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We estimate the bottom of the spectrum of the Laplace operator on a stable
minimal hypersurface in a negatively curved manifold. We also derive vari-
ous vanishing theorems for L? harmonic 1-forms on minimal hypersurfaces
in terms of the bottom of the spectrum of the Laplace operator. As conse-
quences, the corresponding Liouville type theorems for harmonic functions
with finite L? energy on minimal hypersurfaces in a Riemannian manifold
are obtained.

1. Introduction

Hodge theory plays an important role in the topology of compact Riemannian
manifolds. Unfortunately, the Hodge theory does not work anymore in noncompact
manifolds. However, the L?-Hodge theory works well in noncompact cases [Ander-
son 1988; Dodziuk 1982]. In this direction, there are various results for L2 harmonic
1-forms on stable minimal hypersurfaces. Recall that a minimal hypersurface in
a Riemannian manifold is called stable if the second variation of its volume is
always nonnegative for any normal variation with compact support. More precisely,
an n-dimensional minimal hypersurface M in a Riemannian manifold N is called
stable if it holds that, for any compactly supported Lipschitz function f on M,

/IVflz—(IAlerR_ic(v,v))fzdv20,
M

where v is the unit normal vector of M, Ric(v, v) denotes the Ricci curvature of N
in the v direction, |A|? is the square length of the second fundamental form A, and
dv is the volume form for the induced metric on M.

Using the nonexistence of L? harmonic 1-forms, Palmer [1991] proved that if
there exists a codimension-one cycle on a complete minimal hypersurface M in
Euclidean space, which does not separate M, M is unstable. Using Bochner’s
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vanishing technique, Miyaoka [1993] showed that a complete noncompact stable
minimal hypersurface in a nonnegatively curved manifold has no nontrivial L?
harmonic 1-forms. Pigola, Rigoli, and Setti [Pigola et al. 2005] gave general Liou-
ville type results and the corresponding vanishing theorems on the L? cohomology
of stable minimal hypersurfaces. Refer to [Carron 2002; Pigola et al. 2008] for
a survey in this area. While the L? theory is quite well understood, in the case
p # 2, the L? theory is less developed. See [Scott 1995] for general L? theory of
differential forms on a manifold.

The purpose of this paper is twofold. Firstly, we estimate the smallest spectral
value of the Laplace operator on a complete noncompact stable minimal hypersur-
face in a Riemannian manifold under the assumption on L? norm of the second
fundamental form. Secondly, we obtain various vanishing theorems for L? harmonic
1-forms on minimal hypersurfaces.

Let M be a complete noncompact Riemannian manifold and let €2 be a compact
domain in M. Let 1;(2) > 0 denote the first eigenvalue of the Dirichlet boundary

value problem .
{Af+kf:0 in Q,

f=0 on 92,

where A denotes the Laplace operator on M. Then the first eigenvalue A (M) is

defined by
rM(M) = igf)»l(ﬂ),

where the infimum is taken over all compact domains in M. Cheung and Leung
[2001] gave the first eigenvalue estimate for an n-dimensional complete noncompact
submanifold M with the norm of its mean curvature vector bounded in the hyperbolic
space. In particular, they proved that if M is minimal, the first eigenvalue A (M)

satisfies ] 5
7(n—D7 <1 (M).

Note that this inequality is sharp because equality holds if M is totally geodesic
[McKean 1970]. This result was extended to an n-dimensional complete noncompact
submanifold with the norm of its mean curvature vector bounded in a complete
simply connected Riemannian manifold with sectional curvature bounded above by
a negative constant. More precisely, we have the following theorem.

Theorem [Bessa and Montenegro 2003; Seo 2012]. Let N be an n-dimensional
complete simply connected Riemannian manifold with sectional curvature Ky
satisfying Ky < —a® <0 for a positive constant a > 0. Let M be a an m-dimensional
complete noncompact submanifold with bounded mean curvature vector H in N
satisfying |H| <b < (m — 1)a. Then

(1) H(m—Da—b]* <M (M).
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On the other hand, Candel [2007] obtained an upper bound for the bottom
of the spectrum of a complete simply connected stable minimal surface in 3-
dimensional hyperbolic space. With finite L? norm of the second fundamental
form, one may estimate an upper bound for the bottom of the spectrum of a stable
minimal hypersurface in a Riemannian manifold with pinched negative sectional
curvature [Dung and Seo 2012; Seo 2011]. In Section 2, we estimate the bottom of
the spectrum of the Laplace operator on stable minimal hypersurfaces under the
assumption on the L” norm of the second fundamental form. Indeed, we prove the
following.

