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We define 3-BT groups as well-controlled ind-Barsotti–Tate groups under
the action of the Iwasawa algebra and construct a prototypical example of
such groups out of modular Jacobians. We then discuss the relation of these
groups to Weil numbers of weight 1 and to the nonvanishing problem of the
adjoint L-invariant.
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1. Introduction

Fix a prime p ≥ 5 (throughout the paper). For a given valuation ring R, a 3-BT
group G = GR is by definition an inductive limit of (p-divisible) Barsotti–Tate
groups Gn =Gn,R (0< n ∈Z) defined over R with an action of the Iwasawa algebra
3 = 3W := W [[x]] as endomorphisms. Here the limit is taken as an object of
the ind-category of commutative group schemes over R or in the (bigger) abelian
category of abelian fppf sheaves over R (see [Hida 2012, §1.12.1] for abelian fppf
sheaves), W is a discrete valuation ring finite flat over Zp, and W [[x]] is the ring
of power series in one variable. We write K for the quotient field of R and F for
the residue field; K , F denote algebraic closures thereof. We assume R to be of
mixed characteristic (0, p) (so K has characteristic 0 and F has characteristic p),
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though the definition is obviously valid over any valuation ring (and it is interesting
to know if there is some good theory over a general R). We impose the following
two conditions:

(CT′) Writing γ = 1+x , we have Gn,R=GR[γ
pn−1
−1] :=Ker(γ pn−1

−1 :GR→GR)

(in particular, Gn,R ↪→ GR is a closed immersion).

(DV) The geometric generic fiber G(K ) is isomorphic to (3∗)n for the Pontryagin
dual 3∗ := HomZp(3,Qp/Zp), so T G = Hom3(3

∗ ,G(K )) is 3-free of
rank n.

In the text (see (CT) in Section 3), we often impose a slightly stronger condition
than (CT′) here (though we have an example of G satisfying only (CT′) not (CT);
see Remark 5.5). Such group schemes have been studied in [Hida 1986; Mazur
and Wiles 1986; Tilouine 1987; Ohta 1995] and more recently in [Cais 2012,
§5.4], primarily through the deformation theory of modular forms and Galois
representations. In this note, we would like to give some basic facts of3-BT groups
and to point out their relation to the L-invariant of adjoint square L-functions of
modular forms. In some sense, this note is a revisiting of the topics presented in
[Hida 1986] through a new formulation via arithmetic geometry, and in near future,
we hope to delve into deeper in this direction. We write 0 = γ Zp for the subgroup
of 3× topologically generated by γ , which is isomorphic to 1+ pZp (we fix the
isomorphism 1+ pZp ∼= 0 sending 1+ p to 1+ x).

Starting with a brief explanation of U (p)-isomorphisms in Section 2, in Section 3,
we list expected properties (other than (CT′) and (DV)) of 3-BT groups, and we
discuss seemingly naive questions on 3-BT groups. Some of the implications of
the questions will be discussed in later sections. In Sections 4 and 5, we construct
modular 3-BT groups, and verify most of the properties listed in Section 3 for
the modular 3-BT groups. In Section 6, we prove the remaining properties in
Section 3 related to reduction modulo p of the modular 3-BT groups. In the last
two Sections 7 and 8, we relate the theory to the problem of nonvanishing of the
adjoint L-invariants. We note that p-adic Hodge theory of the modular3-BT group,
as well as other aspects, has been studied by Cais [2012], who may have been
influenced by my lecture notes [Hida 2005] at CRM, which were the origin of the
present paper.

2. U( p)-isomorphisms

For Z[U ]-modules X and Y , we call a Z[U ]-linear map f : X→ Y a U -injection
(resp. a U -surjection) if Ker( f ) is killed by a power of U (resp. Coker( f ) is killed by
a power of U ). If f is a U -injection and a U -surjection, we call f a U -isomorphism.
In other words, f is a U -injection, a U -surjection, or a U -isomorphism if, after
tensoring with Z[U,U−1

], it becomes an injection, a surjection, or an isomorphism.
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In terms of U -isomorphisms, we describe briefly the facts we study in this article
(and in later sections, we fill in more details in terms of the ordinary projector e).1

Let N be a positive integer prime to p. We consider the (open) modular
curve Yr := Y1(N pr )/Q which classifies elliptic curves E with an embedding
φ : µN pr ↪→ E[N pr

] = Ker(N pr
: E→ E). Let Ri = Z(p)[µpi ] and Ki =Q[µpi ]

(i = 1, 2, . . . ,∞). We fix an isomorphism Zp(1) = lim
←−r

µpr (R∞) choosing a
coherent sequence of primitive roots of unity ζpr ∈ µpr (Rr ) such that ζ p

pr+1 = ζpr

for all r , and therefore Ri has a specific primitive root of unity denoted by ζpi .
Similarly, we fix an isomorphism Z/NZ ∼= µN over Q(µN ) (given by m 7→ ζm

N )
choosing a primitive root of unity ζN . We write ζN pr = ζN ζpr . Let R be either a
valuation ring or a field (over Z(p)) inside Q[µp∞] with quotient field K . We write
Xr,R for the normalization of the j-line P( j)/R in the function field of Yr/K . The
group z∈ (Z/pr Z)× acts on Yr,K by φ 7→φ◦z (and hence on its normalization Xr,R),
as Aut(µN pr )∼= (Z/N pr Z)×. Thus 0=1+ pZp=γ

Zp acts on Xr (and its Jacobian)
through its image in (Z/N pr Z)×. For s > r ≥ 0, we define another modular curve
Y r

s,K by the geometric quotient of Ys by (1+ pr Zp)/(1+ psZp) ⊂ (Z/N psZ)×

and define X r
s,R to be the normalization of P( j)/R in the function field K (Y r

s,K ).
Then X r

s,K (C) is given by 0r
s\(Ht P1(Q)) for 0r

s =01(N pr )∩00(ps) (s > r ≥ 0).
Hereafter we take U = U (p) for the Hecke operator U (p) (as defined in [Hida
2012, §3.2.3 and §4.2.1]).

As before, take a valuation ring R ⊂Q[µp∞] over Z(p). Let Jr,R = Pic0
Xr,R/R be

the connected component of the Picard scheme. Then Jr,R is the identity connected
component of the Néron model of the Jacobian Jr/K of Xr/K . Indeed, by the
table of geometric multiplicities of irreducible components of Xr/Fp = X ×R Fp in
[Katz and Mazur 1985, 13.5.6], the greatest common divisor D of the geometric
multiplicities of irreducible components of Xr/Fp is equal to 1. Then by a result of
Raynaud [Bosch et al. 1990, Theorem 9.5.4(b)], the identity D= 1 implies that Jr,R

is isomorphic to the identity connected component of the Néron model of Jr/K over
R. Similarly, J r

s := Pic0
Xr

s /R is isomorphic to the identity connected component of
the Néron model over R of the Jacobian variety J r

s/K of the modular curve X r
s/K .

Note that

(2-1) 0r
s\0

r
s

(
1 0
0 ps−r

)
01(N pr )=

{(
1 a
0 ps−r

) ∣∣∣ a mod ps−r
}

= 01(N pr )\01(N pr )

(
1 0
0 ps−r

)
01(N pr ).

Now, write U s
r (p

s−r ) : J s
r → Jr for the Hecke operator of 0s

rαs−r01(N pr ) for

1This section about U -isomorphisms is from a conference talk at CRM in September in 2005 (see
http://www.crm.umontreal.ca/Representations05/indexen.html).

http://www.crm.umontreal.ca/Representations05/indexen.html
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αm =
( 1

0
0

pm

)
. As described in [Shimura 1971, Chapter 7], for a modular curve

X (0) := 0\(Ht P1(Q)), each double coset 0α0′ gives rise to a correspondence
X (0 ∩ α0′α−1) embedded in X (0)× X (0′) by z 7→ (z, α(z)). In our cases of
0=0r

s , 01(N pr ) and 0′=01(N pr ), the modular curve X (0∩α0′α−1) is known to
be defined over Q [loc. cit.], and hence the correspondences are also defined over Q.
These correspondences defined over Q act on the Jacobians by morphisms defined
over Q (by Picard and Albanese functoriality, respectively) and its composition
relation verified over C remains valid over Q (and over any subfield in C). Then
we have the following commutative diagram from the above identity, first over C,
then over K (via the correspondences defined over Q and hence over K ) and by
functoriality (of Picard schemes or Néron models) over R:

(2-2)

Jr,R

u
��

π∗
// J r

s,R

u′′

��

u′

}}
Jr,R

π∗
// J r

s,R

where the middle u′ is given by U s
r (p

s−r ) and u and u′′ are U (ps−r ). Thus

(u1) π∗ : Jr,R→ J r
s,R is a U (p)-isomorphism (for the projection π : X r

s → Xr ).

Taking the dual U∗(p) of U (p) with respect to the Rosati involution induced by
the canonical polarization on the Jacobians, we have a dual version of the above
diagram for s > r > 0:

(2-3)

Jr,R J r
s,R

π∗oo

Jr,R

u∗

OO
u′∗

==

J r
s,R

π∗oo

u′′∗
OO

Here the superscript “∗” indicates the Rosati involution corresponding to the
canonical divisor on the Jacobians, and u∗ = U∗(p)s−r for the level 01(N pr )

and u′′∗ =U∗(p)s−r for 0r
s . Without applying the duality, these morphisms come

directly from Hecke correspondences associated to the following coset decomposi-
tion:

(2-4) 0r
s

∖
0r

s

(
ps−r s 0

0 1

)
01(N pr )= 01(N pr )

∖
01(N pr )

(
ps−r 0

0 1

)
0r

s

=

{(
ps−r a

0 1

) ∣∣∣ a mod ps−r
}

= 01(N pr )
∖
01(N pr )

(
ps−r 0

0 1

)
01(N pr ).
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Alternatively, the diagram (2-3) follows from Albanese functoriality of Jacobians
applied to the Hecke correspondence U (p). In any case, we get

(u1∗) π∗ : Jr,R→ J r
s,R is a U∗(p)-isomorphism, where π∗ is the dual of π∗.

