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TWISTED QUANTUM DRINFELD HECKE ALGEBRAS

DEEPAK NAIDU

We generalize quantum Drinfeld Hecke algebras by incorporating a 2-co-
cycle on the associated finite group. We identify these algebras as specializa-
tions of deformations of twisted skew group algebras, giving an explicit con-
nection to Hochschild cohomology. We classify these algebras for diagonal
actions, as well as for the symmetric groups with their natural representa-
tions. Our results show that the parameter spaces for the symmetric groups
in the twisted setting is smaller than in the untwisted setting.

1. Introduction

Drinfeld Hecke algebras were defined by V. Drinfeld [1986]. They arise as symplec-
tic reflection algebras in the work of P. Etingof and V. Ginzburg [2002], as braided
Cherednik algebras in the work of Y. Bazlov and A. Berenstein [2009], and as graded
versions of affine Hecke algebras in the work of G. Lusztig [1989]. They arise in
diverse areas, such as representation theory, combinatorics, and orbifold theory,
and they were used by I. Gordon [2003] to prove a version of the n! conjecture for
Weyl groups.

In this paper, we consider quantum and twisted analogs of Drinfeld Hecke alge-
bras by incorporating quantum parameters as well as a 2-cocycle on the associated
finite group. We simultaneously generalize twisted Drinfeld Hecke algebras and
quantum Drinfeld Hecke algebras. The former was studied by S. Witherspoon
[2007], and the latter was studied in [Levandovskyy and Shepler 2011] and [Naidu
and Witherspoon 2011]. T. Chmutova [2005] generalized symplectic reflection
algebras by incorporating a 2-cocycle on the associated finite group, and showed that
such a 2-cocycle arises naturally for nonfaithful representations. Such a 2-cocycle
also arises in orbifold theory, where they are known as discrete torsion [Adem and
Ruan 2003; Căldăraru et al. 2004; Vafa and Witten 1995].

Let V be a complex vector space with basis v1, v2, . . . , vn , and q := (qi j )1≤i, j≤n ,
a tuple of nonzero scalars for which qi i = 1 and q j i = q−1

i j for all i, j . Let Sq(V )
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denote the quantum symmetric algebra

Sq(V ) := C〈v1, . . . , vn | viv j = qi jv jvi for all 1≤ i, j ≤ n〉.

Let G be a finite group acting linearly on V , and α : G×G→C×, a normalized
2-cocycle on G. Let κ : V × V → CαG be a bilinear map for which κ(vi , v j ) =

−qi jκ(v j , vi ) for all 1≤ i, j ≤ n. Let T (V ) be the tensor algebra on V , and define

Hq,κ,α := T (V )#αG/(viv j − qi jv jvi − κ(vi , v j ) | 1≤ i, j ≤ n),

the quotient of the twisted skew group algebra T (V )#αG by the ideal generated by
all elements of the form specified. Suppose that the action of G on V induces an
action of G on Sq(V ) by automorphisms, so we may form the twisted skew group
algebra Sq(V )#αG. Assigning each vi degree one and each group element degree
zero makes Hq,κ,α a filtered algebra, and makes Sq(V )#αG a graded algebra. We call
Hq,κ,α a twisted quantum Drinfeld Hecke algebra (over C) if it satisfies the Poincaré–
Birkhoff–Witt condition: the associated graded algebra gr Hq,κ,α is isomorphic,
as a graded algebra, to Sq(V )#αG. The space of all maps κ : V × V → CαG for
which Hq,κ,α is a twisted quantum Drinfeld Hecke algebra will be referred to as
the parameter space.

Main results and organization. In Section 2, we use G. Bergman’s Diamond
Lemma [1978] to give necessary and sufficient conditions for the algebra Hq,κ,α to
be a twisted quantum Drinfeld Hecke algebra.

In Section 3, we identify the twisted quantum Drinfeld Hecke algebras Hq,κ,α
as specializations of particular types of deformations of the twisted skew group
algebras Sq(V )#αG.

Section 4 develops the homological algebra needed for the sections that follow.
Specifically, this section is concerned with the computation of the degree two
Hochschild cohomology of Sq(V )#αG.

In Section 5, we establish a one-to-one correspondence between the subspace
of constant Hochschild 2-cocycles (see Section 3 for definition) contained in
HH2(Sq(V )#αG) and twisted quantum Drinfeld Hecke algebras associated to the
quadruple (G, V, q, α). As a consequence, we show that every constant Hochschild
2-cocycle on Sq(V )#αG lifts to a deformation of Sq(V )#αG.

In Section 6, we consider diagonal actions of G on a chosen basis for V , and,
using results from [Naidu et al. 2011], we classify the corresponding twisted
quantum Drinfeld Hecke algebras.

In Section 7, we consider the symmetric groups Sn, n ≥ 5, with their natural
representations, with the unique nontrivial quantum parameters qi j =−1, i 6= j , and
with a cohomologically nontrivial 2-cocycle on Sn , which is unique up to coboundary.
We classify the corresponding twisted quantum Drinfeld Hecke algebras. Our results
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show that the parameter space in the twisted setting is smaller than in the untwisted
setting.

Throughout the paper, let G denote a finite group acting linearly on a complex
vector space V with basis v1, v2, . . . , vn . Let q := (qi j )1≤i, j≤n denote a tuple of
nonzero scalars for which qi i = 1 and q j i = q−1

i j for all i, j . We work over the
complex numbers C, and all tensor products are taken over C unless otherwise
indicated.

2. Necessary and sufficient conditions

In this section, we use Bergman’s Diamond Lemma [1978] to give necessary and
sufficient conditions for the algebra Hq,κ,α (defined in the introduction and recalled
below) to be a twisted quantum Drinfeld Hecke algebra. First, we recall the notion
of a twisted skew group algebra. Let G be a finite group, and let α : G×G→ C×

be a normalized 2-cocycle on G, that is,

α(g1, g2)α(g1g2, g3)= α(g2, g3)α(g1, g2g3) and α(g, 1)= 1= α(1, g)

for all g, g1, g2, g3 ∈ G. Let A be an algebra on which G acts by automorphisms.
The twisted skew group algebra A#αG is defined as follows. As a vector space,
A#αG is A⊗CG. Multiplication on A#αG is determined by

(a⊗ g)(b⊗ h) := α(g, h)a(gb)⊗ gh

for all a, b ∈ A and all g, h ∈ G, where a left superscript denotes the action of the
group element. The 2-cocycle condition on α ensures that A#αG is an associative
algebra. Note that A is a subalgebra of A#αG via the isomorphism A

∼
−→ A⊗ 1,

and the twisted group algebra CαG is a subalgebra of A#αG via the isomorphism
CαG

∼
−→ 1⊗CαG. The image of a group element g in the twisted group algebra

CαG is denoted by tg. To shorten notation, we write the element a⊗ g of A#αG
by atg. Since α is assumed to be normalized, t1 is the multiplicative identity for
A#αG. For all g ∈ G, we have

(tg)
−1
= α−1(g, g−1)tg−1 = α−1(g−1, g)tg−1 .

Suppose G acts linearly on a complex vector space V with basis v1, v2, . . . , vn ,
and let q := (qi j )1≤i, j≤n denote a tuple of nonzero scalars for which qi i = 1 and
q j i = q−1

i j for all i, j . For each group element g ∈ G, let gi
k denote the scalar

determined by the equation
gvi =

n∑
k=1

gi
kvk,

and define the quantum (i, j, k, l)-minor determinant of g as

deti jkl(g) := g j
l gi

k − q j i gi
l g j

k .
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The following lemma is used in the proof of Theorem 2.2.

Lemma 2.1. Suppose that the action of G on V extends to an action on Sq(V ) by
automorphisms, and let g ∈ G. We have:

(i) qlk deti jkl(g)=− deti jlk(g) for all i, j, k, l.

(ii) For each i, j , if qi j 6= 1, then gi
k g j

k = 0 for all k.

Proof. For a proof of (i), see [Levandovskyy and Shepler 2011, Lemma 3.2].
Part (ii) follows from the assumption that G acts on Sq(V ) by automorphisms
and that qi j 6= 1: we have gvi

gv j = qi j
gv j

gvi , and so (
∑n

k=1 gi
kvk)(

∑n
l=1 g j

l vl) =

qi j (
∑n

k=1 g j
k vk)(

∑n
l=1 gi

l vl). Equating coefficients of v2
k yields gi

k g j
k = qi j gi

k g j
k ,

and since qi j 6= 1, we get gi
k g j

k = 0. �

Let κ : V ×V →CαG be a bilinear map for which κ(vi , v j )=−qi jκ(v j , vi ) for
all 1≤ i, j ≤ n. For each g ∈ G, let κg : V ×V → C be the function determined by
the condition

κ(v,w)=
∑
g∈G

κg(v,w)tg for all v,w ∈ V .

The condition κ(vi , v j ) = −qi jκ(v j , vi ) implies that κg(vi , v j ) = −qi jκg(v j , vi )

for all g ∈ G.
Recall that the algebra

Hq,κ,α := T (V )#αG/(viv j − qi jv jvi − κ(vi , v j ) | 1≤ i, j ≤ n)

is called a twisted quantum Drinfeld Hecke algebra if it satisfies the Poincaré–
Birkhoff–Witt condition: gr Hq,κ,α ∼= Sq(V )#αG, as graded algebras. This is
equivalent to the condition that the set {vm1

1 v
m2
2 · · · v

mn
n tg | mi ≥ 0, g ∈ G} is a

C-basis for Hq,κ,α.
In the proof of the next theorem, we assume familiarity with, and will freely use,

terminology from [Bergman 1978] (for example, “reduction system”).

Theorem 2.2. The algebra Hq,κ,α is a twisted quantum Drinfeld Hecke algebra if
and only if the following conditions hold.

(1) For all g, h ∈ G and 1≤ i < j ≤ n,

α(h, g)
α(hgh−1, h)

κg(v j , vi )=
∑
k<l

deti jkl(h)κhgh−1(vl, vk).

