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RECONSTRUCTION FROM KOSZUL HOMOLOGY AND
APPLICATIONS TO MODULE AND DERIVED CATEGORIES

RYO TAKAHASHI

Let R be a commutative noetherian ring and M a finitely generated R-module.
In this paper, we reconstruct M from its Koszul homology with respect to a
suitable sequence of elements of R by taking direct summands, syzygies and
extensions, and count the number of those operations. Using this result, we
consider generation and classification of certain subcategories of the category
of finitely generated R-modules, its bounded derived category and the singu-
larity category of R.

1. Introduction

For the past five decades, a lot of classification theorems of subcategories of abelian
categories and triangulated categories have been given in ring theory, representation
theory, algebraic geometry and algebraic topology; see, for instance, [Balmer 2002;
2005; Benson et al. 2011; Dao and Takahashi 2014; Friedlander and Pevtsova 2007;
Gabriel 1962; Hopkins and Smith 1998; Hovey 2001; Krause 2008; Krause and
Stevenson 2013; Neeman 1992; Stevenson 2014; Takahashi 2010; 2013; Thomason
1997]. Reconstruction of an object from its support in the spectrum of a suitable
commutative ring plays a crucial role in the proofs of those theorems.

The notion of dimension for triangulated categories was introduced by Bondal
and Van den Bergh [2003] and by Rouquier [2008]; analogues for abelian categories
were introduced by Dao and Takahashi [2011; 2012a]. They essentially indicate
the number of extensions necessary to build all objects out of a single object. There
are many related studies; for example, see [Aihara and Takahashi 2011; Avramov
et al. 2010a; Ballard et al. 2012; Bergh et al. 2010; Burke et al. 2012; Christensen
1998; Krause and Kussin 2006; Dao and Takahashi 2012b; Oppermann 2009; Orlov
2009b; Rouquier 2006; Schoutens 2003; Takahashi 2009].
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In this paper, we study reconstructing a given module from its Koszul homology
and counting the number of necessary operations. Our main result is the following
theorem.

Theorem 1.1. Let R be a commutative noetherian ring, and let M be a finitely
generated R-module. Let x = x1, . . . , xn be a sequence of elements of R such that
M is locally free on D(x). Then there exists a positive integer k such that the Koszul
complex K(xk,M) is equivalent to a complex of finitely generated R-modules

(0→ N → Pn−1→ · · · → P0→ 0),

where P0, . . . , Pn−1 are projective and M is a direct summand of N. In particular,
M can be built out of the Koszul homologies H0(xk,M), . . . ,Hn(xk,M) by taking
n syzygies, n extensions and 1 direct summand.

Note that since the free locus of a finitely generated R-module is an open subset
of Spec R in the Zariski topology, there exist many such sequences x that satisfy the
assumption of the theorem. We shall prove a more general result in Theorem 3.1.

Theorem 1.1 has a lot of applications. To state some of them, we fix notation.
Let mod R be the category of finitely generated R-modules and Db(R) the bounded
derived category of mod R. We denote by Dsg(R) the singularity category of R.
This category has been introduced and studied by Buchweitz [1986] in connection
with Cohen–Macaulay modules over Gorenstein rings. In recent years, it has
been investigated by Orlov [2004; 2006; 2009a; 2011; 2012] in relation to the
homological mirror symmetry conjecture.

Let S(R) be the set of prime ideals p of R such that Rp is not a field, and denote by
Sing R the singular locus of R. Applying Theorem 1.1, we can prove the following
result on classification of subcategories.

Corollary 1.2. Let R be a commutative noetherian ring.

(1) There is a one-to-one correspondence between:

(a) the specialization-closed subsets of S(R),

(b) the resolving subcategories of mod R generated by a Serre subcategory of
mod R.

(2) There are one-to-one correspondences among:

(a) the specialization-closed subsets of Sing R,

(b) the thick subcategories of Db(R) generated by R and a Serre subcategory of
mod R,

(c) the thick subcategories of Dsg(R) generated by a Serre subcategory of mod R.
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When R is local, let mod◦(R) (respectively, D◦b(R), D◦sg(R)) be the full subcate-
gories of mod R (respectively, Db(R), Dsg(R)) consisting of modules (respectively,
complexes) that are locally free (respectively, perfect, zero) on the punctured
spectrum of R. Applying Theorem 1.1, we can prove the following result on
generation of subcategories.

Corollary 1.3. Let R be a commutative noetherian local ring of Krull dimension d
with residue field k.

(1) Every object in mod◦(R) is built out of a module of finite length by taking d
extensions in mod R, up to finite direct sums, direct summands and syzygies.

(2) Every object in D◦sg(R) is built out of a module of finite length by taking d
extensions in Dsg(R), up to finite direct sums, direct summands and shifts.