Theorem. Let N be an (n+1)-dimensional complete simply connected Riemannian
manifold with sectional curvature satisfying K1 < Ky < K, where K|, K, are
constants and K1 < K, < 0. Let M be a complete stable non-totally geodesic
minimal hypersurface in N. Assume that, for 1 — \/2/7 <p<l+ \/2/7,

lim R_Z/ |A]?P =0,

where B(R) is a geodesic ball of radius R on M. If|[VK|> =)
K32|A|2f0r some constant K3 > 0, we have

2
ivjktom Kijkim =

—1)2 2 _
e (n—1) < (M) < np“(2K; —n(K; + K»))
4 2—n(p—1)2

The author [2010] proved that if M is an n-dimensional complete stable minimal
hypersurface in hyperbolic space with A (M) > (2n—1)(n—1), there is no nontrivial
L? harmonic 1-form on M. This result was generalized [Dung and Seo 2012] to
a complete stable minimal hypersurface in a Riemannian manifold with sectional
curvature bounded below by a nonpositive constant. In Section 3, we prove an
extended result for L# harmonic 1-forms on a complete noncompact stable minimal
hypersurface as follows.

Theorem. Let N be an (n + 1)-dimensional complete Riemannian manifold with
sectional curvature satisfying that K < Ky where K < 0 is a constant. Let M
be a complete noncompact stable minimal hypersurface in N. Assume that, for
O<p <n/(n—1)+m,

—2n(n—1)*p*K

MO = = p—nP

Then there is no nontrivial L*P harmonic 1-form on M.

Yau [1976] proved that there are no nonconstant L” harmonic functions on a
complete Riemannian manifold for 1 < p < oo. Li and Schoen [1984] proved
that Yau’s result is still true for L? harmonic functions on a complete manifold of
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nonnegative Ricci curvature when 0 < p < co. In the case of harmonic forms, Greene
and Wu [1974; 1981] announced nonexistence of nontrivial L” harmonic forms
(1 < p < o0) on complete Riemannian and Ké#hlerian manifolds of nonnegative
curvature. See also [Colding and Minicozzi 1996; 1997; 1998; Li and Tam 1987;
1992] for Liouville type theorems for harmonic functions on a complete Riemannian
manifold. The Liouville property holds also for harmonic functions on minimal
hypersurfaces in a Riemannian manifold. For instance, Schoen and Yau proved the
Liouville type theorem on minimal hypersurfaces as follows.

Theorem [Schoen and Yau 1976]. Let M be a complete noncompact stable minimal
hypersurface in a Riemannian manifold with nonnegative sectional curvature. If f
is a harmonic function on M with finite L? energy, f is constant.

Recall that a function f on a Riemannian manifold M has finite L? energy if
IVf| € LP(M). As an application of our theorem, we immediately obtain the
following, which is a generalization of Schoen and Yau’s result (see Corollary 3.10).

Theorem. Let M be a complete noncompact stable minimal hypersurface in a
Riemannian manifold with nonnegative sectional curvature with A{(M) > 0. Then
there is no nontrivial harmonic function on M with finite L? energy for 0 < p <

n/(n— 1) ++/2n.

For n > 3, it is well known [Cao et al. 1997] that an n-dimensional complete
stable minimal hypersurface M in Euclidean space cannot have more than one end.
This topological result was generalized to minimal hypersurfaces with finite index
in Euclidean space and stable minimal hypersurfaces in a nonnegatively curved
manifold by Li and Wang [2002; 2004]. If we assume that M has sufficiently small
total scalar curvature instead of assuming that M is stable, we can also have the
same conclusion [Ni 2001; Seo 2008]. See also [Pigola and Veronelli 2012] for
more general results related with L” norm of the second fundamental form. In the
same spirit, Yun [2002] proved that if M C R"*! is a complete minimal hypersurface
with sufficiently small total scalar curvature, there is no nontrivial L? harmonic
1-form on M. Yun’s result was generalized [Dung and Seo 2012] to a complete
noncompact stable minimal hypersurface in a complete Riemannian manifold with
sectional curvature bounded below by a nonpositive constant. The corresponding
vanishing theorems for L? harmonic 1-forms are obtained in Section 4.

One crucial step in the proofs of our theorems is to obtain an inequality of
Simons’ type for |¢|? rather than |¢|, where ¢ is a geometric quantity which we
want to analyze. This kind of inequalities has been used in [Deng 2008; Fu 2012;
Shen and Zhu 2005]. Equipped with this Simons’ type inequality, we extend the
original Bochner technique to our cases.
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2. An estimate for the bottom of the spectrum of the Laplace operator

Let M be an n-dimensional manifold immersed in an (n + 1)-dimensional Riemann-
ian manifold N. We choose a local vector field of orthonormal frames ey, .. ., e,41
in N such that the vectors ey, .. ., e, are tangent to M and the vector e, 1| is normal
to M. With respect to this frame field of N, let K;jx; be a curvature tensor of N.
We denote by K. the covariant derivative of K. In this section, we follow
the notation of [Schoen et al. 1975].

