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CHRISTOPHER KIM

We consider the harmonic mean curvature flow of an axially symmetric
torus whose axis is a closed geodesic, where the ambient space is a hyper-
bolic three-manifold. Assuming the initial surface is strictly convex and its
harmonic mean curvature is less than 1

2 , we show that the evolving surface
satisfies a curvature condition comparable to that of a perfectly symmetric
torus evolving under harmonic mean curvature flow. In other words, we
prove that λ1 ≈ e−t , λ2 ≈ et and λ1λ2 ≈ 1, where λ1 and λ2 are the principal
curvatures of the evolving torus.

1. Introduction

We consider the contraction of a convex torus embedded in a hyperbolic 3-manifold
to a closed geodesic using the harmonic mean of the principal curvatures. Each
point on the torus whose axis is a closed geodesic moves in the normal direction
pointing to its axis with a speed equal to the harmonic mean curvature. Let 62

=

S1
×S1 be a two-dimensional torus, N 3 a hyperbolic 3-manifold containing a closed

geodesic and 80 :6
2
→ N 3 a smooth initial immersion of 62 into N 3 centered at

a closed geodesic. The evolution process is described by a one-parameter family of
immersions 8 :6×[0, T )→ N satisfying

(HMCF)
∂8(p, t)
∂t

=−F(p, t) · N (p, t),

8(p, 0)=80(p).

Here, F = λ1λ2/(λ1+λ2) is the harmonic mean curvature of 6t :=8(6, t) where
λ1, λ2 are the principal curvatures and N is the outward unit normal vector of 6t .

Andrews studied harmonic mean curvature flow (HMCF) of strictly convex
compact hypersurfaces without boundary in Euclidean [Andrews 1994a] and Rie-
mannian manifolds [1994b], showing that the evolving hypersurface converges
to a round point in finite time. Other authors studied HMCF of hypersurfaces in
Euclidean space under various curvature conditions [Caputo and Daskalopoulos
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2009; Daskalopoulos and Hamilton 2006; Daskalopoulos and Sesum 2010; Dieter
2005] and showed that the evolving hypersurface converges, when it does, to a round
point. In this paper, we are interested in surfaces converging to a closed geodesic,
not a point, in hyperbolic 3-manifolds by HMCF. Examples of hypersurfaces in
hyperbolic manifolds converging to a totally geodesic submanifold by HMCF were
constructed in [Gulliver and Xu 2009]. However, only hypersurfaces at a constant
distance from totally geodesic submanifolds were considered there, so the curvature
flow problem reduced to analyzing simple ODEs. This paper generalizes parts of
the results of Gulliver and Xu to axially symmetric surfaces. Recently in [Andrews
et al. 2013], weakly convex hypersurfaces in Euclidean space containing cylindrical
regions were shown to shrink to a line segment when the hypersurface is deformed
by certain curvature function. However, curvatures of the evolving surface were
not analyzed in that paper.

In this paper, we will obtain curvature estimates of an axially symmetric torus
contracting to a closed geodesic in hyperbolic 3-manifold by HMCF. Analyzing
the principal curvatures of a torus presents a novel problem since as the torus
approaches the axis we expect the small principal curvature to converge zero and
the large principal curvature to approach infinity. And the product of the principal
curvatures is expected to be more or less constant since it equals 1 (see (1-1)) on a
perfect torus whose axis is a closed geodesic. This kind of curvature estimate is
different from the estimates obtained for spherical hypersurfaces in Theorem 4.1
of [Andrews 1994b] and Theorem 5.1 of [Huisken 1984], stating that the ratio of
principal curvatures are uniformly bounded. We need to estimate each principal
curvature separately to show that they exhibit contrasting dynamics but the product
should remain bounded throughout the evolution process.

We will consider a torus 62 embedded into a hyperbolic 3-manifold N 3 such that
it is axially symmetric about a closed geodesic γ : S1

→ N 3. Let r : S1
→[0, R] be

a generating function defined on γ . An axially symmetric torus can be constructed
by revolving the graph of the generating function about the closed geodesic.

Theorem 1.1 (main theorem). Let 60 be an axially symmetric torus around a
closed geodesic γ in a hyperbolic 3-manifold N , generated by revolving a graph
of r : S1

→ R+ about γ . Assume 60 is strictly convex and maxx∈60 F(x) < 1
2

where F(x) is the harmonic mean curvature at x ∈ 60. Then, the solution of the
HMCF with initial surface 60 exists for all t ∈ [0,∞) and remains strictly convex.
The evolving surface converges to the closed geodesic exponentially fast and the
principal curvatures satisfy λ1 ≈ e−t , λ2 ≈ et and λ1λ2 ≈ 1.

Notation. Uniform constants are denoted by Ci . The same symbol C might imply
different constants from line to line. The approximation symbol f ≈ g denotes that
there exist C1,C2 > 0 such that C1g ≤ f ≤ C2g.
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Remarks. (1) The reason we impose the curvature condition max60 F < 1
2 is that

for a perfectly symmetric torus we have 0 < F(r) < 1
2 for all r ∈ (0,∞); thus

perfectly symmetric tori of any radius satisfy the condition. This can be easily seen
as follows: Since the principal curvatures of a perfect torus are λ1 = tanh r and
λ2 = coth r (by the Riccati equation, λ′i + λ

2
i = 1), the harmonic mean curvature is

F =
1

(coth r)−1+ (tanh r)−1 =
1

coth r + tanh r
.

