contained in the determinantal ideal generated by the 2× 2-minors of(
x1 . . . xn

y1 . . . yn

)
.

This ideal is nothing but the toric ideal associated to the Lawrence lifting, 3(A), of
A= {1, . . . , 1} (see [Sturmfels 1996, Chapter 7], for instance). Thus, JG ⊆ I3(A)
and the equality holds if and only if G is the complete graph on n vertices. By the
way, since G is connected, the smallest toric ideal containing JG has codimension
n−1. So, the smallest toric ideal containing JG is I3(A), that is to say, 3(A) is the
finest grading on k[x, y] such that JG is 3(A)-homogeneous.

Corollary 1.13. The binomial edge ideal JG has unique minimal system of binomial
generators.

Proof. By [Ojeda and Vigneron-Tenorio 2010a, Corollary 16], the toric ideal I3(A)
is generated by its indispensable binomials, thus every fi j ∈ JG , is an indispensable
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binomial of I3(A). Now, by Corollary 1.11, we conclude that JG is generated by its
indispensable binomials. �

The above result can be viewed as a particular case of the following general result
whose proof is also straightforward consequence of [Ojeda and Vigneron-Tenorio
2010a, Corollary 16] and Corollary 1.11.

Corollary 1.14. Let A= {a1, . . . , an} ⊆ Zd be such that the monoid NA is free of
units. If J ⊆ k[x, y] is a binomial ideal generated by a subset of the minimal system
of binomial generators of I3(A), then J has unique minimal system of binomial
generators.

2. Critical binomials, circuits and primitive binomials

This section deals with binomial ideals contained in the defining ideal of a monomial
curve. Special attention should be paid to the critical ideal; this is due to the fact
that the ideal of a monomial space curve is equal to the critical ideal, see [Herzog
1970] (see also the definition of neat numerical semigroup in [Komeda 1982]).
Throughout this section A = {a1, . . . , an} is a set of relatively prime positive
integers and IA ⊂ k[x] = k[x1, . . . , xn] is the defining ideal of the monomial curve
x1 = ta1, . . . , xn = tan in the n-dimensional affine space over k.

Critical binomials.

Definition 2.1. A binomial xci
i −

∏
j 6=i xui j

j ∈ IA is called critical with respect to
xi if ci is the least positive integer such that ci ai ∈

∑
j 6=i Na j . The critical ideal of

A, denoted by CA, is the ideal of k[x] generated by all the critical binomials of IA.

Observe that the critical ideal of A is A-homogeneous.

Notation 2.2. From now on and for the rest of the paper, we will write ci for the
least positive integer such that ci ai ∈

∑
j 6=i Na j , for each i = 1, . . . , n.

Proposition 2.3. The monomials xci
i are indispensable in IA, for every i . Equiva-

lently, {xci
i } is a connected component of Gb(IA), where b = ci ai , for every i .

Proof. The proof follows immediately from the minimality of ci , Theorem 1.8 and
Theorem 1.9. �

We now characterize the indispensable critical binomials of the toric ideal IA.

Theorem 2.4. Let f = xci
i −

∏
j 6=i xui j

j be a critical binomial of IA, then f is
indispensable in IA if , and only if , f is indispensable in CA.

Proof. By Corollary 1.11, we have that if f is indispensable in IA, then it is
indispensable in CA. Conversely, assume that f is indispensable in CA. Let
{ f1, . . . , fs} be a system of binomial generators of IA not containing f . Then, by
Proposition 2.3, fl = xci

i −
∏

j 6=i xv j
j for some l. So, fl is a critical binomial, that
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is to say, fl ∈ CA. Therefore, we may replace f by fl and f − fl ∈ CA in a system
of binomial generators of CA, a contradiction to the fact that f is indispensable
in CA. �

Corollary 2.5. If IA has a unique minimal system of binomial generators, then CA

also does.

Proof. The monomials xci
i are indispensable in IA, for each i (see Proposition 2.3).

Thus, for every i , there exists a unique binomial in IA of the form xci
i −

∏
j 6=i xui j

j
and we conclude that CA has unique minimal system of binomial generators. �

Example 2.6. Let A = {4, 6, 2a + 1, 2a + 3} where a is a natural number. For
a = 0, it is easy to see that IA does not have a unique minimal system of binomial
generators. If a ≥ 1, then x2

4 − xa
1 x2 and x2

4 − x1x2
3 ∈CA. Thus CA is not generated

by its indispensable binomials and therefore IA does not have a unique minimal
system of binomial generators.

Circuits.
Recall that the support of a monomial xu is the set supp(xu) = {i ∈ {1, . . . , n} |
ui 6= 0}. The support of a binomial f = xu

− xv
∈ IA, denoted by supp( f ), is

defined as the union supp(xu)∪ supp(xv). We say that f has full support when
supp( f )= {1, . . . , n}.

Definition 2.7. An irreducible binomial xu
−xv
∈ IA is called a circuit if its support

is minimal with respect the inclusion.

Recall that a polynomial in k[x] is said to be irreducible if it cannot be factored
into the product of two (or more) non-trivial polynomials in k[x].

Lemma 2.8. Let uj (i)=
ai

gcd(ai , a j )
, for i 6= j . The set of circuits in IA is equal to

{xui ( j)
i − xuj (i)

j | i 6= j}.

Proof. See [Sturmfels 1996, Chapter 4] �

The next theorem provides a class of toric ideals generated by critical binomials
that, moreover, are circuits.

Theorem 2.9. If CA = 〈x
c1
1 − xc2

2 , . . . , xcn−1
n−1 − xcn

n 〉, then CA = IA.

Proof. From the hypothesis the binomial xci
i − xci+1

i+1 belongs to IA, for each i ∈
{1, . . . , n−1}. So, every circuit of IA is of the form xck

k − xcl
l , since gcd(ck, cl)= 1.

Now, from Proposition 2.2 in [Alcántar and Villarreal 1994], the lattice L =
kerZ(A)={u∈Zn

|u1a1+. . .+unan=0} is generated by
{
ci ei−c j e j |1≤ i≤ j≤n

}
,

where ei is the vector with 1 in the i-th position and zeros elsewhere. The rank of L
equals n−1 and a lattice basis is

{
vi = ci ei −ci+1ei+1 | 1≤ i ≤ n−1

}
. Thus CA is
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a lattice basis ideal. Let M be the matrix with rows v1, . . . , vn−1, then M is a mixed
dominating matrix and therefore, from [Fischer and Shapiro 1996, Theorem 2.9],
the equality CA = IA holds. �

Remarks 2.10.

(1) For n = 4, a different proof of the above result can be found in [Bresinsky
1975].

(2) The converse of Theorem 2.9 is not true in general (see [Alcántar and Villarreal
1994], for instance).

(3) If every critical binomial of IA is a circuit and the critical ideal has codimension
n− 1, then ci ai = c j a j , for every i 6= j . In particular, all minimal generators
of IA have the same A-degree. This situation is explored in some detail in
[García Sánchez et al. 2013] from a semigroup viewpoint.

The rest of this subsection is devoted to the investigation of necessary and
sufficient conditions for a circuit to be indispensable in IA.

Lemma 2.11. Let f = xui ( j)
i − xuj (i)

j ∈ IA be a circuit and let b = ui ( j)ai . Then
there is no monomial xv in the fiber deg−1

A (b) such that supp(xv)= {i, j}.

Proof. Suppose to the contrary that there exists such a v. Observe that xui ( j)
i − xuj (i)

j
is also a circuit of I{ai/d,a j/d}, and v ∈ deg−1

{ai/d,a j/d}(b/d), with d = gcd(ai , a j ). But
deg−1
{ai/d,a j/d}(b/d) =

{
xui ( j)

i , xuj (i)
j

}
; see, for instance, [Rosales and García 2009,

Example 8.22]. �

Theorem 2.12. Let f = xui ( j)
i −xuj (i)

j ∈ IA be a circuit and let b= ui ( j)ai . Then, f
is indispensable in IA if , and only if , b−ak 6∈NA, for every k 6= i, j . In particular,
ui ( j)= ci and uj (i)= c j .

