Pacific

Journal of Mathematics

WEIGHT ZERO EISENSTEIN COHOMOLOGY OF SHIMURA VARIETIES VIA BERKOVICH SPACES

Michael Harris

WEIGHT ZERO EISENSTEIN COHOMOLOGY OF SHIMURA VARIETIES VIA BERKOVICH SPACES

Michael Harris
In memory of Jon Rogawski

Abstract

We present an alternative interpretation, based on a theorem of Berkovich, of the Eisenstein classes in the cohomology of Shimura varieties, used in forthcoming work of the author with K. W. Lan, R. Taylor, and J. Thorne.

Introduction

This paper represents a first attempt to understand a geometric structure that plays an essential role in my forthcoming paper with Lan, Taylor, and Thorne [Harris et al. 2013] on the construction of certain Galois representations by p-adic interpolation between Eisenstein cohomology classes and cuspidal cohomology. The classes arise from the cohomology of a locally symmetric space Z without complex structure specifically, the adelic locally symmetric space attached to GL(n) over a CM field F. It has long been known, thanks especially to the work of Harder and Schwermer (see [Harder 1990], for example) that classes of this type often give rise to nontrivial Eisenstein cohomology of a Shimura variety S; in the case of $\operatorname{GL}(n)$ as above, S is attached to the unitary similitude group of a maximally isotropic hermitian space of dimension $2 n$ over F. This is the starting point of the connection with Galois representations. The complete history of this idea will be explained in [Harris et al. 2013]; here I just want to explore a different perspective on the construction of these classes.

By duality, the Eisenstein classes of Harder and Schwermer correspond to classes in cohomology with compact support, and it turns out to be more fruitful to look at them in this way. One of Taylor's crucial observations was that certain of these classes are of weight zero and can therefore be constructed geometrically in any cohomology theory with a good weight filtration, in particular in rigid cohomology, which lends itself to p-adic interpolation. The geometric construction involves the

[^0]MSC2010: primary 11G18, 14G35; secondary 14G22.
Keywords: Shimura varieties, Eisenstein cohomology, Berkovich spaces.
abstract simplicial complex Σ defined by the configuration of boundary divisors of a toroidal compactification; this complex, which is homotopy equivalent to the original locally symmetric space Z, arises in the calculation of the weight filtration on the cohomology of the logarithmic de Rham complex. Under certain conditions (as I was reminded by Wiesia Nizioł, commenting on the construction in [Harris et al. 2013] ${ }^{1}$) Berkovich has defined an isomorphism between the weightzero cohomology with compact support of a scheme and the compactly supported cohomology of the associated Berkovich analytic space, which is a topological space. His results apply to both ℓ-adic and p-adic étale cohomology as well as to Hodge theory. In this paper we apply this isomorphism to the toroidal compactification S^{\prime} of a Shimura variety S. Both S and S^{\prime} are defined over some number field E; we fix a place v of E dividing the rational prime p and let $|S|$ and $\left|S^{\prime}\right|$ be the associated analytic spaces over E_{v} in the sense of Berkovich. We observe that Σ is homotopy equivalent to $\left|S^{\prime}\right| \backslash|S| .^{2}$ Moreover, when S and S^{\prime} both have good reduction at v, $|S|$ and $\left|S^{\prime}\right|$ are both contractible [Berkovich 1999], and it follows easily that the cohomology of Σ maps to $H_{c}^{*}\left(\left|S^{\prime}\right|\right)$ in the theories considered in [Berkovich 2000].

These ideas will be worked out systematically in forthcoming work. The present note explains the construction in the simplest situation. We only consider cohomology with trivial coefficients of Shimura varieties with a single class of rational boundary components, assumed to be of dimension 0 . We work with connected rather than adelic Shimura varieties and write the boundary as a union of connected quotients of a (nonhermitian) symmetric space by discrete subgroups. We also only work at places of good reduction, in order to quote Berkovich's theorems directly. In [Harris et al. 2013] it is crucial to consider arbitrary level, but the relevant target spaces are the ordinary loci of Shimura varieties. Perhaps Berkovich's methods apply to these spaces as well, but for the moment there would be no way to use such an application, since the results of [Berkovich 2000] have not been verified for rigid cohomology.