Theorem 2.1. Let N be an (n + 1)-dimensional complete simply connected Rie-
mannian manifold with sectional curvature satisfying K1 < Ky < K;, where K, K;
are constants and K| < K, < 0. Let M be a complete stable non-totally geodesic

minimal hypersurface in N. Assume that, for 1 —\/2/n < p <14+./2/n,

lim R_Z/ |A]?P =0,

where B(R) is a geodesic ball of radius R on M. If [VK|* = Dijklm Kl.zj,d;m <
K32|A|2f0r some constant K3 > 0, we have
(n—1) np*(2K; —n(Ki +K»))

—K

<M MM) =<

2—n(p—17?

Proof. As mentioned in the introduction, one sees that the lower bound of 1, (M)

is given as —K,(n — 1)2/4 from inequality (1) [Bessa and Montenegro 2003; Seo

2012]. Namely, the first eigenvalue of an n-dimensional minimal hypersurface in a

complete simply connected Riemannian manifold with sectional curvature bounded

above by a negative constant K is bounded below by —K;(n — 1)?/4. Therefore,

in the rest of the proof, we shall find the upper bound of the first eigenvalue A{(M).
By [Schoen et al. 1975, (1.22), (1.27)], we have

|AIAJA|+2K5| A2 = n(2Ky — KDIAP + A 2 Y b3y — |V1A|
at all points where |A| # 0. Because K, — K| > 0, this inequality implies
AIAA]+2K3| AP = n Kol AP + A1 = Y n2, — |VIA]]
S
Applying the Kato-type inequality

2

2
IVAI* = |VI]A]] z;|V|A|
due to Y. L. Xin [2005], we get

2 2
2) |A|AJA| + 2K3 —nKy)| AP+ |A* > - IVIA||".
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For a positive number p > 0, we have

|AIPA|AIP = |A|Pdiv(V|A|P)
= |A|Pdiv(p |[AIP7'V]A])
_ 2 _
= p(p — DIAPP2|VIA||"+ plAPPP7 AA|

p—1 2 _
= T|V|A|P| + plAIPPT2|A|AA|.

It follows from inequality (2) that

|AIPA|A|P
p—1 2 2p _ 2

zT|V|A|P| +7|A|2P 2|VIA||" = plAPPP*2 — p(2K3 — nK2)|A|?

2

|VIA|P
np

—1
=”T|V|A|P|2+ > = plAP*2 — p(2K5 —nKy)| AP

Thus
-2
AP AIAI + p2Ks — nK)| AP + plAPP*2 = (1 - ”—) VAP,
np

Choose a Lipschitz function f with compact support in a geodesic ball B(R) of
radius R centered at a point x € M. Multiplying both sides by f? and integrating
over B(R), we obtain

FAIAIPAIAIP + p(2K3 — nK>) FAAPP +p al\Eas
B(R) B(R) B(R)

-2
- (l‘n )/ £lviarp.
np B(R)

The divergence theorem yields

FAIAIPAALP
B(R)

=/ diV(leAlpVIAI”)—f f2|V|A|P\2—2/ FIAP (£, VIAI)
B(R) B(R) B(R)

=—/ f2|VIA|”|2—2/ FIAIP(V f, VIAJP).
B(R) B(R)
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Therefore

3) (1—”_2)/ F2IVIAP)
np B(R)

< pQKs—nK2) f2|A|2P+pf F2lAPPY
B(R) B(R)

2
[ plviarf-z[ paresviar,
B(R) B(R)
The stability of M implies that

4 f VFP = (AP +Ric(ens) f2 = 0
M

for any compactly supported Lipschitz function f on M. From our assumption on
the sectional curvature of N, we see that

nKy <Ric(ens1) = Rup11nt1.1+ -+ Rugrnnsin < nko.
Hence the stability inequality (4) gives

5) f VFP = (AR 4K f2 20
M

for any compactly supported Lipschitz function f on M. Choose a Lipschitz
function f with compact support in a geodesic ball B(R) C M, as before. Replacing
f by |A|? f in inequality (5), we have

f IVAAP ) = (AP £2 4 n Ky AP £) = 0.
M
Thus

2
(©) f [VIAIP| f2+/ IVFI2|AIPP +2 FIAIP(VF, V|AIP)
B(R) B(R) B(R)

z/ IAI2”+2f2+nK1/ AP? £2.
B(R) B(R)

Combining the inequalities (3) and (6), we get

™) (1—”_2>/ £2|viar)?
np B(R)

< pQKs — K1 —nK) f2|A|2P+<p—1>f £2|VIAP
B(R) B(R)

‘ 2

+p/ IVFI2AI?P +2(p — 1)/ FIAIP(VL, VIAP).
B(R) B(R)
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On the other hand, from the definition of A;(M) and the domain monotonicity of
eigenvalues, it follows that

fB(R) |Vf|2
fB(R) f2

for any compactly supported nonconstant Lipschitz function f on M. Substituting
|A|? f for f in inequality (8), we see that

®) A(M) = A (B(R)) =

9) A (M) |A|?P 2
B(R)

2
5/ N
B(R)
=/ f2|V|A|”|2+/ |A|2P|Vf|2+2/ FIAIP(VS, V]A|P).
B(R) B(R) B(R)
Plugging inequality (9) into (7), we have