Proof. First of all, we observe that deg−1
A (b)⊇

{
xui ( j)

i , xuj (i)
j

}
and equality holds if

and only if f is indispensable. So, the sufficiency condition follows. Conversely,
since b 6∈

∑
k 6=i, j Nak , the supports of the monomials in deg−1

A (b) are included in
{i, j} and then, by Lemma 2.11, we are done. �

From this result it follows that if a circuit is indispensable, then it is a critical
binomial.

Let ≺i j be an A-graded reverse lexicographical monomial order on k[x] such
that xk ≺i j xi and xk ≺i j x j for every k 6= i, j .

Proposition 2.13. A circuit f = xui ( j)
i − xuj (i)

j ∈ IA is indispensable in IA if and
only if it belongs to the reduced Gröbner basis of IA with respect to ≺i j .

Proof. If f is indispensable, then, by Theorem 13 of [Ojeda and Vigneron-Tenorio
2010a], it belongs to every Gröbner basis of IA. Now, suppose that f belongs to the
reduced Gröbner basis of IA with respect to ≺i j and it is not indispensable. Since
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f is not indispensable, there exists a monomial xu in the fiber of ui ( j)ai different
from xui ( j)

i and xuj (i)
j . By Lemma 2.11, we have that supp(xu) 6⊂ {i, j}, so there

is k ∈ supp(xu) and k 6∈ {i, j}. Hence, both fi = xui ( j)
i − xu and f j = xuj (i)

j − xu

belong to IA. Since the leading terms of fi and f j with respect to ≺i j equal to
xui ( j)

i and xuj (i)
j , respectively, we conclude that f = xui ( j)

i − xuj (i)
j ∈ IA is not in the

reduced Gröbner basis of IA with respect to ≺i j , a contradiction. �

Primitive binomials.

Definition 2.14. A binomial xu
− xv

∈ IA is called primitive if there exists no
other binomial xu′

− xv′ such that xu′ divides xu and xv′ divides xv . The set of all
primitive binomials is called the Graver basis of A and it is denoted by Gr(A).

Theorem 2.15. Let f = xui
i xuj

j − xuk
k xul

l ∈ Gr(A) be such that ui < ci , uj < c j ,
uk < ck and ul < cl with i, j, k and l pairwise different. Then f is indispensable in
J = IA ∩ k[xi , x j , xk, xl].

Proof. By [Sturmfels 1996, Proposition 4.13(a)], J = IA ∩ k[xi , x j , xk, xl] is the
toric ideal associated to A′ = {ai , a j , ak, al}. Thus, without loss of generality we
may assume n = 4, then J = IA. We prove that Gb(IA)= {xui

i xuj
j , xuk

k xul
l }, where

b= ui ai + uj a j . Let xv
∈ deg−1

A (b) be different from xui
i xuj

j and xul
k xul

l . If ui < vi ,
then xui

i (x
uj
j − xvi−ui

i xv j
j xvk

k xvl
l ) ∈ IA, thus xuj

j − xvi−ui
i xv j

j xvk
k xvl

l ∈ IA which is
impossible by the minimality of c j (see Proposition 2.3). Analogously, we can
prove that uj ≥v j , uk ≥vk and ul ≥vl . Therefore xvi

i xv j
j (x

ui−vi
i xuj−v j

j −xvk
k xvl

l )∈ IA

and so xui−vi
i xuj−v j

j − xvk
k xvl

l ∈ IA, a contradiction with the fact that f is primitive.
This shows that Gb(J )=

{
{xui

i xuj
j }, {x

uk
k xul

l }
}

and, by Theorem 1.10, we are done.
�

Corollary 2.16. Let f = xui
i xuj

j − xuk
k xul

l ∈ IA be such that ui < ci , uj < c j ,
uk > 0 and ul > 0 with i, j, k and l pairwise different. If xuk

k xul
l is indispensable in

J = IA ∩ k[xi , x j , xk, xl], then f is indispensable in J .

Proof. Since, by Theorem 1.9, {xuk
k xul

l } is a connected component of Gb(IA), where
b = ukak + ulal , the monomial xv

∈ deg−1
A (b) in the above proof has its support in

{i, j}. Thus, repeating the arguments of the proof of Theorem 2.15, we deduce that
ui ≥ vi and uj ≥ v j . But xui

i xuj
j − xvi

i xv j
j ∈ IA, so ui ai + uj a j = vi ai + v j a j which

implies that ui = vi and uj = v j . By Theorem 1.10 we have that f is indispensable
in J . �

Combining Theorem 2.15 with Corollary 1.11 we get:

Corollary 2.17. Given i, j, k and l ∈{1, . . . , n} pairwise different, let J be the ideal
of k[xi , x j , xk, xl] generated by all Graver binomials of IA of the form xui

i xuj
j −

xuk
k xul

l with ui < ci , uj < c j , uk < ck and ul < cl . Then J has unique minimal
system of binomial generators.
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Finally we provide another class of primitive binomials that are indispensable in
a toric ideal.

Corollary 2.18. Let f = xui
i xuj

j − xuk
k xul

l ∈ Gr(A) such that 0 < ui < ci and
0< uk < ck , for i, j, k and l pairwise different. If ui ai + uj a j is minimal among all
Graver A-degrees, then f is indispensable in IA ∩ k[xi , x j , xl, xk].

Proof. Since c j a j is a Graver A-degree, we have ui ai + uj a j ≤ c j a j , so it follows
uj < c j . Similarly, we can prove ul < cl . Therefore, by Theorem 2.15, we conclude
that f is indispensable in IA ∩ k[xi , x j , xl, xk]. �

It is worth to noting here that [García Sánchez et al. 2013, Theorem 6] offers a
characterization of the family of affine semigroups for which CA = Gr(A).

3. Classification of monomial curves in A4(k)

Let A= {a1, a2, a3, a4} be a set of relatively prime positive integers. First we will
provide a minimal system of binomial generators for the critical ideal CA. This
will be done by comparing the A-degrees of the monomials xci

i , for i = 1, . . . , 4.

Lemma 3.1. Let fi = xci
i −

∏
j 6=i xui j

j , i = 1, . . . , 4, be a set of critical binomials
of IA and let gl ∈ IA be a critical binomial with respect to xl , for some l ∈ {1, . . . , 4}.
If fl 6= − fi for every i , then gl ∈ 〈 f1, f2, f3, f4〉.

Proof. For simplicity we assume l = 1. Let g1 = xc1
1 − xv2

2 xv3
3 xv4

4 ∈ IA be a
critical binomial. If g1 = f1, there is nothing to prove. If g1 6= f1, without loss
of generality we may assume that u12 > v2, u13 ≤ v3 and u14 ≤ v4, so g1− f1 =

m1g2, with m1 = xv2
2 xu13

3 xu14
4 and g2 = xu12−v2

2 − xv3−u13
3 xv4−u14

4 ∈ IA (in particular
u12−v2 ≥ c2). But xc1

1 − xu21
1 xu12−c2

2 xu13+u23
3 xu14+u24

4 ∈ IA and also f1 6= − f2, thus
from the minimality of c1 it follows that u21 = 0, that is to say, f2 ∈ k[x2, x3, x4].
For the sake of simplicity, write g2 = xb

2 − xc
3xd

4 with b, c, d ∈ N and b ≥ c2.
Hence g2− xb−c2

2 f2 = xb−c2
2 xu23

3 xu24
4 − xc

3xd
4 . If b− c2 ≥ c2, we repeat the process.

