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COMPOSITION OPERATORS
ON STRICTLY PSEUDOCONVEX DOMAINS

WITH SMOOTH SYMBOL

HYUNGWOON KOO AND SONG-YING LI

It is well known that the composition operator Cφ is unbounded on Hardy
and Bergman spaces on the unit ball Bn in Cn when n > 1 for a linear holo-
morphic self-map φ of Bn. We find a sufficient and necessary condition for
a composition operator with smooth symbol to be bounded on Hardy or
Bergman spaces over a bounded strictly pseudoconvex domain in Cn. More-
over, we show that this condition is equivalent to the compactness of the
composition operator from a Hardy or Bergman space into the Bergman
space whose weight is 1

4 bigger. We also prove that a certain jump phenom-
enon occurs when the composition operator is not bounded. Our results
generalize known results on the unit ball to strictly pseudoconvex domains.

1. Introduction

Let D be a bounded strictly pseudoconvex domain in Cn with a smooth boundary and
let d(z) be the distance from z ∈ D to ∂D. Let H(D) be the set of all holomorphic
functions on D. For 0< p <∞ and α >−1, the weighted Bergman space Ap

α(D)
is the space of all f ∈ H(D) for which

‖ f ‖p
Ap
α
=

∫
D
| f (z)|p dVα(z) <∞,

where dVα(z) = d(z)α dV (z) and dV is the Lebesgue measure on D. Also, for
0< p <∞, the Hardy space H p(D) is the space of all f ∈ H(D) for which

‖ f ‖p
H p = lim

ε→0

∫
∂Dε

| f (ζ )|p dσε(ζ ) <∞,

where σε is the surface measure on ∂Dε = {z ∈ D : d(z) = ε}. It is well known
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(see [Krantz 2001]) that the admissible limit f ∗(ζ ) exists for almost every ζ ∈ ∂D
when f ∈ H p(D) and

‖ f ‖p
H p =

∫
∂D
| f ∗(ζ )|p dσε(ζ ) <∞,

where σ is the surface area measure on ∂D. For notational convenience we may
view H p(D) as Ap

−1(D).
Let φ= (φ1, . . . , φn) : D→ D be a holomorphic self-map on D. Then φ induces

the composition operator, Cφ , defined on H(D) by

Cφ( f )= f ◦φ.

When D is the unit disk, 1, in C, every composition operator is bounded on
the weighted Bergman spaces and the Hardy spaces by Littlewood’s subordination
principle. On the other hand, when D is the unit ball, Bn , in Cn with n ≥ 2, it is
known that not every composition is bounded on the weighted Bergman spaces or
the Hardy spaces. Among the early examples of unbounded composition operators
on H p(B2), the example φ(z1, z2) = (2z1z2, 0) is due to J.H. Shapiro and the
examples φ(z1, z2)= (ψ(z1, z2), 0) for ψ inner were given by MacCluer [1984]
and Cima, Stanton, and Wogen [Cima et al. 1984]. Other than the Carleson measure
characterization there is no satisfactory criteria known for general symbols up to
present time. Since a holomorphic linear map φ can not guarantee Cφ is bounded
on Hardy and Bergman spaces when n > 1, one may concentrate on finding a good
criteria for smooth holomorphic φ ∈ C∞(Bn) so that Cφ is bounded on Hardy
spaces, H 2(Bn), and Bergman spaces, A2(Bn).

When φ is smooth up to the boundary, Warren Wogen [1988] found a necessary
and sufficient condition for Cφ to be bounded on H p(Bn). This was generalized to
Ap
α(Bn) in [Koo and Smith 2007], where the authors also showed what is called the

jump phenomenon: if φ is smooth up to the boundary and Cφ is not bounded on
Ap
α(Bn), then Cφ : A

p
α(Bn) 6→ Ap

α−ε(Bn) for all 0≤ ε < 1
4 . It was also proved [Koo

and Park 2010] that the boundedness of Cφ : A
p
α(Bn)→ Ap

α(Bn) is equivalent to the
compactness of Cφ : Ap

α(Bn)→ Ap
α+1/4(Bn) when φ is smooth up to the boundary.

Wogen’s original proof [1988] is quite long and involves various local analyses of
the inducing map. Koo and Wang [2010] gave a much simpler proof of Wogen’s
result using certain compactness argument.

In this paper, we generalize the boundedness criteria and the jump phenomenon
of composition operators with smooth symbols to bounded strictly pseudoconvex
domains in Cn . We adapt the compactness argument of [Koo and Wang 2010] in
our proof. Our main theorem is the following, with Qφ(ζ ) defined as in (3-1).

Theorem 1.1. Let 0< p <∞ and α ≥−1. Let φ : D→ D be a holomorphic map
with φ ∈ C4(D). Then the following are equivalent.
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(1) Cφ : Ap
α(D)→ Ap

α(D) is bounded.

(2) Cφ : Ap
α(D)→ Ap

α+1/4(D) is compact.

(3) Qφ(ζ ) < 1 on φ−1(∂D).

Moreover, if Cφ : A
p
α(D) 6→ Ap

α(D), then Cφ : A
p
α(D) 6→ Ap

α+ε(D) for all 0<ε < 1
4 .