(1= ) ot
np B(R)

14 2
< M(M)(ZKs—nKl—nKz)</B f|VIAlP

(R)
+IVf|2|A|2”+2/ fIAI”<Vf,VIA|”>>
B(R)

| 2

2
+(p=D [ fVIA)P +p/ IVFPIAPP+2(p—1) | fIAIP(VS,VIAIP).
B(R) B(R) B(R)

Thus

o (1=22) it
np B(R)

14 2 2
< —(2K3—nK1—nKz)+p—1)f feIVIAIP
(M(M) B(R) | |

p 20412
+ (21<3—n1<1—n1<2)+p)/ VfPIAPP
(M(M) B(R)

p
2 2K3 —nK, —nkK -1 A|P(Vf, V|AlP).
+ (M(M)( 3—nKy—nkKs) +p ) B(R)fl I"{V, VIALT)

Note that Young’s inequality yields

1
(11) 2/ fIAI”(Vf,VIAI”>§s/ |Vf|2|A|2P+—/ FAVIAIP?
B(R) B(R) € JB(R)
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for any ¢ > 0. From inequalities (10) and (11), it follows that

(157) [t
np B(R)

P 2
< (2K —nKy —nK»)+ p— 1)/ £2|VIAPP
<)»1(M) B(R) ’

‘ 2

p 20 412
+ (2K3—HK1—HK2)+P)/ Y/ 2P
(M(M) B(R)

1
+(L(2K3—n1q—n1<z>+p—1)(ef VAP +— f2|V|A|”|2),
rM(M) B(R) € JB(®)

which yields that

n—2 1 p f 2 2
1— — 14+ - 2Ky —nKqi —nK —1 VIA|?P
[ np (+s>(x1<M>( 3s—nky—nk)+p )] B<R>f| AV

< [(1 +8)<A1fM) (2K3 —nK; —nk>) +p) —e] fm) IVFI2AIPP.

For a contradiction, we suppose that

pRK3—nK;—nKy)  np*(2K3 —n(K; + K3))
l—(n—=2)/np—(p—1 2—n(p—1)?
Note the assumption that 1 —/2/n < p < 144/2/n is equivalent to

A (M) >

2—n(p—1)72>0.

Choose a sufficiently large ¢ > 0 satisfying

1222 (14 ] P oKy —nK,—nk 1 0
T _( +E)(A1<M>( T 2)”_) o

Since |Vf| < 1/R by our choice of f, one can conclude that, by letting R — oo,

/ VIAPP =0,
M

where we used the growth condition on f B(R) |A|>P. Thus we see that | A| is constant.
Since the volume of M is infinite [Wei 2003], we get |A| = 0. This implies that M
is totally geodesic, which is impossible by our assumption. Therefore we obtain
the upper bound of X (M):

np?(2K; —n(K + K»))

M) = S
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Dung and the author [2012] gave an estimate of the bottom of the spectrum for
the Laplace operator on a complete noncompact stable minimal hypersurface M in
a complete simply connected Riemannian manifold with pinched negative sectional
curvature under the assumption on L?-norm of the second fundamental form A of
M. In Theorem 2.1, if we take p = 1, we get the following.

Corollary 2.2 [Dung and Seo 2012]. Let N be an (n + 1)-dimensional complete
simply connected Riemannian manifold with sectional curvature satisfying K| <
Kn < Ky, where K1, K> are constants and K| < K, < 0. Let M be a complete
stable non-totally geodesic minimal hypersurface in N. Assume that

lim R_Z/ |A]?> =0,

where B(R) is a geodesic ball of radius R on M. If|[VK|>* =)
K32|A|2f0r some constant K3 > 0, we have

2
i,j.k,l,m Kijkl;m =

(n—1)>? M) < K5 —n(K1+ K>))n
=Nl = ) .

_K2

In particular, if N is the (n 4 1)-dimensional hyperbolic space H"*!, one sees

that K1 = K, = —1, and hence |VK|2 =0, that is, K3 = 0. Moreover, it follows

from McKean’s result [1970] that the first eigenvalue A; (M) of any complete totally

geodesic hypersurface M c H"*+! satisfies A; (M) = (n — 1)2/4. Therefore we have
the following consequence which is an extension of the result in [Seo 2011].

Corollary 2.3. Let M be a complete stable minimal hypersurface in H'T! with

fM |A|?P dv < oo for 1 —\/2/n < p < 14/2/n. Then we have
(n—1)? 2n?p?
S)LI(M)Em-

As another application of Theorem 2.1, we have the following when n < 8.