In particular, one has that mod◦(R) is generated by k as a resolving subcategory
of mod R, that D◦b(R) is generated by R and k as a thick subcategory of Db(R), and
that D◦sg(R) is generated by k as a thick subcategory of Dsg(R).

Corollary 1.3 yields variants of results shown by Schoutens [2003] and Takahashi
[2009; 2010]. It also recovers a result on isolated singularities given by Keller–
Murfet–Van den Bergh [2011]. Furthermore, utilizing it, one can show the following
result.

Corollary 1.4. Let R be a commutative noetherian ring. The following are equiva-
lent for a resolving subcategory X of mod R:

(1) X is generated by a Serre subcategory of mod R.

(2) X is closed under tensor products and transposes.

Hence there is a one-to-one correspondence between the specialization-closed
subsets of S(R) and the resolving subcategories of mod R closed under tensor
products and transposes.

The last assertion of this corollary greatly improves the main result of [Takahashi
2013]. Indeed, it removes the superfluous assumptions that R is local and that R is
Cohen–Macaulay.

The organization of this paper is as follows. In the next Section 2 we prepare
some fundamental notions. In Section 3 we state and prove the most general result
in this paper, which includes Theorem 1.1. In the final Section 4 we apply the results
shown in the preceding section to find out the structure of certain subcategories,
and give several results including Corollaries 1.2, 1.3 and 1.4.

2. Basic definitions

This section is devoted to stating the definitions and basic properties of notions
which we will freely use in the later sections. We begin with our convention.
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Convention 2.1. Throughout the present paper, let R be a commutative noetherian
ring with identity. We assume that all R-modules are finitely generated, that all
R-complexes are homologically bounded, and that all subcategories of categories
are full.

In what follows, T and A denote a triangulated category and an abelian category
with enough projective objects, respectively.

Definition 2.2. (1) For a subcategory X of an additive category C, the additive
closure addC X of X is defined to be the smallest subcategory of C containing X

and closed under finite direct sums and direct summands.

(2) A Serre subcategory of A is defined to be a subcategory of A closed under
subobjects, quotients and extensions.

(3) A thick subcategory of T is by definition a triangulated subcategory of T closed
under direct summands. The thick closure of a subcategory X of T is defined as the
smallest thick subcategory of T containing X, and denoted by thickT X or simply
by thick X. When X consists of a single object M , we denote it by thickT M or
thick M .

(4) We denote by proj A the subcategory of A consisting of projective objects.

(5) Let P = (· · ·
d3
−→ P2

d2
−→ P1

d1
−→ P0→ 0) be a projective resolution of M ∈ A.

Then for each n > 0 we define the n-th syzygy �n M of M (with respect to P) as
the image of dn . This is uniquely determined up to projective summands.

(6) We define a resolving subcategory of A as a subcategory of A containing proj A

and closed under direct summands, extensions and syzygies. The resolving closure
of a subcategory X of A is by definition the smallest resolving subcategory of A

containing X, and denoted by resA X or simply by res X. When X consists of a
single object M , we denote it by resA M or res M .

(7) Let X, Y be complexes of objects of A.

(a) A homomorphism f : X→ Y of complexes is called a quasiisomorphism if the
induced map Hi ( f ) :Hi (X)→Hi (Y ) on the i-th homologies is an isomorphism
for all integers i .

(b) We say that X is equivalent to Y if there exists a sequence X0, X1, . . . , Xn

of complexes such that X0
= X , Xn

= Y , and there is a quasiisomorphism
between X i and X i+1 for all 0≤ i ≤ n− 1. Then we write X ' Y .

Remark 2.3. (1) A Serre subcategory is defined for an arbitrary abelian category.

(2) A resolving subcategory is usually defined as a subcategory containing the
projective objects and closed under direct summands, extensions and kernels of
epimorphisms. This definition and ours are equivalent.
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(3) Let X be a resolving subcategory of A. Let M be an object of X and n > 0 an
integer. The n-th syzygy of M with respect to some projective resolution of M is
in X if and only if the n-th syzygy of M with respect to every projective resolution
of M is in X.

We recall the notions of balls in T and A introduced in [Bondal and Van den
Bergh 2003; Dao and Takahashi 2011; Rouquier 2008].

Definition 2.4. (1a) For a subcategory X of T we denote by 〈X〉 the smallest sub-
category of T containing X that is closed under finite direct sums, direct summands
and shifts; in symbols, 〈X〉 = addT{X [i] | i ∈ Z, X ∈ X }. When X consists of a
single object M , we simply denote it by 〈M〉.

(1b) For subcategories X,Y of T we denote by X∗Y the subcategory of T consisting
of objects M which fits into an exact triangle X → M→ Y  in T with X ∈ X

and Y ∈ Y. We set X�Y= 〈〈X〉 ∗ 〈Y〉〉.