Remark. For φ(z)= (z1+z2
2/2, 0) : B2→ B2, we know Cφ : A

p
α(B2)→ Ap

α+1/4(B2)

is bounded [Koo and Smith 2007] but not compact [Koo and Park 2010].

In Section 2, we review well-known facts on strictly pseudoconvex domains D
and Wogen’s result on the unit ball. In Section 3, we study local behavior of maps
on D which are smooth on D, especially holomorphic self-maps of D. We prove
our main theorem in Section 4.

Throughout the paper we use the same letter C to denote various positive constants
which may vary at each occurrence but do not depend on the essential parameters.
Variables indicating the dependency of constants C will be often specified in
parentheses. For nonnegative quantities X and Y the notation X . Y or Y & X
means X ≤ CY for some inessential constant C . Similarly, we write X ≈ Y if both
X . Y and Y . X hold.

2. Background

Strictly pseudoconvex domain. A C2-domain D ⊂ Cn is strictly pseudoconvex if
there is a defining function r ∈ C2(Cn) such that

D = {z ∈ Cn
: r(z) > 0}

and there exists C > 0 such that

(2-1) C |w|2 ≤−
n∑

j=1

∂2r(ζ )
∂ζi∂ζ̄ j

wiw j

for all ζ ∈ ∂D and for all w ∈ Cn . For ε > 0, let

Dε = {z ∈ D : r(z) > ε}.

For z, w ∈ D, define a quasimetric d(z, w) by

(2-2) d(z, w)= r(z)+ r(w)+
∣∣∣∣ n∑

j=1

∂r(w)
∂w j

(z j −w j )

∣∣∣∣+ |z−w|2.
For z, w ∈ D, let

X (z, w)= r(w)+
n∑

j=1

∂r(w)
∂w j

(z j −w j )+
1
2

n∑
j,k=1

∂2r(w)
∂wi∂w j

(z j −w j )(zk −wk).
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Note that, by Taylor expansion of r near w, we get

r(z)=−r(w)+ 2 Re X (z, w)+
n∑

i, j=1

∂2r(w)
∂wi∂w j

(zi −wi )(z̄ j −w j )+ O(|z−w|3).

Thus, when D is strictly pseudoconvex and z ∈ D is near η ∈ ∂D,

(2-3) Re X (z, η)≥ 0

by (2-1). Moreover, it is well known from work of C. Fefferman [1974] that there
exists δD > 0 such that

(2-4) |X (z, w)| ≈ d(z, w)

for all (z, w) ∈ RδD , where

Rδ = {(z, w) ∈ D× D : r(z)+ r(w)+ |z−w|< δ}.

Carleson measures. For any ζ ∈ ∂D, we can define a Carleson region centered at
ζ with radius δ by

C(ζ, δ)= {z ∈ D : d(z, ζ ) < δ}.

A positive Borel measure µ on D is said to be a Carleson measure if there is a
constant M > 0 such that, for all ζ ∈ ∂D and δ > 0,

µ(C(ζ, δ))≤ Mσ(C(ζ, δ)∩ ∂D),

and such a measure µ is said to be a vanishing Carleson measure if

lim
δ→0

sup
ζ∈∂D

µ(C(ζ, δ))

σ (C(ζ, δ)∩ ∂D)
= 0.

Also, for α > −1, a positive Borel measure µ on D is said to be an α-Carleson
measure if there is a constant M > 0 such that, for all ζ ∈ ∂D and δ > 0,

µ(C(ζ, δ))≤ MVα(C(ζ, δ)),

and such a measure µ is said to be a vanishing α-Carleson measure if

lim
δ→0

sup
ζ∈∂D

µ(C(ζ, δ))

Vα(C(ζ, δ))
= 0.

By [Krantz and Li 1994] the Vα-volume of C(ζ, δ) and the surface area of the
intersection C(ζ, δ)∩ ∂D are

(2-5) Vα(C(ζ, δ))≈ δn+1+α and σ(C(ζ, δ)∩ ∂D)≈ δn,

respectively.
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The next theorem follows from Hörmander’s work [1967] on Carleson measures,
the work on Bergman and Szegő kernels by Fefferman [1974] and Phong and Stein
[1977], together with Krantz and Li’s [1994; 1995a; 1995b] work on Hardy spaces
and Bergman spaces.

Theorem 2.1. Let D be a smooth bounded strictly pseudoconvex domain in Cn ,
0< p <∞ and α >−1. Let µ be a positive Borel measure on D and ν a positive
Borel measure on D.

(1) The inclusion H p(D) ↪→ L p(µ) is continuous if and only if µ is a Carleson
measure, and compact if and only if µ is a vanishing Carleson measure.

(2) The inclusion Ap
α(D) ↪→ L p(ν) is continuous if and only if ν is an α-Carleson

measure, and compact if and only if µ is a vanishing α-Carleson measure.

Let φ : D→ D be a holomorphic mapping and, for a holomorphic function f
on D, let

Cφ( f )(z)= f ◦φ(z).