(2) For all g ∈ G and 1≤ i < j < k ≤ n,

κg(vk,v j )(
gvi−q j i qkivi )+κg(vk,vi )(qk jv j−q j i

gv j )+κg(v j ,vi )(qk j qki
gvk−vk)=0.
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Proof. We begin by expressing the algebra Hq,κ,α as a quotient of a free associative
C-algebra. Let X = {v1, v2, . . . , vn} ∪ {tg | g ∈ G}, and let C〈X〉 be the free
associative C-algebra generated by X . Consider the reduction system

S={(tgvi ,
gvi tg),(tgth,α(g,h)tgh),(v jvi ,q j iviv j+κ(v j ,vi ))|g,h∈G,1≤i< j≤n}

for C〈X〉. Let I be the ideal of C〈X〉 generated by the elements

tgvi−
gvi tg, tgth−α(g,h)tgh, v jvi−q j iviv j−κ(v j ,vi ), g,h ∈G,1≤ i < j ≤n.

In what follows, we use the Diamond Lemma [Bergman 1978] to show that the set

{v
m1
1 v

m2
2 · · · v

mn
n tg | mi ≥ 0, g ∈ G}

is a C-basis for C〈X〉/I if and only if the two conditions in the statement of the
theorem hold.

Define a partial order ≤ on the free semigroup 〈X〉 as follow: First, we declare
that v1 < v2 < · · ·< vn < g for all g ∈ G, and then we set A < B if

(i) A is of smaller length than B, or

(ii) A and B have the same length but A is less than B relative to the lexicographical
order.

Then ≤ is a semigroup partial order on 〈X〉, compatible with the reduction system
S, and having the descending chain condition. Thus the hypothesis of the Diamond
Lemma holds.

Observe that the set 〈X〉irr of irreducible elements of 〈X〉 is precisely the alleged
C-basis for C〈X〉/I . That is,

〈X〉irr = {v
m1
1 v

m2
2 · · · v

mn
n tg | mi ≥ 0, g ∈ G}.

In what follows, we show that all ambiguities of S are resolvable if and only if
the two conditions in the statement of the theorem hold. The theorem will then
follow by the Diamond Lemma. There are no inclusion ambiguities, but there exist
overlap ambiguities, and these correspond to the monomials

tgth tk, tgthvi , thv jvi , vkv jvi , where 1≤ i < j < k ≤ n, g, h ∈ G.

Associativity of the multiplication in the twisted group algebra CαG implies that
the ambiguities corresponding to the monomials tgth tk are resolvable. The equality
ghvi =

g(hvi ) implies that the ambiguities corresponding to the monomials tgthvi

are resolvable. Next, we show that the ambiguities corresponding to the monomials
thv jvi are resolvable if and only if condition (1) in the statement of the theorem
holds. Applying a reduction to the factor v jvi in thv jvi , we get

q j i thviv j + thκ(v j , vi ).



178 DEEPAK NAIDU

Applying a reduction to the factor thvi and then to the resulting factor thv j gives

q j i
hvi

hv j th + thκ(v j , vi )

= q j i

( n∑
l=1

hi
lvl

)( n∑
k=1

h j
kvk

)
th + thκ(v j , vi )

= q j i

∑
l<k

hi
l h

j
kvlvk th + q j i

∑
k<l

hi
l h

j
kvlvk th + q j i

n∑
k=1

hi
kh j

kv
2
k th + thκ(v j , vi ).

Applying a reduction to the factor vlvk in the second summation above yields

q j i

∑
l<k

hi
l h

j
kvlvk th + q j i

∑
k<l

hi
l h

j
k qlkvkvl th

+ q j i

∑
k<l

hi
l h

j
kκ(vl, vk)th + q j i

n∑
k=1

hi
kh j

kv
2
k th + thκ(v j , vi ).

Combining the first two summations, expanding κ(vl, vk) and κ(v j , vi ), and then
applying reductions to each term in κ(vl, vk)th and to each term in thκ(v j , vi ) gives

q j i

∑
k<l

(
hi

kh j
l + qlkhi

l h
j
k

)
vkvl th + q j i

n∑
k=1

hi
kh j

kv
2
k th

+ q j i

∑
g∈G

(
α(g, h)

∑
k<l

hi
l h

j
kκg(vl, vk)

)
tgh +

∑
g∈G

α(h, g)κg(v j , vi )thg

= q j i

∑
k<l

(hi
kh j

l + qlkhi
l h

j
k )vkvl th + q j i

n∑
k=1

hi
kh j

kv
2
k th

+

∑
g∈G

(
α(hgh−1, h)q j i

∑
k<l

hi
l h

j
kκhgh−1(vl, vk)+α(h, g)κg(v j , vi )

)
thg.

Next, we apply to thv jvi a reduction different from the one in the computation
above: Applying a reduction to the factor thv j in thv jvi , and then to the resulting
factor thvi , we get

hv j
hvi th =

( n∑
l=1

h j
l vl

)( n∑
k=1

hi
kvk

)
th

=

∑
l<k

h j
l hi

kvlvk th +
∑
k<l

h j
l hi

kvlvk th +
n∑

k=1

h j
k hi

kv
2
k th .

Applying a reduction to the factor vlvk in the second summation above yields

∑
l<k

h j
l hi

kvlvk th +
∑
k<l

qlkh j
l hi

kvkvl th +
∑
k<l

h j
l hi

kκ(vl, vk)th +
n∑

k=1

h j
k hi

kv
2
k th .
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Combining the first two summations, expanding κ(vl, vk), and then applying a
reduction to each term in κ(vl, vk)th gives∑
k<l

(h j
k hi

l + qlkh j
l hi

k)vkvl th +
n∑

k=1

h j
k hi

kv
2
k th +

∑
g∈G

(
α(g, h)

∑
k<l

h j
l hi

kκg(vl, vk)

)
tgh

=

∑
k<l

(h j
k hi

l + qlkh j
l hi

k)vkvl th +
n∑

k=1

h j
k hi

kv
2
k th

+

∑
g∈G

(
α(hgh−1, h)

∑
k<l

h j
l hi

kκhgh−1(vl, vk)

)
thg.

By equating coefficients, we see that the final expressions in the previous two
computations are equal if and only if

(a) q j i hi
kh j

l + q j i qlkhi
l h

j
k = h j

k hi
l + qlkh j

l hi
k for all k < l,

(b) q j i hi
kh j

k = hi
kh j

k for all k, and

(c) for all g ∈ G, we have

α(hgh−1, h)q j i

∑
k<l

hi
l h

j
kκhgh−1(vl, vk)+α(h, g)κg(v j , vi )

= α(hgh−1, h)
∑
k<l

h j
l hi

kκhgh−1(vl, vk).

Conditions (a) and (b) follow from Lemma 2.1(i) and (ii), respectively. The
equation in (c) is equivalent to condition (1) in the statement of the theorem.

Lastly, we show that the ambiguities corresponding to the monomials vkv jvi

are resolvable if and only if condition (2) in the statement of the theorem holds.
Applying a reduction to the factor vkv j in vkv jvi , we get

qk jv jvkvi + κ(vk, v j )vi .

Applying a reduction to the factor vkvi gives

qk j qkiv jvivk + qk jv jκ(vk, vi )+ κ(vk, v j )vi .

Applying a reduction to the factor v jvi yields

qk j qki q j iviv jvk + qk j qkiκ(v j , vi )vk + qk jv jκ(vk, vi )+ κ(vk, v j )vi .

Expanding κ(v j , vi ), κ(vk, vi ), and κ(vk, v j ), applying reductions to each term in
κ(v j , vi )vk and to each term in κ(vk, v j )vi , and then rearranging gives

qk j qki q j iviv jvk +
∑
g∈G

(κg(vk, v j )
gvi + qk jκg(vk, vi )v j + qk j qkiκg(v j , vi )

gvk)tg.

Next, we apply to vkv jvi a reduction different from the one in the computation
above: Applying a reduction to the factor v jvi in vkv jvi , we get

q j ivkviv j + vkκ(v j , vi ).
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Applying a reduction to the factor vkvi gives

q j i qkivivkv j + q j iκ(vk, vi )v j + vkκ(v j , vi ).

Applying a reduction to the factor vkv j yields

q j i qki qk jviv jvk + q j i qkiviκ(vk, v j )+ q j iκ(vk, vi )v j + vkκ(v j , vi ).

Expanding κ(vk, v j ), κ(vk, vi ), and κ(v j , vi ), and then applying reductions to each
term in κ(vk, vi )v j gives

q j i qki qk jviv jvk +
∑
g∈G

(q j i qkiκg(vk, v j )vi + q j iκg(vk, vi )
gv j + κg(v j , vi )vk)tg.

The final expressions in the two computations above are equal if and only if
condition (2) in the statement of the theorem holds. This finishes the proof. �

3. Deformations

The primary goal of this section is to show that the twisted quantum Drinfeld Hecke
algebras Hq,κ,α are isomorphic to specializations of particular types of deformations
of the twisted skew group algebras Sq(V )#αG.

Let h̄ denote an indeterminate. Recall that, for a C-algebra A, a deformation
of A over C[h̄] is an associative C[h̄]-algebra whose underlying vector space is
A[h̄] = C[h̄]⊗ A, and which reduces modulo h̄ to the original algebra A. Thus the
multiplication µ on A[h̄] is determined by

µ(a, b)= µ0(a, b)+µ1(a, b)h̄+µ2(a, b)h̄2
+ · · ·

for all a, b ∈ A, where µ0(a, b) is the product in A, the µi : A × A → A are
C-bilinear maps extended to be bilinear over C[h̄], and for each pair (a, b) the
sum above is finite. A consequence of associativity of µ is that µ1 is a Hochschild
2-cocycle, that is,

(3.1) aµ1(b, c)+µ1(a, bc)= µ1(ab, c)+µ1(a, b)c

for all a, b, c ∈ A.
In order to see that the twisted quantum Drinfeld Hecke algebras Hq,κ,α may be

realized as specializations of deformations of Sq(V )#αG, we define the algebra

Hq,κ,α,h̄ := (T (V )#αG)[h̄]/(viv j − qi jv jvi − κ(vi , v j )h̄ | 1≤ i, j ≤ n).