In particular, if we take the ordinary and the coordinary projectors

e = lim
n→∞

U (p)n! and e∗ = lim
n→∞

U∗(p)n!

on J [p∞] for J = Jr , Js, J r
s , noting U (pm)=U (p)m , we have

π∗ : Jr [p∞]ord ∼= J r
s [p
∞
]
ord and π∗ : J r

s [p
∞
]
coord ∼= Jr [p∞]coord,

where “ord” (resp. “coord”) indicates the image of the projector e (resp. e∗). For
simplicity, we write Gr,R := Jr [p∞]ord

/R . The group scheme Jr [pn
] is often neither flat

nor finite (for example if Jr/Fp has additive part). Thus for the moment, as explained
in the introduction, we take Jr [p∞]ord

/R as defined either in the ind-category of group
schemes over R or in the abelian category of fppf abelian sheaves. Our point is that
we will show that the ordinary part behaves well under Picard functoriality and is
represented by a 3-BT group if R ⊃ R∞.

Pick a congruence subgroup 0 defining the modular curve X = X (0), and write
its Jacobian as J . We now identify J (C) with a subgroup of H 1(0, T ) (for the
0-module T := R/Z∼= {z ∈ C | |z| = 1} with trivial 0-action). Since 0r

s F01(N ps),
we may consider the finite cyclic quotient group C :=0r

s /01(N ps). By the inflation
restriction sequence, we have the following commutative diagram with exact rows:

(2-5)

H 1(C, T ) �
� // H 1(0r

s , T ) // H 1(01(N ps), T )γ pr−1
=1 // H 2(C, T )

?

OO

// J r
s (C)

∪

OO

// Js(C)[γ
pr−1
− 1]

∪

OO

// ?

OO

Since C is a finite cyclic group of order ps−r (with generator g) acting trivially on
T , we have H 1(C, T )= Hom(C, T )∼= C and

H 2(C, T )= T/(1+ g+ · · ·+ g ps−r
−1)T = T/ps−r T = 0.

By the same token, replacing T by Tp := Qp/Zp, we get H 2(C,Tp) = 0. By
computing explicitly the double coset action of U (p) (see [Hida 1986, Lemma 6.1]),
we confirm that U (p) acts on H 1(C, T ) and H 1(C,Tp) via multiplication by its
degree p, and hence U (p)s−r kill H 1(C, T ) and H 1(C,Tp). Hence J r

s → Js is a
U -isomorphism over C and hence over K . We record what we have proved:

(2-6) U (p)s−r (H 1(C,Tp))= H 2(C, T )= H 2(C,Tp)= 0.
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Thus Js[γ
pr−1
− 1](C) is connected, and hence Js[γ

pr−1
− 1] is an abelian variety

over Q (as it is the kernel of the Q-rational endomorphism γ pr−1
− 1). By the

diagram (2-5), we get an isogeny i s
r : J

r
s,C→ Js,C[γ

pr−1
−1] whose kernel is a cyclic

group of order ps−r . Since this isogeny i s
r is induced by the Picard functoriality

from the covering map Xs � X r
s defined over Q, i s

r is defined over Q. Then it
extends to i s

r/R : J r
s,R→ Js,R by the functoriality of Picard schemes (which factors

through Js,R[γ
pr−1
−1] =Ker(γ pr−1

−1 : Js,R→ Js,R)). There is a more arithmetic
proof of these facts valid for any k-points (for a general field k) in place of C-points
of the Jacobians which we hope to discuss in our future article.

Though we do not use this fact in this paper, there is a dual homology version of
(2-5) coming from group homology [Brown 1982, VII.6.4]:

(2-7)

H2(C, T ) �
� //

��

H1(01(N ps), T )
(γ pr−1

− 1)H1(01(N ps), T )
//

onto
��

H1(0
r
s , T ) //

onto

��

H1(C, T )

��
? // (Js/(γ

pr−1
− 1)Js)(C) // J r

s (C)
// ?

Since H j (C, T ) is the Pontryagin dual of H j (C,Z), we have

H1(C, T )= Hom(C,Z)= 0 and H2(C, T )= H 2(C,Z)= Z/N r
s Z∼= C

for N r
s = 1+ g+ · · ·+ g ps−r

−1 with g = γ pr−1
. This shows that J r

s,Q is a quotient

of (Js/(γ
pr−1
− 1)Js)/Q by a finite cyclic group of order ps−r killed by U (p)s−r

and also U∗(p)s−r .
As we have seen from (2-5), we have a morphism i s

r/R : J r
s,R→ Js,R[γ

pr−1
− 1].

This morphism composed with Jr,R→ J r
s,R , induced by Picard functoriality from the

covering map X r
s,R→ Xr,R , gives rise to the morphism I s

r/R : Jr,R[p∞]→ Js,R[p∞],
which gives rise to a inductive system {Gr,R, I s

r |Gr,R → Gs,R}s>r of ind-group
schemes. Then GR = lim

−→r
Gr is again a well-defined ind-group scheme. We want to

study the control property as in (CT′) for GR if either R = K or R = R∞. Suppose
R= R∞=Z(p)[µp∞]. Through the diamond operators, the multiplicative group Z×p
acts on GR . For a ∈Z/(p−1)Z, write G(a)R for the eigenspace (that is, the maximal
ind-Barsotti–Tate subgroup) on which ζ ∈ µp−1(Zp) acts via the multiplication by
ζ a . In particular, G(0) is the µ-fixed part Gµ for µ= µp−1 ⊂ Z×p . Regarding GR as
an fppf p-abelian sheaf (meaning it has values in the category of p-abelian groups),
we will show that the projector x 7→ 1/(p−1)

∑
ζ∈µp−1⊂Z×p

ζ−a
〈ζ 〉(x) projects the

sheaf GR onto G(a)R . We put G(0)R =
⊕

0<a<p−1 G(a)R; thus GR =G
µ
R⊕G(0)R . Using

the good reduction theorem of Langlands and Carayol combined with an analysis
of the relation between G(0)R and the good abelian quotients from [Mazur and Wiles
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1984, Section 3], we will show G(0)R∞ is a 3-BT group (see Sections 4 and 5 for the
proof, and Remark 5.5 and Proposition 6.3 for the structure of the complement Gµ).

Roughly, Xr,Rr classifies degree pr cyclic isogenies π : E → E ′ with some
additional data (here “cyclicity” means the kernel of the isogeny is “cyclic” in the
sense of Drinfeld as explained in [Katz and Mazur 1985, Chapter 6]). After a base
change (tensoring Fp over Rr ), π factors as

E Fa
// E (p

a) ∼= E ′(p
b) V b

// E ′

for the p-power relative Frobenius F and its dual V (the Verschiebung) for some
nonnegative integers a, b with a+ b = r . Thus Xr,Fp := Xr,Rr ⊗Rr Fp is a union⋃

a+b=r X(a,b) for X(a,b) classifying cyclic isogenies of type (a, b) as above (with
additional data). We define Yr = X(0,r)∪X(r,0) inside Xr,Rr⊗Rr Fp (good components
in the sense of [Mazur and Wiles 1984, Section 3]). We will see in Corollary 6.1
that

(u) the projection Jr,Rr [p
∞
]⊗Rr Fp→ Pic0

Yr/Fp
[p∞] is a U (p)-isomorphism,

where as a correspondence, U (p)∩Yr :=U (p)×Xr,Rr
Yr induces a correspondence

on Yr × Yr and hence it acts on Pic0
Yr/Fp

.

3. More structures on the modular 3-BT groups

We list here some more good properties satisfied by the modular 3-BT group G

(to be constructed in the following two sections) whose proofs will be given in the
later sections. We would like to know to what extent a general 3-BT group GR

satisfies the following properties, though the only example we know is made out of
modular Jacobians. In this section only, we denote by R = R∞ a general valuation
ring with residue field F of mixed characteristic (0, p) not necessarily in Q[µp∞],
and suppose R∞ =

⋃
j R j for an increasing sequence of discrete valuation subrings

R j (i.e., R j ⊂ R j+1 ⊂ R for all j). Again Rn is not necessarily in Q[µpn ]. We
write Kn for the quotient field of Rn .

Recall the quotient field K of R, and fix an algebraic closure K of K . We have
the geometric generic fiber Gr [pn

](K ) of the (quasi)finite group scheme Gr [pn
] and

put G(K ) = lim
−→r

lim
−→n

Gr [pn
](K ) (which we will call the geometric generic fiber

of G). We may regard G(K ) as a discrete 3-module. Similarly taking the special
fiber Gr [pn

]/F := Gr [pn
]⊗R F, we define GF = lim

−→r
lim
−→n

Gr [pn
]/F as an ind-group

scheme (we call GF the special fiber of GR). We will verify in the next section the
following condition for the modular 3-BT group:

(DV) G(K )∼=3∗n (as 3-modules) for 3∗ := Hom(3,Qp/Zp).

If R has a finite residue field F= Fq of characteristic p, we further consider the
following properties for G:
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(CT) Writing γ =1+x , we have Gn=Ker(γ pn−1
−1 :GR→GR) (closed immersion)

and Gn,R descends to a Barsotti–Tate group over the discrete valuation ring Rn

(for each 0< n ∈ Z). We have Gm ×Rm Rn ∼= Gm,Rn if n > m (compatibility).

(D) We have a Cartier self-duality Gn[pm
]×Gn[pm

]→µpm over Rn which, after
taking the limit, gives (Galois equivariant) Pontryagin duality T G×G(K )→
µp∞(K ) for T G = lim

←−n
T Gn (for T Gn = lim

←−m
Gn[pm

](K )) with respect to
the map T Gn+1 � T Gn dual to Gn ↪→ Gn+1.

(Od) The connected component of G◦r [p
n
] for all n> 0 and r > 0 is a multiplicative

locally free group over the strict henselization of R.

(U) On the special fiber, we have the Frobenius map F and its dual V with
FV = V F = q. Thus we have a splitting GF = G◦ × Get so that G◦ =

Ker(eF ) = Im(eV ) and Get
= Ker(eV ) = Im(eF ) for eF = limn→∞ Fn! and

eV = limn→∞ V n!. Then we have a 3-linear automorphism U of G such that
U |Gr is defined over Rr for all r > 0, U commutes with F and V , and U on
Get lifts F |Get . Moreover, e = limn→∞U n!