Since D is bounded, φ has admissible limit φ∗(ζ ) almost everywhere in ∂D. So,
when ξ ∈ ∂D, we define φ(ξ)=: φ∗(ξ). Let σ ◦φ−1 and Vα ◦φ−1 be the measures
on D and D defined by

σ ◦φ−1(E)=
∫
φ∗−1(E)

dσ(ζ )

for all E ⊂ D and

Vα ◦φ−1(E)=
∫
φ−1(E)

dVα(z)

for all E ⊂ D, respectively. Then, by a change of variables, we have∫
∂D
|Cφ f (ζ )|p dσ(ζ )=

∫
D
| f (z)|p dσ ◦φ−1(z)

and ∫
D
|Cφ f (z)|p dVα(z)=

∫
D
| f (z)|p dVα ◦φ−1(z).

Therefore, as a corollary of Theorem 2.1 we have the following characterization.

Corollary 2.2. Let 0 < p <∞, α, β > −1, and φ : D → D be a holomorphic
mapping.

(1) Cφ : H p(D)→ H p(D) is bounded if and only if σ ◦φ−1 is a Carleson measure,
and compact if and only if σ ◦φ−1 is a vanishing Carleson measure.

(2) Cφ :H p(D)→ Ap
α(D) is bounded if and only if Vα◦φ−1 is a Carleson measure,

and compact if and only if Vα ◦φ−1 is a vanishing Carleson measure.

(3) Cφ : Ap
α(D)→ Ap

β(D) bounded if and only if Vβ ◦φ−1 is an α-Carleson mea-
sure, and compact if and only if Vβ ◦φ−1 is a vanishing α-Carleson measure.
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Wogen’s theorem. Let φ : Bn→ Bn be holomorphic and φ ∈C4(Bn). Then Wogen
proved [1988] the following characterization for Cφ to be bounded in H 2(Bn),
which was generalized by Koo and Smith to Ap

α(Bn) [2007], and by Koo and Park
to holomorphic Sobolev spaces [2010]. For z, ζ ∈ Cn and a smooth function g, let

(2-6) Dζ g(z)=
n∑

j=1

ζ j
∂g
∂z j

(z) and Dζ̄ g(z)=
n∑

j=1

ζ̄ j
∂g
∂ z̄ j

(z).

For z, w ∈ Cn , let 〈z, w〉 be the Hermitian inner product defined by

〈z, w〉 =
n∑

j=1

z jw j .

Theorem 2.3. Let φ : Bn→ Bn be holomorphic and φ ∈ C4(Bn). Let 0< p <∞,
α ≥ −1. For η ∈ ∂Bn , let Hη(z) = 〈φ(z), η〉. Then Cφ : Ap

α(Bn)→ Ap
α(Bn) is

bounded if and only if
|Dττ Hη(ζ )|< Dζ Hη(ζ )

for all ζ, η, τ ∈ ∂Bn such that

ζ ∈ φ−1(∂Bn), η = φ(ζ ), 〈ζ, τ 〉 = 0.

Koo and Smith [2007] proved that the following jump phenomenon occurs when
Cφ is not bounded.

Theorem 2.4. Let φ : Bn→ Bn be holomorphic and φ ∈ C4(Bn). Let 0< p <∞,
α ≥ −1. If Cφ is not bounded on Ap

α(Bn), then Cφ : Ap
α(Bn) 6→ Ap

α+ε(Bn) for all
0≤ ε < 1

4 .

The following was proved for the critical index ε = 1
4 [Koo and Park 2010].

Theorem 2.5. Let φ : Bn→ Bn be holomorphic and φ ∈ C4(Bn). Let 0< p <∞
and α≥−1. Then Cφ : A

p
α(Bn)→ Ap

α(Bn) is bounded if and only if Cφ : A
p
α(Bn)→

Ap
α+1/4(Bn) is compact.

3. Local estimates of smooth holomorphic maps on D

Throughout this section we assume that φ : D→ D is a holomorphic mapping with
φ ∈ C4(D) where D is a bounded strictly pseudoconvex domain with a smooth
boundary. For z ∈ Cn , we use the following notation:

z = (z1, z2, . . . , zn)= (z1, z′)= (z1, z2, z′′), z j = x j + iy j (1≤ j ≤ n).

For w near ∂D, let
ν(w)= |∂r(w)|−1∂r(w),
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where

∂r(z)=
(
∂r(z)
∂z1

, . . . ,
∂r(z)
∂zn

)
.

For η ∈ ∂D, let
φη(z)= X (φ(z), η)

and let

Qφ(ζ, η)= sup
τ

{∣∣∣∣ D2
ττφη(ζ )

Dν(ζ )φη(ζ )
−

D2
ττr(ζ )
|∂r(ζ )|

∣∣∣∣ · |∂r(ζ )|
|D2
ττr(ζ )|

: 〈τ, ν(ζ )〉 = 0
}
.

If η = φ(ζ ), we let

(3-1) Qφ(ζ )= Qφ(ζ, φ(ζ )).

For D= Bn , it is easy to check that φη=2Hη−2 and the condition on Theorem 2.3
is equivalent to Qφ(ζ ) < 1 for all ζ ∈ φ−1(∂D).

Proposition 3.1. Let ζ ∈ ∂D and η = φ(ζ ) ∈ ∂D. Then

(1) Dν(ζ )φη(ζ ) > 0,

(2) Dτφη(ζ )= 0 for all τ with 〈ν(ζ ), τ 〉 = 0,

(3) Qφ(ζ )≤ 1.