Assigning h̄ degree zero, each vi degree one, and each tg (g ∈G) degree zero, we
see that Hq,κ,α,h̄ is a filtered algebra, and that (Sq(V )#αG)[h̄] is a graded algebra.
We call the algebra Hq,κ,α,h̄ a twisted quantum Drinfeld Hecke algebra over C[h̄] if
gr Hq,κ,α,h̄ ∼= (Sq(V )#αG)[h̄], as graded algebras. Specializing a twisted quantum
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Drinfeld Hecke algebra over C[h̄] to h̄ = 1 yields the twisted quantum Drinfeld
Hecke algebra over C, as defined earlier.

In the following theorem, by the degree of µi we mean its degree as a function
between graded algebras.

Theorem 3.2. Every twisted quantum Drinfeld Hecke algebra Hq,κ,α,h̄ over C[h̄]
is isomorphic to some deformation µ= µ0+µ1h̄+µ2h̄2

+ · · · of Sq(V )#αG over
C[h̄] with degµi =−2i for all i ≥ 1.

Proof. Suppose that Hq,κ,α,h̄ is a twisted quantum Drinfeld Hecke algebra over C[h̄].
Consider the natural projection T (V )#αG→ Sq(V )#αG, and let s : Sq(V )#αG→
T (V )#αG be the C-linear section determined by the ordering v1, v2, . . . , vn of the
basis of V . For example, s(v2v

2
1 tg)= q2

21v
2
1v2tg.

Extend s to a C[h̄]-linear map s̃ : (Sq(V )#αG)[h̄] → (T (V )#αG)[h̄], and let p
denote the natural projection from (T (V )#αG)[h̄] to Hq,κ,α,h̄ . Since Hq,κ,α,h̄ is a
twisted quantum Drinfeld Hecke algebra over C[h̄], the composition f := p ◦ s̃ is
an isomorphism of C[h̄]-modules.

Next, define a C[h̄]-bilinear multiplication µ on (Sq(V )#αG)[h̄] by

µ := f −1
◦mult ◦( f × f ),

where mult is the multiplication map in Hq,κ,α,h̄ . Since µ is C[h̄]-bilinear, it must
necessarily be a power series

µ= µ0+µ1h̄+µ2h̄+ · · · ,

where the µi are C-bilinear maps from (Sq(V )#αG)× (Sq(V )#αG) to Sq(V )#αG.
Note that, by definition of f , the map µ0 is precisely the multiplication map in
Sq(V )#αG, and so µ is a deformation Sq(V )#αG over C[h̄]. By definition, the map
f is an isomorphism between the C[h̄]-algebras (Sq(V )#αG[h̄], µ) and Hq,κ,α,h̄ ,
proving that Hq,κ,α,h̄ is isomorphic to a deformation of Sq(V )#αG over C[h̄].

Finally we prove the degree condition on the µi . Given elements

a = vβ1
1 v

β2
2 · · · v

βn
n tg and b = vγ1

1 v
γ2
2 · · · v

γn
n th

in Sq(V )#αG, to find µ1(a, b), µ2(a, b), . . . , we must put the product f (a) f (b) ∈
Hq,κ,α,h̄ in the normal form by repeatedly applying the relations defining Hq,κ,α,h̄ .
Induction on the degree

∑n
k=1 βk+γk of ab implies that degµi =−2i for all i ≥ 1,

as claimed. �

Lemma 3.3. The algebra Hq,κ,α is a twisted quantum Drinfeld Hecke algebra over
C if and only if Hq,κ,α,h̄ is a twisted quantum Drinfeld Hecke algebra over C[h̄].

Proof. The proof given for Hq,κ,α in Theorem 2.2 generalizes for Hq,κ,α,h̄ by
extending scalars to C[h̄]. That is, Hq,κ,α,h̄ is a twisted quantum Drinfeld Hecke
algebra over C[h̄] if and only if the two conditions in Theorem 2.2 hold. �
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Corollary 3.4. Every twisted quantum Drinfeld Hecke algebra Hq,κ,α is isomorphic
to a specialization of a deformation µ=µ0+µ1h̄+µ2h̄2

+· · · of Sq(V )#αG over
C[h̄] with degµi =−2i for all i ≥ 1.

A Hochschild 2-cocycle on Sq(V )#αG is said to be constant if it is of degree
−2 as a function between graded algebras. In the next section, it is shown that
such 2-cocycles correspond to certain constant polynomials, justifying the choice
of terminology.

Proposition 3.5. Let Hq,κ,α be a twisted quantum Drinfeld Hecke algebra. The
map κ : V × V → CαG is equal to the quantum skew-symmetrization of some
constant Hochschild 2-cocycle µ1 on Sq(V )#αG, that is,

κ(vi , v j )= µ1(vi , v j )− qi jµ1(v j , vi )

for all i, j .

Proof. By Lemma 3.3, Hq,κ,α,h̄ is a twisted quantum Drinfeld Hecke algebra over
C[h̄]. By Theorem 3.2, associated to Hq,κ,α,h̄ is a deformation µ = µ0 +µ1h̄ +
µ2h̄2

+ · · · of Sq(V )#αG over C[h̄] with degµi =−2i for all i ≥ 1. Note that µ1

is a constant Hochschild 2-cocycle on Sq(V )#αG. We claim that κ is equal to the
quantum skew-symmetrization of µ1.

Let f be the map defined in the proof of Theorem 3.2. For any two monomials
a, b ∈ Sq(V )#αG, the value of µ1(a, b) is determined by writing the product
f (a) f (b)∈Hq,κ,α,h̄ in the normal form by repeatedly applying the relations defining
Hq,κ,α,h̄ . If i ≤ j , the product f (vi ) f (v j )= viv j is already in the desired form, so
µ1(vi , v j )= 0. If i > j , we write viv j −→ qi jv jvi+κ(vi , v j )h̄, and so κ(vi , v j )=

µ1(vi , v j ). If i ≤ j , we have κ(vi , v j ) = −qi jκ(v j , vi ) = −qi jµ1(v j , vi ). Thus
κ(vi , v j )= µ1(vi , v j )− qi jµ1(v j , vi ) for all i, j . �

The proof of the following theorem is a generalization of [Naidu and Witherspoon
2011, Theorem 2.2]; see also [Witherspoon 2007, Theorem 3.2].

Theorem 3.6. Every deformation µ= µ0+µ1h̄+µ2h̄2
+ · · · of Sq(V )#αG over

C[h̄] with degµi =−2i for all i ≥ 1 is isomorphic to some twisted quantum Drinfeld
Hecke algebra over C[h̄].

Proof. Suppose that µ=µ0+µ1h̄+µ2h̄2
+· · · is a deformation of Sq(V )#αG over

C[h̄] with degµi =−2i for all i ≥ 1. In what follows, we identity T (V )#αG with
the free associative C-algebra generated by the set {v1, v2, . . . , vn} ∪ {tg | g ∈ G}
subject to the relations tgvi =

gvi tg and tgth = α(g, h)tgh for all i ∈ {1, 2, . . . , n}
and all g, h ∈ G. Define a map φ : (T (V )#αG)[h̄] → (Sq(V )#αG)[h̄] as follows.
First, set φ(vi ) = vi and φ(tg) = tg for all i ∈ {1, 2, . . . , n} and all g ∈ G. Since
degµk =−2k for all k ≥ 1, we have

µk(C
αG,CαG)= µk(C

αG, V )= µk(V,CαG)= 0
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for all k≥ 1. This implies that the relations tgvi =
gvi tg and tgth =α(g, h)tgh hold in

the algebra ((Sq(V )#αG)[h̄], µ), and so we obtain a C-algebra homomorphism on
T (V )#αG, which extends to a C[h̄]-algebra homomorphism φ from (T (V )#αG)[h̄]
to (Sq(V )#αG)[h̄], where the algebra structure on the latter is given by µ.

Next, we show that φ is surjective. It is enough to show that each monomial
vi1 · · · vim tg is in the image of φ. The proof is by induction on the degree of the
monomial. Suppose that all monomials of degree less than m are in the image of φ.
In particular, φ(X)= vi2 · · · vim g for some X ∈ (T (V )#αG)[h̄]. Then

φ(vi1 X)= µ(vi1, φ(X))

= µ(vi1, vi2 · · · vim tg)

= vi1 · · · vim tg +µ1(vi1, vi2 · · · vim tg)h̄+µ2(vi1, vi2 · · · vim tg)h̄2
+ · · · .

Since deg(µk)=−2k, by the induction hypothesis, each µk(vi1, vi2 · · · vim tg) is in
the image of φ. Therefore, vi1 · · · vim tg is in the image of φ, and it follows that φ is
surjective.

Finally, we determine the kernel of φ. Since deg(µ1) = −2, we can define a
bilinear map κ : V × V → CαG by setting κ(vi , v j ) := µ1(vi , v j )− qi jµ1(v j , vi )

for all i, j . Let I denote the ideal in (T (V )#αG)[h̄] generated by the elements

viv j − qi jv jvi − κ(vi , v j )h̄.

Since µk(vi , v j )= 0 for all k ≥ 2, we have

φ(viv j )=µ(vi , v j )= viv j +µ1(vi , v j )h̄,

φ(v jvi )=µ(v j , vi )= v jvi +µ1(v j , vi )h̄,

and so I is contained in the kernel of φ. The form of the relations and surjectivity
of φ imply that the kernel of φ is precisely I , and it follows that the deformation
((Sq(V )#αG)[h̄], µ) is isomorphic to the twisted quantum Drinfeld Hecke algebra
Hq,κ,α,h̄ over C[h̄]. �

4. Computing HH2(Sq(V )#αG)

Let A be an algebra on which the finite group G acts by automorphisms, and let
α be a 2-cocycle on G. This section is concerned with the computation of the
Hochschild cohomology HH

q
(A#αG) of the twisted skew group algebra A#αG.

We are particularly interested in degree two cohomology in the case when A is
the quantum symmetric algebra Sq(V ). The results of this section are used in the
sections that follow.

Recall that the Hochschild cohomology of an algebra R is

HH
q
(R) := Ext

q
Re(R, R),
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where the enveloping algebra Re
:= R⊗Rop acts on R by left and right multiplication.