Thus,
d F
dr
=

1

sinh2 r + cosh2 r
> 0 for all r.

But

lim
r→0

coth r =∞, lim
r→0

tanh r = 0, lim
r→∞

coth r = lim
r→∞

tanh r = 1.

Therefore
lim
r→0

F = 0, lim
r→∞

F = 1
2 , 0< F(r) < 1

2 .

(2) The HMCF of a perfectly symmetric torus whose axis is a closed geodesic in a
hyperbolic manifold was considered in Theorem 3 of [Gulliver and Xu 2009]. The
authors showed that the radius r(t) of the evolving torus satisfies

r(t)= 1
2 sinh−1(e−t sinh 2r0)≈ e−t ,

where r0 is the radius of the initial torus. Since the principal curvatures of perfect
torus are λ1 = tanh r and λ2 = coth r , we obtain the asymptotic estimates of both
principal curvatures:

(1-1) λ1 ≈ e−t , λ2 ≈ et , λ1λ2 = 1.

The main theorem of this paper shows that the principal curvatures of an axially
symmetric torus contracting to a closed geodesic under HMCF retain the curvature
estimates (1-1) of an evolving perfectly symmetric torus.

The paper is organized as follows. In Section 2, we derive essential geometric
quantities available on axially symmetric spaces. In Section 3, we prove the
short and long time existence of HMCF of axially symmetric torus and discuss
the preservation of convexity of the surface. We derive the evolution equations of
important geometric quantities in Section 4. In Section 5, we prove that the evolving
surface remains a graph throughout the deformation process and also prove that
λ2 ≈ et . Along the way, we obtain the optimal estimate λ1 ≈ e−t and conclude that
λ1λ2 ≈ 1.
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2. Axially symmetric spaces

In this section, we will use the orthonormal frames to derive geometric quantities
defined on axially symmetric surfaces. A similar computation was carried out in
[Cabezas-Rivas and Miquel 2009] for general rotationally symmetric spaces. In
the neighborhood of the closed geodesic, the hyperbolic metric can be expressed
in Fermi coordinates as ds2

= dr2
+ h(r)2dθ2

+ b(r)2dz2 where r is the distance
from the axis, θ is the angular unit of the circle perpendicular to the axis, z is the
position along the axis and b(r) = cosh r , h(r) = sinh r . We have the following
orthonormal frames in (n+ 1)-dimensional rotationally symmetric space.

E0 := Er =
∂

∂r
, E1 := Ez =

1
b(r)

∂

∂z
, Ei =

1
h(r)

ei for i = 2, . . . , n,

where ei is an orthonormal frame of Sn−1 with the standard metric. Its dual
orthonormal coframe is given by

θr
= dr, θ z

= b(r)dz, θ i
= h(r)ei for i = 2, . . . , n.

In these frames, the Cartan connection form ωb
a defined by dθb

=−

n∑
a=0
ωb

a ∧ θ
a is

given by

ωz
r =

b′(r)
b(r)

θ z, ωi
r =

h′(r)
h(r)

θ i , ωi
z = 0, ωi

j =
Sωi

j

where Sωi
j represents the Cartan connection form on Sn−1. The covariant deriva-

tives of the orthonormal frames can be computed from the equation ∇X Ea =∑n
b=0 ω

b
a(X)Eb and their results are given below. We denote the covariant deriv-

ative defined on the ambient manifold by ∇ and the covariant derivative on the
hypersurface by ∇. The symbol ′ denotes the derivative with respect to r and
subscripts of r mean the derivative with respect to z. For i = 2, . . . , n,

(2-1)

∇Er Er = 0, ∇Ez Er =
b′(r)
b(r)

Ez, ∇Ei Er =
h′(r)
h(r)

Ei

∇Er Ez = 0, ∇Ez Ez =−
b′(r)
b(r)

Er , ∇Ei Ez = 0,

∇Er Ei = 0, ∇Ez Ei = 0, ∇Ei E j =−
h′(r)
h(r)

δi j Er +
Sωk

j (Ei )Ek .

For a hypersurface constructed by revolving the graph of a generating function
r : S1

→ R+, the tangent vector σ of the generating curve and the unit normal
vector N of the hypersurface are given by

(2-2) σ =
1

√

r2
z + b2

(rz Er + bEz), N =
1

√

r2
z + b2

(bEr − rz Ez).
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The principal curvatures of the hypersurface in the direction of σ and Ei are

λ1 =
〈
∇σσ, N

〉
=

1
√

r2
z + b2

(
−rzzb+ r2

z b′

r2
z + b2 + b′

)
,(2-3)

λi =
〈
∇Ei Ei , N

〉
=

b
√

r2
z + b2

h′

h
= u

h′

h
for i = 2, . . . , n,(2-4)

respectively. Note the hypersurfaces of revolution is generated by a graph if

(2-5) u := 〈Er , N 〉 =
b

√

r2
z + b2

is greater than 0; equivalently, v := u−1 is finite. Note that u ≤ 1 by its definition.