Berkovich gives a topological interpretation of the weight zero stage of the Hodge filtration, but it can also be used as a topological definition of this part of the cohomology. Since the cohomology of Σ has a natural integral structure, it's conceivable that the results of Berkovich provide some information about torsion in cohomology. This is one of the main motivations for reconsidering the construction of [Harris et al. 2013] in the light of Berkovich's theory.

[^1]After this paper was written, but before [Harris et al. 2013] was made public, Peter Scholze found a different construction of the Galois representations studied there, based on the theory of perfectoid spaces [Scholze 2013]. His method is stronger in that it applies to torsion classes as well as to classes in characteristic zero; it also treats all systems of coefficients simultaneously, because they all become trivial in the perfectoid limit. Scholze's method does not use the weight arguments that were crucial in [Harris et al. 2013] and that are the motivation for the present paper. In particular, Scholze's theory provides affirmative answers to the analogues of Questions 2.4 and 2.6 below. The questions remain meaningful in the framework of Berkovich's theory.

I also thank my coauthors Kai-Wen Lan, Richard Taylor, and Jack Thorne, for providing the occasion for the present paper; Wiesia Nizioł, for pointing out the connection with Berkovich's work; and Sam Payne, for explaining the results of Berkovich and Thuillier.

Jon Rogawski was exceptionally generous in person. Although we met rarely, on at least two separate occasions he took the time to help me find my way around technical problems central to the success of my work. He will be greatly missed.

1. The construction

The standard terminology and notation for Shimura varieties will be used without explanation. Let (G, X) be the datum defining a Shimura variety $S(G, X)$, with G a connected reductive group over \mathbb{Q} and X a union of copies of the hermitian symmetric space attached to the identity component of $G(\mathbb{R})$. Let D be one of these components and let $\Gamma \subset G(\mathbb{Q})$ be a congruence subgroup; then $S=\Gamma \backslash D$ is a connected component of $S(G, X)$ at some finite level K; here K is an open compact subgroup of $G\left(\boldsymbol{A}_{f}\right)$. Then S has a canonical model over some number field $E=E(D, \Gamma)$. We assume Γ is neat; then S is smooth and has a family of smooth projective toroidal compactifications, as in [Ash et al. 1975]. We make a series of simplifying hypotheses.

Hypothesis 1.1. The group G has rational rank one. Let P be a rational parabolic subgroup of G (unique up to conjugacy); then P is the stabilizer of a point boundary component of D.

It follows from the general theory in [Ash et al. 1975] that if $S^{\prime} \supset S$ is a toroidal compactification then the complement $S^{\prime} \backslash S$ is a union of rational divisors. We pick such an S^{\prime}, assumed smooth and projective, and assume that $S^{\prime} \backslash S$ is a divisor with normal crossings. Let v be a place of E dividing the rational prime p.

Hypothesis 1.2. The varieties S and S^{\prime} have smooth projective models \mathfrak{S} and \mathfrak{S}^{\prime} over the v-adic integer ring $\operatorname{Spec}\left(\mathbb{O}_{v}\right)$.

This is proved by Lan for PEL type Shimura varieties at hyperspecial level in several long papers, starting with [Lan 2013].

Let $\overline{\mathfrak{S}}$ denote the base change of \mathfrak{S} to the algebraic closure of $F_{v}, \overline{\mathfrak{S}}^{\text {an }}$ the associated Berkovich analytic space, and $|S|$ (rather than $\left|\overline{\mathfrak{S}}^{\text {an }}\right|$) the underlying topological space. We use the same notation for S^{\prime}. Let $Z=\left|S^{\prime}\right| \backslash|S|$.
Lemma 1.3. The spaces $|S|$ and $\left|S^{\prime}\right|$ are contractible and $\left|S^{\prime}\right|$ is compact. In particular:
(a) The inclusion $|S| \hookrightarrow\left|S^{\prime}\right|$ is a homotopy equivalence.
(b) There are canonical isomorphisms $H_{c}^{i}(|S|, A) \xrightarrow{\sim} H^{i}\left(\left|S^{\prime}\right|, Z ; A\right)$ for any ring A.
(c) The connecting homomorphism $H^{i}(Z, A) \rightarrow H^{i+1}\left(\left|S^{\prime}\right|, Z ; A\right)=H_{c}^{i+1}\left(\left|S^{\prime}\right|, A\right)$ is an isomorphism for $i>0$.
Proof. Contractibility of $|S|$ and $\left|S^{\prime}\right|$ follows from Hypothesis 1.2 by the results of [Berkovich 1999, Section 5] (though the contractibility of analytifications of spaces with good reduction seems only to be stated explicitly in the introduction). Since S^{\prime} is proper, $\left|S^{\prime}\right|$ is compact. Then (a) and (b) are clear and (c) follows from the long exact sequence for cohomology