(1c) Let C be a subcategory of T. We define the ball of radius r centered at C as

〈C〉r =

{
〈C〉 (r = 1),

〈C〉r−1 �C= 〈〈C〉r−1 ∗ 〈C〉〉 (r ≥ 2).

If C consists of a single object M , then we simply denote it by 〈M〉r . We write 〈C〉Tr
when we should specify that T is the ground category where the ball is defined.

(2a) For a subcategory X of A we denote by [X] the smallest subcategory of A

containing proj A and X that is closed under finite direct sums, direct summands
and syzygies, that is, [X] = addA(proj A∪{�i X | i ≥ 0, X ∈X }). When X consists
of a single object M , we simply denote it by [M].

(2b) For subcategories X,Y of A we denote by X◦Y the subcategory of A consisting
of objects M which fits into an exact sequence 0→ X→ M→ Y → 0 in A with
X ∈ X and Y ∈ Y. We set X •Y= [[X] ◦ [Y]].

(2c) Let C be a subcategory of A. We define the ball of radius r centered at C as

[C]r =

{
[C] (r = 1),

[C]r−1 •C= [[C]r−1 ◦ [C]] (r ≥ 2).

If C consists of a single object M , then we simply denote it by [M]r . We write [C]Ar
when we should specify that A is the ground category where the ball is defined.

Remark 2.5 [Bondal and Van den Bergh 2003; Dao and Takahashi 2011; Rouquier
2008]. (1) Let X,Y,Z,C be subcategories of T.

(a) An object M ∈ T belongs to X �Y if and only if there is an exact triangle
X→ Z→ Y  with X ∈ 〈X〉, Y ∈ 〈Y〉, and M a direct summand of Z .

(b) One has (X�Y)�Z=X� (Y�Z) and 〈C〉a � 〈C〉b = 〈C〉a+b for all a, b> 0.
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(2) Let X,Y,Z,C be subcategories of A.

(a) An object M ∈ A belongs to X •Y if and only if there is an exact sequence
0→ X → Z → Y → 0 with X ∈ [X] and Y ∈ [Y] such that M is a direct
summand of Z .

(b) One has (X •Y) •Z= X • (Y •Z) and [C]a • [C]b = [C]a+b for all a, b > 0.

Definition 2.6. An R-complex is called perfect if it is a bounded complex of
projective R-modules. The singularity category Dsg(R) of R is defined as the Verdier
quotient of Db(R) by the perfect complexes. For the definition of a Verdier quotient,
we refer to [Neeman 2001, Remark 2.1.9]. Whenever we discuss the singularity
category Dsg(R), we identify each object or subcategory of mod R with its image in
Dsg(R) by the composition of the canonical functors mod R→ Db(R)→ Dsg(R).

Remark 2.7 [Dao and Takahashi 2012b, Lemma 2.4]. (1) For all X ∈Db(R) there
exists an exact triangle P → X → M[n]  in Db(R) such that P is a perfect
complex, M is a module and n is an integer. In particular, X ∼= M[n] in Dsg(R).

(2) For every M ∈mod R and every n ≥ 0 there is an isomorphism M ∼=�n M[n]
in Dsg(R). Hence, for a subcategory C of mod R and an integer k > 0, each module
in [C]mod R

k belongs to 〈C〉Dsg(R)
k .

We introduce subcategories which will be investigated in Section 4.

Definition 2.8. Let 8 be a subset of Spec R. Set 8c
= Spec R \8. We denote by

e8(R) (respectively, mod8(R)) the subcategory of mod R consisting of R-modules
M such that Mp = 0 (respectively, Mp is Rp-free) for all p ∈ 8c. Also, D8

b (R)
(respectively, D8

sg(R)) denotes the subcategory of Db(R) (respectively, Dsg(R))
consisting of R-complexes X such that Xp isomorphic to a perfect Rp-complex in
Db(Rp) (respectively, Xp

∼= 0 in Dsg(Rp)) for all p ∈8c. We have that e8(R) is a
Serre subcategory of mod R, that mod8(R) is a resolving subcategory of mod R,
and that D8

b (R),D8
sg(R) are thick subcategories of Db(R),Dsg(R) respectively.

Definition 2.9. (1) For an R-module M we denote by NF(M) the nonfree locus of
M , that is, the set of prime ideals p of R such that the Rp-module Mp is nonfree.
As is well-known, NF(M) is a closed subset of Spec R in the Zariski topology.

(2) For an R-complex M we denote by IPD(M) the infinite projective dimension
locus of M , that is, the set of prime ideals p of R such that the Rp-complex Mp has
infinite projective dimension.

(3) For a subcategory X of mod R we set Supp X =
⋃

M∈X

Supp M and NF(X) =⋃
M∈X NF(M).

(4) For a subcategory X of Db(R) we set IPD(X)=
⋃

M∈X

IPD(M).

(5) For a subcategory X of Dsg(R) we set Suppsg(X)=
⋃

M∈X

IPD(M).
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Definition 2.10. (1) Let M be an R-module.