3. Short and long time existence and preserving convexity

In this section, we first prove the short time existence of HMCF of axially symmetric
torus and review the long time existence and preservation of convexity proved in
[Gulliver and Xu 2009]. Let W j

i = hik gk j be the Weingarten map of6t , where hi j is
the second fundamental form and gi j is the induced metric on 6t . We can view the
harmonic mean curvature function as F(W j

i )= f (λ(W j
i )), where λ(W j

i )= (λ1, λ2)

is the set of eigenvalues of W j
i and f (λ1, λ2)= λ1λ2/(λ1+λ2). Let us first discuss

the short time existence of HMCF when the flow equation is cast in terms of the
graph function. If we express (HMCF) in terms of the graph function using〈

∂φ

∂t
, N
〉
= F,

we obtain

(3-1)
∂r
∂t
=−

rzz−2 tanh(r)r2
z −sinh r cosh r

tanh(r)rzz−(2 tanh2 r+1)r2
z −sinh2 r−cosh2 r

, r(z, 0)= r0(z)

for all (z, t) ∈ S1
×[0, T ). Since the initial surface is assumed to be strictly convex,

from (2-3) and (2-4) we find that at t = 0

(3-2) λ̃1 := −rzz + 2 tanh(r)r2
z + sinh r cosh r > 0.

We consider positive solutions

(3-3) r > 0.

We define Cα(S1) to be the set of standard Hölder continuous functions on S1 and
C2+α(S1) to be a space of functions g on S1 such that g, gz, gzz ∈ Cα(S1). We set
Qτ = S1

×[0, τ ] for some τ > 0 and define C2+α(Qτ ) to be a space of functions
g on Qτ such that gt , g, gz, gzz ∈ Cα(S1).
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Lemma 3.1. Let r0 ∈ C2+α(S1). There exists some t0 > 0 such that a unique
solution r ∈ C2+α

(
S1
×[0, t0]

)
solves (3-1).

Proof. Let M : C2+α(Qτ )→ Cα(Qτ ) be a fully nonlinear operator defined by

M(r)= rt − F(z, t, r, rz, rzz),

where

F(z, t, r, rz, rzz)=−
rzz − 2 tanh r r2

z − sinh r cosh r

tanh r rzz − (2 tanh2 r + 1)r2
z − sinh2 r − cosh2 r

.

Consider the linearization of M around a function r ∈ C2+α(Qτ ) such that
‖r − r0‖< δ for some δ > 0. If we choose δ small enough, any such r will satisfy
conditions (3-2) and (3-3) since the initial condition r0 ∈ C2+α(S1) satisfies those
conditions. Then, the linearized equation around the function r , namely

(3-4)
∂ r̃
∂t
= DF(r)(r̃)= α(r, rz, rzz)r̃zz +β(r, rz, rzz)r̃z + γ (r, rz, rzz)r̃ ,

where

α =
−r2

z −cosh2 r

(tanh r λ̃1+r2
z +cosh2 r)2

,

β =
(4 tanh2 r−4 tanh2 r−2)rzλ̃1+4 tanh r rz(r2

z +cosh2 r)

(tanh r λ̃1+r2
z +cosh2 r)2

,

γ =

[(
rzz

cosh2 r
−

2 tanh r

cosh2 r
r2

z −3 sinh r cosh r+sinh2 r tanh r
)
λ̃1

+

(
2r2

z

cosh2 r
+cosh2 r+sinh2 r

)
(r2

z+cosh2 r)
]/

(tanh r λ̃1+r2
z +cosh2 r)2

satisfy

inf
Qτ

α(r, rz, rzz) > µ > 0 for some µ and α, β, γ ∈ Cα(Qτ ).

By standard theory for linear parabolic PDEs, the linearized equation (3-4) with
the initial condition r̃0 ∈ C2+α(S1) has a unique solution r̃ ∈ C2+α(Qτ ). Applying
the inverse function theorem for Banach spaces (see [Daskalopoulos and Hamilton
1999, Theorem 8.5]), we conclude that there exists t0 > 0 such that (3-1) has a
unique solution r ∈ C2+α

(
Qt0
)
. �

Remark. The fully nonlinear equation (3-1) is, in fact, uniformly parabolic due to
C1 and C2 estimates of r (Corollary 5.7).

In [Gulliver and Xu 2009, Theorem 6], it is proved that the solution of (HMCF)
exists for infinite time and the evolving surface remains strictly convex. We will
restate the theorem dividing it into two parts: the first stating the lower bound of
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the harmonic mean curvature (HMC) and the second stating its upper bound. We
will give the entire proof of the second part since some estimates used in the proof
will be improved in Section 4 in order to obtain the asymptotically optimal upper
bound for HMC.

Theorem 3.2 [Gulliver and Xu 2009, Theorem 6]. Let N 3 be a hyperbolic manifold.
If the initial surface is strictly convex, then F(x, t)≥ (minM0 F)e−t as long as the
solution of HMCF exists. In other words, the surface remains strictly convex.

Theorem 3.3. Let N 3 be a hyperbolic manifold. Assume that the initial hypersur-
face is strictly convex and max60 F < 1

2 . Then, the solution of HMCF exists for
infinite time and max6t F ≤ Ce−t/2 for some constant C and for all t ∈ [0,∞).

Remark. Note that f ≤ λ1 ≤ 2 f if λi > 0. Therefore, the theorem implies that
max6t λ1 ≤ Ce−t/2, where λ1 is the smallest principal curvature. Together with
Theorem 3.2, we obtain C1e−t

≤ F ≤ C2e−t/2.