When R is a twisted skew group algebra A#αG in a characteristic not dividing
the order of the finite group G, by [Ştefan 1995, Corollary 3.4], there is an action
of G on HH

q
(A, A#αG)= Ext

q
Ae(A, A#αG) for which HH

q
(A#αG) is isomorphic

to HH
q
(A, A#αG)G , the space of elements of HH

q
(A, A#αG) that are invariant

under the action of G. Thus, one can compute HH
q
(A#αG) by first computing

HH
q
(A, A#αG) and then determining the space of G-invariant elements. When

A is the quantum symmetric algebra Sq(V ), we compute HH
q
(Sq(V ), Sq(V )#αG)

using the quantum Koszul resolution, recalled below.
The quantum exterior algebra

∧
q(V ) associated to the tuple q = (qi j ) is

∧
q(V ) := C〈v1, . . . , vn | viv j =−qi jv jvi for all 1≤ i, j ≤ n〉.

Since we are working in characteristic 0, the defining relations imply in particular
that v2

i = 0 for each vi in
∧

q(V ). This algebra has a basis given by all vi1 · · · vim

(0≤m ≤ n, 1≤ i1 < · · ·< im ≤ n); we write such a basis element as vi1 ∧· · ·∧vim

by analogy with the ordinary exterior algebra.
By [Wambst 1993, Proposition 4.1(c)], the following is a free Sq(V )e-resolution

of Sq(V ):

(4.1) · · · −→ Sq(V )e⊗
∧2

q(V )
d2
−→ Sq(V )e⊗

∧1
q(V )

d1
−→ Sq(V )e

mult
−−→ Sq(V )−→ 0,

that is, for 1≤m ≤ n, the degree m term is Sq(V )e⊗
∧m

q (V ); the differential dm is
defined by

dm(1⊗2
⊗ v j1 ∧ · · · ∧ v jm )

=

m∑
i=1

(−1)i+1
[( i∏

s=1

q js , ji

)
v ji ⊗1−

( m∏
s=i

q ji , js

)
⊗v ji

]
⊗v j1 ∧· · ·∧ v̂ ji ∧· · ·∧v jm

whenever 1 ≤ j1 < · · · < jm ≤ n, and mult denotes the multiplication map. The
complex (4.1) is a quantum version of the usual Koszul resolution for a polynomial
ring.

Suppose that the action of G on V induces an action on
∧

q(V ). Thus, there is
an action of G on the quantum Koszul complex (4.1), that is, an action of G on
each Sq(V )e⊗

∧i
q(V ) that commutes with the differentials.

Assume that HH
q
(Sq(V )#αG) has been computed using the quantum Koszul

resolution. So, elements of HH
q
(Sq(V )#αG) are given as G-invariant elements of

HH
q
(Sq(V ), Sq(V )#αG). For our purposes, we need to find representatives for ele-

ments in HH2(Sq(V )#αG) that are given as maps from (Sq(V )#αG)⊗(Sq(V )#αG)
to Sq(V )#αG satisfying the 2-cocycle condition (3.1). To this end, we consider
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chain maps between the quantum Koszul resolution (4.1) and the bar resolution of A:

· · · // Sq(V )⊗4 δ2 //

92
��

Sq(V )⊗3 δ1 //

91
��

Sq(V )e
mult //

=

��

Sq(V ) //

=

��

0

· · · // Sq(V )e⊗
∧2

q V
d2 //

82

OO

Sq(V )e⊗
∧1

q V
d1 //

81

OO

Sq(V )e
mult //

OO

Sq(V ) //

OO

0.

Here the differentials δi in the bar resolution are defined as

δi (a0⊗ · · ·⊗ ai+1)=

i∑
j=0

(−1) j a0⊗ · · ·⊗ a j a j+1⊗ · · ·⊗ ai+1

for all a0, . . . , ai+1 ∈ A. We will only need to know the values of 92 on elements
of the form 1⊗ vi ⊗ v j ⊗ 1, and these can be chosen to be

(4.2) 92(1⊗ vi ⊗ v j ⊗ 1)=
{

1⊗ 1⊗ vi ∧ v j if i < j,
0 if i ≥ j.

Chain maps8i are defined in [Naidu et al. 2011], and more generally in [Wambst
1993], that embed the quantum Koszul resolution as a subcomplex of the bar
resolution. We will only need 82, and this is defined by

(4.3) 8m(1⊗ 1⊗ vi ∧∧v j )= 1⊗ vi ⊗ v j ⊗ 1− qi j ⊗ v j ⊗ vi ⊗ 1

for all 1≤ i, j ≤ n.
We define the Reynold’s operator, or averaging map, which ensures G-invariance

of the image, compensating for the possibility that 92 may not preserve the action
of G:

R2 : HomC(Sq(V )⊗2, Sq(V )#αG)→ HomC(Sq(V )⊗2, Sq(V )#αG)G,

R2(γ ) :=
1
|G|

∑
g∈G

gγ.

The following map tells how to extend a function defined on Sq(V )⊗2 to a function
defined on (Sq(V )#αG)⊗2 [Căldăraru et al. 2004]:

2∗2 : HomC(Sq(V )⊗2, Sq(V )#αG)G→ HomC((Sq(V )#αG)⊗2, Sq(V )#αG),

2∗2(κ)(a1tg1 ⊗ a2tg2) := α(g1, g2)κ(a1⊗
g1a2)tg1g2 .

The theorem below is from [Căldăraru et al. 2004]; see also [Shepler and Wither-
spoon 2012].

Theorem 4.4. Suppose that the action of G on V extends to an action on
∧

q(V )
by automorphisms. The map

2∗2R29
∗

2 : HomC

(∧2
q(V ), Sq(V )#αG

)
→ HomC(Sq(V )⊗2, Sq(V )#αG)
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induces an isomorphism

HH2(Sq(V ), Sq(V )#αG)G
∼
−→ HH2(Sq(V )#αG).

Moreover, 2∗2R29
∗

2 maps HH2(Sq(V ), Sq(V )#αG) onto HH2(Sq(V )#αG).

Next, we will introduce some notation and give some formulas that are useful in
the sections that follow. For each g ∈ G, the space Sq(V )tg ⊆ Sq(V )#αG is a (left)
Sq(V )e-module via the action

(a⊗ b) · (ctg) := actgb = ac(gb)tg

for all a, b, c ∈ Sq(V ) and all g ∈ G. Note that HH2(Sq(V ), Sq(V )#αG) is isomor-
phic to the direct sum

⊕
g∈G HH2(Sq(V ), Sq(V )tg).

We wish to express the formula for the differentials dm in the quantum Koszul
resolution (4.1) in a more convenient form. To this end, let Nn denote the set of
all n-tuples of elements from N. The length of γ = (γ1, . . . , γn) ∈ Nn , denoted
|γ |, is the sum

∑n
i=1 γi . For each γ ∈ Nn , define vγ := vγ1

1 v
γ2
2 · · · v

γn
n . For each

i ∈ {1, . . . , n}, define [i] ∈ Nn by [i] j = δi, j , for all j ∈ {1, . . . , n}. For each β =
(β1, . . . , βn)∈ {0, 1}n , let v∧β denote the vector v j1∧· · ·∧v jm ∈

∧m
q (V ) determined

by the conditions m = |β|, β jk = 1 for all k ∈ {1, . . . ,m}, and j1 < . . . < jm . For
each β ∈ {0, 1}n with |β| = m, we have

dm(1⊗2
⊗v∧β)=

n∑
i=1

δβi ,1(−1)
∑i−1

s=1βs

[( i∏
s=1

qβs
s,i

)
vi⊗1−

( n∏
s=i

qβs
i,s

)
⊗vi

]
⊗v∧(β−[i]).

Removing the term Sq(V ) from the quantum Koszul resolution (4.1), applying
the functor HomSq(V )e( ·, Sq(V )tg), and then identifying

HomSq(V )e
(
Sq(V )e⊗

∧q
q(V ), Sq(V )tg

)
∼= HomC

(∧q
q(V ), Sq(V )tg

)
with Sq(V )tg ⊗

∧q
q−1(V ∗), we obtain the complex

(4.5) 0−→ Sq(V )tg
d∗1
−→ Sq(V )tg ⊗

∧1
q−1(V ∗)

d∗2
−→ Sq(V )tg ⊗

∧2
q−1(V ∗)−→ · · · .

For all a ∈ Sq(V ) and all β ∈ {0, 1}n with |β| = m − 1, the differential d∗m sends
the element atg ⊗ (v

∗)∧β to

(4.6)
n∑

i=1

δβi ,0(−1)
∑i

s=1 βs

[(( i∏
s=1

qβs
s,i

)
vi a−

( n∏
s=i

qβs
i,s

)
a(gvi )

)
tg

]
⊗(v∗)

∧(β+[i])
.

For later use, we record the following formula. Let η ∈ (Sq(V )#αG)⊗
∧2

q−1(V ∗).
Then

(4.7) [2∗2R29
∗

2 (η)](vi ⊗ v j )=
1
|G|

∑
g∈G

g(η(92(1⊗ g−1
vi ⊗

g−1
v j ⊗ 1))

)
.
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The elements of
(
(Sq(V )#αG)⊗

∧2
q−1(V ∗)

)G that correspond to constant Hochs-
child 2-cocycles, i.e., those of degree −2 as maps from (Sq(V )#αG)⊗(Sq(V )#αG)
to Sq(V )#αG, are precisely those in

(
CαG⊗

∧2
q−1(V ∗)

)G , due to the form of the
chain map 92. Note that the intersection of the image of d∗2 with CαG⊗

∧2
q−1(V ∗)

is 0. Applying our earlier formula, letting β = [ j] + [k],

(4.8) d∗3 (tg ⊗ v
∗

j ∧ v
∗

k )

=

∑
i 6∈{ j,k}

(−1)
∑i

s=1 βs

[(( i∏
s=1

qβs
s,i

)
vi −

( n∏
s=i

qβs
i,s

)
gvi

)
tg

]
⊗ (v∗)∧(β+[i]).

5. Constant Hochschild 2-cocycles

In this section, we establish the following bijection:{
constant Hochschild

2-cocycles on Sq(V )#αG

}
←→

{
twisted quantum Drinfeld

Hecke algebras Hq,κ,α

}
.

We also show that every constant Hochschild 2-cocycles on Sq(V )#αG lifts to a
deformation of Sq(V )#αG.