(a) Let x be a sequence of elements of R. Then K(x,M) denotes the Koszul
complex of M with respect to x. We call Hi (x,M) := Hi (K(x,M)) the i-th
Koszul homology (i ∈ Z) and H(x,M) :=

⊕
i∈Z

Hi (x,M) the Koszul homology
of M with respect to x.

(b) Let P1
d
−→ P0→ M→ 0 be a projective presentation of M . Then the cokernel

of the R-dual map of d is called the transpose of M and denoted by Tr M .
This is uniquely determined up to projective summands.

(2) A subset 8 of Spec R is called specialization-closed if V(p)⊆8 for all p ∈8.
This is nothing but a union of closed subsets of Spec R in the Zariski topology.

(3) We denote by Sing R the singular locus of R, namely, the set of prime ideals p
of R such that Rp is not a regular local ring.

(4) A local ring R with maximal ideal m is called an isolated singularity if
Sing R ⊆ {m}.

3. Reconstruction from Koszul homology

In this section, we consider reconstructing a given module from its Koszul homology
by taking direct summands, extensions and syzygies. We start by stating and proving
the most general result in this paper; actually, almost all of the other results given
in this paper are deduced from this.

Theorem 3.1. Let M be an R-module. Let x= x1, . . . , xn be a sequence of elements
of R such that x p Ext

q
R(M, �

r M)= 0 for all 1≤ p ≤ n and 1≤ q, r ≤ p. Let P be
a projective resolution of M. Then K(x,M) is equivalent to a complex

X = (0→ Xn→ Xn−1→ · · · → X1→ X0→ 0)

such that X i =
⊕i

j=0 Pj
⊕( n

i− j) for each 0≤ i ≤ n− 1 and Xn =
⊕n

j=0(�
j M)⊕(

n
j).

Proof. We prove the theorem by induction on n. Let us first consider the case where
n = 1. Multiplication by x1 makes a pullback diagram:

σ : 0 −−−→ �M −−−→ P0 −−−→ M −−−→ 0∥∥∥ x x1

x
x1σ : 0 −−−→ �M −−−→ N −−−→ M −−−→ 0.

Since x1Ext1
R(M, �M)= 0, we see that the exact sequence x1σ splits and get an

isomorphism N ∼=�M ⊕M . Thus we obtain a short exact sequence of complexes

0→W → X→ K(x1,M)→ 0,
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where W = (0→�M
=
−→�M→ 0) and X = (0→�M ⊕M→ P0→ 0). As W

is acyclic, K(x1,M) is equivalent to X .
Next we assume n≥2. The induction hypothesis implies that K(x1, . . . , xn−1,M)

is equivalent to a complex

Y = (0→ Yn−1
f
−→ Yn−2→ · · · → Y1→ Y0→ 0)

with Yi =
⊕i

j=0 Pj
⊕(n−1

i− j) for 0 ≤ i ≤ n − 2 and Yn−1 =
⊕n−1

j=0(�
j M)⊕(

n−1
j ). In

general, taking a tensor product with a perfect complex preserves equivalence of
complexes (cf. [Christensen 2000, A.4.1]). Hence we have

K(x,M)
= K(x1, . . . , xn−1,M)⊗R K(xn, R)' Y ⊗R K(xn, R)

= (0→ Yn−1
g
−→ Yn−1⊕Yn−2

dn−1
−−→ Yn−2⊕Yn−3

dn−2
−−→ · · ·

d2
−→ Y1⊕Y0

d1
−→ Y0→ 0)

=: Z ,

where g =
(
(−1)n−1xn

f

)
. Note that there is an exact sequence 0→ �Yn−1→ Q

π
−→

Yn−1→ 0 with Q =
⊕n−1

j=0 Pj
⊕(n−1

j ). Consider the pullback diagram

τ : 0 −−−→ �Yn−1 −−−→ Q⊕ Yn−2
h

−−−→ Yn−1⊕ Yn−2 −−−→ 0∥∥∥ x g
x

g∗(τ ) : 0 −−−→ �Yn−1 −−−→ L −−−→ Yn−1 −−−→ 0,

where h =
(
π 0
0 1

)
and g∗ = Ext1

R(g, �Yn−1). As Yn−2 is projective, the map g∗ can
be identified with the multiplication map

Ext1
R(Yn−1, �Yn−1)

(−1)n−1xn
−−−−−→ Ext1

R(Yn−1, �Yn−1).

