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Kawasaki’s formula is a tool to compute holomorphic Euler characteristics
of vector bundles on a compact orbifold X. Let X be an orbispace with
perfect obstruction theory which admits an embedding in a smooth orb-
ifold. One can then construct the virtual structure sheaf and the virtual
fundamental class of X. In this paper we prove that Kawasaki’s formula
“behaves well” with working “virtually” on X in the following sense: if we
replace the structure sheaves, tangent and normal bundles in the formula by
their virtual counterparts then Kawasaki’s formula stays true. Our motiva-
tion comes from studying the quantum K -theory of a complex manifold X
(Givental and Tonita, 2014), with the formula applied to Kontsevich moduli
spaces of genus-0 stable maps to X .

1. Introduction

Given a manifold X and a vector bundle V on X, then the Hirzebruch–Riemann–
Roch formula states that

χ(X, V )=
∫

X
ch(V )T d(TX).

Kawasaki [1979] generalized this formula to the case when X is an orbifold. He
reduces the computation of Euler characteristics on X to the computation of certain
cohomological integrals on the inertia orbifold I X:

(1) χ(X, V )=
∑
µ

1
mµ

∫
Xµ

T d(TXµ) ch
( Tr(V )

Tr(3•N ∗µ)

)
.

We explain below the ingredients in the formula:

I X is defined as follows: around any point p ∈ X there is a local chart (Ũp,G p)

such that locally X is represented as the quotient of Ũp by G p. Consider the set of
conjugacy classes (1)= (h1

p), (h
2
p), . . . , (h

n p
p ) in G p. Define

I X := {(p, (hi
p)) | i = 1, 2, . . . , n p}.
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Pick an element hi
p in each conjugacy class. Then a local chart on I X is given by

n p∐
i=1

Ũ
(hi

p)

p /ZG p(h
i
p),

where ZG p(h
i
p) is the centralizer of hi

p in G p. Denote by Xµ the connected com-
ponents of the inertia orbifold (we’ll often refer to them as Kawasaki strata). The
multiplicity mµ associated to each Xµ is given by

mµ :=
∣∣ker(ZG p(g)→ Aut(Ũ g

p ))
∣∣.

For a vector bundle V we will denote by V ∗ the dual bundle to V . The restriction
of V to Xµ decomposes in characters of the g action. Let E (l)r be the subbundle
of the restriction of E to Xµ on which g acts with eigenvalue e2π il/r . Then the
trace Tr(V ) is defined to be the orbibundle whose fiber over the point (p, (g)) of
Xµ is

Tr(V ) :=
∑

l

e
2π il

r E (l)r .

Finally, 3•N ∗µ is the K-theoretic Euler class of the normal bundle Nµ of Xµ
in X. Tr(3•N ∗µ) is invertible because the symmetry g acts with eigenvalues dif-
ferent from 1 on the normal bundle to the fixed point locus. We call the terms
corresponding to the identity component in the formula fake Euler characteris-
tics:

χ f (X, V )=
∫

X
ch(V )T d(TX).

In the case where X is a global quotient, formula (1) is the Lefschetz fixed point
formula.

Now let X be a compact, complex orbispace (Deligne–Mumford stack) with a
perfect obstruction theory E−1

→ E0. This is used to define the intrinsic normal
cone, which is embedded in E1 — the dual bundle to E−1 (see [Li and Tian 1998;
Behrend and Fantechi 1997]). The virtual structure sheaf Ovir

X was defined in [Lee
2004] as the K-theoretic pullback by the zero section of the structure sheaf of this
cone. Let I X=

∐
µXµ be the inertia orbifold of X. We denote by iµ the inclusion

of a stratum Xµ in X. For a bundle V on X, we write i∗µV = V f
µ ⊕ V m

µ for its
decomposition as the direct sum of the fixed part and the moving part under the
action of the symmetry associated to Xµ. To avoid ugly notation we will often simply
write V m, V f . The virtual normal bundle to Xµ in X is defined as [Em

0 ] − [E
m
1 ].

We will in addition assume that X admits an embedding j in a smooth compact
orbifold Y. This is always true for the moduli spaces of genus-0 stable maps X0,n,d

because an embedding X ↪→ PN induces an embedding X0,n,d ↪→ (PN )0,n,d .
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Theorem 1.1. Denote by N vir
µ the virtual normal bundle of Xµ in X. Then

(2) χ(X, j∗(V )⊗Ovir
X )=

∑
µ

1
mµ

χ f
(

Xµ,
Tr(Vµ⊗Ovir

Xµ
)

Tr(3•(N vir
µ )
∗)

)
.

Remark 1.2. A perfect obstruction theory E−1
→ E0 on X induces canonically a

perfect obstruction theory on Xµ by taking the fixed part of the complex E−1, f
µ →E0, f

µ .
The proof is the same as that of Proposition 1 in [Graber and Pandharipande 1999].
This is then used to define the sheaf Ovir

Xµ
.