Proof. Let ζ, η ∈ ∂D, and 〈ν(ζ ), τ 〉 = 0. Without loss of generality, we may choose
local coordinates near (ζ, η) ∈ ∂D× ∂D ⊂ C2n such that

ζ = η = (0, . . . , 0), ν(ζ )= ν(η)= (1, 0, . . . , 0), τ = (0, 1, 0, . . . , 0).

For 1≤ i, j ≤ n, let

ri =
∂r(ζ )
∂zi

, ri j =
∂2r(ζ )
∂zi∂z j

, ri j̄ =
∂2r(ζ )
∂zi∂ z̄ j

,

and let

ai =
∂r(η)
∂zi

, ai j =
∂2r(η)
∂zi∂z j

.

Also, for 1≤ i, j, `≤ n, let

b`i =
∂φ`(ζ )

∂zi
, b`i j =

∂2φ`(ζ )

∂zi∂z j
.

From the definition of X , we have

φη(z)=: X (φ(z), η)

=

n∑
j=1

∂r(η)
∂η j

(φ j (z)− η j )+
1
2

n∑
i, j=1

∂2r(η)
∂ηi∂η j

(φi (z)− ηi )(φ j (z)− η j ),
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and thus

(3-2) φη(z)= a1φ1(z)+
1
2

n∑
i, j=1

ai jφi (z)φ j (z).

Since the harmonic function Reφ1 takes a minimum at ζ and ν(ζ ) is the inward
normal vector at ζ ∈ ∂D, by Hopf’s lemma, we have

(3-3) b1
1 =

∂φ1(ζ )

∂ζ1
=
∂ Reφ1

∂x1
(ζ ) > 0.

Since ν(ζ )= (1, 0, . . . , 0), for z near ζ

r(z)= 2r1x1+ O(|z|2) (r1 > 0).

Therefore, there are ε, δ > 0 such that

z = (x1, z′) ∈ D if 0< x1 ≤ δ and |z′|2 = ε|x1|.

Then, for all (x1, z′) with 0< x1 ≤ δ and |z′|2 = ε|z1|, we have

0≤ Reφ1(x1, z′)= Re
(

b1
1x1+

n∑
j=2

b1
j z j

)
+ O(|z|2).

From this, we can easily deduce that

(3-4) b1
j =

∂φ1(ζ )

∂ζ j
= 0 (2≤ j ≤ n).

Then, from (3-2), (3-3), and (3-4), we have

φη(z)= a1

(
b1

1z1+
1
2

n∑
i, j=1

b1
i j zi z j

)
+

1
2

n∑
k,`=1

( n∑
i, j=1

ai j bi
kb j
`

)
zkz`+ O(|z|3)

= a1b1
1

[
z1+

1
2a1b1

1

n∑
i, j=1

[
a1b1

i j +

n∑
k,`=1

ak`bk
i b`j

]
zi z j

]
+ O(|z|3).

From this we easily conclude (1) and (2).
For (3), let

(3-5) ci j =
r1

2a1b1
1

[
a1b1

i j +

n∑
k,`=1

ak`bk
i b`j

]
−

ri j

2
.
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Then we get

(3-6) φη(z)=
a1b1

1

r1

[
r1z1+

1
2

n∑
i, j=1

ri j zi z j +
1
2

n∑
i, j=1

ri j̄ zi z̄ j

]

+
a1b1

1

r1

[ n∑
i, j=1

ci j zi z j −
1
2

n∑
i, j=1

ri j̄ zi z̄ j

]
+ O(|z|3).

Note that, for z near ζ ,

r(z)= 2 Re
(

r1z1+
1
2

n∑
i, j=1

ri j zi z j +
1
2

n∑
i, j=1

ri j zi z̄ j

)
+ O(|z|3).

Now consider a point (s, teiθ , 0′′) near ζ , with s, t ≥ 0. (Here and below, 0′′ stands
for the origin in Cn−2; see start of Section 3.) We have

r(s, teiθ , 0′′)= 2r1s+ (Re(r22e2iθ )+ r22)t
2
+ O(s2

+ st + t3),

and thus

(3-7) r(s, teiθ , 0′′)≈ t5/2 if s = t5/2
−

1
2r1

(
Re(r22e2iθ )+ r22

)
t2.

Then, with z := (s, teiθ , 0′′), by (2-3) and (3-6), we have

0≤ Reφη(z)=
a1b1

1

2r1
r(z)+

a1b1
1

r1
Re
(
c22t2e2iθ

−
1
2r22t2)

+ O(t3)

=
a1b1

1

r1
Re
(
c22e2iθ

−
1
2r22

)
t2
+ O(t5/2)

for all θ . Thus
Re
(
c22e2iθ

−
1
2r22

)
≥ 0, θ ∈ [0, 2π ].

This implies

|c22| ≤ −
r22

2
.

Since ν(ζ )= (1, 0, . . . , 0) and τ = (0, 1, 0, . . . , 0), by (3-6) we have

c22 = r1
1
2
∂2φη(ζ )

∂ζ2∂ζ2

(
∂φη(ζ )

∂ζ1

)−1

−
r22

2
=
|∂r(ζ )|

2

(
D2
ττφη(ζ )

Dν(ζ )φη(ζ )
−

D2
ττr(ζ )
|∂r(ζ )|

)
.