There are isomorphisms

Ext1
R(Yn−1, �Yn−1)∼=

⊕n−1
j,k=0 Ext1

R(�
j M, �(�k M))⊕

(
(n−1

j )+(
n−1

k )
)

∼=
⊕n−1

j,k=0 Ext
j+1
R (M, �k+1 M)⊕

(
(n−1

j )+(
n−1

k )
)
,

and hence xn annihilates Ext1
R(Yn−1, �Yn−1). Therefore g∗(τ ) is a split exact

sequence, and we obtain a commutative diagram

0 −−−→ �Yn−1 −−−→ Q⊕ Yn−2
h

−−−→ Yn−1⊕ Yn−2 −−−→ 0∥∥∥ l

x g
x

0 −−−→ �Yn−1 −−−→ �Yn−1⊕ Yn−1 −−−→ Yn−1 −−−→ 0,
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with exact rows. We observe that the complex Z is equivalent to the complex

X =(0→�Yn−1⊕ Yn−1
l
−→ Q⊕ Yn−2

dn−1h
−−−→ Yn−2⊕ Yn−3

dn−2
−−→

· · ·
d2
−→ Y1⊕ Y0

d1
−→ Y0→ 0).

There are equalities

�Yn−1⊕ Yn−1 =
n⊕

j=0
(� j M)⊕(

n
j),

Q⊕ Yn−2 =
n−1⊕
j=0

Pj
⊕( n

(n−1)− j),

Yi ⊕ Yi−1 =
i⊕

j=0
Pj
⊕( n

i− j)

for 1≤ i ≤ n− 2 and Y0 = P0. Thus we are done. �

Using Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let M and x be as in Theorem 3.1.

(1) If x is a regular sequence on M , then �n(M/xM) ∼=
⊕n

k=0(�
k M)⊕(

n
k) in

mod R.

(2) For each 1≤ i ≤ n there exists an exact sequence of R-modules

0→ Hi (x,M)→ Ei →�Ei−1→ 0

with E0=H0(x,M) such that M is a direct summand of En . Hence M is built out of
H0(x,M), . . . ,Hn(x,M) by taking n syzygies, n extensions and 1 direct summand.
In particular, M belongs to the ball [H(x,M)]mod R

n+1 .

(3) There is an exact triangle

F→ K(x,M)→
⊕n

k=0(�
k M)⊕(

n
k)[n] 

in Db(R), where F = (0→ Fn−1→ · · · → F0→ 0) is a perfect complex.

(4) The module M belongs to the ball 〈R⊕K(x,M)〉Db(R)
n+1 .

(5) One has K(x,M) ∼=
⊕n

k=0 M⊕(
n
k)[k] in Dsg(R). In particular, M is a direct

summand of K(x,M) in Dsg(R).

Proof. We use the notation of Theorem 3.1 and its assertion.

(1) Since x is regular on M , we have an equivalence K(x,M)' M/xM . There is
an exact sequence

0→ Xn→ Xn−1→ · · · → X0→ M/xM→ 0

of R-modules. As Xn =
⊕n

j=0(�
j M)⊕(

n
j) and X i is projective for all 0≤ i ≤ n−1,

the module Xn is the n-th syzygy of M/xM as an R-module.
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(2) For each 0≤ i ≤ n take a truncation X i
= (0→ Xn→· · ·→ X i+1→ X i→ 0)

of X with (X i ) j = X i+ j for 0≤ j ≤ n. Then there is a short exact sequence

0→ X i−1→ X i−1
→ X i

[1] → 0

of complexes for each 1≤ i ≤ n. The long exact sequence in homology gives an
exact sequence 0→ H1(X i−1)→ H0(X i )→ X i−1→ H0(X i−1)→ 0 of modules.
As X i−1 is projective, we have an exact sequence

0→ H1(X i−1)→ H0(X i )→�H0(X i−1)→ 0

for all 1≤ i ≤ n. Notice H1(X i−1)=Hi (x,M), H0(X0)=H0(x,M) and H0(Xn)=

Xn . Setting Ei = H0(X i ) for 0≤ i ≤ n, we obtain desired exact sequences.

(3) Truncating the complex X provides such an exact triangle.

(4) Decomposing F into short exact sequences of complexes, we observe that F is
in 〈R〉Db(R)

n . As M is a direct summand of
⊕n

k=0(�
k M)⊕(

n
k), the assertion follows

from (3).

(5) By (3) we have an isomorphism K(x,M) ∼=
⊕n

k=0(�
k M)⊕(

n
k)[n] in Dsg(R).

Since M ∼=�k M[k] in Dsg(R), we are done. �

Remark 3.3. (1) Corollary 3.2(1) is a refinement of [Takahashi 2010, Proposi-
tion 2.2], which shows the same conclusion under the additional assumption that x
is a regular sequence on R annihilating more Ext modules.

(2) Corollary 3.2(5) can also be shown by using the proof of [Dao and Takahashi
2012b, Proposition 2.3]. It also implies that M belongs to 〈R⊕K(x,M)〉Db(R)

m
for some integer m > 0. However, it cannot determine how big/small m is, while
Corollary 3.2(4) can.