We use the following two lemmas shortly.

Lemma 5.1. The action of G on V extends to an action on
∧

q(V ) by automor-
phisms if , and only if , for all g ∈ G, i 6= j , and k < l,

(1− qi j qlk)gi
k g j

l + (qi j − qlk)gi
l g j

k = 0.

Proof. See [Naidu and Witherspoon 2011, Lemma 4.2]. �

Lemma 5.2. Suppose that the action of G on V extends to an action, by automor-
phisms, on Sq(V ) and on

∧
q(V ). Then, for all g ∈G and all i, j, k, l (i < j , k < l),

if gi
l g j

k 6= 0, then qlk = qi j , and if gi
k g j

l 6= 0, then qlk = q−1
i j .

Proof. See [Naidu and Witherspoon 2011, Lemma 4.3]. �

Proposition 3.5 showed that every twisted quantum Drinfeld Hecke algebra arises
from the quantum skew-symmetrization of a constant Hochschild 2-cocycle. The
following theorem shows that the converse is also true. The proof of the following
theorem involves the maps 2∗2,R2, 9∗2 , and d∗3 defined in Section 4.

Theorem 5.3. Suppose that the action of G on V extends to an action, by automor-
phisms, on Sq(V ) and on

∧
q(V ). Let α be a normalized 2-cocycle on G, let µ1 be

a constant Hochschild 2-cocycle on Sq(V )#αG, and let κ : V × V → CαG be the
quantum skew-symmetrization of µ1. Then Hq,κ,α is a twisted quantum Drinfeld
Hecke algebra.
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Proof. We show that the map κ satisfies the conditions of Theorem 2.2. Let η be a
G-invariant element of

HomC

(∧2
q(V ), Sq(V )#αG

)
∼= (Sq(V )#αG)⊗

∧2
q−1(V ∗)

such that [2∗2R29
∗

2 ](η) = µ1. Since µ1 is a constant Hochschild 2-cocycle, the
image of η as a map from

∧2
q(V ) to Sq(V )#αG is contained in CαG, or, equivalently,

η belongs to (CαG)⊗
∧2

q−1(V ∗).
For all 1 ≤ k, l ≤ n, we have [9∗2 (η)](vk ⊗ vl − qklvl ⊗ vk) = η(vk ∧ vl). This

equality and the G-invariance of η imply that κ(vi , v j )=η(vi∧v j ) for all 1≤ i, j≤n.
Indeed, we have

κ(vi , v j )= [2
∗

2R29
∗

2 (η)](vi ⊗ v j − qi jv j ⊗ vi )

=
1
|G|

∑
g∈G

2∗2(
g(9∗2 (η)))(vi ⊗ v j − qi jv j ⊗ vi )

=
1
|G|

∑
g∈G

g((9∗2 (η))
g−1
(vi ⊗ v j − qi jv j ⊗ vi ))

=
1
|G|

∑
g∈G

g
(
(9∗2 (η))

(∑
k,l

(g−1)ik(g
−1)

j
l (vk ⊗ vl − qi jvl ⊗ vk)

))

=
1
|G|

∑
g∈G

g
(∑

k,l

(g−1)ik(g
−1)

j
l (9

∗

2 (η))(vk ⊗ vl − qi jvl ⊗ vk)

)

=
1
|G|

∑
g∈G

g
(∑

k,l

(g−1)ik(g
−1)

j
l η(vk ∧ vl)

)

=
1
|G|

∑
g∈G

g(η(g
−1
(vi ∧ v j )))

=
1
|G|

∑
g∈G

(gη)(vi ∧ v j )

= η(vi ∧ v j ).

Next, write

η =
∑
g∈G

∑
1≤r<s≤n

ηg
rs tg ⊗ v

∗

r ∧ v
∗

s ∈ CαG⊗
∧2

q−1(V ∗)⊆ (Sq(V )#αG)⊗
∧2

q−1(V ∗).

The calculation above implies that κg(vi , v j )= η
g
i j for all i < j and all g ∈G. Since

η is a Hochschild 2-cocycle, we have d∗3 (η)= 0. Using (4.8), we see that, for all
1≤ i < j < k ≤ n, we must have∑
g∈G

(η
g
jkvi tg−η

g
jkqi j qik

gvi tg−η
g
ikqi jv j tg+η

g
ikq jk

gv j tg+η
g
i j qikq jkvk tg−η

g
i j

gvk tg)=0.
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Equivalently,

−η
g
jk(qi j qik

gvi − vi )− η
g
ik(qi jv j − q jk

gv j )− η
g
i j (

gvk − qikq jkvk)= 0

for all 1≤ i < j < k ≤ n and all g ∈ G.
Multiplying both sides by q j i qki qk j yields

−q jkη
g
jk(

gvi − q j i qkivi )− qkiη
g
ik(qk jv j − q j i

gv j )− q j iη
g
i j (qk j qki

gvk − vk)= 0.

Now substituting κg(vk, v j ), κg(vk, vi ), and κg(v j , vi ) for−q jkη
g
jk,−qkiη

g
ik , and

−q j iη
g
i j , respectively, we obtain

κg(vk,v j )(
gvi−q j i qkivi )+κg(vk,vi )(qk jv j−q j i

gv j )+κg(v j ,vi )(qk j qki
gvk−vk)=0,

which is condition (2) of Theorem 2.2.
Next, we show that κ also satisfies condition (1) of Theorem 2.2. Since η is

G-invariant, we have η(hvi ∧
hv j )=

h(η(vi ∧v j )) for all i, j and all h ∈G. We have

η(hvi ∧
hv j )=

∑
k,l

hi
kh j

l η(vk ∧ vl)

=

∑
k<l

hi
kh j

l η(vk ∧ vl)−
∑
k<l

qlkhi
l h

j
kη(vk ∧ vl)

=

∑
k<l, g∈G

(hi
kh j

l − qlkhi
l h

j
k )η

g
kl tg,

and for all i < j , we have

h(η(vi ∧ v j ))=
h
(∑

g∈G

η
g
i j tg

)
=

∑
g∈G

η
g
i j th tg(th)−1

=

∑
g∈G

α(h, g)α(hg, h−1)

α(h−1, h)
η

g
i j thgh−1

=

∑
g∈G

α(h, g)
α(hgh−1, h)

η
g
i j thgh−1 .

Equating the coefficients of thgh−1 , we find that, for all i < j and all h, g ∈ G, we
have

α(h, g)
α(hgh−1, h)

η
g
i j =

∑
k<l

(hi
kh j

l − qlkhi
l h

j
k )η

hgh−1

kl .
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Substituting κg(vi , v j ) and κhgh−1(vk, vl) for ηg
i j and ηhgh−1

kl , respectively, and then
multiplying both sides by −q j i yields

α(h, g)
α(hgh−1, h)

κg(v j , vi )=
∑
k<l

(q j i qlkhi
l h

j
k − q j i hi

kh j
l )κhgh−1(vk, vl).

Substituting −qklκhgh−1(vl, vk) for κhgh−1(vk, vl), and then using Lemma 5.2, we
obtain

α(h, g)
α(hgh−1, h)

κg(v j , vi )=
∑
k<l

deti jkl(h)κhgh−1(vl, vk),

which is condition (1) of Theorem 2.2. �

The proof of the following theorem involves the map 8∗2 defined in Section 4.

Theorem 5.4. Let α be a normalized 2-cocycle on G. Suppose that the action of
G on V extends to an action, by automorphisms, on Sq(V ) and on

∧
q(V ). The

assignment
µ1 7→Hq,κ,α

where κ is the quantum skew-symmetrization of µ1 is a bijection from the space of
equivalence classes of constant Hochschild 2-cocycles on Sq(V )#αG to the space of
twisted quantum Drinfeld Hecke algebras associated to the quadruple (G, V, q, α).
Proof. Proposition 3.5 showed that the assignment specified in the statement of the
theorem is surjective. To see that the assignment is also injective, let µ1 and µ′1
be constant Hochschild 2-cocycles on Sq(V )#αG such that their quantum skew-
symmetrizations are equal. We have

[8∗2(µ1)](1⊗ 1⊗ vi ⊗ v j )= µ1(vi , v j )− qi jµ1(v j , vi )

= µ′1(vi , v j )− qi jµ
′

1(v j , vi )

= [8∗2(µ
′

1)](1⊗ 1⊗ vi ⊗ v j ),

so 8∗2(µ1)=8
∗

2(µ
′

1), and it follows that µ1 and µ′1 are cohomologous. �

Theorem 5.5. Let α be a normalized 2-cocycle on G. Suppose that the action of
G on V extends to an action, by automorphisms, on Sq(V ) and on

∧
q(V ). Each

constant Hochschild 2-cocycle on Sq(V )#αG lifts to a deformation of Sq(V )#αG
over C[h̄].

Proof. Let µ′1 be a constant Hochschild 2-cocycle on Sq(V )#αG. By Theorem 5.3,
µ′1 gives rise to a twisted quantum Drinfeld Hecke algebra Hq,κ,α, where κ is the
quantum skew-symmetrization of µ′1. By Lemma 3.3, Hq,κ,α,h̄ is a twisted quantum
Drinfeld Hecke algebra over C[h̄]. By Theorem 3.2, associated to Hq,κ,α,h̄ is a
deformation µ=µ0+µ1h̄+µ2h̄2

+· · · of Sq(V )#αG. The proof of Proposition 3.5
shows that κ is the quantum skew-symmetrization of µ1, and it follows from
Theorem 5.4 that µ′1 is cohomologous to µ1. �
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6. Diagonal actions

As before, let G be a finite group acting linearly on a vector space V with ba-
sis v1, . . . , vn . Assume that v1, . . . , vn are common eigenvectors for G. In this
case, the Hochschild cohomology HH

q
(Sq(V ), Sq(V )#G) was computed in [Naidu

et al. 2011]. Let α be a normalized 2-cocycle on G. In this section, we use
results from [Naidu et al. 2011] to give an explicit description of the subspace of
HH2(Sq(V )#αG) consisting of constant Hochschild 2-cocycles. As a consequence,
we obtain a classification of twisted quantum Drinfeld Hecke algebras associated
to the quadruple (G, V, q, α).