_K2

Corollary 2.4. Let N be an (n + 1)-dimensional complete simply connected Rie-
mannian manifold with sectional curvature satisfying K1 < Ky < K,, where K1, K;
are constants and K| < K, < 0 forn < 8. Let M be a complete stable non-totally
geodesic minimal hypersurface in N. For p =1, 2, 3, iffM |A|? < oo, we have

(n—1)? np*(2K3 —n(Ki + K2))

—K < MM) <
2 =MM) = pT—

Proof. Since /2/n > 1/2 when n < 8, the conclusion can be derived from
Theorem 2.1. O
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3. Vanishing theorems on minimal hypersurfaces with A1 () bounded below

Before we prove the vanishing theorems for L? harmonic 1-forms on complete
minimal hypersurface, we begin with some useful facts.

Lemma 3.1 [Leung 1992]. Let M be an n-dimensional complete immersed minimal
hypersurface in a Riemannian manifold N. If all the sectional curvatures of N are
bounded below by a constant K ,

Ric>(n—-1)K ———|A|".
n

Lemma 3.2 [Wang 2001]. Let w be a harmonic 1-form on an n-dimensional Rie-
mannian manifold M. Then

2 1 2
(12) Vol —|V]o||” > —|VIo|]".
n—1
We also need the following well-known Sobolev inequality on a Riemannian

manifold.

Lemma 3.3 [Hoffman and Spruck 1974]. Let M" be a complete immersed minimal
submanifold in a nonpositively curved manifold N"*P, n > 3. Then, for any
¢ € WOI’Z(M), we have

(n=2)/n
(13) (/’wﬂwmﬂhw) scﬁ[|V¢de
M M

where Cy is the Sobolev constant which depends only on n > 3.

A complete Riemannian manifold M is called nonparabolic if it admits a non-
constant positive superharmonic function. Otherwise, M is said to be parabolic.
The following sufficient condition for parabolicity is well known.

Theorem [Grigoryan 1983; 1985; Karp 1982; Varopoulos 1983]. Let M be a
complete Riemannian manifold. If , for any point p € M and a geodesic ball B, (r),

[ v dr=c.
L Vol(B, (1)

M is parabolic.

It immediately follows from this result that if M is nonparabolic,

[ o dr <o
| VoI(B, ()

and hence M has infinite volume. Moreover, if A{(M) > 0, M is nonparabolic
[Grigoryan 1999]. Therefore one can conclude the following.
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Proposition 3.4. Let M be an n-dimensional complete noncompact Riemannian
manifold with Ay (M) > 0. Then Vol(M) = oo.

Note that, in the case of submanifolds, Cheung and Leung [1998] proved that the
volume Vol(B),(r)) of every complete noncompact submanifold M in the Euclidean
or hyperbolic space grows at least as a linear function of r under the assumption
that the mean curvature vector H of M is bounded in absolute value.

We are now ready to state and prove vanishing theorems for L” harmonic 1-forms
on a complete noncompact stable minimal hypersurface.

Theorem 3.5. Let N be an (n + 1)-dimensional complete Riemannian manifold
with sectional curvature satisfying K < Ky where K < 0 is a constant. Let M
be a complete noncompact stable minimal hypersurface in N. Assume that, for
0<p<n/(n—1)+\/ﬂ,

—2n(n—1)*p*K

D Sl p P

Then there is no nontrivial L*P harmonic 1-form on M.

Proof. We consider two cases: K <0 and K =0.

Case 1: K <0. Let w be an L2? harmonic 1-form on M, that is,
Aw=0 and / lw|?? dv < .
M

In an abuse of notation, we refer to both a harmonic 1-form and its dual harmonic
vector field by w. Bochner’s formula yields

Alw)? =2(|Vw|? + Ric(w, »)).

Moreover,
2
Alol* = 2(Jw|Alw| + |V]w| ).

Applying Lemma 3.1 and the Kato-type inequality (12), we see that
n—1 2 09 2 1 2
(14) ol Alw] + ——|A[|o]” = (2 = DKo me'w" :

For any positive number p, we have
|| Alw]” = |o|Pdiv(V]w|”)
= lo|”div(p |o|"~'V|w])
= p(p = DI’ 2|V|o| [* + plolP ' Alo|

p—1 2 _
- T|V|w|P| + plo*’ 2wl Alw|.
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Plugging inequality (14) into the above equality, we have

2 1 1
lw|? Alw|P + p(n — 1)(u — K)| |2V > (1 —-—+ —)|V|w|p|2.
n p pn—=1)

Choose a Lipschitz function f with compact support in a geodesic ball B(R) of
radius R centered at p € M. Multiplying both side by f? and integrating over
B(R), we obtain

1 1 2
iy b / 219 |o]?
( p P(”-D) B(R)f Vil

pn—1)
< | flolPAlwl?+ FAAP 0P —pn— DK | fHol*".
B(R) n B(R) B(R)

The divergence theorem gives

2
f2|w|”A|w|p=—f 2 Viwl?| —2f FlwlP(Vf, V|w|P).
B(R) B(R)

B(R)

Thus

1 1 2
15 l—4+— 21V |wl|?
(15) ( + (n_1)>/B(R)f! |o|? |

p(n 1)
FHAP|w*? — p(n— 1)K fPol*
n B(R) B(R)