Therefore, we have

|∂r(ζ )|
2

∣∣∣∣ D2
ττφη(ζ )

Dν(ζ )φη(ζ )
−

D2
ττr(ζ )
|∂r(ζ )|

∣∣∣∣= |c22| ≤ −
1
2
∂2r(ζ )
∂z2∂ z̄2

=−
1
2 D2

τ τ̄r(ζ ). �
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The following lemma is the key local estimate for the proof of (3) =⇒ (1) of
Theorem 1.1. First we introduce some notation. For δ > 0, let

Vδ = {ξ ∈ ∂D : |X (ξ, ζ )|< δ for some ζ ∈ φ−1(∂D)},

Wδ = {η ∈ ∂D : |X (η, φ(ζ ))|< δ for some ζ ∈ φ−1(∂D)},

K = {(ζ, φ(ζ )) ∈ ∂D× ∂D : ζ ∈ φ−1(∂D)},

Kδ = {(z, η) ∈ D× ∂D : |X (z, ζ )| + |X (φ(ζ ), η)|< δ, ζ ∈ φ−1(∂D)}.

Lemma 3.2. Suppose Qφ(ξ) < 1 on φ−1(∂D). Then there are δ > 0 and C > 1
such that, for all (z, η) ∈ Kδ,

(3-8)
1
C

(
|X (φ(ζ ), η)|+|X (z, ζ )|

)
≤|X (φ(z), η)|≤C

(
|X (φ(ζ ), η)|+|X (z, ζ )|

)
,

where the point ζ ∈ ∂D is defined by the relation

min{|X (φ(w), η)| : w ∈ Oz} = |X (φ(ζ ), η)|

and Oz is the connected component of φ−1(C(η, δ)) containing z.

Proof. Since φ ∈ C2(D), there are ε, δ > 0 such that Qφ(z, η) ≤ 1− ε for all
(z, η) ∈ Kδ. Fix (z, η) ∈ Kδ and let ζ be any point such that

min{|X (φ(w), η)| : w ∈} = |X (φ(ζ ), η)|.

Note that ζ ∈ ∂D, since φη(w) = X (φ(w), η) is an open map as a holomorphic
function on D. Without loss of generality, we may choose local coordinates near
(ζ, η) ∈ ∂D× ∂D ⊂ C2n as in the proof of Proposition 3.1 so that

ζ = η = (0, . . . , 0), ν(ζ )= ν(η)= (1, 0, . . . , 0).

Then, by Taylor expansion of φη at ζ , we have

φη(z)= φη(ζ )+
n∑

j=1

a j z j +
1
2

n∑
i, j=2

ai j zi z j + O(|z1|
2
+ |z1||z′| + |z′|3).

By Proposition 3.1(1), we have Dν(ζ )φη(ζ ) > 0 when η = φ(ζ ). Therefore, by
shrinking δ if necessary, we may assume that Dν(ζ )φη(ζ ) 6= 0 for all (ζ, η) ∈ Kδ,
and thus

a1 =
∂φη

∂z1
(ζ )= Dν(ζ )φη(ζ ) 6= 0.

Since ζ is the local minimum point of |φη|, by Taylor expansion of φη(z) at ζ
with z = (s, teiθ , 0′′) as in (3-7), we see that

a j =
∂φη

∂z j
(ζ )= 0 if j ≥ 2.
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Thus we have

(3-9) φη(z)= φη(ζ )+ a1z1+
1
2

n∑
i, j=2

ai j zi z j + O(|z1|
2
+ |z1||z′| + |z′|3).

Note that by assumption we have Qφ(ζ, η)≤ 1− ε, since (ζ, η) ∈ Kδ . Define F
and G on Cn−1 by

F(z′)= 1
2

n∑
i, j=2

(
ai j

a1
−

ri j

r1

)
zi z j , G(z′)=−(1− ε)

n∑
i, j=2

ri j̄

r1
zi z̄ j .

Then the condition Qφ(ζ, η)≤ 1− ε implies |Dτ ′τ ′F | ≤ Dτ ′τ̄ ′G for all τ ′ ∈ Cn−1.
But straightforward calculations show that

Dτ ′τ ′F(z′)= 2F(τ ′), Dτ ′τ̄ ′G(z′)= G(τ ′).

Therefore, we have∣∣∣∣ n∑
i, j=2

(
ai j

a1
−

ri j

r1

)
zi z j

∣∣∣∣≤−(1− ε) n∑
i, j=2

ri j̄

r1
zi z̄ j .

Since D is strictly pseudoconvex, from this inequality together with (2-1), we have

−

n∑
i, j=2

ri j̄

r1
zi z̄ j −

∣∣∣∣ n∑
i, j=2

(
ai j

a1
−

ri j

r1

)
zi z j

∣∣∣∣≥ εC |z′|2.
Therefore, by (3-9) we have

|Re(φη(z)−φη(ζ ))|

≥ |a1|Re
(

z1+
1
2

n∑
i, j=2

ri j

r1
zi z j+

1
2

n∑
i, j=2

ri j̄

r1
zi z̄ j

)

−|a1|

(
1
2

n∑
i, j=2

ri j̄

r1
zi z̄ j+

1
2

∣∣∣∣ n∑
i, j=2

(
ai j

a1
−

ri j

r1

)
zi z j

∣∣∣∣)+O(|z1|
2
+|z1||z′|+|z′|3)

≥
|a1|

2r1
r(z)+|a1|

εC |z′|2

2
+O(|z1|

2
+|z1||z′|+|z′|3).