Proof. We find the upper bound for F by analyzing the evolution equation of F .
We set

L=
∂F

∂h j
i

∇i∇
j ,

which is an elliptic operator as long as the hypersurface is strictly convex.
∂F
∂t
= L(F)+ F

〈
Ḟ,W 2〉

+ F
〈
Ḟ i j , Ri0 j0

〉
= L(F)+

∑
i

F
∂ f
∂λi

(
λ2

i + Ri0i0
)

≤ L(F)+
∑

i

F3
−

∑
i

F
∂ f
∂λi

= L(F)+ 2F3
− F3

∑
i

λ−2
i ≤ L(F)+ 2F3

−
1
2 F.

By the maximum principle, we can solve the following ODE and obtain an upper
bound for F(x, t):

d F̃
dt
= 2F̃3

−
1
2 F̃, F̃(0)=max

x∈M
F(x, 0).

The solution of the ODE is F̃(t)−2
= (F̃(0)−2

−4)et
+4, so we have F(x, t)≤ F̃(t)

for all x ∈ M as long as the solution of HMCF exists. For the proof of infinite time
existence, see [Gulliver and Xu 2009, Theorem 6]. �

Since disjoint surfaces remain disjoint under HMCF by the maximum principle,
given a torus whose axis is a closed geodesic, two perfect tori enclosing it from
inside and outside, which are called barriers, will remain disjoint throughout the
flow; thus, the radius of the evolving torus is comparable to the radii of the barriers.
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Lemma 3.4. Let r be the generating function of an axially symmetric torus evolving
by HMCF. Then there exist C1 and C2 such that C1e−t

≤ r(x, t) ≤ C2e−t for all
x ∈6t as long as the solution of HMCF exists.

4. Evolution equations

To show that the surface of revolution remains a graph over the closed geodesic, it
is sufficient to prove that v remains uniformly bounded for all time. To this end,
we first derive the evolution equations of r (Lemma 4.1) and v (Lemma 4.3). From
now on we will only consider the case n = 2.

Lemma 4.1. The generating function satisfies following evolution equation.(
∂

∂t
−L

)
r =

(
λ1
∂ f
∂λ1
− f

)
u−

∂ f
∂λ1

b′

b
u2
−
∂ f
∂λ2

h′

h
(1− u2).

Proof. Let us compute ∂r
∂t

and Lr .

∂r
∂t
=

〈
∂

∂r
,
∂X
∂t

〉
=− f u.

We choose a geodesic coordinate ∂1= σ, ∂2= E2 at a fixed point such that gi j = δi j

and hi j = λiδi j for i, j = 1, 2. Since ∇σσ = 0 and E2(r)= 0,

Lr = Ḟkl
∇k∇

lr =
∂ f
∂λ1
∇σ∇σ r +

∂ f
∂λ2
∇E2∇E2r =

∂ f
∂λ1

σσ(r)−
∂ f
∂λ2

(∇E2 E2)r.

Let us first compute the term σσ(r). By (2-1)–(2-5),

σ(r)=
〈
σ,
∂

∂r

〉
=

rz
√

r2
z + b2

=−〈N , Ez〉

and

(4-1) σσ(r)=−σ 〈N , Ez〉 = −〈∇σ N , Ez〉− 〈N ,∇σ Ez〉

= −〈λ1σ, Ez〉−

〈
N ,−

b′
√

r2
z + b2

Er

〉
=−λ1u+

b′

b
u2.

On the other hand,

(4-2) −(∇E2 E2)r =−
〈
∇E2 E2, σ

〉
σ(r)=

h′

h
(1− u2).

Combining (4-1) and (4-2), we obtain

Lr =
∂ f
∂λ1

(
− λ1u+

b′

b
u2
)
+
∂ f
∂λ2

h′

h
(1− u2),

and this finishes the proof of the lemma. �

It is straightforward to derive the evolution equation of φ(r) for a smooth function
φ : R→ R.
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Lemma 4.2. The following evolution equation is satisfied by φ◦r :6×[0,∞)→R:(
∂

∂t
−L

)
φ(r)=φ′

[(
λ1
∂ f
∂λ1
− f

)
u−

∂ f
∂λ1

b′

b
u2
−
∂ f
∂λ2

h′

h
(1−u2)

]
−φ′′

∂ f
∂λ1

(1−u2).

Proof. We compute

φ′′ Ḟkl
∇kr∇lr = φ′′

∂ f
∂λ1

(σ (r))2 = φ′′
∂ f
∂λ1
〈Ez, N 〉2 = φ′′

∂ f
∂λ1

(1− u2). �

Lemma 4.3. The gradient function v = u−1 satisfies the evolution equation(
∂

∂t
−L

)
v =−

2
v

ḟ kl
∇kv∇lv−

∂ f
∂λ1

(
b′

b

)′(
v− v−1)

−
∂ f
∂λ1

v

(
v−1 b′

b
− λ1

)2

+

(
∂ f
∂λ2

b′h′

bh
−
∂ f
∂λ2

(
h′

h

)′
+
∂ f
∂λ1

(
b′

b

)2 )
v

−
∂ f
∂λ2

λ2
b′

b
+

(
∂ f
∂λ2

(
h′

h

)′
−
∂ f
∂λ1

(
b′

b

)2 )
v−1.