= eF |Get + eV |G◦ on GF.

A 3-BT group satisfying the above properties will be called an ordinary 3-BT
group over R. We prove these properties for the modular 3-BT groups in the
following two sections for R = Z(p)[µp∞]. We may replace the base ring R in the
above conditions by a field of characteristic p (for example Fq ); so, the definition
of 3-BT group makes sense over a finite field and Fp (see (Q1) below).

Pick a linear operator L ∈End3[Gal(K/K )](T G) whose restriction to T Gr (for each
r > 0) commutes with the action of Gal(K/Kr ) (the bigger Galois group). Since the
Barsotti–Tate group H over a field k of characteristic 0 is an étale group and therefore
is determined by its Galois module, we have EndZp[Gal(k/k)](T H)∼=EndBT(H). Then
the restriction Lr ∈ End3[Gal(K/Kr )]

(T Gr ) gives rise to an endomorphism of Gr,Kr

and extends uniquely to an endomorphism of the Barsotti–Tate group Gr,Rr defined
over Rr [Tate 1967, Theorem 4]. We write this restriction as LBT

r ∈ EndBT(Gr,Rr ).
Then we have LBT

= lim
←−r

LBT
r ∈ End3(GR). If confusion is unlikely, we simply

write L for LBT .
Suppose that det(L) 6= 0 in 3 as an endomorphism of T G∼=3n . Define

G[L]R = Ker(L : GR→ GR),

which is a well-defined fppf abelian sheaf over R (as the category of fppf abelian
sheaves is abelian; see [Milne 1980, Chapter 2]). We regard G[L](K ) as an abelian
group. Since det(L) 6=0, by the classification of3-modules, the maximal p-divisible
subgroup G[L](K )div of G[L](K ) has finite corank; that is, G[L](K )div∼= (Qp/Zp)

m

as an abstract group for a finite m > 0, which is called the corank of G[L](K ). We
call G[L](K )div the p-divisible part of G[L](K ), which is canonically determined
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inside G[L](K ). Thus its pn-torsion subgroup G[L](K )div
[pn
] is finite, and we can

find a finite r = r(n) > 0 such that G[L](K )div
[pn
] ⊂ Gr [pn

](K ).
Since LBT

r commutes with the action of Gal(K/Kr ) and the p-divisible part is
unique in G[L](K ), it follows that G[L](K )div

[pn
] is stable under the action of

Gal(K/Kr ). Thus G[L](K )div
[pn
] is the group of geometric points of a finite flat

subgroup G[L]div
[pn
]/Kr of Gr,Kr [p

n
] for sufficiently large r . Take the schematic

closure Gn/Rr of G[L]div
[pn
]/Kr in Gr,Rr [p

n
] defined over Rr . Writing Gr [pn

] =

Spec(A) for a Hopf Rr -algebra A = An with G[L]div
[pn
]/Kr = Spec(A⊗Rr Kr/I )

for an ideal I of A⊗Rr Kr , we have Gn/Rr =Spec(A/A∩ I ). Note that A/(A∩ I )∼=
(A+ I )/I ↪→ A⊗Rr Kr/I is p-torsion free (and hence flat over Rr ). Thus Gn/Rr

is a finite flat subgroup scheme of Gr,Rr [p
n
].

Since Gr,Rs =Gr,Rr ⊗Rr Rs ↪→Gs,Rs (s > r ) is a closed immersion, the schematic
closure of G[L]div

[pn
]/Ks = G[L]div

[pn
]/Kr ⊗Kr Ks coincides with Gn/Rr ⊗Rr Rs ;

thus the formation of the base change Gn/R := Gn/Rr ⊗Rr R is independent of the
chosen r . Put G[L]BT

/R = lim
−→n

Gn/R , which should be a Barsotti–Tate group over R
with the identity G[L]BT

[pn
]/R = Gn/R . To discuss our naive questions, we just

take G[L]BT
/R to be a Barsotti–Tate group as a working hypothesis.

Of course, starting with a self-dual3-BT group H with a lift U , TH⊗Zp3
∗ gives

a constant 3-BT group. Here we put TH = HomZp(Tp, H(K )) (the Tate module
of H ). We hereafter suppose that all 3-BT groups we consider are nonconstant.
Thus it could be said that the representation of Gal(K/K ) on T G is a nonconstant
deformation of T G1 in the sense of Mazur (see [Mazur 1989] and [Hida 2000a]).

A p-ordinary Barsotti–Tate group H over R is called of GL(2g)-type if it is
self-dual and there exists a local ring E ⊂ EndZp(H/R) such that we have an
isomorphism of E-modules for its Tate module: TH ∼= E2g. Here we say that H is
p-ordinary if H satisfies (Od). We call H minimal if E is generated by Tr(σ ) ∈ E
for all σ ∈Gal(K/K ), where Tr(σ )∈ E is the trace of the action of σ on TH ∼= E2g.
If we have a local 3[U ]-algebra T inside End3[U ](G) for an ordinary 3-BT group
GR such that T G∼= T2g and T is self-adjoint under the duality, we call G of GL(2g)-
type over T. In this 3-adic case, we call G minimal if T is topologically generated
by Tr(σ ) and U . Suppose that there exists a nonconstant 3-BT group G over a
valuation ring R inside Q. Then we can ask a lot of simple questions:

(Q0) Does there exist R discretely valued?

(Q1) If we are given an ordinary 3-BT group G over a finite field F of characteris-
tic p, can one lift it to a 3-BT group over R for a suitable R? (Deformation
question to characteristic 0.)

(Q2) Is there any systematic way of constructing such an ordinary 3-BT group G

over a given R? If it exists, does it create all such 3-BT groups over R of
GL(2g)-type? (Construction.)
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(Q3) If an ordinary 3-BT group G is nonconstant, can det(U ) ∈ T× be algebraic
over W ? (Transcendency.)

(Q4) Let us give ourselves a Weil number α ∈ Q∩W with |α| =
√

p of degree
2g over Q. Supposing α ordinary (in the sense that the minimal polynomial
in X of α modulo p is divisible by X g but not by higher powers), is there
a Barsotti–Tate subgroup G[U − α]BT

/R ⊂ GR whose geometric generic fiber
is given by G[U − α](K )div? Suppose this is the case. Does G[U − α]BT

/R
descend to a discrete valuation ring? (Descent.) Here, G[U −α]BT should be
the maximal Barsotti–Tate subgroup in G[U −α]/R = Ker(U −α).

(Q5) Under the notation in (Q4), is it possible to embed the Barsotti–Tate part
G[U −α]BT

/R of G[U −α] = Ker(U −α) into an abelian scheme defined over
a finite extension of R? (Relation to abelian varieties.)

(Q6) For a given minimal G1,R of GL(2g)-type whose Tate module T G1(Q)⊗Zp Qp

is simple as a Galois module, is there a universal G? (Universality.) Here the
universality is defined as follows. If we have a minimal Barsotti–Tate group
H of GL(2g)-type with a morphism i :G1→ H having kernel represented by
a finite group scheme (so, i ◦Tr(σ |G1)= Tr(σ |H )◦ i for any σ ∈Gal(Q/K )),
there exists a unique morphism iH : H/R ↪→G/R of Barsotti–Tate groups with
finite (group scheme) kernel making the following diagram commute:

G1
i //

��

H

iH
��

G G

Question (Q0) probably has a negative answer. Here is one reason why: Suppose
that G is minimal of GL(2)-type and suppose that G extends as a 3-BT group
to the integral closure of Z[1/N ] in R. If G is defined over a discrete valuation
ring R = Zp or Z(p), then, by the classification of p-ordinary divisible groups
[Raynaud 1974, 4.2], the determinant of the Galois representation on T G has to
be the p-adic cyclotomic character χ . Thus T G is a deformation of T G1 which is
p-ordinary and of determinant χ . If T G1 is modular whose residual representation
is irreducible over Q[

√
p∗] (p∗ = (−1)(p−1)/2 p), by Wiles [1995], the universal

Galois deformation ring for p-ordinary deformations unramified outside N p with
fixed determinant χ is of finite rank over Zp. Thus T G has to be constant; therefore,
G has to be constant. Thus if such a G exists, at least R contains the p-adic valuation
ring of the cyclotomic Zp-extension Q∞/Q.

Suppose g = 1. Questions related to the ones given above have been studied
in [Hida 1986; Mazur and Wiles 1986; Tilouine 1987; Ohta 1995] for this case.
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In this paper, I will give an automorphic way of constructing such G over R∞ =
Z(p)[µp∞]. By the solution of Galois deformation problems of ordinary type (Mazur,
Wiles–Taylor) and by the solution of Serre’s modulo p modularity conjecture
(Khare–Wintenberger, Kisin), this gives almost all such 3-BT groups of GL(2)-
type, basically solving (Q2) and (Q6) for GL(2)-type groups. After giving the
construction of this modular example in terms of the ordinary projector e (in place
of U (p)-isomorphisms), we will make some comments on the other questions listed
above for the modular 3-BT group.

4. Construction over Q via the ordinary projector

Fix a prime p ≥ 5 and a positive integer N prime to p. Here, we give a down-to-
earth construction of the modular 3-BT group GQ over Q via the ordinary projector
e, though we follow the line explained in Section 2. Here we mean by a 3-BT
group over Q an ind-étale group defined over Q satisfying conditions (CT) and
(DV) from the previous section (as modified by replacing the valuation ring R and
Rn by the field Q). Since the category of Barsotti–Tate groups over Q is equivalent
to the category of p-divisible modules of finite corank with a continuous action
of Gal(Q/Q) (as any finite flat group scheme over Q is étale), we are just dealing
with such Galois modules. We also prove the corresponding properties (CT), (DV)
and (D) over Q for this G. Note that the conditions (DV) and (CT) concern only the
3-module structure of the group not the Galois action (under the condition R =Q).