Since |φη(z)− φη(ζ )|. |φη(z)− φη(ζ )| + |Re(φη(z)− φη(ζ ))|, by (3-9) we then
have

|φη(z)−φη(ζ )|&
∣∣∣∣a1z1+

1
2

n∑
i, j=2

ai j zi z j

∣∣∣∣+ |z′|2+ O(|z1|
2
+ |z1||z′| + |z′|3).
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Since |a + b| + c > |a|/M + (Mc− |b|)/M for any M ≥ 1, we see that there is
C > 0 such that

(3-10) |φη(z)−φη(ζ )| ≥ C(|z1| + |z′|2)+ O(|z1|
2
+ |z1||z′| + |z′|3).

Note that by (2-4) we have

|X (z, ζ )| ≈ d(z, ζ )

= r(z)+ r1|z1| + |z′|2

≈ |z1| + |z′|2+ O(|z1|
2
+ |z1||z′| + |z′|3).

Therefore, from (3-10), there exist C > 1 (by shrinking δ > 0 if necessary) such
that

|X (φ(z), η)− X (φ(ζ ), η)| ≥
1
C
|X (z, ζ )|, |z|< δ.

Note that if |X (φ(ζ ), η)|< 1
2C
|X (z, ζ )|, the triangular inequality yields

|X (φ(z), η)|& [|X (φ(ζ ), η)| + |X (z, ζ )|], |z|< δ.

This inequality also holds when

|X (φ(ζ ), η)| ≥
1

2C
|X (z, ζ )|,

since |X (φ(z), η)| has a minimum at ζ . The constants involved depend continuously
on η throughout the calculations, and thus, by shrinking δ > 0 again if necessary,
there are C > 0 and δ > 0 such that

(3-11) |X (φ(z), η)| ≥ C[|X (φ(ζ ), η)| + |X (z, ζ )|]

for all (z, η) ∈ Kδ.
Since

|X (z, ζ )| ≈ |z1| + |z′|2+ O(|z1|
2
+ |z1||z′| + |z′|3),

the converse inequality follows from (3-9). �

We use the same notation as in the proof of Proposition 3.1, and let

r222 =
∂3r(ζ )
∂z3

2

, r222 =
∂3r(ζ )
∂z2

2∂ z̄2
.

We use the following lemma to prove the jump phenomenon when Cφ is not bounded
on Ap

α(D).

Lemma 3.3. Let ζ = (0, . . . , 0) ∈ ∂D with

ν(ζ )= (1, 0, . . . , 0),
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and let R be a holomorphic polynomial

(3-12) R(z1, z2)= r1z1+ (r12+ r12)z1z2+
(r22+ r22)

2
z2

2+
(r222+ 3r222)

6
z3

2.

Let a ∈ C, b ∈ R, and

g(z)= (1+ az2)R(z1, z2)+ ibz3
2+ O(|z1|

2
+ |z2|

4
+ |z′′|2).

Then, for α ≥−1, there is C > 0 such that, for all δ > 0,

Vα+1/4({z ∈ D : |g(z)| ≤ δ})≥ Cδn+α+1.

Proof. It suffices to prove for δ > 0 small, and hence we assume δ > 0 is sufficiently
small. For the rest of proof we assume

(3-13) z′ = (z2, z′′) ∈ Aδ := {(z2, z′′) ∈ Cn−1
: x4

2 + y2
2 + |z

′′
|
2
≤ δ}.

From the fact that ν(ζ )= (1, 0, . . . , 0), there are constants p j ∈ R for 1≤ j ≤ 5
such that

(3-14) r(z1, z2, z′′)= r1x1+ p1x1x2+ p2 y1x2+ p3x2
2 + p4x3

2 + p5x2 y2

+O(x2
1 + y2

1 + y2
2 + x4

2 + |z
′′
|
2).

Also, there are q j ∈ R for 1≤ j ≤ 5 such that

(3-15) Im[R(z1+iy1, z2)+ibz3
2]= r1 y1+q1 y1x2+q1x1x2+q3x2 y2+q4x2

2+q5x3
2

+O(x2
1 + y2

1 + y2
2 + x4

2),

since |z1||y2| + |x2
2 y2| = O(x2

1 + y2
1 + y2

2 + x4
2).

Taking δ > 0 sufficiently small if necessary, we may assume r1+ p1x2≥ r1/2 and
r1+ q1x2 ≥ r1/2. Let (u, v)= (u(z2), v(z2)) ∈ R2 be the solution of the equations

0= (r1+ p1x2)u+ p2x2v+ p3x2
2 + p4x3

2 + p5x2 y2,

0= (r1+ q1x2)v+ q2x2u+ q3x2 y2+ q4x2
2 + q5x3

2 .

Since z′ ∈ Aδ, the solution (u, v) always exists and satisfies

|u| + |v|. δ1/2.

Hence, by (3-14) and (3-15), we have

(3-16) r(u+ iv, z2, z′′)= O(δ), Im[R(u+ iv, z2)+ ibz3
2] = O(δ).