Proof. Let us first compute Ḟkl
∇k∇

lu by choosing the geodesic coordinate at a
fixed point as before:

Ḟkl
∇k∇lu =

∂ f
∂λ1

σσ(u)−
∂ f
∂λ2

(∇E2 E2)u.

From (2-1) and (2-2), we get ∇σ Er = u b′

b
Ez . Substituting, we obtain

(4-3) σ(u)= σ 〈Er , N 〉 = 〈∇σ Er , N 〉+ 〈Er ,∇σ N 〉 =
(

u
b′

b
− λ1

)
〈Ez, N 〉.

As preparation for calculating σσ(u), we first observe that, by (2-2) and (4-3),

σ

(
u

b′

b

)
=

[(
u

b′

b
− λ1

)
b′

b
− u

(
b′

b

)′ ]
〈Ez, N 〉.

From (2-1) and (2-2), we see ∇σ Ez =−u(b′/b)Er , and get

σ 〈Ez, N 〉 =
〈
− u

b′

b
Er , N

〉
+〈Ez, λ1σ 〉 = −u

(
u

b′

b
− λ1

)
.

Then,

σσ(u)=
[(

u
b′

b
− λ1

)
b′

b
− u

(
b′

b

)′ ]
(1− u2)− σ(λ1)〈Ez, N 〉− u

(
u

b′

b
− λ1

)2

,

where we used that 〈Ez, N 〉2 = 1− u2. By (2-1) and (4-3), it is straightforward to
compute (

∇E2 E2
)
u =

〈
∇E2 E2, σ

〉
σ(u)=

h′

h

(
u

b′

b
− λ1

)
(1− u2).

We finally obtain
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(4-4) Ḟkl
∇k∇lu =

∂ f
∂λ1

([(
u b′

b
− λ1

)b′

b
− u

(b′

b

)′ ]
(1− u2)

− σ(λ1)〈Ez, N 〉− u
(

u b′

b
− λ1

)2
)

−
∂ f
∂λ2

h′

h

(
u b′

b
− λ1

)
(1− u2).

In order to compute ∂u/∂t , we will use the identities

∂N
∂t
=∇F,

∂Er

∂t
=−F∇N Er =−F〈Ez, N 〉

b′

b
Ez.

Then,

(4-5) ∂u
∂t
=
∂

∂t
〈N , Er 〉 = σ(F)〈σ, Er 〉− F(1− u2)

b′

b

=−
∂ f
∂λ1

σ(λ1)〈Ez, N 〉− ∂ f
∂λ2

σ(λ2)〈Ez, N 〉− F(1− u2)
b′

b

=−
∂ f
∂λ1

σ(λ1)〈Ez, N 〉− ∂ f
∂λ2

[(
u b′

b
− λ1

)h′

h
− u

(h′

h

)′ ]
(1− u2)

− F(1− u2)
b′

b
,

where we used 〈σ, Er 〉 = −〈Ez, N 〉 in the third equation and in the last equation
we substituted

σ(λ2)= σ
(

u h′

h

)
=

[(
u b′

b
− λ1

)h′

h
− u

(h′

h

)′ ]
〈Ez, N 〉.

From (4-4) and (4-5), we derive(
∂

∂t
− Ḟkl

∇k∇l

)
u = ∂ f

∂λ2
u(1− u2)

(h′

h

)′
− F(1− u2)

b′

b

−
∂ f
∂λ1

[(
u b′

b
− λ1

)b′

b
− u

(b′

b

)′ ]
(1− u2)+

∂ f
∂λ1

u
(

u b′

b
− λ1

)2
.

By the definition of v= u−1, we have Ḟkl
∇k∇lu=−

1
v2 Ḟkl

∇k∇lv+
2
v3 Ḟkl

∇kv∇lv

and ∂u/∂t =−(1/v2)∂v/∂t . Hence

(4-6)
(
∂

∂t
− Ḟkl

∇k∇l

)
v =−

2
v

Ḟkl
∇kv∇lv−

∂ f
∂λ1

(b′

b

)′
(v− v−1)

−
∂ f
∂λ1

v
(
v−1 b′

b
− λ1

)2
−
∂ f
∂λ2

(h′

h

)′
(v− v−1)

+ f b′

b
(v2
− 1)+ ∂ f

∂λ1

b′

b

(
v−1 b′

b
− λ1

)
(v2
− 1).

Combining v2 terms in the second line of (4-6) and applying Euler’s identity



CONTRACTING AN AXIALLY SYMMETRIC TORUS 127

∂ f
∂λ1

λ1+
∂ f
∂λ2

λ2 = f and (2-4), the v2 term can be reduced to a linear term:(
f b′

b
−
∂ f
∂λ1

b′

b
λ1

)
v2
=

(
f b′

b
−

b′

b

(
f − ∂ f

∂λ2
λ2

))
v2
=

b′

b
∂ f
∂λ2

λ2v
2
=

b′

b
∂ f
∂λ2

h′

h
v.