We are interested in existence of a sequence x as in Theorem 3.1. The lemma
below guarantees that such a sequence always exists. Moreover, one can make such
a sequence as a power of an arbitrary sequence whose defining closed subset covers
the nonfree locus.

Lemma 3.4. Let M be an R-module. Let x = x1, . . . , xn be a sequence of elements
of R with NF(M)⊆ V(x). Then there exists an integer k > 0 such that the sequence
xk
= xk

1 , . . . , xk
n annihilates Exti

R(M, N ) for all i > 0 and all N ∈mod R.

Proof. Let I be an ideal of R with NF(M)= V(I ). Then by [Dao and Takahashi
2012a, Remark 5.2(1)] there exists an integer p > 0 such that I pExti

R(M, N )= 0
for all i > 0 and all N ∈mod R. By assumption, we have (xq)⊆ I for some q > 0.
Setting k = pq completes the proof. �

Combining Theorem 3.1, Corollary 3.2(2) and Lemma 3.4, we immediately
obtain the following result, which includes Theorem 1.1.
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Corollary 3.5. Let M be an R-module. Let x = x1, . . . , xn be a sequence of
elements of R with NF(M) ⊆ V(x). Then there exists an integer k > 0 such that
K(xk,M) is equivalent to a complex

(0→ N → Pn−1→ · · · → P0→ 0),

where each Pi is projective and M is a direct summand of N. Hence, M is built
out of H0(xk,M), . . . ,Hn(xk,M) by taking n syzygies, n extensions and 1 direct
summand. In particular, M is in [H(xk,M)]mod R

n+1 .

4. Generation of subcategories

In this section, we apply our results obtained in the previous section to investigate
generation of subcategories. To be precise, for a subset 8 of Spec R we analyze
the structure of the subcategories mod8(R), D8

b (R) and D8
sg(R). We also consider

classification of these subcategories.
First of all, we want to make a generator of mod8(R) as a resolving subcategory

of mod R and generators of D8
b (R),D8

sg(R) as thick subcategories of Db(R),Dsg(R).
In fact, e8(R) gives generators of these three subcategories:

Theorem 4.1. Let 8 be a subset of Spec R. Then one has equalities

mod8(R)= resmod R(e
8(R)),(1)

D8
b (R)= thickDb(R)({R} ∪ e8(R)),(2)

D8
sg(R)= thickDsg(R)(e

8(R)).(3)

Proof. (1) It is obvious that e8(R) is contained in mod8(R), and hence so is its
resolving closure. To show the opposite inclusion, let M be an object of mod8(R).
Then by definition NF(M) is contained in 8. It is seen from Corollary 3.5 that
there is a sequence x = x1, . . . , xn of elements of R with NF(M)= V(x) such that
M belongs to resmod R H(x,M). Since H(x,M) is annihilated by x, we have

Supp H(x,M)⊆ V(x)= NF(M)⊆8,

which shows H(x,M) ∈ e8(R). Consequently, M is in resmod R(e
8(R)).

(2) Clearly, D8
b (R) contains R and e8(R), and the thick closure of {R} ∪ e8(R).

Let X be an object of D8
b (R). Then there is an exact triangle

P→ X→ M[n] 

in Db(R) such that P is a perfect R-complex, M is an R-module and n is an integer.
We use the large restricted flat dimension of M , namely

RfdR M = sup
p∈Spec R

{depth Rp− depthRp
Mp}
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By [Avramov et al. 2010b, Theorem 1.1] this is finite. Put r = RfdR M . Let p
be a prime ideal in 8c. Localizing the above exact triangle at p, we see that the
Rp-module Mp has finite projective dimension. Hence

pdRp
Mp = depth Rp− depthRp

Mp ≤ r.

Setting N =�r M , we note that N belongs to mod8(R), hence to resmod R(e
8(R))

by (1). Therefore N is in thick Db(R)({R}∪e8(R)), and so is M . As P∈ thick Db(R) R,
the object X belongs to thick Db(R)({R} ∪ e8(R)) by the above exact triangle.

(3) This equality is obtained by using (2). �

One can describe the structure of e8(R) in more detail, which makes more visible
representations of mod8(R), D8

b (R) and D8
sg(R).

Corollary 4.2. Let8 be a subset of Spec R. Then e8(R) is the smallest subcategory
of mod R containing R/p for all p ∈ 8sp and closed under extensions. Here 8sp

denotes the largest specialization-closed subset of Spec R contained in 8. Hence

mod8(R)= resmod R{ R/p | p ∈8sp
},

D8
b (R)= thickDb(R){ R, R/p | p ∈8sp

},

D8
sg(R)= thickDsg(R){ R/p | p ∈8sp

}.

Proof. The last assertion follows from Theorem 4.1.
We claim that 8sp

= Supp(e8(R)) holds. Indeed, it is evident that Supp(e8(R))
is a specialization-closed subset of Spec R contained in8. Let9 be a specialization-
closed subset of Spec R contained in 8. Then we have e9(R)⊆ e8(R), and hence
9 = Supp(e9(R))⊆ Supp(e8(R)). Thus the claim holds.