Let λg,i ∈C be the scalars for which gvi =λg,ivi for all g∈G and all i ∈{1, . . . , n}.
For each g ∈ G, define

(6.1) Cg :=

{
γ ∈ (N∪{−1})n | for each i ∈{1,...,n},

n∏
s=1

qγs
is =λg,i or γi =−1

}
.

Theorem 6.2 [Naidu et al. 2011]. If G acts diagonally on V , then

HH
q
(Sq(V ), Sq(V )#G)

is isomorphic to the graded vector subspace of (Sq(V )#G)⊗
∧

q−1(V ∗) given by

HHm(Sq(V ), Sq(V )#G)∼=
⊕
g∈G

⊕
β∈{0,1}n
|β|=m

⊕
τ∈Nn

τ−β∈Cg

spanC{(v
τ tg)⊗ (v

∗)
∧β
},

for all m ∈ N.

Corollary 6.3. The constant Hochschild 2-cocycles representing elements in the
cohomology HH2(Sq(V ), Sq(V )#G) form a vector space having as a basis the set
of all

tg ⊗ v
∗

r ∧ v
∗

s ,

where r < s and g ∈ G satisfy qrr ′qsr ′ = λg,r ′ for all r ′ 6∈ {r, s}.

Note that the Sq(V )-bimodule structure of Sq(V )#αG does not depend on the
2-cocycle α, and so HH2(Sq(V ), Sq(V )#αG)= HH2(Sq(V ), Sq(V )#G).

Let R denote a complete set of representatives of conjugacy classes in G, let
CG(a) denote the centralizer of a in G, and let [G/CG(a)] denote a complete set of
representatives of left cosets of CG(a) in G. In the following theorem, the notation
δi, j is the Kronecker delta.

Theorem 6.4. The constant Hochschild 2-cocycles representing elements in the
cohomology HH2(Sq(V )#αG) form a vector space having as a basis the set of all∑

g∈[G/CG(a)]

α(g, a)
α(gag−1, g)

λ−1
g,rλ
−1
g,s tgag−1 ⊗ v∗r ∧ v

∗

s ,
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where r < s and a ∈ R satisfy qrr ′qsr ′ = λa,r ′ for all r ′ 6∈ {r, s}, and λh,rλh,s =

α(h, a)/α(a, h) for all h ∈ CG(a).

Proof. We show that the space of G-invariant elements of the vector space given in
Corollary 6.3 is precisely the vector space stated in the theorem. The stated result
then follows from Theorem 4.4.

First, we show that the scalar (α(g, a)/α(gag−1, g))λ−1
g,rλ
−1
g,s is independent of

choice of representative g of a coset of CG(a) under the assumption that λh,rλh,s =

α(h, a)/α(a, h) for all h ∈ CG(a). Suppose that gag−1
= g′ag′−1. Then g′ = gh

for some h ∈ CG(a), and we have

α(g′, a)
α(g′ag′−1, g′)

λ−1
g′,rλ

−1
g′,s =

α(gh, a)
α(gag−1, gh)

λ−1
g,rλ
−1
g,sλ
−1
h,rλ
−1
h,s .

Substituting λh,rλh,s = α(h, a)/α(a, h) yields

α(gh, a)α(a, h)
α(gag−1, gh)α(h, a)

λ−1
g,rλ
−1
g,s .

Applying the 2-cocycle condition of α to the triple (g, h, a) gives

α(gh, a)/α(h, a)= α(g, ha)/α(g, h).

Making this substitution in the expression above yields

α(g, ha)α(a, h)
α(gag−1, gh)α(g, h)

λ−1
g,rλ
−1
g,s .

Applying the 2-cocycle condition of α to the triple (g, a, h) gives α(g, ha)α(a, h)=
α(ga, h)α(g, a). Making this substitution in the expression above yields

α(ga, h)α(g, a)
α(gag−1, gh)α(g, h)

λ−1
g,rλ
−1
g,s .

Finally, applying the 2-cocycle condition of α to the triple (gag−1, g, h) gives

α(ga, h)
α(gag−1, gh)α(g, h)

=
1

α(gag−1, g)
.

Making this substitution in the expression above yields

α(g, a)
α(gag−1, g)

λ−1
g,rλ
−1
g,s,

proving that the scalar above is independent of choice of representative g of a coset
of CG(a) under the assumption that λh,rλh,s = α(h, a)/α(a, h) for all h ∈ CG(a).
Thus, each of the alleged basis element is well defined, and is evidently G-invariant.
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Conversely, let η=
∑

a∈G
∑
ηa

rs ta⊗v∗r ∧v
∗
s , where ηa

rs are scalars and the second
sum runs over all r < s that satisfy qrr ′qsr ′ = λa,r ′ for all r ′ 6∈ {r, s}. We have

gη=
∑
a∈G

ηa
rs tgta(tg)

−1
⊗

g(v∗r )∧
g(v∗s )=

∑
a∈G

α(g, a)
α(gag−1, g)

λ−1
g,rλ
−1
g,sη

a
rs tgag−1⊗v∗r ∧v

∗

s .

Assume that η is G-invariant. Then

ηgag−1

rs =
α(g, a)

α(gag−1, g)
λ−1

g,rλ
−1
g,sη

a
rs,

for all g ∈ G. Letting g = h ∈ CG(a) yields

λh,rλh,s =
α(h, a)
α(a, h)

,

showing that η is in the span of the alleged basis elements. The stated result now
follows from Theorem 4.4. �

The proof of the following theorem involves the maps 2∗2,R2, and 9∗2 defined
in Section 4.

Theorem 6.5. The maps κ : V × V → CαG for which Hq,κ,α is a twisted quantum
Drinfeld Hecke algebra form a vector space with basis consisting of maps

fr,s,a : V × V → CαG,

(vi , v j ) 7→ (δi,rδ j,s − qsrδi,sδ j,r )
∑

g∈[G/CG(a)]

α(g, a)
α(gag−1, g)

λ−1
g,rλ
−1
g,s tgag−1,

where r < s and a ∈ R satisfy qrr ′qsr ′ = λa,r ′ for all r ′ 6∈ {r, s} and λh,rλh,s =

α(h, a)/α(a, h) for all h ∈ CG(a).

Proof. Let η=
∑

g∈[G/CG(a)](α(g, a)/α(gag−1, g))λ−1
g,rλ
−1
g,s tgag−1⊗v∗r ∧v

∗
s , where

r < s and a ∈ R satisfy the conditions specified in Theorem 6.4. In the proof of
Theorem 5.3 we saw that [2∗2R29

∗

2 (η)](vi ⊗v j −qi jv j ⊗vi )= η(vi ∧v j ), and the
latter is equal to

(δi,rδ j,s − qsrδi,sδ j,r )
∑

g∈[G/CG(a)]

α(g, a)
α(gag−1, g)

λ−1
g,rλ
−1
g,s tgag−1 .

The stated result now follows from Theorems 4.4 and 5.4. �

7. Symmetric groups: natural representations

In this section, we classify twisted quantum Drinfeld Hecke algebras for the sym-
metric groups Sn, n ≥ 4, acting naturally on a vector space of dimension n.

Consider the natural action of Sn on a vector space V with ordered basis
v1, . . . , vn . Let q := (qi j )1≤i, j≤n denote a tuple of nonzero scalars for which
qi i = 1 and q j i = q−1

i j for all i, j . The action of Sn extends to an action on the
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quantum symmetric algebra Sq(V ) by automorphisms if and only if either qi j = 1
for all i, j or qi j = −1 for all i 6= j . The tuple corresponding to the former will
be denoted by 1, and the tuple corresponding to the latter by −1. The action of Sn

on V extends to an action on the quantum exterior algebra
∧
−1 by automorphisms.

Note that the algebra
∧
−1 is commutative.

The Schur multiplier H2(Sn,C×) of the symmetric group Sn is isomorphic to
Z/2Z for all n ≥ 4 [Schur 2001]. Let α be a 2-cocycle on Sn , and let [α] denote
the image of α in H2(Sn,C×). A classification of twisted quantum Drinfeld Hecke
algebras for Sn , acting naturally on a vector space of dimension n, is given in [Ram
and Shepler 2003] for [α] = 1 and q = 1, in [Wambst 1993] for [α] 6= 1 and q = 1,
and in [Naidu and Witherspoon 2011] for [α] = 1 and q = −1. The goal of this
section is to address the remaining case: [α] 6= 1 and q =−1.

Next, we recall a Schur covering group of Sn , which we use to obtain a co-
homologically nontrivial 2-cocycle on Sn . Let Tn be the group with generators
t1, . . . , tn−1, z and relations

z2
= 1,

t2
r = 1 for 1≤ r ≤ n− 1,

tr ts = ts tr z for |r − s|> 1 and 1≤ r, s ≤ n− 1,

tr tr+1tr = tr+1tr tr+1 for 1≤ r ≤ n− 2,

ztr = tr z for 1≤ r ≤ n− 1.

The group Tn is a central extension of Sn by 〈z〉:

1→ 〈z〉 → Tn
p
−→ Sn→ 1,

where the surjection p sends z to 1 and sends tr to the transposition (rr + 1). The
group Tn is a Schur covering group of Sn [Schur 2001].

We define certain distinguished elements of Tn: For every r, s ∈ {1, . . . , n}, r 6= s,
denote by [rs] the element of Tn defined recursively as follows:

[rr + 1] := tr ,

[rs] := tr [r + 1 s]tr z if r < s− 1,

[rs] := [sr ]z if r > s.
Note that p([rs])= (rs).

Next, we define a section u : Sn→ Tn of the surjection p : Tn→ Sn by u(σ )= uσ .
If σ ∈ Sn is the k-cycle (a1, . . . , ak), where a1, . . . , ak ∈ {1, . . . , n} and a1 is the
smallest element of the set {a1, . . . , ak}, define

uσ := [a1ak][a1ak−1] · · · [a1a2].
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If σ ∈ Sn is the product (a1, . . . , ak)(b1, . . . , bl) · · · of disjoint cycles, where a1 is
the smallest element of the set {a1, . . . , ak}, b1 is the smallest element of the set
{b1, . . . , bl}, and so on, and a1 < b1 < · · · , define

uσ := u(a1,...,ak)u(b1,...,bl ) · · · .