After a finite number of steps, g2 − h2 f2 = xb−kc2
2 xku23

3 xku24
4 − xc

3xd
4 with 0 ≤

b − kc2 < c2 and h2 ∈ k[x2, x3, x4]. Then (b − kc2)a2 + ku23a3 + ku24a4 =

ca3 + da4. Since 0 ≤ b − kc2 < c2 then xku23
3 xku24

4 does not divide xc
3xd

4 . The
case xc

3xd
4 divides xku23

3 xku24
4 leads to b = kc2, c = ku23 and d = ku24. In this

setting, g2 = h2 f2, g1 = f1+m1h2 f2 and we are done. The remaining cases are
ku23 ≥ c and d ≥ ku24, or ku23 ≤ c and d ≥ ku24. Without loss of generality (by
swapping variables if necessary), we may assume that ku23≤ c and d≤ ku24. Hence
(b− kc2)a2+ (ku24− d)a4 = (c− ku23)a3, and consequently c− ku23 ≥ c3. We
also deduce that g2− h2 f2 = xku23

3 xd
4 (x

b−kc2
2 xku24−d

4 − xc−ku23
3 ). Set m3 = xku23

3 xd
4

and g3 = xb−kc2
2 xku24−d

4 − xc−ku23
3 . Since v3 − u13 − ku23 = c − ku23 ≥ c3, we

have that v2 ≥ c3. Thus xc1
1 − xu31

1 xu32+v2
2 xv3−c3

3 xu34+v4
4 ∈ IA and f1 6= −f3, from
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the minimality of c1 it follows that u31 = 0, that is to say, f3 ∈ k[x2, x3, x4].
Analogously, by using a similar argument as before (and by swapping variables
x2 and x4, if necessary), we obtain h3 ∈ k[x2, x3, x4] such that either g3 = h3 f3 or
g3−h3 f3=m3g4, with m3=−xv

′

2
2 xv

′′

4
4 , g4= xv

′

4−v4+u14−v
′′

4
4 −xv

′′

2−v
′

2
2 xv

′′

3
3 and v′′3 < c3.

If g3= h3 f3, then g1= f1+m1h2 f2+m1m2h3 f3 and we are done. Otherwise, since
xc1

1 − xu41
1 xv

′

2+v2+u42
2 xv

′

3+u13+u43
3 xv

′

4+u14−c4
4 ∈ IA and f1 6= −f4, the minimality of c1

implies that u41=0, that is to say, f4∈k[x2, x3, x4]. Therefore, we have f2, f3, f4∈

k[x2, x3, x4]. Taking into account that IA ∩k[x2, x3, x4] is generated by f2, f3 and
f4 (see [Sturmfels 1996, Proposition 4.13(a)] and [Ojeda and Pisón Casares 2004,

Theorem 2.2], for instance), we conclude that g2= g21 f2+g23 f3+g24 f4 and hence
g1 = f1+m1g21 f2+m1g23 f3+m1g24 f4, with g2 j ∈ k[x2, x3, x4], j = 1, 3, 4. �

Proposition 3.2. Let fi = xci
i −

∏
j 6=i xui j

j , i = 1, . . . , 4, be a set of critical bino-
mials. If fi 6= − f j for every i 6= j , then CA = 〈 f1, f2, f3, f4〉.

Proof. The proof follows directly from Lemma 3.1. �

Observe that fi =−f j if and only if fi = xci
i −xc j

j and f j = xc j
j −xci

i ; in particular,
fi and f j are circuits. The following proposition provides an upper bound for the
minimal number of generators of the critical ideal.

Proposition 3.3. The minimal number of generators µ(CA) of CA is less than or
equal to four.

Proof. Let F= { f1, . . . , f4} ⊂ IA be such that fi is critical with respect to xi . If
fi 6= −f j , for every i 6= j , then we are done by Proposition 3.2. Otherwise, without
loss of generality we may assume f1 =−f2, that is to say, f1 = xc1

1 − xc2
2 . Suppose

that F is not a generating set of CA. We distinguish the following cases:

(1) f1 is indispensable in IA. Then there exists a critical binomial g ∈ IA with
respect to at least one of the variables x3 and x4, say x4, such that g 6= ± fi , for
every i . By substitution of f4 with g in F we have, from Lemma 3.1, that every
critical binomial with respect to x3 or x4 is in the ideal generated by the binomials
of F. Consequently the new set F generates IA.

(2) f1 is not indispensable in IA. Then there exists a critical binomial g ∈ IA

with respect to al least one of the variables x1 and x2, for instance x2, such that
g 6= ± fi , for every i . We substitute f2 with g in F. If f3 6= −f4, then we have,
from Proposition 3.2, that the new set F generates IA. Otherwise, we substitute
f3 with a critical binomial h with respect to x3 in F such that h 6= ± fi , for every
i , when f3 is not indispensable. So, in this case, CA is generated by a set of four
critical binomials. �
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Lemma 3.4. If ci ai 6= ckak and ci ai 6= clal , where k 6= l, then either the only critical
binomial of IA with respect to xi is f = xci

i − xc j
j or there exists a critical binomial

f ∈ IA with respect to xi such that supp( f ) has cardinality greater than or equal to
three, where {i, j, k, l} = {1, 2, 3, 4}.

Proof. Suppose the contrary and let fi = xci
i − xuj

j ∈ IA where uj > c j . We define
f = xci

i − xvi
i xuj−c j

j xvk
k xvl

l = fi + xuj−c j
j f j ∈ IA with f j = xc j

j − xvi
i xvk

k xvl
l ∈ IA.

Now, from the minimality of ci it follows that vi = 0, thus at least one of vk or vl is
different from zero since f j ∈ IA, otherwise f − fi = xuj

j − xuj−c j
j ∈ IA, and this

is impossible. Therefore we conclude that supp( f ) has cardinality greater than or
equal to 3, a contradiction. The cases fi = xci

i − xuk
k ∈ IA and fi = xci

i − xul
l ∈ IA

are analogous, by using that ci ai 6= ckak and ci ai 6= clal , respectively. �

Lemma 3.5. There is no minimal generating set of CA of the form S = {xci
i −

xc j
j , xc j

j − xuj , xck
k − xcl

l , xcl
l − xul }, where {i, j, k, l} = {1, 2, 3, 4}. In particular, if

ci ai = c j a j and ckak = clal , then µ(CA) < 4.

Proof. Set uj = (u j1, . . . , u j4) and ul = (ul1, . . . , ul4). The minimality of ci , i ∈
{1, 2, 3, 4}, forces u j i =0=u j j , 0<u jk < ck , 0<u jl < cl , 0<uli < ci , 0<ul j < c j ,
ulk = 0= ull .

Set dn = gcd(A \ {an}), n ∈ {1, 2, 3, 4}. By [Herzog 1970, Theorem 3.10], the
numerical semigroup generated by {ai/dl, a j/dl, ak/dl} is symmetric and, from
the proof of [Theorem 10.6,23], it is derived that ai/dl = c j ck , a j/dl = ci ck , ck =

gcd(ai/dl, a j/dl) and ckak/dl=uli ai/dl+ul j a j/dl . Hence ai =c j ckdl, a j =ci ckdl

and ak = (uli c j + ul j ci )dl . Arguing analogously with {ai/dk, a j/dk, al/dk}, we
get ai = c j cldk, a j = ci cldk and al = (uli c j + ul j ci )dk . Thus, since gcd(ci , c j )=

gcd(ck, cl) = 1, we conclude that dk = ck and dl = cl . By considering now the
symmetric semigroups {ai/d j , ak/d j , al/d j } and {a j/di , ak/di , al/di }, we get ai =

(u jkcl + u jlck)c j , a j = (u jkcl + u jlck)ci , ak = ci c j cl and al = ci c j ck .
Putting all this together, we obtain that u jkcl + u jlck = clck which forces either

u jk = 0 or u jk ≥ ck , and this is a contradiction in both cases. �

Theorem 3.6. After permuting variables, if necessary, there exists a minimal system
of binomial generators S of CA of the following form:

Case 1: If ci ai 6= c j a j , for every i 6= j , then S= {xci
i − xui , i = 1, . . . , 4} .