As before, let Jr = Pic0
X1(N pr )/Q be the Jacobian variety. Similarly we take J r

s
to be the Jacobian variety associated to the modular curve with the congruence
subgroup 0r

s = 01(N pr ) ∩ 00(ps) (0 ≤ r ≤ s). From (2-2) with R = Q, since
e = limn→∞U (p)n! acts on J [p∞] for J = Jr , Js, J r

s (noting U (pm) = U (p)m),
we have

Gr,Q := Jr [p∞]ord ∼= J r
s [p
∞
]
ord,

where “ord” indicates the image of e.
For the Jacobian J of X = X (0) with 0 = 0r

s , we identify J [p∞](C) with a
subgroup of H 1(0,Tp) (here Tp :=Qp/Zp, on which 0 acts trivially). Applying
the ordinary projector e = limn→∞U (p)n! to the diagram (2-5) (replacing T there
by Tp), we get from (2-6) the controllability

Gs,Q[γ
pr−1
− 1] = Ker(γ pr−1

− 1 : Js[p∞]ord
→ Js[p∞]ord)

= Jr [p∞]ord
= Gr,Q.

Define, as an ind-group scheme over Q (or, as a p-abelian fppf sheaf),

GQ := J∞[p∞]ord
= lim
−→r

Jr [p∞]ord.
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For each character ε : 0/0 pr−1
→ µp∞ , by the inflation and restriction sequence,

we get

GQ[pn
](Q)⊗Z Z[ε][γ − ε(γ )] ∼= Jr [pn

](Q)ord
⊗Z Z[ε][γ − ε(γ )]

∼= H 1(X1
r ,Tp(ε))

ord,

where Tp(ε) is a 01
r -module isomorphic to Tp on which 01

r acts by ε. Thus the group
GQ(Q)⊗Z[ε][γ − ε(γ )] is a nontrivial p-divisible group. Taking the Pontryagin
dual T :=G∗

Q
, by Nakayama’s lemma applied to T/mT ∼= J1[p]ord (for the maximal

ideal m of 3), we find a surjection π :32 j � T for 2 j = dimFp J1[p]ord. Then for
a prime P = Pε := (γ − ε(γ ))∩3, T/PT is the dual of GQ[P]⊗Z[ε][γ − ε(γ )],
which is Zp-free of rank 2 j . Thus Ker(π) ⊂ Pε32 j . Moving ε around, from⋂
ε Pε32 j

= {0}, we find that T ∼=32 j ; therefore, GQ is a 3-BT group satisfying
(CT) and (DV) (over C and hence over Q).

As for (D), the canonical polarization of Jr/Q gives rise to the self-duality pairing
[ · , · ] of Jr [pr

] and Jr ∼=
t Jr . Let U∗(p) (resp. T ∗(n)) be the image of U (p)

(resp. T (n)) under the canonical Rosati involution of Jr in End(Jr ). The Weil
involution τ over Q(µN pr ) associated to

( 0
N pr
−1
0

)
satisfies τU (p)τ−1

=U∗(p) and
τT (n)τ−1

= T ∗(n) inside End(Jr/Q[µN pr ]) because τ is only defined over Q[µN pr ].
See [Hida 1986, Theorem 9.3] for more details. Thus, twisting the pairing by
τ and U (p)−r , we get the self-duality pairing 〈 · , · 〉r = [ · , τ ◦ U (p)−r ( · )] of
Gr [pm

]. Writing Rr
s : Gr ↪→ Gs for the inclusion, and N s

r =
∑ps−r

j=1 γ
j

r : Gs → Gr

with γr = γ
pr−1

, we can verify by computation that 〈Rr
s (x), y〉s = 〈x, N s

r (y)〉r (see
[Ohta 1995, §4.1], for instance). From this we get (D) over K∞.

5. Construction over Z( p)[µ p∞]

Hereafter, for simplicity, we assume that N is cube-free, and we make the con-
struction of G over R∞ := Z(p)[µp∞]. Under this assumption, the ordinary Hecke
algebra hord

2 (0s
r ;Zp)⊂ EndZp(J

r
s [p
∞
]
ord) generated by Hecke operators T (n) and

U (q) is known to be reduced (it has no nontrivial nilradical; see [Hida 2013,
Corollary 1.2]). From this fact, S2(0

r
s ) has a basis of Hecke eigenforms for all

Hecke operators T (n) and U (q). If N is not cube-free, we need to consider old-
forms f (dz) ∈ S2(01(N pr )) for Hecke eigenforms f and for suitable d | N (and
abelian varieties associated to such forms), which complicates the arguments, though
all arguments we give actually go through if we consider cusp forms which are
eigenforms for T (n)with n prime to N . Hereafter, if we say f is a Hecke eigenform,
we mean that f is an eigenvector of T (n) for all n prime to N p and U (q) for all
primes q | N p. The Hecke eigenforms we consider may not be new-forms of exact
level N pr .
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The Tate module Tr =T Jr [p∞]ord(Q) carries Galois representations (constructed
by Eichler and Shimura) of Hecke eigenforms satisfying the following properties
(see [Hida 2012, §4.2]):

(1) Cusp forms in S2(0
0
1) (with 00

1 = 01(N )∩00(p)).

(2) All cusp forms in S2(01(N pm)) whose Neben character has p-conductor equal
to pm for m = 1, 2, . . . , r .

By a theorem of Langlands and Carayol (see [Carayol 1986]), the `-adic Galois
representation (` 6= p) associated to such a Hecke eigenform f does not ramify
at p over Gal(Q/Q[µpr ]) except for in case (1). In case (1), it is semistable at
p. Thus the abelian subvariety A f attached to f extends to a semiabelian scheme
over Z(p)[µpr ] (see [Serre and Tate 1968, §1] and [Bosch et al. 1990, §7.4]). Let
tGr =

∑
f as above A f ⊂ Jr . Thus we have an inclusion tGr ↪→ Jr defined over Q.

Let Jr ∼=
t Jr � Gr be the dual quotient. Thus, by definition, we have a commutative

diagram defined over Q for all n prime to N p and all primes q | N p:

Jr

T ∗(n),U∗(q)
��

// Gr

T ∗(n),U∗(q)
��

Jr // Gr

where the superscript “∗” indicates the Rosati involution induced from the polariza-
tion of Gr (coming from the canonical polarization of Jr ). Since the space spanned
by the Hecke eigenforms described in (1) and (2) above is stable under T (n), T ∗(n)
and U (q),U∗(q), actually we also have the following commutative diagram defined
over Q:

Jr //

T (n),U (q)
��

Gr

T (n),U (q)
��

Jr // Gr

We can also justify this by noting that the Rosati involution induced by the polariza-
tion on Gr from the canonical polarization on Jr sends T ∗(n)|Gr to T (n)|Gr and
U∗(q)|Gr to U (q)|Gr for all n prime to N p and all primes q | N p.

A Hecke eigenform f ∈ S2(01(N pm)), new at p, satisfies (1) or (2) above if
and only if f |U (p)= f |U∗(p) 6= 0 (see [Miyake 1989, Theorem 4.6.17]). Thus
U (p) ∈ End(tGr/Q) is an isogeny. Recall the quotient field K of R. By [Hida 2013,
Proposition 1.1, Corollary 1.2],

(5-1) a sufficiently large power U (p)M projects Jr,K onto tGr,K .

In other words, we have the following commutative diagram for general R:



296 HARUZO HIDA

(5-2)

tGr,R
i //

��

Jr,R

��||
tGr,R i

// Jr,R

where the vertical and diagonal arrows are given by U (p)M , and tGr,R
i
−→ Jr,R is

the Néron extension of the inclusion i : tGr,K ↪→ Jr,K (note that the extended i
might not be an immersion). We also have the dual i∗ : Jr,R→ Gr,R which is the
Néron extension of the projection i∗ : Jr,K → Gr,K .

For any abelian subvariety A of Jr stable under U (q) for all q dividing N p and
under T (n) for all n prime to N p, if there exists an abelian subvariety B stable
under the same Hecke operators such that A + B = Jr and A ∩ B is finite, the
abelian subvariety B is uniquely determined by A (the multiplicity-one theorem;
see [Gelbart 1975] and [Miyake 1989, §4.6]). The abelian subvariety B is called
the complement of A in Jr .

By construction, Gr and tGr extend to semiabelian schemes over Rr :=Z(p)[µpr ].
The group µ=µp−1 ⊂ Z×p acts on Jr , tGr and Gr by the diamond operators. If we
define tG(0)

r in tGr to be the complement of abelian subvariety fixed by µ, then tG(0)
r

and its dual quotient G(0)
r extend to abelian schemes over Rr . Anyway, we take the

Néron models Gr,Rr , tGr,Rr , G(0)
r,Rr

and tG(0)
r,Rr

over Rr of the abelian varieties Gr,Kr ,
tGr,Kr , G(0)

r,Kr
and tG(0)

r,Kr
, and we take their p-divisible groups. Here the p-divisible

group G(0)
r,Rr

is a Barsotti–Tate group over Rr . The µ-fixed parts Gr,Rr [p
n
]
µ and

tGr,Rr [p
n
]
µ are at worst quasifinite flat groups schemes.

Theorem 5.1. Recall Gr,Rr = Jr,Rr [p
∞
]
ord. We have the two isomorphisms

tGr,Rr [p
∞
]
ord

∼

i // Gr,Rr ∼

i∗ // Gr,Rr [p
∞
]
ord

canonically over Rr := Z(p)[µpr ].

This theorem might appear tautological. However note that a priori Gr,Rr [p
n
]

is not known even to be a flat group scheme, but we know that tGr [p∞](0),ord and
Gr [p∞](0),ord are Barsotti–Tate groups, where the superscript “(0)” indicates the
complement of the µ-fixed part. Thus to show that G(0)r,Rr

=
⊕

0<a<p−1 Gr,Rr (a)
is a Barsotti–Tate group, it appears that we need to make a difficult analysis of
the inclusion Gr,Rr ⊂ Jr,Rr (in the category of fppf abelian sheaves over Rr ) to
claim that G(0)[pn

] is represented by a finite-flat group scheme as in the theorem,
since G(0)r,Rr

[pn
] is a priori not even known to be represented by a flat group over Rr .