Remark 1.3. It is proved in [Fantechi and Göttsche 2010] that if X is a scheme,
the Grothendieck–Riemann–Roch theorem is compatible with virtual fundamental
classes and virtual fundamental sheaves, that is,

χ f (X, V ⊗Ovir
X )=

∫
[X]

ch(V ⊗Ovir
X ) · T d(T vir),

where [X] is the virtual fundamental class of X and T vir is its virtual tangent bundle.
Their arguments carry over to the case when X is a stack.

Remark 1.4. The bundles V to which we apply Theorem 1.1 in [Givental and
Tonita 2014] are (sums and products of) cotangent line bundles L i and evaluation
classes ev∗i (ai ) (where ai are K-theoretic classes on the target). They are pullbacks
of the corresponding bundles on (PN )0,n,d .

2. Proof of Theorem 1.1

Before proving Theorem 1.1 we recall a couple of background facts and lemmata
on K-theory which we will use.

Let K0(X) be the Grothendieck group of coherent sheaves on X . Given a map
f : X → Y , the K-theoretic pullback f ∗(F) : K0(Y )→ K0(X) is defined as the
alternating sum of derived functors Tori

OY
(F,OX ), provided that the sum is finite.

This is always true for instance if f is flat or if it is a regular embedding.
For any fiber square

V ′ −−−→ Vy y
B ′

i
−−−→ B

with i a regular embedding one can define K-theoretic refined Gysin homomor-
phisms i ! : K0(V )→ K0(V ′) (see [Lee 2004]). One way to define the map i ! is
the following: The class i∗(OB ′) ∈ K 0(B) has a finite resolution of vector bundles,
which is exact off B ′. We pull it back to V and then cap (i.e., tensor product) with
classes in K0(V ), to get a class on K0(V ) with homology supported on V ′, which
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we can regard as an element of K0(V ′), because there is a canonical isomorphism
between complexes on V with homology supported on V ′ and K0(V ′).

In the following two lemmata, X, Y, Y ′ are assumed DM stacks. We will use the
following result:

Lemma 2.1. Consider the diagram:

ι∗CX/Y −−−→ CX/Yy y
X ′

ι
−−−→ Xy j

y
Y ′

i
−−−→ Y

with i a regular embedding and j an embedding, CX/Y is the normal cone of X
in Y and both squares are fiber diagrams. Then

(3) i ![OCX/Y ] = [OCX ′/Y ′
] ∈ K0(ι

∗CX/Y ).

This is stated and proved in [Lee 2004, Lemma 2]. The proof is based on a more
general statement (Lemma 1 of [Lee 2004]), which has been worked out in [Kresch
1999] on the level of Chow rings. Since K-theoretic statements are stronger, we
give below the key ingredient which allows one to carry over Kresch’s proof to
K-theory:

Lemma 2.2. Let f : X → Y be a closed embedding and let g : Y → P1 be a
surjection such that g ◦ f is flat. Denote by X0 and Y0 the fibers over 0 of g ◦ f
and g, respectively. Moreover, assume that the restriction of f to X \ X0 is an
isomorphism. Then if i is the inclusion of {0} in P1, we have i !(OY )=OX0 ∈ K0(Y0).

Proof. The skyscraper sheaves at all points of P1 represent the same element in
K0(P

1), hence if we pull back a resolution of any point P ∈ P1 by g we get the
same elements of K0(Y ). On the other hand since f is an isomorphism above
P1
\ {0}, pulling back by g of the structure sheaf of a point P 6= 0 is the same as

pulling back by g ◦ f followed by f∗. By what we said above we can replace P
with 0. Now from the flatness of g ◦ f above 0 the pullback of the structure sheaf
of 0 by g ◦ f is the structure sheaf of the fiber X0. The result then follows from the
definition of i !. �

Remark 2.3. Lemma 2.2 allows one to show Lemma 2.1: intermediately one
shows, following [Kresch 1999] (notation is as in Lemma 2.1), that [OC1] = [OC2]

in K0(CX ′Y ×Y CX Y ), where C1 := Ci∗CX Y (CX Y ) and C2 := C j∗CY ′Y (CY ′Y ).
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We now go on to prove Theorem 1.1. We have

χ(X, j∗V ⊗Ovir
X )= χ(Y, V ⊗ j∗Ovir

X ).

Kawasaki’s formula applied to the sheaf V ⊗ j∗Ovir
X on Y gives

(4) χ(Y, V ⊗ j∗Ovir
X )=

∑
µ

1
mµ

χ f
(

Yµ,
Tr(Vµ⊗ i∗µ j∗Ovir

X )

Tr(3•N ∗µ)

)
.