Case 2: If c1a1 = c2a2 and c3a3 = c4a4 , then either c2a2 6= c3a3 and

(a) S= {xc1
1 − xc2

2 , xc3
3 − xc4

4 , xc4
4 − xu4} when µ(CA)= 3,

(b) S= {xc1
1 − xc2

2 , xc3
3 − xc4

4 } when µ(CA)= 2,

or c2a2 = c3a3 and

(c) S= {xc1
1 − xc2

2 , xc2
2 − xc3

3 , xc3
3 − xc4

4 } .

Case 3: If c1a1 = c2a2 = c3a3 6= c4a4 , then S= {xc1
1 − xc2

2 , xc2
2 − xc3

3 , xc4
4 − xu4} .
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Case 4: If c1a1 = c2a2 and ci ai 6= c j a j for all {i, j} 6= {1, 2} , then
(a) S= {xc1

1 − xc2
2 , xci

i − xui | i = 2, 3, 4} when µ(CA)= 4,
(b) S= {xc1

1 − xc2
2 , xci

i − xui | i = 3, 4} when µ(CA)= 3

where, in each case, xui denotes an appropriate monomial whose support has
cardinality greater than or equal to two.

Proof. First, we observe that our assumption on the cardinality of xui follows from
Lemma 3.4. We also notice that CA has no minimal generating set of the form
S= {xc1

1 − xc2
2 , xc2

2 − xu2, xc3
3 − xc4

4 , xc4
4 − xu4} , by Lemma 3.5.

Let J be the ideal generated by S . For the cases 1, 2(a-c), 3 and 4(a), it easily
follows that J = CA by Proposition 3.2. Indeed, in order to satisfy the hypothesis
of Proposition 3.2, we may take f4 = xc4

4 − xc1
1 ∈ J and f3 = xc3

3 − xc1
1 ∈ J in

the cases 2(c) and 3, respectively. The cases 2(a) and 4(b) happen when the only
critical binomials of IA with respect to x1 and x2 are f1= xc1

1 −xc2
2 and f2=−f1 ,

respectively, then our claim follows from Lemma 3.1. Furthermore, the case 2(b)
occurs when the only critical binomials of IA are ±(xc1

1 −xc2
2 ) and ±(xc3

3 −xc4
4 ) , so

J = CA by definition. On the other hand, since xci
i is an indispensable monomial

of IA , for every i , by Corollary 1.6, we have that xci
i is an indispensable monomial

of the ideal J , for every i . Then, we conclude that S is minimal in the sense that
no proper subset of S generates J . �

Example 3.7. This example illustrates all possible cases of Theorem 3.6.

Case 1: A= {17, 19, 21, 25} .
Case 2(a): A= {30, 34, 42, 51} .
Case 2(b): A= {39, 91, 100, 350} .
Case 2(c): A= {60, 132, 165, 220} .
Case 3: A= {12, 19, 20, 30} .
Case 4(a): A= {12, 13, 17, 20} .
Case 4(b): A= {4, 6, 11, 13} .

The reader may perform the computations in detail by using the GAP package
NumericalSgps ([Delgado et al. 2013]).

Since CA ⊆ IA, any minimal system of generators of IA can not contain more
than 4 critical binomials. This provides an affirmative answer to the question after
Corollary 2 in [Bresinsky 1988]. Notice that the only cases in which CA can have
a unique minimal system of generators are 1, 2(b) and 4(b); in these cases CA has
a unique minimal system of binomial generators if and only if the monomials xui

are indispensable.
Now we focus our attention on finding a minimal set of binomial generators of

IA, that will help us to solve the classification problem. The following lemma will
be useful in the proof of Proposition 3.9 and Theorem 3.10.
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Lemma 3.8. (i) If f = xui
i − xv is a minimal generator of IA that is not critical,

then there exists j 6= i such that supp(xv)∩ {i, j} =∅ and ci ai = c j a j . Moreover,
if xv is not indispensable, then ckak = clal , with {i, j, k, l} = {1, 2, 3, 4}.

(ii) If f = xui
i xuj

j − xv is a minimal generator of IA with ui 6= 0 and uj ≥ c j , then
supp(xv)∩ {i, j} =∅ and ci ai = c j a j . In addition, if xv is not indispensable, then
ckak = clal , with {i, j, k, l} = {1, 2, 3, 4}.

Proof. (i) Let b = ci ai . Since f is not a critical binomial, we have that ui > ci .
If ci ai 6= c j a j , for every j 6= i , then, from Lemma 3.4, there exists a critical
binomial f = xci

i − xw
∈ IA such that supp(xw) has cardinality greater than

or equal to two. If supp(xv) ∩ supp(xw) 6= ∅, then xui
i ↔ xui−ci

i xw
↔ xv is

a path in Gb(IA), a contradiction to the fact that f is a minimal generator by
Theorem 1.8. Hence supp(xv) ∩ supp(xw) = ∅. We have that supp(xv+w) ⊆

{ j, k, l}, supp(xv)∩ supp(xw)=∅ and the cardinality of supp(xw) is at least two.
This implies that xv is a power of a variable, say xv

= xvl
l . Observe that vl ≥ cl

and as f is not a critical binomial, vl 6= cl , whence x z
= xvl−cl

l xuli
i xulk

k ∈ deg−1
A (b)

is a monomial such that supp(x z) has cardinality greater than or equal to 2 and
l ∈ supp(x z). Then xui

i ↔ xui−ci
i xw

↔ x z
↔ xv is a path in Gb(IA), a contradiction.

Thus ci ai = c j a j , for an j 6= i . We have that supp(xv) ∩ {i, j} = ∅; otherwise
xui

i ↔ xui−ci
i xc j

j ↔ xv is a path in Gb(IA), a contradiction again.
Finally, if xv is not indispensable, then, by Theorem 1.9, there exists a monomial

xw
∈ deg−1

A (b) \ {xv
} such that supp(xw)∩ supp(xv) 6= ∅. If j ∈ supp(xw), then

xui
i ↔ xui−ci

i xc j
j ↔ xw

↔ xv is a path in Gb(IA), a contradiction to the fact that
f is a minimal generator. Moreover i /∈ supp(xw), by the minimality of ci . Thus
supp(xw) ⊆ {k, l} and also xvk

k xvl
l − xwk

k xwl
l ∈ IA. Suppose that ckak 6= clal Then

vkak + vlal = wkak +wlal . Assume without loss of generality that wl ≥ vl . We
have that (vk −wk)ak = (wl − vl)al 6= 0. Hence vk −wk ≥ ck . If wk 6= 0, then
vk > ck . If wk = 0, vkak = (wl −vl)al and vl 6= 0, since supp(xw)∩ supp(xv) 6=∅.
Thus wl −vl ≥ cl and wl > cl . By using similar arguments as in the first part of the
proof we arrive at a contradiction. Consequently ckak = clal .

(ii) The proof is an easy adaptation of the arguments used in (i). �

For the rest of this section we keep the same notation as in Theorem 3.6.
The following result was first proved by Bresinsky [1988, Theorem 3], but our

argument seems to be shorter and more appropriate in our context.

Proposition 3.9. There exists a minimal system of binomial generators of IA con-
sisting of the union of S and a set of binomials in IA with full support.