We then obtain the evolution equation of v as stated in the lemma. �

5. Preserving the property of being a graph and curvature estimates

In this section, we study HMCF solutions of an axially symmetric torus centered at
a closed geodesic satisfying the hypothesis of Theorem 1.1: the initial surface is
strictly convex and max60 F < 1

2 . Since we will prove many technical estimates,
we take this opportunity to outline the overall argument. The main goal of this
section is to prove that the evolving surface stays as a graph as it converges to
the closed geodesic. As discussed in Section 3, this is equivalent to showing that
v = u−1 is uniformly bounded for all time (Theorem 5.5). However, we cannot
prove the uniform boundedness of v directly using its evolution equation, so the
first step is to obtain a weak estimate: vh ≤ C where h(r)= sinh r (Theorem 5.2).
This estimate is weaker than v < C since the graph function r , thus sinh r , decays
to 0 by the barrier argument in Lemma 3.4. We can then deduce by (2-4) that
λ2 = h′/vh = cosh r/(v sinh r) is uniformly bounded from below. Then, together
with Theorem 3.3 we can estimate the ratio of two principal curvatures: λ2/λ1→∞

as t→∞ (Corollary 5.3). Equipped with this new estimate for λ2/λ1, we revisit
the proof of Theorem 3.3 and obtain the optimal asymptotic upper bound of the
HMC (Theorem 5.4): λ1 ≈ e−t . Finally, we can prove that the gradient function
v is uniformly bounded (Theorem 5.5) and deduce that λ2 ≈ et thanks to the
formula (2-4) for λ2 available on axially symmetric surfaces. We then conclude in
Corollary 5.6 that the principal curvatures of axially symmetric torus behave like
those of perfect torus evolving under HMCF as stated in (1-1).

We first consider evolution equations of φ(r)v where φ :R→R is a test function
to be chosen later.

Lemma 5.1. The evolution equation for φ(r)v is given by(
∂

∂t
−L

)
φv = φ

(
−
∂ f
∂λ1

(
b′

b

)′(
v−

1
v

)
−
∂ f
∂λ1

v

(
1
v

b′

b
− λ1

)2

−
∂ f
∂λ2

λ2
b′

b

+

[
∂ f
∂λ2

(
h′

h

)′
−
∂ f
∂λ1

(
b′

b

)2 ]
1
v

)
− f φ′+

[
−
∂ f
∂λ2

(
h′

h

)′
+
∂ f
∂λ2

h′b′

hb
+
∂ f
∂λ1

(
b′

b

)2 ]
φv

−
∂ f
∂λ1

(
−λ1+

1
v

b′

b

)
φ′−

∂ f
∂λ2

h′

h

(
v−

1
v

)
φ′−φ′′

∂ f
∂λ1

(
v−

1
v

)
−

2
v

Ḟkl
∇k(φv)∇lv.
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Proof. Apply Lemmas 4.2 and 4.3 to(
∂

∂t
−L

)
φv = φ

(
∂

∂t
−L

)
v+ v

(
∂

∂t
−L

)
φ− 2Ḟkl

∇kφ∇lv. �

Theorem 5.2. We have hv ≤ C on M ×[0,∞), where h(r)= sinh r .

Proof. All the terms in the big parentheses straddling the first and second lines
of the equation in Lemma 5.1 are nonpositive, as is the subsequent term −fφ′.
Substitute φ = h in that equation. Ignoring all the terms just mentioned since they
are nonpositive, we obtain(
∂

∂t
−L

)
hv ≤

[
−
∂ f
∂λ2

(h′

h

)′
+
∂ f
∂λ2

h′b′

hb
+
∂ f
∂λ1

(b′

b

)2
]

hv−
∂ f
∂λ1

(1
v

b′

b
−λ1

)
h′

−
∂ f
∂λ2

h′

h

(
v−

1
v

)
h′−h′′

∂ f
∂λ1

(
v−

1
v

)
−

2
v

Ḟkl
∇k(hv)∇lv

=

[
−
∂ f
∂λ2

(h′

h

)′
+
∂ f
∂λ2

h′b′

hb
+
∂ f
∂λ1

(b′

b

)2
−

h′′

h
∂ f
∂λ1
−

(h′

h

)2 ∂ f
∂λ2

]
hv

+

(
−hh′

∂ f
∂λ1

b′

b
+hh′′

∂ f
∂λ1
+h′2

∂ f
∂λ2

)
1

hv

+h′
∂ f
∂λ1

λ1−
2
v

Ḟkl
∇k(hv)∇lv

=−
hv

cosh2 r

∂ f
∂λ1
+

cosh2 r
hv

∂ f
∂λ2
+cosh r

∂ f
∂λ1

λ1−
2
v

Ḟkl
∇k(hv)∇lv.

There exist positive constants C0,C1, and C2 such that

−
1

cosh2 r

∂ f
∂λ1
≤−C0, cosh2 r

∂ f
∂λ2
≤ C1, cosh r

∂ f
∂λ1

λ1 ≤ C2,

by Theorem 3.3, Lemma 3.4 and the fact that, if λ1, λ2 > 0, then

(5-1) 1
2
≤
∂ f
∂λ1
≤ 1 and 0≤

∂ f
∂λ2
≤ 1.

The evolution equation becomes(
∂

∂t
−L

)
vh ≤−C0vh+C1(vh)−1

+C2−
2
v

Ḟkl
∇k(hv)∇lv

and we can apply the maximum principle to obtain a uniform upper bound for hv:

max
6t

hv ≤max
{

1
2C0

(
C2+

√
C2

2 + 4C0C1
)
,max
60

hv
}
. �

Corollary 5.3. We have λ2 > C1 and λ2/λ1 ≥ C2et/2 on 6t for all t ∈ [0,∞).