From the fiber diagram

Xµ
i ′µ
−−−→ X

j ′
y j

y
Yµ

iµ
−−−→ Y

and Theorem 6.2 in [Fulton 1998] (where this is proved for Chow rings) we have
i∗µ j∗Ovir

X = j ′
∗
i !µOvir

X . Plugging this in (4) gives

(5) χ f
(

Yµ,
Tr(Vµ⊗ i∗µ j∗Ovir

X )

Tr(3•N ∗µ)

)
= χ f

(
Yµ,

Tr(Vµ⊗ j ′
∗
i !µOvir

X )

Tr(3•N ∗µ)

)
.

Let Gµ be the cyclic group generated by one element of the conjugacy class
associated to Xµ. Then we will show that

(6) Tr
( i !µOvir

X

3•(N ∗µ)

)
= Tr

( Ovir
Xµ

3•(N vir
µ )
∗

)
in the Gµ-equivariant K-ring of Xµ. This is essentially the computation of Section 3
in [Graber and Pandharipande 1999] carried out in C∗-equivariant K-theory. Rela-
tion (6) then follows by embedding the group Gµ in the torus and specializing the
value of the variable t in the ground ring of C∗-equivariant K-theory to a |Gµ|-root
of unity.

If we define a cone D := CX/Y×X E0, then this is a TY cone (see [Behrend and
Fantechi 1997]). The virtual normal cone Dvir is defined as D/TY and Ovir

X is the
pullback by the zero section of the structure sheaf of Dvir. Alternatively there is a
fiber diagram

TY −−−→ Dy y
X

0E1
−−−→ E1

where the bottom map is the zero section of E1. Then one can define Ovir
X as

0∗TY
0!E1
[OD]. We’ll prove formula (6) following closely the calculation in [Graber
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and Pandharipande 1999]. First, by definition of Ovir
X and by commutativity of Gysin

maps, we have

(7) i !µOvir
X = i !µ0∗TY

0!E1
[OD] = 0∗TY

0!E1
i !µ[OD].

We pull back relation (3) to (i ′µ)
∗D = (i ′µ)

∗(CX/Y× E0) to get

(8) i !µ[OD] = [ODµ
× (Em

0 )
∗
].

In the equality above we have used the fact that Dµ=CXµ/Yµ
×E f

0 and we identified
the sheaf of sections of the bundle Em

0 with the dual bundle (Em
0 )
∗. Plugging (8)

in (7) we get

(9) i !µOvir
X = 0∗TY

0!E1
[ODµ
× (Em

0 )
∗
].

Notice that the action of TYµ
leaves Dµ×(Em

0 )
∗ invariant (it acts trivially on (Em

0 )
∗).

Now we can write 0∗TY
= 0∗T

Y
f
µ

× 0∗TYm
µ

and since Dvir
µ = Dµ/TYµ

we rewrite (9) as

(10) i !µOvir
X = 0∗TYm

µ
0!E1
[ODvir

µ
× (Em

0 )
∗
].

The proof of Lemma 1 in [Graber and Pandharipande 1999] works in our set-up
as well: it uses excess intersection formula which holds in K-theory. It shows that
the following relation holds in the C∗-equivariant K-ring of Xµ:

(11) 0∗T Ym
µ

0!E1
[ODvir

µ
× (Em

0 )
∗
] = 0∗Em

0

(
0!E1
[ODvir

µ
× (Em

0 )
∗
]
)
·
3•(TYm )∗

3•(Em
0 )
∗
.

The class 0!E1
[ODvir

µ
× Em

0 ] lives in the C∗-equivariant K-ring of Em
0 . The class

doesn’t depend on the bundle map Em
0 → Em

1 so we can assume this map to be 0.
Then by excess intersection formula and the definition of Ovir

Xµ
we get

(12) 0∗Em
0

(
0!E1
[ODvir

µ
× (Em

0 )
∗
]
)
= Ovir

Xµ
·3•(Em

1 )
∗.

Formula (12) holds because Dvir
µ × (E

m
0 ) ⊂ E f

1 × Em
0 and 0!E1

acts as 0!E f
1
× 0!Em

1
on factors. 0!E f

1
[ODvir

µ
] = Ovir

Xµ
by definition of Ovir

Xµ
. By excess intersection formula

applied to the fiber square
Em

0 −−−→ Em
0

π

y y
Xµ

0Em
1

−−−→ Em
1

we have 0∗Em
0

0!Em
1
[(Em

0 )
∗
] = 0∗Em

0
π∗3•(Em

1 )
∗
= 3•(Em

1 )
∗. Plugging formula (12)

in (11) (note that Nµ = TYm
µ

and N vir
µ = [E

m
0 ] − [E

m
1 ]) and taking traces proves (6).
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We now plug (6) in (5) and then pull back to Xµ to get

χ f
(

Yµ,
Tr(Vµ⊗ j∗i∗µOvir

X )

Tr(3•N ∗µ)

)
= χ f

(
Yµ,Tr(Vµ)⊗ j ′

∗

Tr(Ovir
Xµ
)

Tr(3•(N vir
µ )
∗)

)

= χ f
(

Xµ,
Tr(Vµ⊗Ovir

Xµ
)

Tr(3•(N vir
µ )
∗)

)
. �
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