$$
\cdots \rightarrow H^{i}\left(\left|S^{\prime}\right|, A\right) \rightarrow H^{i}(Z, A) \rightarrow H^{i+1}\left(\left|S^{\prime}\right|, Z ; A\right) \rightarrow H^{i+1}\left(\left|S^{\prime}\right|, A\right) \rightarrow \cdots
$$

Let $P=L U$ be a Levi decomposition, with L reductive and U unipotent, let L^{0} denote the identity component of the Lie group $L(\mathbb{R})$, and let D_{P} denote the symmetric space attached to L^{0} (or to its derived subgroup $\left(L^{0}\right)^{\text {der }}$). The minimal compactification (or Satake compactification) S^{*} of S is a projective algebraic variety obtained by adding a finite set of points, say N points, which we can call "cusps," to S. The toroidal compactifications $S^{\text {tor }}$ of [Ash et al. 1975], which depend on combinatorial data, are constructed by blowing up the cusps; each one is replaced by a configuration of rational divisors, to which we return momentarily. For appropriate choices of data $S^{\text {tor }}$ is a smooth projective variety and $\partial S^{\text {tor }}=S^{\text {tor }} \backslash S$ is a divisor with normal crossings; $\partial S^{\text {tor }}$ is a union of N connected components, one for each cusp. The reductive Borel-Serre compactification S^{rs} of S is a compact (nonalgebraic) manifold with corners (boundary in this case) containing S as dense open subset, and such that

$$
\begin{equation*}
S^{\mathrm{rs}} \backslash S=\coprod_{j=1}^{N} \Delta_{j} \backslash D_{P} \tag{1.4}
\end{equation*}
$$

where, for each j, Δ_{j} is a cocompact congruence subgroup of $L(\mathbb{Q})$.
Details on $S^{\text {rs }}$ can be found in a number of places, for example [Borel and Ji 2006]. We introduce this space only in order to provide an independent description of Z. Roughly speaking, Z is canonically homotopy equivalent to $S^{\mathrm{rs}} \backslash S$. More
precisely, let $S \hookrightarrow S^{\text {tor }}$ be a toroidal compactification as above and consider the incidence complex Σ of the divisor with normal crossings $\partial S^{\text {tor }}$. This is a simplicial complex whose vertices are the irreducible components ∂_{i} of $\partial S^{\text {tor }}$, whose edges are the nontrivial intersections $\partial_{i} \cap \partial_{j}$, and so on.
Proposition 1.5. The incidence complex Σ is homeomorphic to a triangulation of $S^{\text {rs }} \backslash S$.
Proof. In [Harris and Zucker 1994, Corollary 2.2.10], it is proved that Σ is a triangulation of a compact deformation retract of $S^{\mathrm{rs}} \backslash S$; but under Hypothesis 1.1 $S^{\mathrm{rs}} \backslash S$ is already compact. In any case, Σ and $S^{\mathrm{rs}} \backslash S$ are homotopy equivalent.
Theorem 1.6. (Berkovich and Thuillier) There is a canonical deformation retraction of $Z=S^{\prime} \backslash S$ onto Σ.

This is proved but not stated in [Thuillier 2007], and can also be extracted from [Berkovich 1999]. A more precise reference will be provided in the sequel.

In what follows, H_{c}^{\bullet} will be one of these cohomology theories, considered in [Berkovich 2000, Theorem 1.1]:
(a^{\prime}) $H_{\ell, c}^{\cdot}(\ell$-adic étale cohomology, with $\ell \neq p$);
(a") $H_{p, c}^{\circ}$ (p-adic étale cohomology); or
(c) $V \mapsto H_{c}^{\cdot}(V(\mathbb{C}), \mathbb{Q})$ (Betti cohomology with compact support of the complex points of the algebraic variety V).
Corresponding to the choice of H_{c}^{\bullet}, the ring A is either $\left(\mathrm{a}^{\prime}\right) \mathbb{Q}_{\ell},\left(\mathrm{a}^{\prime \prime}\right) \mathbb{Q}_{p}$, or (c) \mathbb{Q}.
Corollary 1.7. For $i>0$, there is a canonical injection

$$
\phi: H^{i}\left(S^{\mathrm{rs}} \backslash S, A\right)=H^{i}\left(\coprod_{j=1}^{N} \Delta_{j} \backslash D_{P}, A\right) \hookrightarrow H_{c}^{i+1}(\bar{S}) .
$$