Let X be the smallest subcategory of mod R containing R/p for all p ∈8sp and
closed under extensions. First, let p be a prime ideal in8sp. As8sp is specialization-
closed, we have Supp(R/p) = V(p) ⊆ 8sp

⊆ 8, whence R/p belongs to e8(R).
Since e8(R) is closed under extensions, e8(R) contains X. Next, let M be a module
in e8(R). Take a filtration

M = M0 ) M1 ) · · ·) Mn = 0

of submodules of M such that Mi−1/Mi ∼= R/pi with pi ∈ Spec R for each 1≤ i ≤ n.
Then pi is in Supp M , and so in Supp(e8(R)). By the claim, we have pi ∈8

sp for
all 1≤ i ≤ n. Decomposing the above filtration into short exact sequences, we see
that M is in X. Therefore X contains e8(R), and the proof is completed. �

The next result, which includes part of Corollary 1.3, follows immediately from
Corollary 4.2. Note that the objects of mod{m}(R) are the R-modules that are locally
free on the punctured spectrum of R.
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Corollary 4.3. (1) Db(R)= thick{ R, R/p | p ∈ Sing R }.

(2) Dsg(R)= thick{ R/p | p ∈ Sing R }.

(3) If R is a local ring with maximal ideal m and residue field k, then Then
mod{m}(R)= res(k), D{m}b (R)= thick(R⊕ k) and D{m}sg (R)= thick(k).

Remark 4.4. The equalities in (1) and (2) can also be shown using Theorem VI.8
of [Schoutens 2003], while similar results to (3) have been obtained in Theorem 2.4
of [Takahashi 2010] as well as by H. Abe and O. Iyama (work in progress).

As a common consequence of the two assertions of Corollary 4.3, one can recover
[Keller et al. 2011, Proposition A.2]:

Corollary 4.5. Let R be an isolated singularity with residue field k. Then Db(R)=
thick(R⊕ k) and Dsg(R)= thick(k).

Next, we make a closer investigation on the inner structure of subcategories. In
fact, we can refine the assertions as to mod{m}(R) and D{m}sg (R) in Corollary 4.3(3)
in terms of balls in the abelian category mod R and the triangulated category Dsg(R).
Denote by fl(R) the subcategory of mod R consisting of modules of finite length.
The following theorem holds, which is the main part of Corollary 1.3.

Theorem 4.6. Let R be a d-dimensional local ring with maximal ideal m. Then
there are equalities

mod{m}(R)= [fl(R)]mod R
d+1 and D{m}sg (R)= 〈fl(R)〉

Dsg(R)
d+1 .

Proof. (1) Let us show the first equality. It clearly holds when d = 0, so we assume
d > 0. Let M be an R-module in mod{m}(R). Take any system of parameters
x = x1, . . . , xd of R. As M is in mod{m}(R), we have NF(M) ⊆ {m} = V(x).
Corollary 3.5 implies that M belongs to [H(xk,M)]d+1 for some k > 0. Since the
R-module H(xk,M) is annihilated by the m-primary ideal (xk), it has finite length.
Thus we obtain M ∈ [fl(R)]d+1, and the first equality follows.

(2) We prove the second equality. Let X be an R-complex in D{m}sg (R). Note that
X ∼=� d M[n] in Dsg(R) for some R-module M and some integer n. By the Aus-
lander–Buchsbaum formula, we see that � d M belongs to mod{m}(R)= [fl(R)]d+1.
Now the second equality follows from the first one. �

Here is an immediate consequence of Theorem 4.6.

Corollary 4.7. If R is a d-dimensional isolated singularity, Dsg(R)= 〈fl(R)〉d+1.

Remark 4.8. (1) Rewording the second equality in Theorem 4.6 by the terminology
introduced in [Aihara et al. 2014], one has the following inequality:

fl(R) -tri.dim D{m}sg (R)≤ dim R.
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(2) Theorem A in [Takahashi 2009] constructs some object in mod{m}(R) from
every object in mod R and counts the number of necessary operations (containing
syzygies). In contrast to this, Theorem 4.6 constructs every object in mod{m}(R)
from some object in fl(R) and counts the number of necessary operations.

(3) Similar equalities to the first equality in Theorem 4.6 are given for mod R in
[Schoutens 2003, Theorem VI.8] and [Burke et al. 2012, Theorem 2], but these are
different from ours in respect of how to count operations. The biggest difference is
that neither of those two results counts the number of necessary extensions.

(4) In the case where R is Cohen–Macaulay, Corollary 4.7 also follows from
[Aihara et al. 2014, 4.5.1], because every maximal Cohen–Macaulay R-module is a
direct summand of the d-th syzygy of some module of finite length by [Takahashi
2010, Proposition 2.2].