Proof. By Lemma 3.8(i), if for instance f = xui
i −xv is in a minimal generating set of

IA and it is not a critical binomial with respect to any variable, then ci ai = c j a j , for
j 6= i . We replace f by g= f−xui−ci

i (xci
i −xc j

j )= xui−ci
i xc j

j −xv
∈ IA in the minimal
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generating set of IA. Moreover, either supp(xv)= {k, l} and {k, l} ∩ {i, j} =∅, so
g has full support, or xv is a power of a variable, say xv

= xvk
k , with vk > ck . In this

case, by using again Lemma 3.8(i), we replace g with h = g+ xvk−ck
k (xck

k − xcl
l )=

xui−ci
i xc j

j − xvk−ck
k xcl

l ∈ IA with {k, l} ∩ {i, j} =∅. Hence, there exists a system of
generators of IA consisting of the union of a system of binomials generators of CA

and a set S′ of binomials in IA with full support. Furthermore, by Theorem 3.6, we
may assume that S is a system of binomials generators of CA.

Now, let f = xci
i − xu

∈ S and suppose that f =
∑s

n=1 gn fn where every
fn ∈ (S \ { f })∪S′. From the minimality of ci we have that fn =±(xci

i − xv) and
|gn| = 1, for some n. Then, according to the cases in Theorem 3.6, either xu or xv is
equal to xc j

j , for some j 6= i . Now in the above expression of f the term xc j
j should be

canceled, so, from the minimality of c j , we have fm =±(xc j
j −xw) and |gm |= 1, for

an m 6= n. Therefore, we conclude that either {xci
i − xc j

j ,±(x
ci
i − xv),±(xc j

j − xw)}

or {xci
i −xu,±(xci

i −xc j
j ),±(x

c j
j −xw)} is a subset of S. So, the only possible case

is S={xc1
1 −xc2

2 , xc2
2 −xc3

3 , xc3
3 −xc4

4 }. Since, in this case, IA=CA by Theorem 2.9,
and S′ =∅, we are done. �

From the above proposition it follows that IA is generic (see [Ojeda 2008], for
instance) only in Case 1. The next theorem provides a minimal generating set for
IA.

Theorem 3.10. A minimal system of generators of IA (up to permutation of indices)
is provided by the union of S, the set I of all binomials x

ui1
i1

x
ui2
i2
− x

ui3
i3

x
ui4
i4
∈ IA

with 0 < ui j < c j , j = 1, 2, ui3 > 0, ui4 > 0 and x
ui3
i3

x
ui4
i4

indispensable, and the
set R of all binomials xu1

1 xu2
2 − xu3

3 xu4
4 ∈ IA \I with full support and satisfying the

following conditions:

• u1 ≤ c1 and xu3
3 xu4

4 is indispensable, in Cases 2(a) and 4(b).

• u1 ≤ c1 and/or u3 ≤ c3 and there is no xv1
1 xv2

2 − xv3
3 xv4

4 ∈ IA with full support
such that xv1

1 xv2
2 properly divides xu1+αc1

1 xu2−αc2
2 or xv3

3 xv4
4 properly divides

xu3+αc3
3 xu4−αu4

4 for some α ∈ N, in Case 2(b).

Proof. By Proposition 3.9, there exists a minimal system of binomial generators
S∪S′ of IA such that S is a minimal system of generators of CA and supp( f )=
{1, 2, 3, 4}, for every f ∈ S′. Moreover, since all the binomials in the set I are
indispensable by Corollary 2.16, we have S′=I∪R, where R is a set of binomials
of IA of the form x

ui1
i1

x
ui2
i2
− x

ui3
i3

x
ui4
i4

with ui j 6= 0, for every j , and ui j ≥ c j for
some j .

Observe that if R = ∅, then the set defined in the statement of the theorem
coincides with S∪S′ and therefore it is a minimal set of generators. So, we assume
that R 6= ∅, that is to say, there exists a minimal generator xu1

1 xu2
2 − xu3

3 xu4
4 ∈ R

with u2 ≥ c2 (by permuting variables if necessary). By Lemma 3.8(ii) we have
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c1a1 = c2a2, so in Case 1 we have R = ∅ and therefore we are done. Moreover,
if c2a2 = ci ai , for an i ∈ {3, 4}, then xu1

1 xu2
2 ↔ xu1

1 xu2−c2
2 xci

i ↔ xu3
3 xu4

4 is a path in
Gb(IA), where b = u1a1+ u2a2, a contradiction with Theorem 1.8. Therefore, we
conclude that the theorem is also true in Case 2(c) and Case 3. Notice that, in Case
4(a), we can proceed similarly to reach a contradiction; indeed, since xc2

2 − xv
∈ S,

where supp(xv)={3, 4}, then xc1
1 −xv

∈ IA and therefore xu1
1 xu2

2 ↔ xu1+c1
1 xu2−c2

2 ↔

xu1
1 xu2−c2

2 xv
↔ xu3

3 xu4
4 is a path in Gb(IA), a contradiction with Theorem 1.8. Thus

R=∅ in Case 4(a), too.
Suppose now that xv1

1 xvi
i − xv2

2 xv j
j ∈R. By Lemma 3.8(ii) again, we obtain that

at least one of the equalities c1a1 = ci ai and c2a2 = c j a j holds. But, as we proved
above, these equalities are incompatible with the condition xu1

1 xu2
2 − xu3

3 xu4
4 ∈ R

with u2 ≥ c2. Hence, all the binomials in R are of the form x•1 x•2 − x•3 x•4 and x2

arises, with exponent greater than or equal to 2, in at least one of the variables.
We distinguish the following cases:

Case 2(a) or 4(b). If there exists xv1
1 xv2

2 − xv3
3 xv4

4 ∈R such that for instance v4 ≥ c4,
then c3a3 = c4a4 by Lemma 3.8(ii). This is clearly incompatible with Cases
2(a) and 4(b), since xv3

3 xv4
4 ↔ xv3

3 xv4−c4
4 xu4 ↔ xv1

1 xv2
2 is a path in Gd(IA), d =

a1v1+ a2v2, a contradiction with Theorem 1.8. Thus the binomials in R are of the
form xu1

1 xu2
2 − xu3

3 xu4
4 with ui < ci , i = 3, 4. If xu3

3 xu4
4 is not indispensable, then

there exists xv
− xv3

3 xv4
4 ∈ IA such that 0< vi ≤ ui , for i = 3, 4, with at least one

inequality strict and supp(xv) ⊆ {1, 2}. So, xu3
3 xu4

4 ↔ xu3−v3
3 xu4−v4

4 xv
↔ xu1

1 xu2
2

is a path in Gb(IA) where b = a3u3 + a4u4, a contradiction with Theorem 1.8.
Moreover, since xc1

1 − xc2
2 ∈ IA, we may change, if it is necessary, R by replacing

every binomial xu1
1 xu2

2 − xu3
3 xu4

4 , where u1 > c1, with xu1−αc1
1 xu2+αc2

2 − xu3
3 xu4

4 ∈ IA

such that 0< u1−αc1 ≤ c1 and u2+αc2 ≥ c2. Now the new set S∪I∪R has the
desired form. We have that

xu1
1 xu2

2 − xu3
3 xu4

4 = (x
u1−αc1
1 xu2+αc2

2 − xu3
3 xu4

4 )+ xu1−αc1
1 xu2

2 (x
αc1
1 − xαc2

2 ),

so S ∪ I ∪ R is a generating set of IA. To see that this is actually minimal,
by indispensability reasons, it suffices to show that if xu1

1 xu2
2 − xu3

3 xu4
4 ∈ R and

xv1
1 xv2

2 −xu3
3 xu4

4 ∈S∪I∪R, then xu1
1 xu2

2 = xv1
1 xv2

2 . Otherwise xu1
1 xu2

2 −xv1
1 xv2

2 ∈ IA,
but 0< u1 ≤ c1 and v1 ≤ c1. Thus |u1− v1| ≤ c1, so u1 = c1, v1 = 0 and therefore
v2 = c2, since every binomial in S∪I∪R with cardinality less than four is critical.
We have that c1a1+ a2u2 = c2a2 and also c1a1 = c2a2, so u2 = 0 a contradiction.