Proof. The large principal curvature λ2 has a uniform lower bound, as can be seen
by applying Theorem 5.2 to (2-4). It follows that the ratio λ2/λ1 tends to infinity at
the rate et/2 since λ1 ≤ Ce−t/2 from Theorem 3.3. �
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We will use the growth estimate of the ratio λ2/λ1 to improve the proof of
Theorem 3.3 and squeeze out the optimal upper bound of the harmonic mean
curvature F . As we shall see below, the ODE associated to the evolution equation
of F now has a time dependent coefficient due to the use of growth estimate
λ2/λ1 > Cet/2. Therefore, we need to analyze the solution of a nonautonomous
ODE in order to establish the optimal upper bound of F .

Theorem 5.4. There exist T > 0 and C1,C2 > 0 such that, for all t ≥ T ,

C1e−t
≤ F ≤ C2e−t .

Proof. Since Theorem 3.2 provides the lower bound, it is enough to prove the upper
bound. We analyze the evolution equation of the harmonic mean curvature F from
Theorem 3.3 again:(

∂

∂t
−L

)
F = F 〈Ḟ,W 2

〉+ F 〈Ḟ i j , Ri0 j0〉

=

∑
i

F
∂ f
∂λi

(λ2
i + Ri0i0)

=

∑
i

F3
−

∑
i

F
∂ f
∂λi

= 2F3
− F

(
F2
∑

i

λ−2
i

)
≤ 2F3

− δ(t)F,

where
δ(t)=max

{ 1
2 , 1−Ce−t/2}

was obtained by observing that F2∑2
i=1 λ

−2
i =

(
λ−2

1 + λ
−2
2

)
/
(
λ−1

1 + λ
−1
2

)2
≥

1
2 if

λi > 0 and that

F2
2∑

i=1

λ−2
i ≥ 1− 2

(
λ2

λ1

)−1

≥ 1−Ce−t/2

due to Corollary 5.3. Then, by the maximum principle, F(x, t) ≤ ψ(t) for all
(x, t) ∈6×[0,∞) where ψ(t) is the solution of following nonautonomous ODE:

(5-2)
dψ
dt
=−2ψ

(
δ(t)/2−ψ2), ψ(0)=max

60
F.

Since we are interested in the asymptotic decay rate of the harmonic mean curvature,
we will find decay rate of ψ(t) for t ∈ [T,∞) for large T by comparing the solution
of (5-2) with the solutions of (5-3) and (5-4) below. Note that due to the initial
condition max60 F < 1

2 it is not hard to see that ψ(t)→ 0 as t→∞; thus we can
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choose large T such that ψ(T )= ε for any given ε > 0. Consider the ODEs

dψ
dt
=−2ψ

(
δ/2− ε2),(5-3)

dψ̂
dt
=−2ψ̂

(
δ/2−ψ2),(5-4)

on the time interval [T,∞) with conditions ψ(T )= ψ̂(T )= ε.

Claim I. ψ ≤ ψ̂ ≤ ψ for all t ∈ [T,∞).

Proof. Since ψ(T )= ε and ψ is nonincreasing for all t ∈ [T,∞), from (5-2) and
(5-3)

d
dt
(logψ − logψ)= 2(ψ2

− ε2)≤ 0.

Hence, ψ ≤ ψ on [T,∞).
Using this result, we see from (5-2) and (5-4) that

d
dt
(logψ − log ψ̂)= 2(ψ2

−ψ2)≤ 0.

Hence ψ ≤ ψ̂ on [T,∞). Finally, from (5-3) and (5-4), we have

d
dt
(log ψ̂ − logψ)= 2(ψ2

− ε2)≤ 0

since ψ(T )= ε and ψ is nonincreasing. Hence, ψ̂ ≤ ψ on [T,∞). �

Claim II. ψ̂(t)≤ C3e−t for all t ≥ T .

Proof. Let us find the exact solutions of (5-3) and (5-4). Noting that δ(t)=1−Ce−t/2

for t ∈ [T,∞) when T is large, the solution of (5-3) is

(5-5) ψ(t)= ψ(T ) exp
[
(−1+ 2ε2)t − 2Ce−t/2

+C1
]
,

where C1 = (1− 2ε2)T + 2Ce−T/2.
Next, substituting (5-5) into (5-4) and integrating in time, we obtain

log
ψ̂

ψ̂(T )
=

∫ t

T
(−1+Ce−t/2

+ 2ψ2) dt

=−t − 2Ce−t/2
+ T + 2Ce−T/2

+ 2
∫ t

T
ψ2 dt.

But ∫ t

T
ψ2 dt = ψ(T )2

∫ t

T
exp

[
2(−1+ 2ε2)t − 4Ce−t/2

+ 2C1
]

dt ≤ C2.

Hence,
ψ̂(t)≤ C3e−t . �
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Using Claims I and II and the maximum principle, we conclude that

max
x∈6t

F ≤ ψ(t)≤ ψ̂(t)≤ Ce−t for all t ≥ T . �

We are now in a position to prove that v is uniformly bounded.