The image of ϕ is the weight-zero subspace in cases $\left(\mathrm{a}^{\prime}\right)$ and (c) and is the space of smooth vectors for the action of the Galois group (see [Berkovich 2000, page 666] for the definition) in case ($\mathrm{a}^{\prime \prime}$).
Proof. This follows directly from Proposition 1.5, Theorem 1.6 and [Berkovich 2000, Theorem 1.1].

The key word is canonical. This means that the retractions commute with change of discrete group Γ (provided the condition of Hypothesis 1.2 is preserved) and with Hecke correspondences, or (more usefully) the action of the group $G\left(\boldsymbol{A}_{f}\right)$ in the adelic Shimura varieties. In particular, the adelic version of the corollary asserts roughly that the induced representation from $P\left(\boldsymbol{A}_{f}\right)$ to $G\left(\boldsymbol{A}_{f}\right)$ of the topological cohomology of the locally symmetric space attached to L injects into the cohomology with compact support of the adelic Shimura variety $S(G, X)$, with image either the weight zero subspace or the smooth vectors for the Galois action.

2. Some extensions and questions

Comment 2.1. Hypothesis 1.1 is superfluous. The homotopy type of $\left|S^{\prime}\right| \backslash|S|$ is more complicated but can be described along lines similar to Theorem 1.6.

Comment 2.2. The article [Harris et al. 2013] treats more general local coefficients by studying the weight-zero cohomology of Kuga families of abelian varieties over Shimura varieties. The analytic space of the boundary in this case is a torus bundle with fiber $\left(S^{1}\right)^{d}$ over the base Z, where d is the relative dimension of the Kuga family over S. The Leray spectral sequence identifies the cohomology of the total space as the cohomology of Z with coefficients in a sum of local systems attached to irreducible representations of L. In this way one can recover the Eisenstein classes of [Harris et al. 2013] for general coefficients.

Question 2.3. In [Harris and Zucker 1994] the combinatorial calculation of the boundary contribution to coherent cohomology is accompanied by a differential calculation, in which the Dolbeault complex near the toroidal boundary is compared to the de Rham complex on the incidence complex. Does this have analogues in other cohomology theories?
Question 2.4. Is there a version of Berkovich's theorem in [Berkovich 2000] for local systems that works directly with Z and S and avoids the use of Kuga families? For ℓ prime to p, local systems over S with coefficients in $\mathbb{Z} / \ell^{n} \mathbb{Z}$, attached to algebraic representations of G, become trivial when Γ is replaced by an appropriate subgroup of finite index. This suggests that the analogue of Corollary 1.7 for ℓ-adic cohomology with twisted coefficients can be proved directly on the adelic Shimura variety. It's not so clear how to handle cases ($\mathrm{a}^{\prime \prime}$) and (c).

Question 2.5. Does Berkovich's theorem apply to rigid cohomology, which is the theory used in [Harris et al. 2013]? In particular, does it apply to the ordinary locus of the toroidal compactification?

Question 2.6. Most importantly, is there a version of Corollary 1.7 that keeps track of the torsion cohomology of $S^{\mathrm{rs}} \backslash S$? The possibility of assigning Galois representation to torsion cohomology classes is the subject of a series of increasingly precise and increasingly influential conjectures. Can the methods of [Harris et al. 2013] be adapted to account for these classes?