It is evident that u : Sn→ Tn is a section, that is, pu = idSn .
Consider any irreducible representation of the group Tn . Since the element

z is central and has order two, it must necessarily act on this representation as
multiplication by either 1 or −1. Assume the latter. In this case, we obtain a
cohomologically nontrivial (normalized) 2-cocyle α : Sn × Sn→ C× defined by

(7.1) α(σ, τ ) :=

{
1 if uσuτu−1

στ = 1,
−1 if uσuτu−1

στ = z,

for all σ, τ ∈ Sn .
Our goal is to classify twisted quantum Drinfeld Hecke algebras associated to

the quadruple (Sn, V,−1, α), where V is the natural representation of Sn and −1
is the tuple defined earlier in this section. To this end, in what follows, we establish
several lemmas that aid in accomplishing our goal.

Since the subgroup 〈z〉 of Tn is central, there is an action of Sn on Tn induced by
conjugation. If σ belongs to Sn and ν belongs to Tn , we denote by σ F ν the result
of σ acting upon ν. We have σ F ν = σ̂ ν(σ̂ )−1, where σ̂ is any element in the set
p−1(σ ).

For each σ ∈ Sn , let ε(σ ) denote the signature of σ :

ε(σ )=

{
0 if σ is an even permutation,
1 if σ is an odd permutation.

The following result from [Vendramin 2012] will be put to use shortly.

Lemma 7.2. For all distinct r, s ∈ {1, . . . , n} and all σ ∈ Sn , we have

σ F [rs] = [σ(r)σ (s)]zε(σ ).

For later use, we record two lemmas.

Lemma 7.3. For all distinct r, r ′, s, s ′ ∈ {1, . . . , n}, we have

[rs][sr ′]z = [rr ′][rs] = [r ′s][rr ′]z.

Proof. We have [rs]−1
[rr ′][rs] = (rs)−1

F [rr ′] = (rs) F [rr ′], and, by Lemma 7.2,
the last expression equals [sr ′]z, proving the first equality. The second equality is
proved similarly. �

Lemma 7.4. For all distinct r, r ′, s, s ′ ∈ {1, . . . , n}, we have

[rs][r ′s ′] = [r ′s ′][rs]z.
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Proof. We have [rs][r ′s ′][rs]−1
= (rs)F [r ′s ′], and, by Lemma 7.2, the last expres-

sion equals [r ′s ′]z. �

For all distinct r, s, r ′, s ′ ∈ {1, . . . , n}, let d(r, s, r ′, s ′) denote the number of
inequalities

min{r, s}>min{r ′, s ′}, r > s, r ′ > s ′

that hold. For all distinct r, s, r ′, s ′ ∈ {1, . . . , n} and all σ ∈ Sn , define

dσ (r, s, r ′, s ′) := d(σ (r), σ (s), σ (r ′), σ (s ′)).

For later use, we record the following obvious result.

Lemma 7.5. For all distinct r, s, r ′, s ′ ∈ {1, . . . , n}, we have

|d(r, s, r ′, s ′)− d(r, s, s ′, r ′)| = 1= |d(r, s, r ′, s ′)− d(s, r, r ′, s ′)|.

We need the following lemma, which is a generalization of [Vendramin 2012,
Lemma 3.7].

Lemma 7.6. Let σ be any element of Sn .

(a) For all r, s ∈ {1, . . . , n} with r < s, we have

σ F u(rs) =

{
uσ(rs)σ−1 zε(σ ) if σ(r) < σ(s),
uσ(rs)σ−1 zε(σ )+1 if σ(r) > σ(s).

(b) For all distinct r, s, r ′, s ′ ∈ {1, . . . , n} with r < s, r ′ < s ′, and r < r ′, we have

σ F u(rs)(r ′s′) = uσ(rs)(r ′s′)σ−1 zdσ (r,s,r ′,s′).

(c) For all distinct r, s, r ′ ∈ {1, . . . , n} with r < s and r < r ′, we have

σ F u(rsr ′) = uσ(rsr ′)σ−1 .

Proof. (a) By Lemma 7.2, σ F u(rs) = σ F [rs] = [σ(r)σ (s)]zε(σ ). If σ(r) < σ(s),
then

[σ(r)σ (s)]zε(σ ) = u(σ (r)σ (s))zε(σ ) = uσ(rs)σ−1 zε(σ ).

If σ(r) > σ(s), then

[σ(r)σ (s)]zε(σ ) = [σ(s)σ (r)]zε(σ )+1
= u(σ (s)σ (r))zε(σ )+1

= uσ(rs)σ−1 zε(σ )+1.

(b) Again, by Lemma 7.2,

σ F u(rs)(r ′s′) = σ F [rs][r ′s ′] = (σ F [rs])(σ F [r ′s ′])

= [σ(r)σ (s)]zε(σ )[σ(r ′)σ (s ′)]zε(σ )

= [σ(r)σ (s)][σ(r ′)σ (s ′)].

If min{σ(r), σ (s)} > min{σ(r ′), σ (s ′)}, then, using Lemma 7.4, we rewrite the
product above as [σ(r ′)σ (s ′)][σ(r)σ (s)]z. If σ(r)>σ(s), we replace [σ(r)σ (s)] by
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[σ(s)σ (r)]z. Similarly, if σ(r ′) > σ(s ′), we replace [σ(r ′)σ (s ′)] by [σ(s ′)σ (r ′)]z.
Since the element z has order two, the stated result follows. For example, suppose
that dσ (r, s, r ′, s ′)= 3. Then σ(r) > σ(s), σ (r ′) > σ(s ′), and σ(s) > σ(s ′), and in
this case we write

[σ(r)σ (s)][σ(r ′)σ (s ′)] = [σ(r ′)σ (s ′)][σ(r)σ (s)]z = [σ(s ′)σ (r ′)]z[σ(s)σ (r)]zz

= [σ(s ′)σ (r ′)][σ(s)σ (r)]z

= u(σ (s′)σ (r ′))(σ (s)σ (r))z

= uσ(rs)(r ′s′)σ−1 z.

(c) Again, by Lemma 7.2,

σ F u(rsr ′) = σ F [rr ′][rs] = (σ F [rr ′])(σ F [rs])

= [σ(r)σ (r ′)]zε(σ )[σ(r)σ (s)]zε(σ )

= [σ(r)σ (r ′)][σ(r)σ (s)].

Case (c1). σ(r) < σ(r ′) and σ(r) < σ(s). In this case,

[σ(r)σ (r ′)][σ(r)σ (s)] = u(σ (r)σ (s)σ (r ′)) = uσ(rsr ′)σ−1 .

Case (c2). Either σ(s) < σ(r) < σ(r ′) or σ(s) < σ(r ′) < σ(r). Using the first
equality of Lemma 7.3,

[σ(r)σ (r ′)][σ(r)σ (s)] = [σ(r)σ (s)][σ(s)σ (r ′)]z = [σ(s)σ (r)]z[σ(s)σ (r ′)]z

= u(σ (s)σ (r ′)σ (r))

= uσ(rsr ′)σ−1 .

Case (c3). Either σ(r ′) < σ(r) < σ(s) or σ(r ′) < σ(s) < σ(r). Using the second
equality of Lemma 7.3,

[σ(r)σ (r ′)][σ(r)σ (s)] = [σ(r ′)σ (s)][σ(r)σ (r ′)]z

= [σ(r ′)σ (s)][σ(r ′)σ (r)]zz

= u(σ (r ′)σ (r)σ (s))

= uσ(rsr ′)σ−1 . �

We now turn our attention to the Hochschild cohomology of S−1(V )#αSn .

Theorem 7.7 [Naidu and Witherspoon 2011, Theorem 6.8]. Assume that n≥ 4. The
constant Hochschild 2-cocycles representing elements in HH2(S−1(V ), S−1(V )#Sn)

form a vector subspace of (S−1(V )#G)⊗
∧
−1(V ∗) having as a basis the set of all
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η1 = t1⊗ v∗r ∧ v
∗

s (r < s),

η2 = t(rs)⊗ v
∗

r ∧ v
∗

s (r < s),

η3 = t(rs)⊗ (v
∗

r ∧ v
∗

r ′ + v
∗

s ∧ v
∗

r ′) (r < s),

η4 = t(rs)(r ′s′)⊗ (v
∗

r ∧ v
∗

r ′ + v
∗

r ∧ v
∗

s′ + v
∗

s ∧ v
∗

r ′ + v
∗

s ∧ v
∗

s′) (r < s, r ′ < s ′, r < r ′),

η5 = t(rsr ′)⊗ (v
∗

r ∧ v
∗

s + v
∗

s ∧ v
∗

r ′ + v
∗

r ∧ v
∗

r ′) (r < s, r < r ′).

Note that the S−1(V )-bimodule structure of S−1(V )#αG does not depend on the
2-cocycle α, and so HH2(S−1(V ), S−1(V )#αG)= HH2(S−1(V ), S−1(V )#G).

The lemma below involves the maps2∗2,R2, and9∗2 defined in Section 4. Recall
that the image of an element σ ∈ Sn in the twisted group algebra CαSn is denoted
by tσ . Also, recall the definition of the 2-cocycle α given in (7.1).

Lemma 7.8. For all i 6= j ,

[(2∗2R29
∗

2 )(ηa)](vi ⊗ v j )

=



1
n(n−1)

t1 if a = 1,

0 if a = 2,

0 if a = 3 and n ≥ 5,

0 if a = 4,
1

n(n−1)(n−2)
∑

k 6=i, j
(2t(i jk)+ t(ik j)) if a = 5,

Proof. Using (4.7),

[(2∗2R29
∗

2 )(η1)](vi ⊗ v j )=
1
n!

∑
σ∈Sn

σ(η1(92(1⊗ vσ−1(i)⊗ vσ−1( j)⊗ 1)))

=
1
n!

∑
σ∈Sn

σ−1(i)<σ−1( j)

σ(η1(1⊗ 1⊗ vσ−1(i)⊗ vσ−1( j)))

=
1
n!

∑
σ∈Sn

σ(r)=i, σ (s)= j

σ(t1)

=
1

n(n− 1)
t1.

Similarly,

[(2∗2R29
∗

2 )(η2)](vi ⊗ v j )=
1
n!