Finally, we are interested in classifying resolving and thick subcategories by
using mod8(R), D8

b (R) and D8
sg(R). For this purpose, we prepare a lemma:

Lemma 4.9. (1) The assignments X 7→ Supp X and8 7→ e8(R) make a one-to-one
correspondence between the Serre subcategories of mod R and the specialization-
closed subsets of Spec R.

(2) Let 8 be a specialization-closed subset of Spec R. Then NF(mod8(R)) =
8∩ S(R) and IPD(D8

b (R))= Suppsg(D8
sg(R))=8∩ Sing R.

Proof. (1) This is Gabriel’s classification theorem [1962] for Serre subcategories.

(2) Let p ∈ 8. Then IPD(R/p) ⊆ NF(R/p) ⊆ V(p) ⊆ 8. Hence R/p belongs to
mod8(R), D8

b (R) and D8
sg(R). If p∈S(R) (respectively, Sing R), then p∈NF(R/p)

(respectively, IPD(R/p)). The assertion now follows. �

We can obtain the following theorem, which includes Corollary 1.2.

Theorem 4.10. (1) The assignment 8 7→mod8(R) is a bijection from the set of
specialization-closed subsets of Spec R contained in S(R) to the set of resolving
closures resmod R X, where X runs through the Serre subcategories of mod R.

(2) The assignment 8 7→ D8
b (R) is a bijection from the set of specialization-closed

subsets of Spec R contained in Sing R to the set of thick closures thickDb(R)({R}∪X),
where X runs through the Serre subcategories of mod R.

(3) The assignment 8 7→ D8
sg(R) is a bijection from the set of specialization-closed

subsets of Spec R contained in Sing R to the set of thick closures thickDsg(R) X, where
X runs through the Serre subcategories of mod R.

Proof. In view of Theorem 4.1, the three assignments make well-defined maps, and
they are injective by Lemma 4.9(2). Thus it only remains to show that they are
surjective.
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(1) Let X be a Serre subcategory of mod R. According to Lemma 4.9(1), we
have X= eZ (R) for some specialization-closed subset Z of Spec R. Putting 8=
Z ∩ S(R), we easily see that 8 is a specialization-closed subset of Spec R which
is contained in S(R) and satisfies modZ (R) = mod8(R). Theorem 4.1 implies
resmod R X=mod8(R).

(2), (3) We use the proof of (1). Set 9 = Z ∩ Sing R. Then 9 is a specialization-
closed subset of Spec R contained in Sing R such that the equalities DZ

b (R) =
D9

b (R) and DZ
sg(R)=D9

sg(R) hold. Hence the surjectivity of the map follows from
Theorem 4.1. �

The next statement subsumes Corollary 1.4 and also some earlier results: namely,
(1) and the equivalence of (b)–(d) in (2) are proved in [Takahashi 2013, Theorem 1.1
and Proposition 4.6] under the assumption that R is a Cohen–Macaulay local ring.
Our results show that this assumption is superfluous.

Corollary 4.11. (1) The assignments 8 7→mod8(R) and X 7→ NF(X) gives mutu-
ally inverse bijections between

(a) the specialization-closed subsets of Spec R contained in S(R), and

(b) the resolving subcategories of mod R closed under tensor products and trans-
poses.

(2) Let X be a resolving subcategory of mod R. Then the following are equivalent:

(a) X is the resolving closure of a Serre subcategory of mod R.

(b) X is closed under tensor products and transposes.

(c) R/p belongs to X for all p ∈ NF(X).

(d) For all p ∈ NF(X) there exists M ∈ X such that κ(p) is a direct summand of
Mp.

Proof. Recall that we have proved in Corollary 4.3(3) that if R is a local ring with
maximal ideal m and residue field k, then the equality mod{m}(R) = resmod R(k)
holds. Hence, in view of [Dao and Takahashi 2014, Lemma 3.2], we see that all the
ten assertions in [Takahashi 2013, Lemma 2.5] hold without the assumption that
R is Cohen–Macaulay. Therefore, it is observed from [Dao and Takahashi 2014,
Proposition 3.3] and the proof of [Takahashi 2013, Proposition 3.1] that one can
remove from [Takahashi 2013, Proposition 3.1] the two assumptions that R is local
and that R is Cohen–Macaulay. Thus, the proof of [Takahashi 2013, Theorem 3.3]
actually proves that the statement [Takahashi 2013, Theorem 3.3] holds without
the assumption that R is a Cohen–Macaulay local ring. Since [Takahashi 2013,
Lemma 4.5] (respectively, [Takahashi 2013, Lemma 4.4]) is still valid for an arbitrary
commutative noetherian ring (respectively, local ring) R, so are [Takahashi 2013,
Proposition 4.6 and Theorem 4.7]. Now our Theorem 4.10 completes the proof. �
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