References

[Ash et al. 1975] A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally symmetric varieties, Lie Groups: History, Frontiers and Applications 4, Mathematical Science Press, Brookline, MA, 1975. MR 56 \#15642 Zbl 0334.14007
[Berkovich 1999] V. G. Berkovich, "Smooth p-adic analytic spaces are locally contractible", Invent. Math. 137:1 (1999), 1-84. MR 2000i:14028 Zbl 0930.32016
[Berkovich 2000] V. G. Berkovich, "An analog of Tate's conjecture over local and finitely generated fields", Internat. Math. Res. Notices 13 (2000), 665-680. MR 2001h:14022 Zbl 1068.14502
[Borel and Ji 2006] A. Borel and L. Ji, "Compactifications of locally symmetric spaces", J. Differential Geom. 73:2 (2006), 263-317. MR 2007d:22031 Zbl 1122.22005
[Harder 1990] G. Harder, "Some results on the Eisenstein cohomology of arithmetic subgroups of GL ${ }_{n}$ ", pp. 85-153 in Cohomology of arithmetic groups and automorphic forms (Luminy-Marseille, 1989), edited by J.-P. Labesse and J. Schwermer, Lecture Notes in Math. 1447, Springer, Berlin, 1990. MR 91j:11040 Zbl 0719.11034
[Harris and Zucker 1994] M. Harris and S. Zucker, "Boundary cohomology of Shimura varieties, I: Coherent cohomology on toroidal compactifications", Ann. Sci. École Norm. Sup. (4) 27:3 (1994), 249-344. MR 95a:14024 Zbl 0860.11030
[Harris et al. 2013] M. Harris, K.-W. Lan, R. Taylor, and J. Thorne, "On the rigid cohomology of certain Shimura varieties", preprint, 2013, Available at http://www.math.umn.edu/~kwlan/articles/ rigcoh.pdf.
[Lan 2013] K.-W. Lan, Arithmetic compactifications of PEL-type Shimura varieties, Princeton University Press, 2013. MR 2711676 Zbl 06151348
[Scholze 2013] P. Scholze, "On torsion in the cohomology of locally symmetric varieties", preprint, 2013. arXiv 1306.2070
[Thuillier 2007] A. Thuillier, "Géométrie toroïdale et géométrie analytique non Archimédienne: application au type d'homotopie de certains schémas formels", Manuscripta Math. 123:4 (2007), 381-451. MR 2008g:14038 Zbl 1134.14018

Received July 6, 2012.
Michael Harris
Institut de Mathématiques de Jussieu
U.M.R. 7586 DU CNRS

France
harris@math.jussieu.fr
and
UFR de Mathématiques
Université Paris 7 Denis Diderot
France

PACIFIC JOURNAL OF MATHEMATICS
 msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

Paul Balmer
Department of Mathematics University of California Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Robert Finn
Department of Mathematics
Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu
Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu
Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu
Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper

Department of Mathematics University of California
Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2014 is US $\$ 410 /$ year for the electronic version, and $\$ 535 /$ year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

E. mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 268 No. $2 \quad$ April 2014

In memoriam: Jonathan Rogawski 257
Don Blasius, Dinakar Ramakrishnan and V. S. Varadarajan
Formes modulaires sur la \mathbb{Z}_{p}-extension cyclotomique de \mathbb{Q} 259
Laurent Clozel
Weight zero Eisenstein cohomology of Shimura varieties via Berkovich 275 spacesMichael Harris
Δ-adic Barsotti-Tate groups 283
Haruzo Hida
Le flot géodésique des quotients géométriquement finis des géométries de 313 Hilbert
Mickaël Crampon and Ludovic Marquis
Nonplanarity of unit graphs and classification of the toroidal ones 371
A. K. Das, H. R. Maimani, M. R. Pournaki and S. Yassemi
Discrete semiclassical orthogonal polynomials of class one 389
Diego Dominici and Francisco Marcellán
A note on conformal Ricci flow 413
Peng Lu, Jie Qing and Yu Zheng
On representations of $\mathrm{GL}_{2 n}(F)$ with a symplectic period 435
Arnab Mitra
Linked triples of quaternion algebras 465
Alexander S. Sivatski
Finite nonsolvable groups with many distinct character degrees 477
Hung P. Tong-Viet
Errata to "Dynamics of asymptotically hyperbolic manifolds" 493Julie Rowlett
Erratum to "Singularities of the projective dual variety" 507
Roland Abuaf

[^0]: The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement no. 290766 (AAMOT) .

[^1]: ${ }^{1}$ Since writing the first version of this article I have learned that Laurent Fargues had essentially the same idea independently.
 ${ }^{2}$ Our Shimura varieties are attached to groups of rational rank 1, whose toroidal boundary is the blowup of point boundary components in the minimal compactification. More general Shimura varieties are compactified by adding strata attached to different conjugacy classes of maximal parabolics, and then $\left|S^{\prime}\right| \backslash|S|$ has several strata as well.