Theorem 5.5. There exists a constant C > 0 such that v(x, t)≤ C for all (x, t) ∈
6×[0,∞).

Proof. Define a test function φ(r) = eµr1+α
, where µ is a positive number to be

chosen and α ∈ (0, 1) can be any number. Note that the asymptotic behavior φ→ 1,
φ′→ 0, and φ′′→∞ as r → 0 becomes important when it comes to obtaining
the desired estimates for the reaction terms in the evolution equation of φ(r)v. In
particular,

(5-6) φ′′(r)= µ(1+α)αr−1+αφ+
(
µ(1+α)rα

)2
φ ≥ µ(1+α)αmax

60
r−1+α

is useful since by choosing µ large, φ′′ can be made greater than any large number,
but it never becomes infinite in finite time. From Lemma 5.1,

(5-7)
(
∂

∂t
−L

)
φv ≤

[
−
∂ f
∂λ2

(h′

h

)′
+
∂ f
∂λ2

h′b′

hb
+
∂ f
∂λ1

(b′

b

)2
]
φv

−
∂ f
∂λ1

(
v−1 b′

b
−λ1

)
φ′−φ′′

∂ f
∂λ1

(
v−v−1)

−
2
v

Ḟkl
∇k(φv)∇lv

≤φ′′
([

1
φ′′

∂ f
∂λ2

1

sinh2 r
+

1
φ′′

∂ f
∂λ2
+

1
φ′′

∂ f
∂λ1

sinh2 r

cosh2 r
−

1
φ

∂ f
∂λ1

]
φv

+

[
−
φ′φ

φ′′

∂ f
∂λ1

sinh r
cosh r

+φ
∂ f
∂λ1

]
(φv)−1

+
φ′

φ′′

∂ f
∂λ1

λ1

)
−

2
v

Ḟkl
∇k(φv)∇lv.

Let us first examine the coefficient of φv, in the third line of (5-7). Since F ≈ e−t

by Theorem 5.4, sinh r ≈ e−t by Lemma 3.4, and λ2 >C by Corollary 5.3, the first
term is

(5-8)
∂ f
∂λ2

1

sinh2 r
=

f 2λ−2
2

sinh2 r
≤ C.

By Lemma 3.4, (5-1), (5-6), and (5-8), we see that the first three terms can be made
arbitrarily small if we choose a large µ. On the other hand, the last term in the
third line of (5-7) is strictly negative since we can find a constant C0 > 0 such that
φ−1 ∂ f/∂λ1 > C0; thus there is a constant C1 > 0 such that

1
φ′′

∂F
∂λ2

1

sinh2 r
+

1
φ′′

∂F
∂λ2
+

1
φ′′

∂F
∂λ1

(
sinh r
cosh r

)2

−
1
φ

∂ f
∂λ1
≤−C1.
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Using similar argument, we see that the rest of the terms in the fourth line of (5-7)
can be uniformly bounded above, so the evolution equation becomes(

∂

∂t
−L

)
φv ≤ φ′′

(
−C1 ·φv+C2(φv)

−1
+C3

)
−

2
v

Ḟkl
∇k(φv)∇lv,

and we can apply the maximum principle to conclude that on 6×[0,∞),

v ≤ φv ≤max
{

max
60

φv,
C3+

√

C2
3 + 4C1C2

2C1

}
. �

Due to the formula (2-4) for λ2 available on axially symmetric surfaces, the
uniform boundedness of v implies that λ2 ≈ 1/ sinh r ≈ et . Together with the
asymptotic estimate for λ1 from Theorem 5.4, we have shown that the principal cur-
vatures of an axially symmetric torus evolving by HMCF have the same asymptotic
curvature estimates as the perfect torus shrinking under HMCF as stated in (1-1).

Corollary 5.6. λ1 ≈ e−t , λ2 ≈ et , and λ1λ2 ≈ 1 on 6×[0,∞).

Note that uniform boundedness of v implies that |rz| is uniformly bounded. In
fact, more can be said about |rz| and |rzz| if we apply the results of Theorems 5.4
and 5.5 to the formula (2-3) for λ1. Moreover, we can deduce a better estimate
for λ2.

Corollary 5.7. We have maxz∈S1 |rzz| ≤ C1e−t , maxz∈S1 |rz| ≤ C2e−t , and

max
z∈S1
|v− 1| → 0,

λ2

coth r
→ 1 as t→∞.

Proof. Solving for rzz in (2-3) , we obtain

rzz =
1
b
[
− λ1(r2

z + b2)3/2+ (2r2
z + b2)b′

]
.

Using that |rz| is uniformly bounded and both λ1 and b′ = sinh r decrease at the
rate e−t ,

|rzz| ≤
(r2

z + b2)3/2

b
λ1+

2r2
z + b2

b
b′ ≤ Ce−t .

Since r is a function defined on S1, the derivative rz cannot have a sign; that is, at
each time t , there is z0(t) such that rz(z0(t), t)= 0. Then,

max
z∈S1
|rz(z, t)| =max

S1

∣∣rz(z, t)− rz(z0(t), t)
∣∣≤max

S1

∫ z

z0(t)
|rzz(s, t)| ds ≤ Ce−t .

Now, by the definition of v we see that v→ 1 uniformly in space and time, and
from the formula (2-4) for λ2 we obtain uniform convergence λ2→ coth r . �
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