However, suppose that we find two (U (p)-equivariant) morphisms of group schemes

tGr,Rr [p
n
]
ord L // Gr,Rr [p

n
] and Gr,Rr [p

n
]

R // Gr,Rr [p
n
]
ord
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(for each n) such that the composite R ◦L is an isomorphism, which implies that
R (resp. L) is an epimorphism (resp. a monomorphism) of fppf abelian sheaves.
Note that the category of fppf abelian sheaves over Rr is an abelian category. By
(5-1) and (5-2), Ker(R) is projected down into Im(L) by U (p)M . Since U (p)M

are automorphisms of the three fppf abelian sheaves, L and R must be isomor-
phisms, showing G(0)r [pn

] is a finite flat group over Rr for all n (and hence G(0)r

is a Barsotti–Tate group over Rr ). This point is the nontriviality of the theorem.
A geometric analysis in depth of Gr,Rr has been done in [Cais 2012, §5.4], and
G(0) =

⊕
0<a<p−1 G(a) is shown directly by Cais to be a 3-BT group, but our

short-cut might be worth recording.
To prove the theorem, without making a difficult analysis of the group scheme

Gr,Rr [p
n
], the following lemma is quite useful:

Lemma 5.2. Let R be a discrete valuation ring with fraction field K . Let GK and
G ′K be either both Barsotti–Tate groups or both abelian varieties over K . If GK and
G ′K are abelian varieties, let GR and G ′R be the identity connected component of
the Néron models over R of GK and G ′K . If GK and G ′K are Barsotti–Tate groups,
we assume we have Barsotti–Tate groups GR and G ′R over R whose generic fibers
are isomorphic to GK and G ′K , respectively.

(1) Suppose that we have a surjective morphism fK : GK → G ′K and an endomor-
phism gK : GK → GK such that the map Ker( fK : GK → G ′K ) ↪→ GK factors
through Ker(gK : GK → GK ) ↪→ GK . Then for the extensions f : GR→ G ′R
and g : GR → GR over R, Ker( f ) is a closed subscheme of Ker(g) in the
abelian case and is a closed ind-subgroup scheme in the Barsotti–Tate case.

(2) Suppose we have an injective morphism fK :G ′K →GK and an endomorphism
gK : GK → GK such that Coker( fK : G ′K → GK ) is the surjective image of
Coker(gK :GK→GK ). Then, for the extensions f :G ′R→GR and g :GR→GR

over R, Coker( f ) is a quotient group of Coker(g).

Here, strictly speaking, a “surjective” morphism between fppf abelian sheaves
means an epimorphism in the abelian category of fppf abelian sheaves over K .

Proof. We first prove assertion (1). We note that the category of groups schemes
fppf over a base S is a full subcategory of the category of abelian fppf sheaves. Thus
we may regard GK and G ′K as abelian fppf sheaves over K in this proof. Since the
category of fppf abelian sheaves is an abelian category (because of the existence of
the sheafification functor from presheaves to sheaves under fppf topology described
in [Milne 1980, §II.2]), the assumption that the map Ker( fK : GK → G ′K ) ↪→ GK

factors through Ker(gK : GK → GK ) ↪→ GK (that is, Ker( fK )⊂ Ker(gK )) implies
that there exists a morphism f ′K : G

′

K → GK of fppf abelian sheaves over K such
that f ′K ◦ fK = gK . If we have unique extensions f : GR → G ′R , g : GR → GR ,
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f ′ : G ′R → GR of these morphisms, we have f ′ ◦ f = g by uniqueness. This
implies Ker( f ) is a closed subscheme of Ker(g) in the abelian case and is a closed
ind-group scheme in the Barsotti–Tate case.

If GK and G ′K are abelian schemes, since GR and G ′R are the connected com-
ponents of the Néron models of GK and G ′K , any generic morphism φK of these
schemes extends to a unique morphism over R (see [Bosch et al. 1990, Proposi-
tion 7.4.3]).

If GR and G ′R are Barsotti–Tate groups, the extensions f and f ′ exist and are
unique by [Tate 1967, Theorem 4]. This finishes the proof of (1).

The second assertion is heuristically the dual of the first, with respect to taking
dual abelian schemes or Cartier dual Barsotti–Tate groups of GR and G ′R . We
give a direct proof supplied by the referee as the duality of cokernels with kernels
may not be valid in this generality. By hypothesis, G ′K is an abelian subvariety (or
p-divisible subgroup) of GK and gK :GK →GK factors through G ′K . By the Néron
functoriality (or Tate’s theorem) g : GR→ GR factors through f : G ′R→ GR , so
g(GR)⊂ f (G ′R) as fppf abelian subsheaves of GR . This latter inclusion is precisely
the meaning of the conclusion of (2). �

Proof of Theorem 5.1. Over Q we have tGr,Q[p∞]ord
⊂ Gr,Q, from the definition.

Let BQ be the identity connected component of Ker(Jr,Q→ Gr,Q), which is the
complement of tGr,Q. By definition, e kills BQ[pn

] for all n; thus, it kills the
p-primary part H [p∞] of the finite group scheme H = BQ ∩

tGr,Q over Q. Thus,
over Q, we have the identity in the theorem. Since H is finite, H is killed by
M ·U (p)M ′ for an integer M prime to p and another integer M ′ sufficiently large.
We apply the first statement of the lemma to the projection fK :

tGr,Kr →Gr,Kr and
gK = M ·U (p)M ′ for R = Rr and K = Kr . Thus, by the lemma, we have Ker( f )⊂
Ker(M ·U (p)M ′); thus, we get a monomorphism tGr,Rr [p

∞
]
ord ι
−→Gr,Rr [p

∞
]
ord of

p-abelian fppf sheaves over Rr = Z(p)[µpr ]. Thus,

tGr,Rr [p
∞
]
(0),ord ι(0)

−−→ Gr,Rr [p
∞
]
(0),ord

is a monomorphism of Barsotti–Tate groups of equal corank (here, the corank is the
Zp-corank of the geometric generic fiber). Thus, generically ι(0) is an isomorphism,
which is enough to conclude that ι(0) is an isomorphism by a result of Tate (see
[Tate 1967, Corollary 2 on p. 181]). Since ι(0) = R ◦L for the Néron extension
L : tGr,Rr [p

∞
]
(0),ord

→ G(0)r,Rr
of the inclusion tGr,Kr → Jr,Kr and the Néron exten-

sion R : G(0)r,Rr
→ Gr,Rr [p

∞
]
(0),ord of the projection Jr,Kr → Gr,Kr , we conclude

that L is a monomorphism of fppf p-abelian sheaves. By (5-1) and (5-2) combined
with the injectivity of L, a high power U (p)M projects Gr,Rr [p

n
] into tGr,Rr [p

n
]
ord

for all n > 0, where we regard U (p)M as the Néron extension of a projection
U (p)M

: Jr,Kr →
tGr,Kr ; compare (5-1). Thus L is an epimorphism of abelian fppf
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sheaves, and so also an isomorphism of the Barsotti–Tate group tGr,Rr [p
∞
]
(0),ord

onto the fppf abelian sheaf G(0)r,Rr
. In other words, the sheaf G(0)r,Rr

is represented
by a Barsotti–Tate group tGr,Rr [p

∞
]
(0),ord. Now Jr,Rr [p

n
]
(0),ord is proven to be a

finite flat group scheme (without any analysis of the complicated group scheme
Jr,Rr [p

n
]), and G(0),ord

r,Rr
is a Barsotti–Tate group over Rr .

In general, for any flat quasifinite group scheme A/R , we have a functorial exact
sequence

(5-3) 0 // F A // A // E A // 0,

where F A is a finite flat group scheme and E A is étale quasifinite with trivial closed
fiber (see [Mazur 1978, Lemma 1.1]). Since tGr,Rr and Gr,Rr are semiabelian, their
finite p-power torsion points form quasifinite flat group schemes over Rr (see
[Bosch et al. 1990, Lemma 7.3.2], for instance). Applying the above exact sequence
to tGr [pn

]
ord and Gr [pn

]
ord for each n > 0 and defining

tG[p∞]ord, BT
= lim
−→n

F(tG[pn
]
ord) and G[p∞]ord, BT

= lim
−→n

F(G[pn
]
ord),

we have the following commutative diagram with exact rows:

0 // tGr,Rr [p
∞
]
ord, BT � � //

ιBT

��

tGr,Rr [p
∞
]
ord // //

ι

��

t Eord
r

//

ιη

��

0

0 // Gr,Rr [p
∞
]
ord, BT � � // Gr,Rr [p

∞
]
ord // // Eord

r
// 0

where the subscript “BT” indicates the maximal Barsotti–Tate subgroups. Here
t Eord

r [p
n
] and Eord

r [p
n
] have empty closed fiber, and t Eord

r (Q) and Eord
r (Q) are

each isomorphic to (Qp/Zp)
m for some m ≥ 0. The morphism ιη (regarded

as t Eord
r (Q) → Eord

r (Q)) is an isomorphism by the construction over Q done
in Section 4. Since ιBT is a monomorphism, by the same argument as above,
ιBT is an isomorphism. This implies that ι is also an isomorphism. Then again
L : tGr,Rr [p

∞
]
ord
→ Gr,Rr is an isomorphism by (5-1) and (5-2), which implies

R : Gr,Rr
∼= Gr,Rr [p

∞
]
ord. This finishes the proof. �

Lemma 5.3. The natural morphism: tGr,Rs [p
∞
]
ord
→

tGs,Rs [p
∞
]
ord is a closed

immersion for s > r .

Proof. We have a morphism of semiabelian schemes tGr,Rs

i
−→

tGs,Rs , whose kernel
is killed by U (p)M for sufficiently large M (by Lemma 5.2 applied to f = i and
g = U (p)M ). Thus i induces a closed immersion of the Barsotti–Tate part iBT :
tGr,Rs [p

∞
]
ord, BT

→
tGs,Rs [p

∞
]
ord, BT. Since E(tGr [p∞]ord)→ E(tGs[p∞]ord) is

a closed immersion, we get the desired result. �



300 HARUZO HIDA

Theorem 5.4. Over Rs := Z(p)[µps ], the natural inclusion Gr,Rs into Gs,Rs is a
closed immersion whose image is equal to the kernel Ker(γ pr−1

− 1) on Gs for all
s > r . In particular, the complement G(0) of the fixed part of G by the action of µ is
a 3-BT group over R∞.

Proof. The first assertion proves the condition (CT) for the modular 3-BT group,
and hence G(0)R∞ is a3-BT group over R∞, as the condition (DV) was already proven
in Section 4.