By (2-1) we have r22 ∈ R, and thus

Re[r22z2(z2− z̄2)] = −2r22 y2
2 .
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Therefore,

2 Re[R(z1, z2)]

= r(z1, z2, 0′′)+ 2 Re[r12z1(z2− z̄2)] +Re[r22z2(z2− z̄2)]

+Re[r222z2
2(z2− z̄2)] + O(|z1|

2
+ |z2|

4)

= r(z1, z2, 0′′)− 4y2 Im[r12z1] − 2r22 y2
2 − 2y2 Re[r222z2

2] + O(|z1|
2
+ |z2|

4)

= r(z1, z2, 0′′)+ O(|z1|
2
+ |z1 y2| + y2

2 + |y2||z2|
2
+ |z2|

4)

= r(z1, z2, 0′′)+ O(x2
1 + y2

1 + y2
2 + x4

2).

Therefore, from (3-16) we have

2 Re[R(u+ iv, z2)] = O(δ),

and thus, from the second equation of (3-16), we have

|R(u+ iv, z2)| ≈ |Re[R(u+ iv, z2)]| + |Im[R(u+ iv, z2)]| = O(δ).

From these estimates we then have

|g(u+ iv,z′)|. |Re[R(u+ iv,z2)]| + |z2||R(u+ iv,z2)|

+ |Im[R(u+ iv,z2)+ ibz3
2]| + O(|u+ iv|2+ x4

2 + y2
2 + |z

′′
|
2)

= O(δ).

Since ∂g(ζ )/∂z1 = r1, by taking δ sufficiently small if necessary, we have

(3-17) z1 = u(z2)+ iv(z2)+ O(δ) =⇒ |g(z)|. δ.

Let

BC
δ (z2) := {z1 : u(z2)+Cδ ≤ x1 ≤ u(z2)+ 2Cδ, v(z2)≤ y1 ≤ v(z2)+ δ}

and
3C
δ = {z : z

′
∈ Aδ, z1 ∈ BC

δ (z2)}.

Then, by (3-14), there is C > 0 such that, for all z ∈3C
δ , we have

r(z)≈ δ,

and from (3-17), for all z ∈3C
δ , we have

|g(z1, z2, z′′)|. δ.

Therefore, there are constants c,C > 0 such that

Vα+1/4({z ∈ D : |g(z)| ≤ δ})≥ Vα+1/4(3
C
cδ)& δ

α+1/4V (3C
cδ).



COMPOSITION OPERATORS ON STRICTLY PSEUDOCONVEX DOMAINS 149

Since BC
δ (z2) is a rectangle with area Cδ2 for a fixed z2, from the definition of Aδ

in (3-13) we have

Vα+1/4({z ∈ D : |g(z)| ≤ δ})& δα+1/4V (3C
cδ)≈ δ

α+n+1.

The proof is complete, since the constants suppressed in the inequalities throughout
our calculations are independent of δ. �

4. Proof of Theorem 1.1

First, we prove the last statement, the jump phenomenon, assuming the equivalence
of (1), (2), and (3).

Let 0< ε < 1
4 and suppose

Cφ : Ap
α(D)→ Ap

α+ε(D)

is bounded. Then
Cφ : Ap

α(D)→ Ap
α+1/4(D)

is compact, since the inclusion the map I : Ap
α+ε(D) ↪→ Ap

α+1/4(D) is compact.
Thus, from the equivalence of (1) and (2) we conclude the boundedness of

Cφ : Ap
α(D)→ Ap

α(D).

To prove the equivalence of (1), (2), and (3), note that (1)=⇒ (2) is trivial since
the inclusion map I : Ap

α(D) ↪→ Ap
α+1/4(D) is compact. Thus, it suffices to show

that (2)=⇒ (3) and (3)=⇒ (1). First (3)=⇒ (1) follows from the following theorem.

Theorem 4.1. Let 0< p <∞ and α ≥−1. Let φ : D→ D be a holomorphic map
with φ ∈ C4(D). If Qφ(ζ ) < 1 on φ−1(∂D), then Cφ is bounded on Ap

α(D).

Proof. Let µ= σ ◦φ−1 and µα = Vα ◦φ−1 for α >−1. By Corollary 2.2, it suffices
to show that there exist δ0 > 0 and M > 0 such that, for all η ∈ ∂D and 0< δ < δ0,

(4-1) µ(C(η, δ))≤ Mδn

and

(4-2) µα(C(η, δ))≤ Mδn+1+α.

We may assume δ > 0 is sufficiently small, since, otherwise, (4-1) and (4-2)
hold trivially. Note that φ(D)∩ ∂D =∅ since φ is a holomorphic self-map of D.
Thus φ(D)∩ [∂D \ V ] = ∅ for any neighborhood V ⊂ ∂D of ∂D ∩ φ(∂D). By
(2-4), with Wδ as defined right before Lemma 3.2, it suffices to show that there
are constants δ1 > 0 and δ2 > 0 such that (4-1) and (4-2) hold for all δ < δ1 and
η ∈Wδ2 . Choose δ1 and δ2 small so that Lemma 3.2 holds with δ = δ0 := (δ1+ δ2),
and let C > 1 be the corresponding constant in Lemma 3.2.
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For η ∈ Wδ2 , let O j be any component of φ−1(C(η, δ0)) which also intersects
with φ−1(C(η, δ0/2C)). Let ζ j ∈ O j be a point such that

min{|X (φ(w), η)| : w ∈ O j } = |X (φ(ζ j ), η)|.