—/ f |V|w|p / flolP{Vf, Viw|?).
B(R)

Since M is stable,
[ 197 = QAR+ Ricter 22 0
M

for any compactly supported Lipschitz function f on M. From the assumption on
the sectional curvature of NV, it follows that

/ VIR — (AR +nK) f2 >0
M

for any compactly supported Lipschitz function f on M. Replacing f by |w|? f,
we have

(16>/ fz\Vlwl”\zwL/ VPP +2 [ flol?(Vf, Viel?)
B(R) B(R)

B(R)

20 412112 20 12
> fIA 0P +nK filolP.
B(R) B(R)
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Combining the inequalities (15) and (16) gives

1 1 2
o 2|V}l
< P+P(”—1))/B(R)f| o]

pn—1) 2
5—[/ 2| Viwl?| +/ IVf 1 |o|*?
n B(R) B(R)

+2 flwlP(Vf, V|w|P) —nK lewlﬂ
B(R) B(R)

_pi—DK f2|w|21’—f f2|V|w|p|2—2/ Flol? (V1. V]o|?).
B(R) B(R)

B(R)

Hence

1 1 2
17 1—— 2|V |w|?
47 < * (n—1)>/3(R)f [Viel?|

(n—1) 2 n—-1)
< (p——l)/ VPP + 2222 [ VRl
n B(R) n B(R)

—2p(n—1DK fPlol* +2(M - 1) flwlP(Vf, V]o|”)
B(R) n B(R)

Moreover, using the definition of the bottom of the spectrum, we see that

(18) A1(M) |o|*? f2
B(R)

5/ V(lwl” )]
B(R)

=/ f2|V|w|”|2+/ P |V fI* 42 FlolP(Vf, V|w|P).
B(R) B(R)

B(R)

From inequalities (17) and (18), it follows that

1 1 2
[ 2|V ||
( p+p<n—1>)f3<mf| ol”]
<<P(H—1)_1_2P(n—1)K>/ f2|v|w|p|2
- n A (M) B(R)

p(n—l)_2p(n—1)K)f V21020
+< n A1(M) B(R)l Sl

+2<p(n—1) o 2p(n—1)K
n A (M)

> [lolP(Vf, Viw|”).
B(R)
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Applying Young’s inequality, we have

, 1
2 f|w|”<Vf,V|w|p>sef F2Viol?] +—f IV wl*
B(R) B(R) € JB(R)
for any & > 0. Thus
1 1 2p(n— 1K -1 -1 2p(n— DK
P + pin—DK pin—=1  (pen=D  2pn—1)
n A (M)

p pn—1) A (M) n
2
x[ A Viel?|
B(R)

S[mn—l)_zp(n—1>K+1<p<n—1>_l_M>}/ VEPlwl2?.
B(R)

n A (M) € n A (M)
Since
—2p(n—1DK _ —2n(n—1)?*p’K
2—1/p+1/(p(n—=1)—pnr—1)/n  2n—[(n—1)p—n]?
by the hypothesis, one can choose a sufficiently small & > 0 satisfying that
1 1 2p(n— 1K -1 -1 2p(n— 1K
[2__+ L 2pn— DK pn )_8<p(n ) 4 _2p(—1D )}
p pn—-1 A(M) n n (M)
> 0.

AM(M) >

Note that | M |w|*P < 00, since w is an L2P harmonic 1-form on M. Letting R tend

to infinity, we obtain
[ 1viarf o
M

which implies that |V]w|| = 0. Hence |w| = constant. From Proposition 3.4, it
follows that |w| = 0.

Case 2: K =0. Using the inequality (17) and Young’s inequality, we obtain

|:2_l+ 1 _p(n—l)_g(p(n—l)_1>] f2|V|w|p|2
p pn—1) n n B(R)

E[1r9<n—1>+1(p<n—1)_I)N ViRl
n & n B(R)

Since 0 < p <n/(n—1)++/2n, one may choose a sufficiently small ¢ > 0 satisfying

2_l+ 1 _p(n—l)_g(p(n—l)_1)>0‘
p pn—1 n n

Letting R tend to infinity gives

f Viwl"[* =0,
B(R)
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which implies that |w| = constant. From the assumption that A{(M) > 0 and
Proposition 3.4, it follows that |w| = 0. [l

As a consequence of Theorem 3.5, given a complete noncompact stable minimal
hypersurface in a nonnegatively curved Riemannian manifold, one has the following
result.

Corollary 3.6. Let N be an (n + 1)-dimensional complete nonnegatively curved
Riemannian manifold. Let M be a complete noncompact stable minimal hypersur-
face in N with .y (M) > 0. If n < 11, there is no nontrivial L? harmonic 1-form on
M forany 0 < p <n.

Proof. For n < 11, the inequality 2(n/(n — 1) + v/2n) > n holds. ([

Corollary 3.7. Let N be an (n + 1)-dimensional complete nonnegatively curved
Riemannian manifold. Let M be a complete noncompact stable minimal hypersur-
face in N with (M) > 0. If n < 11, there is no nontrivial L> harmonic 1-form
on M.