∑
σ∈Sn

σ(r)=i, σ (s)= j

σ(t(rs)).

Applying the conjugation action in CαG, we get
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1
n!

∑
σ∈Sn

σ(r)=i, σ (s)= j

α(σ, (rs))
α(σ (rs)σ−1, σ )

tσ(rs)σ−1 =

(
1
n!

∑
σ∈Sn

σ(r)=i, σ (s)= j

α(σ, (rs))
α((i j), σ )

)
t(i j).

The scalar α(σ, (rs))/α((i j), σ ) in the summation above is determined by the
following element of Tn:

uσu(rs)u−1
σ(rs)u(i j)σu−1

σ u−1
(i j) = uσu(rs)u−1

σ u−1
σ(rs)σ−1 .

By Lemma 7.6(a),

uσu(rs)u−1
σ u−1

σ(rs)σ−1 =

{
zε(σ ) if i < j,
zε(σ )+1 if i > j.

Since we assume n is greater than or equal to 4, the set {σ ∈ Sn | σ(r)= i, σ (s)= j}
contains an equal number of odd and even permutations, and so∑

σ∈Sn
σ(r)=i, σ (s)= j

α(σ, (rs))
α((i j), σ )

= 0,

proving that [(2∗2R29
∗

2 )(η2)](vi ⊗ v j )= 0.
Next, we consider the a = 3 case. In addition to the stated assumption r < s, as-

sume further that r<r ′ and s<r ′. The other cases can be handled similarly. We have

[(2∗2R29
∗

2 )(η3)](vi ⊗ v j )=
1
n!

∑
σ∈Sn

σ(r)=i, σ (r ′)= j

σ(t(rs))+
1
n!

∑
σ∈Sn

σ(s)=i, σ (r ′)= j

σ(t(rs)).

Applying the conjugation action in CαG, we get

1
n!

∑
σ∈Sn

σ(r)=i, σ (r ′)= j

α(σ, (rs))
α((iσ(s)), σ )

t(iσ(s))+
1
n!

∑
σ∈Sn

σ(s)=i, σ (r ′)= j

α(σ, (rs))
α((σ (r)i), σ )

t(σ (r)i)

=
1
n!

∑
k 6=i, j

( ∑
σ∈Sn

σ(r)=i, σ (r ′)= j, σ (s)=k

α(σ, (rs))
α((ik), σ )

+

∑
σ∈Sn

σ(s)=i, σ (r ′)= j, σ (r)=k

α(σ, (rs))
α((ik), σ )

)
t(ik).

The scalar α(σ, (rs))/α((ik), σ ) in the first of the two inner summations above is
determined by the element uσu(rs)u−1

σ u−1
σ(rs)σ−1 of Tn . Again, by Lemma 7.6(a),

uσu(rs)u−1
σ u−1

σ(rs)σ−1 =

{
zε(σ ) if i < k,
zε(σ )+1 if i > k.

Since n is assumed to be greater than or equal to 5, the set {σ ∈ Sn | σ(r)= i,
σ (r ′)= j, σ (s)= k} contains an equal number of odd and even permutations, and so∑

σ∈Sn
σ(r)=i, σ (r ′)= j, σ (s)=k

α(σ, (rs))
α((ik), σ )

= 0.
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Similarly, ∑
σ∈Sn

σ(s)=i, σ (r ′)= j, σ (r)=k

α(σ, (rs))
α((ik), σ )

= 0,

and it follows that [(2∗2R29
∗

2 )(η3)](vi ⊗ v j )= 0.
For the a = 4 case, in addition to the stated assumptions r < s, r ′ < s ′, r < r ′,

assume further that r < s ′, s < r ′, and s < s ′. The other cases can be handled
similarly. We have

[(2∗2R29
∗

2 )(η4)](vi ⊗ v j )

=
1
n!

∑
σ∈Sn

σ(r)=i, σ (r ′)= j

σ(t(rs)(r ′s′))+
1
n!

∑
σ∈Sn

σ(r)=i, σ (s′)= j

σ(t(rs)(r ′s′))

+
1
n!

∑
σ∈Sn

σ(s)=i, σ (r ′)= j

σ(t(rs)(r ′s′))+
1
n!

∑
σ∈Sn

σ(s)=i, σ (s′)= j

σ(t(rs)(r ′s′)).

Applying the conjugation action in CαG, we get

1
n!

( ∑
σ∈Sn

σ(r)=i, σ (r ′)= j

α(σ, (rs)(r ′s ′))
α((iσ(s))( jσ(s ′)), σ )

t(iσ(s))( jσ(s′))

+

∑
σ∈Sn

σ(r)=i, σ (s′)= j

α(σ, (rs)(r ′s ′))
α((iσ(s))(σ (r ′) j), σ )

t(iσ(s))(σ (r ′) j)

+

∑
σ∈Sn

σ(s)=i, σ (r ′)= j

α(σ, (rs)(r ′s ′))
α((σ (r)i)( jσ(s ′)), σ )

t(σ (r)i)( jσ(s′))

+

∑
σ∈Sn

σ(s)=i, σ (s′)= j

α(σ, (rs)(r ′s ′))
α((σ (r)i)(σ (r ′) j), σ )

t(σ (r)i)(σ (r ′) j)

)

=
1
n!

∑
k,l 6∈{i, j}

( ∑
σ∈Sn

σ(r)=i, σ (r ′)= j
σ(s)=k, σ (s′)=l

α(σ, (rs)(r ′s ′))
α((ik)( jl), σ )

+

∑
σ∈Sn

σ(r)=i, σ (s′)= j
σ(s)=k, σ (r ′)=l

α(σ, (rs)(r ′s ′))
α((ik)( jl), σ )

+

∑
σ∈Sn

σ(s)=i, σ (r ′)= j
σ(r)=k, σ (s′)=l

α(σ, (rs)(r ′s ′))
α((ik)( jl), σ )

+

∑
σ∈Sn

σ(s)=i, σ (s′)= j
σ(r)=k, σ (r ′)=l

α(σ, (rs)(r ′s ′))
α((ik)( jl), σ )

)
t(ik)( jl).

The scalar α(σ, (rs)(r ′s ′))/α((ik)( jl), σ ) in the first of the four inner summa-
tions above is determined by the element uσu(rs)(r ′s′)u−1

σ u−1
σ(rs)(r ′s′)σ−1 of Tn . By

Lemma 7.6(b),
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uσu(rs)(r ′s)u−1
σ u−1

σ(rs)(r ′s′)σ−1 = zdσ (r,s,r ′s′) = zd(i,k, j,l).

Thus, ∑
σ∈Sn

σ(r)=i, σ (r ′)= j
σ(s)=k, σ (s′)=l

α(σ, (rs)(r ′s ′))
α((ik)( jl), σ )

= (n− 4)!(−1)d(i,k, j,l).

Similarly, the second, third, and fourth summations are equal to (n − 1)! times
(−1)d(i,k,l, j), (−1)d(k,i, j,l), and (−1)d(k,i,l, j), respectively. From Lemma 7.5 it
follows that the sum of the four summations above is equal to zero, and so
[(2∗2R29

∗

2 )(η4)](vi ⊗ v j )= 0.
Finally, for the a = 5 case, in addition to the stated assumptions r < s, r < r ′,

assume further that s < r ′. Again, the other case can be handled similarly. We have

[(2∗2R29
∗

2 )(η5)](vi ⊗ v j )

=
1
n!

∑
σ∈Sn

σ(r)=i, σ (s)= j

σ(t(rsr ′))+
1
n!

∑
σ∈Sn

σ(s)=i, σ (r ′)= j

σ(t(rsr ′))+
1
n!

∑
σ∈Sn

σ(r)=i, σ (r ′)= j

σ(t(rsr ′))

=
1
n!

∑
σ∈Sn

σ(r)=i, σ (s)= j

α(σ, (rsr ′))
α((i jσ(r ′)), σ )

t(i jσ(r ′))+
1
n!

∑
σ∈Sn

σ(s)=i, σ (r ′)= j

α(σ, (rsr ′))
α((σ (r)i j), σ )

t(σ (r)i j)

+
1
n!

∑
σ∈Sn

σ(r)=i, σ (r ′)= j

α(σ, (rsr ′))
α((iσ(s) j), σ )

t(iσ(s) j)

=
1
n!

∑
k,l 6∈{i, j}

[( ∑
σ∈Sn

σ(r)=i, σ (s)= j, σ (r ′)=k

α(σ, (rsr ′))
α((i jk), σ )

+

∑
σ∈Sn

σ(s)=i, σ (r ′)= j, σ (r)=k

α(σ, (rsr ′))
α((i jk), σ )

)
t(i jk)

+

∑
σ∈Sn

σ(r)=i, σ (r ′)= j, σ (s)=k

α(σ, (rsr ′))
α((ik j), σ )

t(ik j)

]
.

The scalar α(σ, (rsr ′))/α((i jk), σ ) in the first of the three inner summations above
is determined by the element uσu(rsr ′)u−1

σ u−1
σ(rsr ′)σ−1 of Tn . By Lemma 7.6(c),

uσu(rsr ′)u−1
σ u−1

σ(rsr ′)σ−1 = 1. Thus,∑
σ∈Sn

σ(r)=i, σ (s)= jσ(r ′)=k

α(σ, (rsr ′)
α((i jk), σ )

= (n− 3)! .

Similarly, the second and third summations are also equal to (n−3)! . It follows that

[(2∗2R29
∗

2 )(η5)](vi ⊗ v j )=
1

n(n−1)(n−2)

∑
k 6=i, j

(2t(i jk)+ t(ik j)). �
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Combining Theorems 7.7, 4.4, 5.4, and Lemma 7.8 establishes the following.

Theorem 7.9. Assume that n ≥ 5. The maps κ : V × V → CαSn for which H−1,κ,α
is a twisted quantum Drinfeld Hecke algebra form a two-dimensional vector space
with basis consisting of bilinear maps κ1 : V ×V → CαSn and κ2 : V ×V → CαSn

determined by

κ1(vi , v j )= t1 and κ2(vi , v j )=
∑

k 6=i, j

(t(i jk)+ t(ik j)),

for all i 6= j .
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