Case 2(b). Now, by modifying R as in the previous case if necessary, we have
that the binomials in R are of the following form: xu1

1 xu2
2 − xu3

3 xu4
4 with 0< u1 ≤

c1, u2 6= 0 and/or 0< u3≤ c3, u4 6= 0. If there exists α ∈N and xv1
1 xv2

2 −xv3
3 xv4

4 ∈ IA

with full support such that xu1+αc1
1 xu2−αc2

2 =mxv1
1 xv2

2 (or xu3+αc3
3 xu4−αc4

4 =mxv3
3 xv4

4 ,
respectively) with m 6=1, then xu1

1 xu2
2 ↔mxv3

3 xv4
4 ↔ xu3

3 xu4
4 (or xu1

1 xu2
2 ↔ xv1

1 xv2
2 m↔
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xu3
3 xu4

4 , respectively) is a path in Gb(IA), where b = u1a1+ u2a2, a contradiction
with Theorem 1.8. So, we conclude that all the binomials in R are of the desired form.
Moreover, given f = xu1

1 xu2
2 − xu3

3 xu4
4 ∈ R and a monomial xv with degA(xv) =

u1a1+u2a2, then either v1 = v2 = 0 or v1 = v3 = v4 = 0 and v2 > c2. Indeed, since
xu1

1 xu2
2 − xv1

1 xv2
2 xv3

3 xv4
4 ∈ IA, we have the following possibilities:

(i) g = xu1−v1
1 xu2−v2

2 − xv3
3 xv4

4 ∈ IA, when v1 ≤ u1 and v2 < u2. If g has full
support, then v1 = v2 = 0, otherwise f 6∈R. If for instance u1− v1 = 0, then
u2−v2≥ c2, because of the minimality of c2. Thus, g′= xu1−v1+c1

1 xu2−v2−c2
2 −

xv3
3 xv4

4 ∈ IA. If g′ has full support, then v1 = v2 = 0; otherwise the monomial
xu1−v1+c1

1 xu2−v2−c2
2 properly divides xu1+c1

1 xu2−c2
2 , that is to say, f 6∈R. If g′

does not have full support, say v3 = 0, then v4 ≥ c4 (due to the minimality of
c4). So, we may define g′′= xu1−v1+c1

1 xu2−v2−c2
2 −xc3

3 xv4−c4
4 ∈ IA and conclude

that v1 = v2 = 0, as before.

(ii) g= xu1−v1
1 − xv2−u2

2 xv3
3 xv4

4 ∈ IA, when v1 < u1 and v2 ≥ u2. Since 0< u1 ≤ c1,
we have that v1 = 0 and also u1 = c1. Thus v2 − u2 = c2 and v3 = v4 = 0,
since xc1

1 − xc2
2 is the only critical binomial with respect to x1.

(iii) g = xu2−v2
2 − xv1−u1

1 xv3
3 xv4

4 ∈ IA, when v1 ≥ u1 and v2 < u2. Now, by the
minimality of c2, we have that u2− v2 ≥ c2 and therefore h = xc1

1 xu2−v2−c2
2 −

xv1−u1
1 xv3

3 xv4
4 ∈ IA. So, either xc1+u1−v1

1 xu2−v2−c2
2 − xv3

3 xv4
4 ∈ IA, when c1 ≥

v1− u1, or xu2−v2−c2
2 − xv1−u1−c1

1 xv3
3 xv4

4 ∈ IA, when c1 < v1− u1. In the first
case we proceed as in (i), while in the other we repeat the same argument and
so on. This process can not continue indefinitely, since there exists α ∈N such
that αc1 < v1− u1, and thus we are done.

From Theorem 1.8 we have that there exists a minimal generator of A-degree
degA( f ) for each f ∈R. Furthermore, by direct checking one can show that all the
binomials in I∪R have a different A-degree, and all these A-degrees are different
from both c1a1 and c2a2. Thus, we conclude that S∪I∪R is a minimal system of
generators of IA. �

Combining Theorem 3.10 with Corollaries 2.5 and 2.16 yields the following
theorem.

Theorem 3.11. With the same notation as in Theorem 3.10, the ideal IA has a
unique minimal system of generators if and only if CA has a unique minimal system
of generators and R=∅.

In [Ojeda 2008], it is shown that there exist semigroup ideals of k[x1, . . . , x4]

with unique minimal system of binomial generators of cardinality m, for every
m ≥ 7.

Example 3.12. Let A = {6, 8, 17, 19}. The critical binomial x4
1 − x3

2 of IA is
indispensable, while the critical binomial x2

4 − x1x4
2 is not indispensable. Thus
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we are in Case 4(b). The binomial x2
1 x3

2 − x3x4 belongs to R and therefore, from
Theorem 3.11, the toric ideal IA does not have a unique minimal system of binomial
generators.

Example 3.13. Let A= {25, 30, 57, 76}, then the minimal number of generators
of IA equals 8. The only critical binomials of IA are ±(x6

1 − x5
2) and ±(x4

3 − x3
4),

so we are in Case 2(b). The binomial x3
1 x7

2 − x3x3
4 belongs to R and therefore,

from Theorem 3.11, the toric ideal IA does not have a unique minimal system of
binomial generators.

Observe that IA is a complete intersection only in cases 2(a-c), 3 and 4(b).
Moreover, except from 2(b), in all the other cases IA = CA. In the case 2(b) a
minimal system of binomial generators is xc1

1 − xc2
2 , xc3

3 − xc4
4 and xu1

1 xu2
2 − xu3

3 xu4
4

where a1u1+a2u2= a3u3+a4u4= lcm(gcd(a1, a2), gcd(a3, a4)); [Delorme 1976].
It is well known that the ring k[x]/IA is Gorenstein if and only if the semigroup

NA is symmetric, see [Kunz 1970]. We will prove that if NA is symmetric and IA

is not a complete intersection, then IA has a unique minimal system of binomial
generators.

Theorem 3.14. If f1= xc1
1 −xu13

3 xu14
4 , f2= xc2

2 −xu21
1 xu24

4 , f3= xc3
3 −xu31

1 xu32
2 and

f4 = xc4
4 − xu42

2 xu43
3 are critical binomials of IA such that supp( fi ) has cardinality

equal to 3, for every i ∈ {1, . . . , 4}, then IA has a unique minimal system of binomial
generators.

Proof. Every exponent ui j of x j is strictly less than c j , for each j = 1, . . . , 4. If
for instance u13 ≥ c3, then xc1

1 − xu31
1 xu32

2 xu13−c3
3 xu14

4 = f1+ xu13−c3
3 xu14

4 f3 ∈ IA and
therefore xc1−u31

1 − xu32
2 xu13−c3

3 xu14
4 ∈ IA, a contradiction to the minimality of c1. By

Proposition 2.3 we have that ci ai 6= c j a j , for every i 6= j . We will prove that every
fi is indispensable in CA. Suppose for example that f1 is not indispensable in CA,
then there is a binomial g = xc1

1 − xv2
2 xv3

3 xv4
4 ∈ IA. So xu13

3 xu14
4 − xv2

2 xv3
3 xv4

4 ∈ IA,
and thus v3 < u13 and v4 < u14, since u13 < c3 and u14 < c4. We have that
xv2

2 −xu13−v3
3 xu14−v4

4 ∈ IA and also xc1
1 −xu21

1 xv2−c2
2 xv3

3 xu24+v4
4 = g+xv2−c2

2 xv3
3 xv4

4 f2∈

IA. Therefore xc1−u21
1 − xv2−c2

2 xv3
3 xu24+v4

4 ∈ IA, a contradiction to the minimality of
c1. Analogously we can prove that f2, f3 and f4 are indispensable in CA. Thus
CA is generated by its indispensable binomials and therefore, from Theorem 3.11,
the toric ideal IA has a unique minimal system of binomial generators. �

Corollary 3.15. Let NA be a symmetric semigroup. If IA is not a complete inter-
section, then it has a unique minimal system of binomial generators.