In the case of L? harmonic 1-forms, Theorem 3.5 gives a generalization of [Dung
and Seo 2012] as follows.

Corollary 3.8. Let N be an (n + 1)-dimensional complete Riemannian manifold
with sectional curvature satisfying K < Ky where K < 0 is a constant. Let M be a
complete noncompact stable minimal hypersurface in N. Assume that

—2n(n —1)%K

MM
1(M) > P

Then there are no nontrivial L*> harmonic 1-forms on M.

In particular, if N is (n + 1)-dimensional hyperbolic space H"*!, Corollary 3.8
improves the previous result of [Seo 2010]. Related to this result, Cavalcante,
Mirandola, and Vitério [Cavalcante et al. 2012] obtained the vanishing theorem for
L? harmonic 1-forms on complete noncompact submanifolds in a Cartan-Hadamard
manifold.

Palmer [1991] showed that if there exists a codimension-one cycle in a complete
minimal hypersurface M in R"*! which does not separate M, M is unstable. We
obtain a generalization of Palmer’s result as follows.

Corollary 3.9. Let N be an (n + 1)-dimensional complete Riemannian manifold
with sectional curvature satisfying K < Ky where K <0 is a constant. Let M be a
complete noncompact minimal hypersurface in N. Assume that

—2n(n —1)2K

M (M
1(M) > P
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Suppose that there exists a codimension-one cycle in M which does not separate M.
Then M cannot be stable.

Proof. Suppose that M is stable in N. From [Dodziuk 1982], there exists a nontrivial
L? harmonic 1-form on M, which is a contradiction to Corollary 3.8. U

Let M be a complete Riemannian manifold and let f be a harmonic function on
M with finite L? energy. Then the total differential df is obviously an L? harmonic
1-form on M. As another application of Theorem 3.5, we prove the following
Liouville type theorem for harmonic functions with finite L” energy on a complete
noncompact stable minimal hypersurface, which is a generalization of Schoen and
Yau'’s result [1976], as mentioned in the introduction.

Corollary 3.10. Let N be an (n + 1)-dimensional complete Riemannian manifold
with sectional curvature satisfying K < Ky where K < 0 is a constant. Let M

be a complete noncompact stable minimal hypersurface in N. Assume that, for
O<p<n/(n—1)++/2n,

—2n(n—1)?p*K

M = = p—nP

Then there is no nontrivial harmonic function on M with finite L? energy.

So far, we have assumed that A;(M) > O for a complete noncompact stable
minimal hypersurface M in a nonnegatively curved Riemannian manifold. However,
we do not know whether the assumption that A, (M) > 0 is necessary or not. It
would be interesting to remove the condition in these results.

4. Vanishing theorems on minimal hypersurfaces with small L” or L* norm
of the second fundamental form

In the following, we prove a vanishing theorem for L?” harmonic 1-forms on a
complete stable minimal hypersurface M, assuming that M has sufficiently small
total scalar curvature instead of assuming that M is stable.

Theorem 4.1. Let N be an (n + 1)-dimensional complete simply connected Rie-
mannian manifold with sectional curvature K y satisfying that K1 < Ky < K, <0,
where K1, K, are constants and n > 3. Let M be a complete minimal hypersurface
in N. Assume that K := K, /K satisfies

4(n—2)
> .
(n—1)?
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For

—(n—2)K

(n—DK 1\/(n— 1)2K?
< + =
4 2 4

mn—1DK 1 [(n—1)2K?
4 2y 4

—(n—-2)K,

assume that

A" n@pn—1)—n+2—4pK)
</M|A| ) p3(n —1)2Cy ’

where Cy is the Sobolev constant in [Hoffman and Spruck 1974]. Then there are no
nontrivial L*P harmonic 1-forms on M.

Proof. A similar argument as in the proof of Theorem 3.5 shows
p p AI° 2p 1 p|?
|w|” Alw|” + p(n — 1) —K )l = (1=~ + ——— ) |Viol?|
n p pn—=1

for any Lipschitz function f with compact support in a geodesic ball B(R) of radius
R centered at a point p € M. Multiplying both sides by f2, integrating over B(R),
and applying the divergence theorem, we see that

(19) Q—l+——L—>/ fﬂwmﬂz
p pn—1)) Jpr

pn—1)
< AP 0P = p(n — DK, Pwl*?
n B(R) B(R)

2
—/ £Vl —2/ Flol? (VF, Vo).
B(R) B(R)

On the other hand, the Sobolev inequality (13) implies that

2/n (n—2)/n
f2|A|2|a)| ( |A|") (f (|wlpf)(2n)/n—2>
B(R) v
2/n s
= (f 'Al”) f|V<|w|"f>|
M
2/n )
—Cs</ IAI”) (f FVIol”| +/ IVfI?|wl?
M B(R) B(R)

+2 flolP(Vf, VIG)I‘”))-
B(R)