Thus we prove the first assertion. By Lemma 5.2, we have a sequence

0 // Gr,Rs

i // Gs,Rs

γ pr−1
−1 // Gs,Rs

in which i is a closed immersion by Lemma 5.3. Look at N s
r : Gs,Rs → Gs,Rs with

N s
r =

∑
σ∈0 pr−1

/0 ps−1 σ and the inclusion i : Gr,Rs → Gs,Rs . By applying (2) of
Lemma 5.2 to gK = N s

r and fK = i for K = Ks and R = Rs , we see Coker(i) is a
surjective image of Coker(N s

r ). Thus, we have the sequence

(5-4) 0 // Gr,Rs

i // Gs,Rs

π // Gs−r,Rs
// 0,

where i is a closed immersion and π is an epimorphism (of abelian fppf sheaves).
The generic fiber of the sequence is exact by the result in the previous section. Thus
we need to prove the exactness of the sequence (5-4) in the category of abelian fppf
sheaves over Rs .

Applying the functor F in (5-3), we get the sequence of the Barsotti–Tate parts:

(5-5) 0 // GBT
r,Rs

iBT
// GBT

s,Rs

πBT
// GBT

s−r,Rs
// 0.

Again πBT is an epimorphism and iBT is a closed immersion. Truncating the
sequence to its finite layers, we get the third sequence

(5-6) 0 // GBT
r,Rs
[pn
]

iBT
n // GBT

s,Rs
[pn
]

πBT
n // GBT

s−r,Rs
[pn
] // 0

with epimorphism πBT
n and closed immersion iBT

n for each n > 0. Then Ker(πBT
n )

is represented by a finite flat group scheme (see [Hida 2012, §1.12.1], for instance).
Writing Ker(πBT

n )= Spec(A), we have Im(iBT
n )= Spec(A/I ) for an ideal I . Since

rankRs A = rankRs A/I as they have the same generic geometric fiber, we have
I = 0 and Ker(πBT

n )= Im(iBT
n ) for all n > 0. In other words, the sequence (5-5) is

exact.
By the result in Section 4, we have the exact sequence

0 // E(Gr,Rs )
iet
// E(Gs,Rs )

π et
// E(Gs−r,Rs )

// 0.
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This combined with exactness of (5-5) implies exactness of the sequence (5-4) as
desired. �

Remark 5.5. Over a nonnoetherian nondiscrete valuation ring such as R∞, the dis-
tinction between Barsotti–Tate (or crystalline) Galois representations and semistable
multiplicative Galois representations is murky. To give an example of this, start with
a modular rational elliptic curve E with multiplicative reduction at p of conductor
N p (so p - N ). Then the associated modular form f satisfies f |U (p) = ε f and
f |U∗(p)= ε−1 f for a root of unity ε. Thus f has p-slope 0.

Consider the ordinary universal Galois deformation space S of the Galois repre-
sentation ρE on the p-adic Tate module Tp E/Q. By definition, S is a formal scheme
over Zp. Write h ⊂ End3(G) for the subalgebra generated over 3 = Zp[[x]] by
all Hecke operators T (n) and U (q). The formal scheme S is often identified with
Spf(T) for a local ring T of h by an “R = T ” theorem (see [Wiles 1995] or [Hida
2000b, Theorem 5.29]), so it is flat over Zp in such a good case, or even smooth over
Zp if T =3= Zp[[0]]. To make our argument easy, suppose that S = Spf(3) (so
Spec(3)(Zp)∼= 0 ∼= Zp, for which we write S(Zp) by abuse of notation). Then the
subset Scrys(Zp)⊂ S(Zp) corresponding to crystalline representations is p-adically
dense (i.e., f is a p-adic limit of Hecke eigenforms fk of weight k > 2 of level
N prime to p). Thus E[pn

](Q) is, over Gal(Qp/Qp), the reduction modulo pn

of a crystalline Galois representation and a multiplicative Galois representation
at the same time. Instead of Scrys, we can take the subset S pBT of potentially
Barsotti–Tate Galois representations in S. Then S pBT is Zariski dense in the scheme
S = Spec(3)/Zp . Indeed, identifying Spec(3) with

Ĝm/Zp = Spec( ̂Zp[t, t−1])

(for ̂Zp[t, t−1] = lim
←−r

Zp[t, t−1
]/(t pr

− 1)) and making the identification γ = t ,
we have an identification S pBT

= µp∞(Qp)− {1} inside S(Qp). Thus the Galois
module E[pn

](Qp) can be realized as a generic geometric fiber of a finite flat group
scheme Gn defined over a highly wild p-ramified subring R of R∞. Since the
generic fiber does not determine Gn over highly p-ramified ring (see [Raynaud
1974] and [Bosch et al. 1990, §7.5]), we have ambiguity. However, if we can pick
Gn inside GR∞ , it is expected to be unique. Thus E[p∞] would be given as a
generic fiber of a Barsotti–Tate group over R∞. In particular, G is close to a 3-BT
group satisfying the following condition in place of (CT):

(ct) GR∞[γ
pr−1
− 1] (for each r > 0) is a Barsotti–Tate group over R∞.

Thus, decomposing G as Gµ ⊕ G(0), where Gµ is the fixed part of G under µ :=
µp−1 ⊂ Z×p , control of Gµ is not equivalent to having nontrivial (nonflat) cokernel
Gµ[γ pr−1

− 1]/Gµr , since G
µ
r (Fp) may even be finite. The Barsotti–Tate group
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Gµ[γ pr−1
− 1] over R∞ does not descend to Rr . We give here two of our three

arguments proving (ct) and will give the third in the next section.
Here is our first argument. Take the abelian subvariety Ar,Q =

∑
f A f ⊂

tGr,Q,
with f running over Hecke eigenforms satisfying condition (2) at the beginning
of this section. Thus A f and Ar have good reduction over R∞. Then, writing
tGr = Ar + Br for the complementary abelian subvariety Br,Q, the subvariety Br is
unique and is the image of the Jacobian of X0

1 in Jr over Q. Then by (DV), one
can show that

lim
−→r

Aord
r [p

∞
](Q)= lim

−→r
J ord

r [p
∞
](Q)= G(Q).

Indeed, it is easy to see that
⋃

r>03
∗
[(γ pr

− 1)/(γ − 1)] =3∗ for the Pontryagin
dual 3∗ of 3, and hence, identifying G(Q) with (3∗)2 j as 3-modules, we have

G(Q)⊃ lim
−→

r
Aord

r [p
∞
](Q)⊃

⋃
r>0

(3∗)2 j
[
γ pr
− 1

γ − 1

]
= (32 j )∗ = G(Q).

Then we can go through the argument proving Theorem 5.1, replacing tGr by Ar

to show that GR∞ = lim
−→r

Aord
r [p

∞
]/R∞ and get the desired result.

Here is a more direct argument without using Ar . Let

R̂ = R̂∞ =
⋃

r

R̂r = R∞⊗Z Zp ⊂Qp,

where R̂r = lim
←−n

Rr/pn Rr ∼= Rr⊗Z Zp for finite r is the p-adic completion. Define
F(GR̂)= lim

−→r,n
F(Gr,R̂[p

n
]) and E(GR̂)= lim

−→r,n
E(Gr,R̂[p

n
]) for the functors F, E

in (5-3). Since injective limits (in the category of fppf abelian sheaves) are exact,
we get an exact sequence of ind-group schemes over R̂:

0 // F(GR̂)
// GR̂

// E(GR̂)
// 0.

Note that E(Gr,R̂r
)(Qp)∼= (Qp/Zp)

m (for m the dimension of multiplicative part
of the reduction modulo p of J 0

1/Zp
) and that E(Gr,R̂r

)(Qp) is killed by x = γ − 1.
Thus E(GR̂)(Qp) is killed by x (and is still embedded in (Qp/Zp)

m). Note that
GR̂(Qp) ∼= (3

∗)2 j for 2 j = dimFp J1[p](Q). Since 3∗ is 3-divisible, it does not
have any quotient killed by x (except for {0}). Thus we get F(GR̂) = GR̂ as we
claimed.

There is a third more geometric argument (Proposition 6.3) showing the identity
G(Fp)[γ

pr−1
− 1]/Gr (Fp) ∼= (Qp/Zp)

m (for finite r > 0) of the geometric special
fibers. Therefore G(Fp) actually covers the multiplicative part. We give the details
of this argument in the following section, after preparing some notation regarding
the special fibers of modular curves (over discrete valuation rings).
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6. Mod p modular curves

We keep the simplifying assumption that N is cube-free. Hereafter, we write G

and Gr for the modular 3-BT group and its r-th layer made out of the Jacobian
of Xr . We prove the properties (Od) and (U) for G over R∞ now. We consider
the following Drinfeld-style moduli problem classifying (E, φ′p, φN )/A over Z(p),
where φN : µN ↪→ E[N ] is a closed immersion of group schemes over A and
φ′p is a pair of isogenies π : E → E ′ and tπ : E ′ → E of degree pr together
with points P ∈ E(A) and P ′ ∈ E ′(A) such that Ker(π) is equal to the relative
Cartier divisor

∑pr
−1

j=0 [ j P] ⊂ E and Ker(tπ) is equal to the relative Cartier divisor∑pr
−1

j=0 [ j P ′] ⊂ E ′. The canonical Cartier duality pairing Ker(π)×Ker(tπ)→ µpr

gives a point ζpr = 〈P, P ′〉. Thus, this moduli problem is defined over Rr . This
problem at p is called the balanced 01(pr )moduli problem in [Katz and Mazur 1985,
§3.3]. As shown in Theorem 13.11.4 of the same book, this problem is represented
by a regular affine scheme over Z(p)[µpr ] with regular projective compactification
X ′r whose generic fiber is Xr,Kr . Recall the normalization Xr,Rr of P1( j)/Rr in
Xr,Kr . Every regular scheme is normal (see [Matsumura 1986, Theorem 19.4],
for instance), so X ′r,Rr

= Xr,Rr . The special fiber Xr,Fp of Xr,Rr has the following
description:

Xr,Fp = X ′r,Fp
= X(r,0) ∪ X(0,r) ∪

⋃
a+b=r, a>0, b>0
u∈(Z/pmin(a,b)Z)×

X(a,b,u),

for smooth irreducible projective curves X(a,b,u) intersecting only at supersingular
points (see [Katz and Mazur 1985, Theorem 13.11.4]). The curves X(r,0) and X(0,r)
are smooth geometrically irreducible (by a theorem of Igusa).