Proof. From [Bresinsky 1975, Theorem 3] the toric ideal IA has a minimal gener-
ating set consisting of five binomials, namely four critical binomials of the form
defined in the above theorem and a non critical binomial. By Theorem 3.14 the
toric ideal IA is generated by its indispensable binomials. �
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According to [Bresinsky 1975, Theorem 4] the integers ai are polynomials in
the exponents of the binomial in a minimal generating system of IA. We can
see these expressions as a system of four polynomial equations, which in light of
Corollary 3.15, has a unique solution over the positive integers.

Remark 3.16. Theorem 6.4 of [Komeda 1982] shows that if NA is pseudosym-
metric (see [Rosales and García 2009] for a definition), then f1 = xc1

1 − x3xc4−1
4 ,

f2 = xc2
2 − xu21

1 x4, f3 = xc3
3 − xc1−u21−1

1 x2, f4 = xc4
4 − x1xc2−1

2 xc3−1
3 and g =

xu21+1
1 xc3−1

3 − x2xc4−1
4 with ci > 1 for i = 1, . . . , 4, and u21− 1< c1, is a minimal

system of generators of IA. Now, an easy check shows that ci ai 6= c j a j for every
i 6= j . The interested reader may prove that CA has a unique minimal system
of generators if and only if u21 = c1− 2. Thus, since R = ∅, by Theorem 3.11,
we conclude that IA is generated by its indispensable binomials if and only if
c2n2 6= (c1− 2)n1+ n4.

If the cardinality of A is greater than 4, the analogous of Corollary 3.15 is not
true in general. In [Rosales 2001] it is shown that the semigroup generated by
A= {15, 16, 81, 82, 83, 84} is symmetric. Since the monomials x11

1 , x3x6 and x4x5

have the same A-degree, we conclude, by Theorem 1.8, that the ideal IA does not
have a unique minimal system of binomial generators.

Acknowledgments

Part of this work was done during a visit of the first author to the University of
Extremadura financed by the Plan Propio 2010 of the University of Extremadura.
We thank the referee for helpful comments and suggestions that improved the paper.

References

[Alcántar and Villarreal 1994] A. Alcántar and R. H. Villarreal, “Critical binomials of monomial
curves”, Comm. Algebra 22:8 (1994), 3037–3052. MR 95c:13022 Zbl 0855.13014

[Aoki et al. 2008] S. Aoki, A. Takemura, and R. Yoshida, “Indispensable monomials of toric ideals
and Markov bases”, J. Symbolic Comput. 43:6-7 (2008), 490–507. MR 2009c:13065 Zbl 1170.13008

[Bresinsky 1975] H. Bresinsky, “Symmetric semigroups of integers generated by 4 elements”, Manu-
scripta Math. 17:3 (1975), 205–219. MR 54 #2660 Zbl 0317.10061

[Bresinsky 1988] H. Bresinsky, “Binomial generating sets for monomial curves, with applications in
A4”, Rend. Sem. Mat. Univ. Politec. Torino 46:3 (1988), 353–370. MR 92e:13004 Zbl 0738.14017

[Charalambous et al. 2007] H. Charalambous, A. Katsabekis, and A. Thoma, “Minimal systems of
binomial generators and the indispensable complex of a toric ideal”, Proc. Amer. Math. Soc. 135:11
(2007), 3443–3451. MR 2009a:13033 Zbl 1127.13018

[Delgado et al. 2013] M. Delgado, P. A. García Sánchez, and J. Morais, “NumericalSgps: a GAP
package”, 2013, Available at http://cmup.fc.up.pt/cmup/mdelgado/numericalsgps. Version 0.980.

http://dx.doi.org/10.1080/00927879408825011
http://dx.doi.org/10.1080/00927879408825011
http://msp.org/idx/mr/95c:13022
http://msp.org/idx/zbl/0855.13014
http://dx.doi.org/10.1016/j.jsc.2007.07.012
http://dx.doi.org/10.1016/j.jsc.2007.07.012
http://msp.org/idx/mr/2009c:13065
http://msp.org/idx/zbl/1170.13008
http://dx.doi.org/10.1007/BF01170309
http://msp.org/idx/mr/54:2660
http://msp.org/idx/zbl/0317.10061
http://msp.org/idx/mr/92e:13004
http://msp.org/idx/zbl/0738.14017
http://dx.doi.org/10.1090/S0002-9939-07-09037-5
http://dx.doi.org/10.1090/S0002-9939-07-09037-5
http://msp.org/idx/mr/2009a:13033
http://msp.org/idx/zbl/1127.13018
http://cmup.fc.up.pt/cmup/mdelgado/numericalsgps
http://cmup.fc.up.pt/cmup/mdelgado/numericalsgps


AN INDISPENSABLE CLASSIFICATION OF MONOMIAL CURVES IN A4(k) 115

[Delorme 1976] C. Delorme, “Sous-monoïdes d’intersection complète de N”, Ann. Sci. École Norm.
Sup. (4) 9:1 (1976), 145–154. MR 53 #10821 Zbl 0325.20065

[Eisenbud and Sturmfels 1996] D. Eisenbud and B. Sturmfels, “Binomial ideals”, Duke Math. J. 84:1
(1996), 1–45. MR 97d:13031 Zbl 0873.13021

[Fischer and Shapiro 1996] K. G. Fischer and J. Shapiro, “Mixed matrices and binomial ideals”, J.
Pure Appl. Algebra 113:1 (1996), 39–54. MR 97h:13008 Zbl 0864.15016

[García and Ojeda 2010] P. A. García Sánchez and I. Ojeda, “Uniquely presented finitely generated
commutative monoids”, Pacific J. Math. 248:1 (2010), 91–105. MR 2011j:20139 Zbl 1208.20052

[García Sánchez et al. 2013] P. A. García Sánchez, I. Ojeda, and J. C. Rosales, “Affine semigroups
having a unique Betti element”, J. Algebra Appl. 12:3 (2013), Article ID #1250177. MR 3007913
Zbl 06155975

[Herzog 1970] J. Herzog, “Generators and relations of abelian semigroups and semigroup rings”,
Manuscripta Math. 3 (1970), 175–193. MR 42 #4657 Zbl 0211.33801

[Herzog et al. 2010] J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, and J. Rauh, “Binomial edge
ideals and conditional independence statements”, Adv. in Appl. Math. 45:3 (2010), 317–333.
MR 2011j:13041 Zbl 1196.13018

[Katsabekis and Thoma 2010] A. Katsabekis and A. Thoma, “Specializations of multigradings and
the arithmetical rank of lattice ideals”, Comm. Algebra 38:5 (2010), 1904–1918. MR 2011e:13045
Zbl 1197.14054

[Komeda 1982] J. Komeda, “On the existence of Weierstrass points with a certain semigroup generated
by 4 elements”, Tsukuba J. Math. 6:2 (1982), 237–270. MR 85d:14039 Zbl 0546.14011

[Kunz 1970] E. Kunz, “The value-semigroup of a one-dimensional Gorenstein ring”, Proc. Amer.
Math. Soc. 25 (1970), 748–751. MR 42 #263 Zbl 0197.31401