/\

A
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Plugging this inequality into (19) gives

(20) <1—l+;>/ Viol??
p pn—=1/Jpr)
_ 2/n
SM</ IAI") [ vrPirr
n M B(R)
_ 2/n
_,_(M(/ |A|"> —1)/ FViwP?
n M B(R)
_ 2/n
+2(M</ |A|n> _1)/ Flool? (VF. VIwl?)
n M B(R)

—pn—DK; Pl
B(R)

An estimate (1) for the bottom of the spectrum yields

2
_Ky(n—1)? M) < Js |V U@l? )]
4 Sy (01? )

which gives

(21) (wl? £)?
B(R) 4

_ 2y p2+f Vi o2
< Kz(”l—l)2</B(R)f| j!”] B(R)Ml [Pl
+2 flolP(Vf, V|60|‘D))-

B(R)

Thus, from inequalities (20) and (21), it follows that

1 1 2
- 2|V |w]?
( p pn-— 1)) ./B(R)f | ] |

st IVfI2|w|2p+(B—l)/ f2|V|w|f’|2+2<B—1)/ Flol? (VF, Vo),
B(R) B(R) B(R)

where

_ pn—1C; 2\ 2/ 4p 1
B‘T(/MM') TENY S

Applying Young’s inequality

1
2 f|w|P<Vf,V|w|P>sef 2| Viel?| +—/ IV f* ||
B(R) € JB(R)

B(R)
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for any ¢ > 0, we see that
1 1 2 P2
2——4+————B—¢(B—-1) F|Viwl?|
p pn-—1) B(R)
1
< (B+—<B—1)>f 1V Rlof.
& B(R)

From the assumption on the total curvature of M, one can make

1 1

by choosing a sufficiently small & > 0. Letting R — oo and using that w is an L??
harmonic 1-form, we conclude that

/ V]wl?|” = 0.
M

The same argument as before shows that |w| = 0. O
Corollary 4.2. Let M be a complete minimal hypersurface in H*! satisfying

Y 2/n n(—4p*+2p(n—1)—n+2)
(fM'A') B P2n—12C,

for1/2 < p <n/2 — 1. Then there are no nontrivial L*” harmonic 1-forms on M.

Corollary 4.3. Under the same conditions as in Theorem 4.1, there is no nontrivial
harmonic function on M with finite L? energy.

When the L* norm of the second fundamental form of a complete minimal
hypersurface is bounded, the following vanishing theorem holds.

Theorem 4.4. Let N be an (n + 1)-dimensional complete simply connected Rie-
mannian manifold with sectional curvature Ky satisfying K; < Ky < K, <0,
where K1, K> are constants and n > 3. Let M be a complete noncompact minimal
hypersurface in N. Assume that K == K7 /K| >4(n—2)/(n — 1)? and the second
fundamental form A satisfies

4p’K; — 2p(n—1)—n+2)K,

AP <C <
4p?
for
m—DK 1 [(n—1)2K?
T_EJT_(”_DK

m—1DK 1 |(n—1)2K?2
<p< 2 +§\/ 2 —(n—-2)K.
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Then there are no nontrivial L*P harmonic 1-forms on M.

Proof. A similar argument as before shows

1 1 2
[ 2|V ||
( P+P(n—1))/B(R)f‘ o]

p(n—1)
< AP0 = p(n — DK, Al
n B(R) B(R)
2
—/ 2| Viwl?| —2/ flolP(Vf, V]o|”).
B(R) B(R)
Since |A]? < C,
1 1 2
2——+—)/ FA|Viwl?
< p pn—1)) Jpw | |
(n—1C
< (P— —p(n— 1)K1) Flw*? -2 flol?(Vf, Viw|?).
n B(R) B(R)

Using an estimate for the bottom of the spectrum and Young’s inequality again, we
have

(2—l+;—D—8(D—1))/ Viw?]?
p pn—=1) B(R)

< (D+1<D—1>)/ IV Plol?,
& B(R)

D— —4 (p(n—l)C
 (n—=1)2K, n

where

—pn— 1)K1)-

Since
4p’K, — 2pn—1)—n+2)K,
< b

C
4p?

by our assumption, we may choose a sufficiently small ¢ > 0 satisfying

1 1

Thus we get

/ Viol’[* =0
B(R)

by letting R tend to infinity. Hence w = 0. ]
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Corollary 4.5. Let M be a complete minimal hypersurface in H"*! with the second
fundamental form A satisfying
—4p>+2pn—1)—n+2

4p?

AP <C <

for1/2 < p < n/2 — 1. Then there are no nontrivial L*” harmonic 1-forms on M.

Corollary 4.6. Under the same conditions as in Theorem 4.4, there is no nontrivial
harmonic function on M with finite L? energy.

We remark that there are lots of examples of minimal hypersurfaces with finite
L" or L™ norm of the second fundamental form in H"*! [do Carmo and Dajczer
1983; Mori 1981; Ripoll 1989; Seo 2011].
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