The open curve obtained from X(r,0) by removing supersingular points and
cusps represents the moduli problem classifying triples (E, µpr ↪→ E, φN ), and the
corresponding open curve obtained from X(0,r) classifies (E,Z/pr Z ↪→ E, φN ).
This curve is called the Igusa curve, and hence we write Ir = Ir,Fp = X(0,r),Fp .
We have Ir,Fp

∼= X (pr )
(r,0),Fp

(the base change by the pr -th power Frobenius map)
canonically. Since X(r,0) is defined over Fp, we have actually X(r,0),Fp

∼= Ir,Fp . All
this follows from [Katz and Mazur 1985, Theorem 13.11.4].

We put Yr = Ir ∪ X(r,0) which is the Zariski closure of the image of the disjoint
union Ir t X(r,0) in Xr . This curve Yr is introduced just above (u) in Section 2. Fix
an algebraic closure Fp of Fp. Over Fp, the two components of Yr intersect only at
supersingular points (and the crossing is an ordinary double point). On the middle
components X(a,b) =

⋃
u

X(a,b,u) with ab 6= 0, π : E→ E ′ factors as

E Fa
// E (p

a)
(∗)
∼= E ′(p

b) V b
// E ′
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(and the middle isomorphism (∗) is determined by the datum u ∈ (Z/pmin(a,b)Z)×

outside the crossing).
As before, let Jr (resp. Gr and tGr ) be the identity connected component of the

Néron model of Jr/Q (resp. Gr and tGr ) over Rr := Z(p)[µpr ]. Mazur and Wiles
[1984, Chapter 3] have shown the existence of a canonical isogeny av(Pic0

Yr/Fp
)→

av(Gr/Fp), where av denotes the abelian variety part. By a theorem of Raynaud
[Bosch et al. 1990, Theorem 9.4.5], we have Jr,Rr = Pic0

Xr/Rr
. Thus, taking the

special fiber, we have a surjection Jr,Fp = Pic0
Xr/Fp

� Pic0
Yr/Fp

corresponding to
the inclusion Yr,Fp = Y ′r,Fp

↪→ X ′r,Fp
= Xr,Fp . Then by Theorem 5.1 combined with

[Mazur and Wiles 1984, Proposition on p. 267], we find:

Corollary 6.1. We have Gr,Fp
∼= Pic0

Yr/Fp
[p∞]ord ∼= Gr,Fp [p

∞
]
ord.

Proof. Adding the toric part to the isogeny in [Mazur and Wiles 1984], we have an
isogeny

Pic0
Yr/Fp
[p∞]ord

→ Gr [p∞]ord
/Fp
,

but the projection: Jr [p∞]ord
/Fp
∼= Pic0

Yr/Fp
[p∞]ord composed with this isogeny is the

special fiber of the isomorphism in Theorem 3.1. �

In [Mazur and Wiles 1984, Section 3.3], it is shown that the U (p) operator on
the abelian quotient

Pic0
X(r,0)/Fp

×Pic0
Ir/Fp

of Pic0
Yr/Fp

has the following matrix shape:

(6-1)
(

F ∗

0 V 〈p(p)〉

)
on Pic0

Ir/Fp
×Pic0

X(r,0)/Fp

for the p-power relative Frobenius F and its dual V . If N = 1, then U (p)=
( F

0
0
V

)
is semisimple on Pic0

Ir/Fp
×Pic0

X(r,0)/Fp
. Here, 〈p(p)〉 is the diamond operator for p∈

(Z/NZ)×. This proves the conditions (Od) and (U) for the modular 3-BT group G.
Moreover, writing jr,Fp = Pic0

Ir/Fp
(the Jacobian of the r -th layer of the Igusa tower),

we confirm that the generic geometric fiber Gr (Fp) coincides with jr [p∞](Fp)

as the Frobenius map F (which equals U (p) on jr ) is an automorphism on the
geometric points of jr and V is topologically nilpotent on Pic0

X(r,0)/Fp
[p∞](Fp).

We prepare some results to show that G(Fp) is 3-injective (the third proof of
(ct) in Remark 5.5).

Lemma 6.2. Let f : X → Y be a finite flat Galois covering with Galois group
G of projective smooth connected curves over Fp unramified outside a finite set
S ⊂ Y (Fp). Assume that G ∼= Z/pmZ and that every point in S fully ramifies in X ,
so we have a bijection f −1(S)∼= S induced by f . Then, writing J? for the Jacobian
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variety for ?= X, Y , the pullback map f ∗ : JY (Fp) ↪→ JX (Fp) is injective, and we
have an isomorphism

JX (Fp)
G/ f ∗ JY (Fp)∼=

{
D ∈

⊕
s∈ f −1(S)

Z/pmZ[s]
∣∣∣ deg(D)= 0

}
of finite groups, where [s] is the divisor on X corresponding to the point s, JX (Fp)

G

denotes the G-invariant subgroup H 0(G, JX (Fp)), and deg(
∑

s as[s])=
∑

s as for
as ∈ Z/pmZ.

We call the quotient group JX (Fp)
G/ f ∗ JY (Fp) the ambiguous class group and

write it as AmbX/Y .

Proof. Write Fp(?) for the function field of ?= X, Y . Since JY [n](Fp) for a positive
integer n is canonically isomorphic to the Galois group of an abelian extension
Kn of Fp(Y ) unramified everywhere, while X/Y ramifies fully at S, Fp(X) is
linearly disjoint from Kn over Fp(Y ); so, f ∗ : JY [n] → JX [n] is injective. Since
JY (Fp)=

⋃
n JY [n], we get the injectivity of f ∗ : JY → JX .

Let Div? for ? = XFp
, YFp

be the divisor group of ? and Div0
? be the sub-

group of degree 0 divisors. Then for the subgroup P? = {div(g) | g ∈ Fp(?)×}
of principal divisors, we have Pic?/Fp

(Fp) = Div? /P?. Consider the subgroup
RS =

⊕
s∈ f −1(S) Z[s] ⊂ DivX .

Write D∼ D′ if the two divisors are linearly equivalent. If Dσ
∼ D for D ∈DivX

(σ ∈ G), writing Dσ
− D = div(gσ ), we find gτσ gτ/gστ ∈ F×p . Thus g 7→ gσ is a

1-cocycle of G having values in Fp(X)×/F×p . By the long exact sequence attached
to the short exact sequence F×p ↪→ Fp(X)×� Fp(X)×/F×p , combined with the fact
that H 2(G, F×p )= 0 (since F×p is a prime-to-p-torsion module), we conclude from
H 1(G, Fp(X)×) = 0 (Hilbert’s theorem 90) that H 1(G, Fp(X)×/F×p ) = 0. Thus
gσ = h− hσ for h ∈ Fp(X)×, and D+ div(h) ∈ DivG

X . This shows that PicX (Fp)
G

is the surjective image of DivG
X .

We have DivG
X = f ∗DivY +RS with RS ∩ f ∗DivY = pm RS as s ∈ f −1(S)

ramifies fully in X/Y . Thus

DivG
X / f ∗DivY ∼= RS/pm RS.

Suppose D ∈ DivG
X is principal, so D = div(g) for g ∈ Fp(X). Then, for σ ∈ G,

gσ−1
= gσ/g is a constant in F×p . Thus σ 7→ gσ−1 is a homomorphism of G into

F×p , which must be trivial as F×p does not have any nontrivial p-subgroup. Thus
g ∈ f ∗(Fp(Y )). This shows RS/pm RS injects into PicX (Fp)

G/ f ∗ PicY (Fp), and in
fact RS/pm RS ∼= PicX (Fp)

G/ f ∗ PicY (Fp) as PicX (Fp)
G is the surjective image of

DivG
X = f ∗DivY +RS . Since JX is the degree 0 component of PicX , we confirm

that
JX (Fp)

G/JY (Fp)∼= {D ∈ RS/pm RS | deg(D)= 0}. �
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Proposition 6.3. The geometric special fiber G(Fp) is 3-injective (isomorphic to
(3∗) j ), G(Fp)∼=(G/G

◦)(Qp) by the reduction map as3-modules, and GFp [γ
pr−1
−1]

is a Barsotti–Tate group over Fp. Here, G◦ is the connected component of G over
R̂∞ = R∞⊗Z(p) Zp (whose group of generic geometric points G◦(Qp) is the kernel
of the reduction map).

Here, j is as in Section 4 and is given by 2 j = dimFp J1[p](Q). In the following
proof, we consider the Igusa tower unramified outside supersingular points:

· · · // Ir+1,Fp
// Ir,Fp

// · · · // I0,Fp := X0
1/Fp

over Fp. Write jr,Fp for the Jacobian variety of Ir,Fp . Mazur and Wiles [1983]
studied G(0)(Fp) = lim

−→r
jr [p∞](Fp)

(0), where the superscript “(0)” indicates the
complement of the fixed part of µ := µp−1 ⊂ Z×p . In particular, they showed the
control

G(0)(Fp)[γ
pr−1
− 1] = jr [p∞](Fp)

(0)

for all r>0 (as [ibid., (1) in §2]). The control fails between G(Fp)
µ and jr [p∞](Fp)

µ,
and the idea for the proof is to compute the failure using Lemma 6.2.

Proof. We only prove the first two assertions, as the last one follows from the second
argument in Remark 5.5 after making the base change from R∞ to Fp. Let Sr be the
finite set of supersingular points of Ir . The diamond operator action is equal to the
action of Gal(I∞/X0

1)=Z×p . Since Is→ Ir (s>r >0) fully ramifies over each point
of Sr having the Galois group isomorphic to (1+ pr Zp)/(1+ psZp)∼= Z/ps−r Zp,
the failure of the control of js[p∞](Fp) can be computed by Lemma 6.2, and we
get

js[p∞][γ pr−1
− 1]/jr [p∞] ∼= AmbIs/Ir = {D ∈ RSs/ps−r RSs | deg(D)= 0}

under the notation in the proof of Lemma 6.2. Passing to the injective limit with
respect to s, we get, for m = |S0| − 1,

G(Fp)[γ
pr−1
− 1]/Gr (Fp)

= lim
−→

s
js[p∞][γ pr−1

− 1]/jr [p∞] = lim
−→

s
AmbIs/Ir

∼= (Qp/Zp)
m .