Since |X (φ(ζ j ), η)| ≤ δ0/2C , by (3-8) we have

φ(C(ζ j , δ0/2C))⊂ C(η, δ0).

Therefore, C(ζ j , δ0/2C)⊂ O j , since O j is a component which contains ζ j . This
implies that the number of components O j has an upper bound M <∞ independent
of η, since

Mδn+1+α
0 ≈

M∑
j=1

Vα(C(ζ j , δ0/2C))≤ Vα(φ−1(C(η, δ0))). 1.

Now fix such a component O j as above. Then, by Lemma 3.2,

O j ∩φ
−1(C(η, δ))⊂ C(ζ j ,Cδ)

for all δ < δ0.
Then, (4-1) and (4-2) follows immediately since the number of components has

a uniform upper bound M . �

Next, (2)=⇒ (3) follows from the following theorem together with the Carleson
measure criteria, Corollary 2.2.

Theorem 4.2. Let φ : D→ D be a holomorphic map with φ ∈ C4(D). Suppose
ζ, η = φ(ζ ) ∈ ∂D and Qφ(ζ )= 1. Then there is C > 0 such that, for all δ > 0,

Vα+1/4(φ
−1(C(η, δ)))≥ CVα(C(η, δ))

and
V−3/4 ◦φ

−1(C(η, δ))≥ Cσ(C(η, δ)∩ ∂D).

Proof. For z ∈ Cn , let z = (z1, . . . , zn) = (z1, z′) = (z1, z2, z′′). Near (ζ, η) ∈
∂D× ∂D, we choose the same coordinates as in the proof of Proposition 3.1 so
that

ζ = η = (0, . . . , 0), ν(ζ )= ν(η)= (1, 0, . . . , 0).

By change of coordinates in z′ variables if necessary, we may assume Qφ(ζ )= 1
for τ = (0, 1, 0, . . . , 0), that is,∣∣∣∣ D2

ττφη(ζ )

Dν(ζ )φη(ζ )
−

D2
ττr(ζ )
|∂r(ζ )|

∣∣∣∣ · |∂r(ζ )|
|D2
τ τ̄r(ζ )|

= 1 (τ = (0, 1, 0, . . . , 0)).

Since this relation is invariant under rotation in the z2 variable, we may assume

D2
ττφη(ζ )

Dν(ζ )φη(ζ )
−

r22

r1
=

r22

r1
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By (1) and (2) of Proposition 3.1, we have

(4-3) φη(z)= a1z1+

n∑
j=2

a2 j z2z j + a32z3
2+ O(|z1|

2
+ |z2|

4
+ |z′′|2)

with a1 > 0. Therefore, the condition Qφ(ζ )= 1 is equivalent to

(4-4)
2a22

a1
−

r22

r1
=

r22

r1
.

Let R(z1, z2) be as in (3-12). Then, by (4-3) and (4-4), we get

φη(z)=
a1

r1
(1+ Az2)R(z1, z2)+ Bz3

2

+

n∑
j=3

a2 j z2z j + O
(
|z1|

2
+ |z2|

4
+ |z1||z3|

2
+

n∑
j=4

|z j |
2
)
,

where

A =
a12

a1
−
(r22+ r22)a12

2r1
, B = a32−

(r222+ 3r222)a1

6r1
− A

(r22+ r22)a1

2r1
.

Then, by Lemma 3.3, to complete the proof it suffices to show that

Re B = 0, a2 j = 0 ( j = 3, . . . , n).

Since ν(ζ )= (1, 0, . . . , 0), for (s, t) ∈ R2 we have

r(s, t, teiθ , 0, . . . , 0)= 2r1s+ O(s2
+ t2).

Thus, for each θ, t ∈ R, there is s ∈ R with |s| . t2 such that Re[R(s, t)] =
r(s, t, teiθ , 0, . . . , 0)= 0.

Since Reφη(s, t, teiθ , 0, . . . , 0)≥ 0 by (2-3), we get

0≤ Reφη(s, t, teiθ , 0, . . . , 0)

= Re
[

a1

r1
(1+ At)R(s, t)+ Bt3

+ a23t2eiθ
]
+ O(s2

+ t4)

= Re
[

a1

r1
At R(s, t)+ Bt3

+ a23t2eiθ
]
+ O(s2

+ t4)

= Re[Bt3
+ a23t2eiθ

] + O(s2
+ t4)

for all θ . This implies a23 = 0, and, with the same argument, we get

a2 j = 0 ( j = 3, . . . , n).

Also, note that r(s,±t, 0′′) = 2r1s + O(s2
+ t2) which implies that for each ±t
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there is s = s(±t) such that r(s,±t, 0′′) = 0 with |s(±t)| . t2. Then, by (2-3),
with s = s(±t) we have

0≤ Reφη(s,±t, 0′′)=
a1

r1
Re[R(s,±t)] ± t3 Re B+ O(t |Im[R(s,±t)]| + t4)

=±t3 Re B+ O(t4).

Therefore, we get Re B = 0 and the proof is complete. �
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