[Ohsugi and Hibi 2005] H. Ohsugi and T. Hibi, “Indispensable binomials of finite graphs”, J. Algebra
Appl. 4:4 (2005), 421–434. MR 2006e:13023 Zbl 1093.13020

[Ojeda 2008] I. Ojeda, “Examples of generic lattice ideals of codimension 3”, Comm. Algebra 36:1
(2008), 279–287. MR 2008j:13027 Zbl 1133.13014

[Ojeda and Pisón Casares 2004] I. Ojeda and P. Pisón Casares, “On the hull resolution of an affine
monomial curve”, J. Pure Appl. Algebra 192:1-3 (2004), 53–67. MR 2005e:13018 Zbl 1079.13007

[Ojeda and Vigneron-Tenorio 2010a] I. Ojeda and A. Vigneron-Tenorio, “Indispensable binomi-
als in semigroup ideals”, Proc. Amer. Math. Soc. 138:12 (2010), 4205–4216. MR 2011i:13023
Zbl 1204.13014

[Ojeda and Vigneron-Tenorio 2010b] I. Ojeda and A. Vigneron-Tenorio, “Simplicial complexes
and minimal free resolution of monomial algebras”, J. Pure Appl. Algebra 214:6 (2010), 850–861.
MR 2011g:13032 Zbl 1195.13015

[Rosales 2001] J. C. Rosales, “Symmetric numerical semigroups with arbitrary multiplicity and
embedding dimension”, Proc. Amer. Math. Soc. 129:8 (2001), 2197–2203. MR 2002b:20091
Zbl 0972.20036

[Rosales and García 2009] J. C. Rosales and P. A. García-Sánchez, Numerical semigroups, Develop-
ments in Mathematics 20, Springer, New York, 2009. MR 2010j:20091 Zbl 1220.20047

[Sturmfels 1996] B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series 8,
American Mathematical Society, Providence, RI, 1996. MR 97b:13034 Zbl 0856.13020

Received July 26, 2012. Revised October 7, 2013.

http://www.numdam.org/item?id=ASENS_1976_4_9_1_145_0
http://msp.org/idx/mr/53:10821
http://msp.org/idx/zbl/0325.20065
http://dx.doi.org/10.1215/S0012-7094-96-08401-X
http://msp.org/idx/mr/97d:13031
http://msp.org/idx/zbl/0873.13021
http://dx.doi.org/10.1016/0022-4049(95)00144-1
http://msp.org/idx/mr/97h:13008
http://msp.org/idx/zbl/0864.15016
http://dx.doi.org/10.2140/pjm.2010.248.91
http://dx.doi.org/10.2140/pjm.2010.248.91
http://msp.org/idx/mr/2011j:20139
http://msp.org/idx/zbl/1208.20052
http://dx.doi.org/10.1142/S0219498812501770
http://dx.doi.org/10.1142/S0219498812501770
http://msp.org/idx/mr/3007913
http://msp.org/idx/zbl/06155975
http://dx.doi.org/10.1007/BF01273309
http://msp.org/idx/mr/42:4657
http://msp.org/idx/zbl/0211.33801
http://dx.doi.org/10.1016/j.aam.2010.01.003
http://dx.doi.org/10.1016/j.aam.2010.01.003
http://msp.org/idx/mr/2011j:13041
http://msp.org/idx/zbl/1196.13018
http://dx.doi.org/10.1080/00927870903034821
http://dx.doi.org/10.1080/00927870903034821
http://msp.org/idx/mr/2011e:13045
http://msp.org/idx/zbl/1197.14054
http://hdl.handle.net/2241/7074
http://hdl.handle.net/2241/7074
http://msp.org/idx/mr/85d:14039
http://msp.org/idx/zbl/0546.14011
http://dx.doi.org/10.2307/2036742
http://msp.org/idx/mr/42:263
http://msp.org/idx/zbl/0197.31401
http://dx.doi.org/10.1142/S0219498805001265
http://msp.org/idx/mr/2006e:13023
http://msp.org/idx/zbl/1093.13020
http://dx.doi.org/10.1080/00927870701665487
http://msp.org/idx/mr/2008j:13027
http://msp.org/idx/zbl/1133.13014
http://dx.doi.org/10.1016/j.jpaa.2004.01.007
http://dx.doi.org/10.1016/j.jpaa.2004.01.007
http://msp.org/idx/mr/2005e:13018
http://msp.org/idx/zbl/1079.13007
http://dx.doi.org/10.1090/S0002-9939-2010-10456-2
http://dx.doi.org/10.1090/S0002-9939-2010-10456-2
http://msp.org/idx/mr/2011i:13023
http://msp.org/idx/zbl/1204.13014
http://dx.doi.org/10.1016/j.jpaa.2009.08.009
http://dx.doi.org/10.1016/j.jpaa.2009.08.009
http://msp.org/idx/mr/2011g:13032
http://msp.org/idx/zbl/1195.13015
http://dx.doi.org/10.1090/S0002-9939-01-05819-1
http://dx.doi.org/10.1090/S0002-9939-01-05819-1
http://msp.org/idx/mr/2002b:20091
http://msp.org/idx/zbl/0972.20036
http://dx.doi.org/10.1007/978-1-4419-0160-6
http://msp.org/idx/mr/2010j:20091
http://msp.org/idx/zbl/1220.20047
http://msp.org/idx/mr/97b:13034
http://msp.org/idx/zbl/0856.13020


116 ANARGYROS KATSABEKIS AND IGNACIO OJEDA

ANARGYROS KATSABEKIS

CENTRUM WISKUNDE & INFORMATICA (CWI)
POSTBUS 94079
1090 GB AMSTERDAM

THE NETHERLANDS

katsabek@aegean.gr

IGNACIO OJEDA

DEPARTAMENTO DE MATEMATICAS

UNIVERSIDAD DE EXTREMADURA

FACULTAD DE CIENCIAS

AVENIDA DE ELVAS S/N

06071 BADAJOZ

SPAIN

ojedamc@unex.es

mailto:katsabek@aegean.gr
mailto:ojedamc@unex.es


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2014 is US $410/year for the electronic version, and $535/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:pacific@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 268 No. 1 March 2014

1
ALEXANDRE PAIVA BARRETO

23A transport inequality on the sphere obtained by mass transport
DARIO CORDERO-ERAUSQUIN

33A cohomological injectivity result for the residual automorphic spectrum of GLn

HARALD GROBNER

47Gradient estimates and entropy formulae of porous medium and fast diffusion
equations for the Witten Laplacian

GUANGYUE HUANG and HAIZHONG LI

79Controlled connectivity for semidirect products acting on locally finite trees
KEITH JONES

95An indispensable classification of monomial curves in A4(k)

ANARGYROS KATSABEKIS and IGNACIO OJEDA

117Contracting an axially symmetric torus by its harmonic mean curvature
CHRISTOPHER KIM

135Composition operators on strictly pseudoconvex domains with smooth symbol
HYUNGWOON KOO and SONG-YING LI

155The Alexandrov problem in a quotient space of H2
× R

ANA MENEZES

173Twisted quantum Drinfeld Hecke algebras
DEEPAK NAIDU

205L p harmonic 1-forms and first eigenvalue of a stable minimal hypersurface
KEOMKYO SEO

231Reconstruction from Koszul homology and applications to module and derived
categories

RYO TAKAHASHI

249A virtual Kawasaki–Riemann–Roch formula
VALENTIN TONITA

Pacific
JournalofM

athem
atics

2014
Vol.268,N

o.1


	Introduction
	1. Generalities on indispensable monomials and binomials
	2. Critical binomials, circuits and primitive binomials
	3. Classification of monomial curves in A4(k)
	Acknowledgments
	References
	
	