As is well known (see [Hida 2012, (4.14)], for instance), the dimension of the
multiplicative part of J 0

1 is given by m = |S0|−1. This shows that G(Fp)[γ
pr−1
−1]

is a p-divisible module of finite Zp-corank for all r , and hence G(Fp)∼= (3
∗) j (a

3-injective module of 3-corank j) by the same argument proving G(Q)∼= (3∗)2 j

in Section 4. The reduction map (over R̂∞) induces an injection (G/G◦)(Qp) =

(GBT/G◦)(Qp)→ G(Fp) (as we have proven GBT
= F(GR̂∞)= G in Remark 5.5).

Then, comparing the corank, we get an isomorphism (G/G◦)(Qp)∼= G(Fp). �
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7. The α-eigenspace in GR∞

The modular 3-BT group G has coefficients 3 = Zp[[x]] = Zp[[0]] (for 0 =
1+ pZp ⊂ Z×p ). To get a 3W -BT group for 3W =W [[x]] =W [[0]], we can extend
endomorphisms to a valuation ring W bigger than Zp; that is, we consider an fppf
abelian sheaf GR∞ ⊗W defined by A 7→ GR∞ ⊗W (A) := GR∞(A)⊗Zp W for A
running over fppf extensions of R∞. Suppose that W is finite flat over Zp, then
forgetting about the action of W , GR∞ ⊗W is isomorphic to Grank W

R∞ and hence is
represented by a 3W -BT group. Note that GR∞⊗W is not a base change of G to W
(the operation is just extending endomorphisms from 3 to 3W formally). For the
Jacobian Jr and a free Z-module L of finite rank, we can form the endomorphism
extension Jr ⊗ L which send A to Jr (A)⊗Z L as an fppf abelian sheaf over Rr

(or Q). This fppf abelian sheaf is represented by an abelian variety, again written
Jr ⊗ L , defined over Rr (or Q). We can take L to be the subalgebra Z[µpr , α] in Q

generated by an algebraic integer α and pr -th roots of unity.
We fix an embedding i p :Q ↪→Qp and often identify α ∈Q with i p(α) ∈Qp

without attaching “i p” (if confusion is unlikely). For an eigenvalue α ∈Q of U (p)
on S2(01(pr )), we consider the subfield Qp(µpr , α) in Qp generated by i p(α) over
Qp(µpr ). Note here Q(α) may not contain µpr even if α is realized as a Hecke
eigenvalue of a new form in S2(00(N pr+1), χ) for χ having p-conductor pr+1.
Let W be the p-adic integer ring of Qp(µpr , α). We put GR∞ := GR∞ ⊗W (the
endomorphism extension). We want to know when GR∞[U (p)−α] is contained in
Gr,R∞ =GR∞[γ

pr−1
− 1] = Gr,R∞ ⊗W .

Look into the Hecke algebra hW over 3W defined by

hW =3W [{T (n)⊗ 1}p-n,U (p)⊗ 1] ⊂ End3(GR∞),

where T (n)⊗1 sends g⊗w to T (n)(g)⊗w for g⊗w ∈ (GR∞⊗W )(A) with w ∈W
and g ∈ GR∞(A). Hereafter, we just write simply T (n) (resp. U (p)) for T (n)⊗ 1
(resp. U (p)⊗ 1). This is the big p-ordinary Hecke algebra over 3W , which is free
of finite rank over 3W . Take a local ring T of hW with maximal ideal m. We give
ourselves a Hecke eigenvalue α given by f |U (p)= α f for f ∈ S2(00(pr ), ε) with
T · f 6= 0. Regard ε as a character of Z×p ⊃ 0 = 1+ pZp. Since W ⊃ µpr (Qp), W
contains ε(γ ).

For a module or an fppf abelian sheaf M over R∞ on which hW acts via endo-
morphisms, adding the subscript T, we indicate the T-eigenspace. Therefore if M
is an fppf abelian sheaf,

MT(A)= {1T(x) ∈ M(A) | x ∈ M(A)} = {h(x) | x ∈ M(A), h ∈ T} = T(M)

for the idempotent 1T of T in hW . Since T is a direct ring summand of hW , MT is
a direct summand of M as an fppf sheaf. In particular,
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(7-1) GT(A)= {1T(x) ∈G(A) | x ∈G(A)} = {h(x) | x ∈G(A), h ∈ T}.

Since GT is a direct summand of the 3W -BT group GR∞ , GT is a 3W -BT group
over R∞, and more generally GT,r :=GT[γ

pr−1
− 1] is a Barsotti–Tate group over

R∞. We write t = γ −ε(γ ) ∈3W , where γ = 1+ x as before is the fixed generator
of 0. Then we expect:

Conjecture 7.1. Let f |U (p)= α f for a Hecke eigenform f ∈ S2(00(pr ), ε) with
T( f ) 6= 0, and put t = γ − ε(γ ). Let

GT[U (p)−α, tn
] = {x ∈GT(Q) : x |U (p)= αx and tnx = 0}.

Then there exists a positive integer s ≥ r independent of n < ∞ such that the
p-divisible part GT[U (p)−α, tn

]
div is contained in GT,s(Q).

The scalar α ∈W is regarded as an operator g⊗w 7→ g⊗αw acting on GT under
the notation introduced above. Since the Tate module TGT,s⊗Zp Qp (after extending
scalars to Qp) is a multiplicity-free semisimple T-module, this conjecture implies
that T (GT[U (p)−α, tn

]
div)⊗Zp Qp is a multiplicity-free semisimple T-module,

and moreover, by an isogeny, the Barsotti–Tate group GT[U (p)−α, tn
]
BT can be

brought into the abelian variety Js ⊗Z Z[µpr , α] (the endomorphism extension).
Thus this conjecture is a semisimplicity conjecture for the α-eigenspace of U (p)
and conjecturally answers (to some extent) the question (Q5).

In the following section, we relate a weaker version of this conjecture to the
nonvanishing problem of a certain L-invariant which was conjectured earlier.

8. The adjoint L-invariant

We use the notation introduced in the previous section. Let f ∈ S2(01(pr )) be a
Hecke eigenform with f |U = α f for an algebraic integer α with either |ασ | =

√
p

for all σ ∈ Gal(Q/Q) or α =±1. Take a prime p of the integer ring Z of Q. We
assume that α 6≡ 0 mod p. Such an eigenform is called a p-ordinary eigenform.
We now relate Conjecture 7.1 to a conjecture of Greenberg on the nonvanishing
of an L-invariant. This may be the only heuristic reason supporting the validity of
Conjecture 7.1 at this moment. Let ρ : Gal(Q/Q)→ GL2(W ) be the p-adic Galois
representation of f .

Suppose W ⊃ Zp[µpr , α] as before. Recall that hW := h⊗Zp W acts on the
endomorphism extension (not the base change) G= G⊗Zp W by h⊗w(x ⊗w′)=
h(x)⊗ww′ for x ∈G(A)=G(A)⊗Zp W . Then γ = 1+x acts on f as f |γ = ε(γ ) f
for a finite order character ε : 0 → W×. Let T be the local ring of hW acting
nontrivially on f , and consider GT defined in (7-1). Thus GT is a 3-adic Barsotti–
Tate group over R∞. Let t = γ − ε(γ ). Here is a weaker version of Conjecture 7.1
directly related to the adjoint L-invariant:
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Conjecture 8.1. The p-divisible part Gα of

{x ∈GT(Q) | x |U = α · x and t2x = 0}

is contained in GT[γ
s
− 1](Q) for sufficiently large s. In particular, the action of 0

on the Tate module TGα ⊗Zp Qp is semisimple.

Let P be the kernel of λ : T→W given by f |h = λ(h) f . Then the P-adically
completed localization TP is canonically isomorphic to K [[t]] for the quotient field
K of W . Let a(p) be the image of U =U (p) in TP . Consider a′(p)= da(p)/dt =
da(p)/dx . Numerically, a′(p) is almost always a unit in3, but there are exceptions;
for example, if we take p= 53 and α=−1, a′(p) is a nonunit. Suppose a′(p)∈3×.
Then a(p)=α can happen on the3-adic Tate module T = TGT with multiplicity 1.
Thus T/(a(p)−α)T ∼=W 2, and

Gα = Ker(U −α :GT→GT)⊂ Jr [p∞](Q)⊗Zp W.

By the control theorem of h (see [Hida 2012, Sections 3.1–3.2], for instance),
a(p)(γ k

− 1) is a U (p)-eigenvalue for a weight k + 2 modular form; so, by the
solution of the Ramanujan–Petersson conjecture due to Deligne, |a(p)(γ k

− 1)| =
p(k+1)/2 Thus as a function of x , a(p) assumes infinitely many distinct values. Thus
a(p) is transcendental over W . In particular, a′(p) 6= 0. Thus, for almost all f ,
t2 - (a(p)− α), and the conjecture holds for almost all f . Here, for simplicity,
we used Deligne’s result to conclude t2 - (a(p)− α) for most f ; there is a more
elementary proof of this in [Hida 2011].

We let ρ act by conjugation on the trace 0 subspace of M2(W ), which is called the
adjoint square representation Ad(ρ) of ρ. Since Ad(ρ)([p,Qp]) has an eigenvalue 1,
the p-adic L-function Lan

p (s,Ad(ρ)) = Lan
p (s,Ad( f )) has an exceptional zero at

s = 1 (see [Hida 2011, Section 2]). Following [Mazur et al. 1986], we give an
analytic definition of the L-invariant of Lan

p (s,Ad( f )) as

Lan
p (1,Ad( f ))= Lan(Ad( f ))

L(1,Ad( f ))
c+(Ad( f ))

for a Shimura period c+(Ad( f )(1)) , appropriately normalized. Note here that
L(1,Ad( f )) is nonzero. We have a power series 8an(x) ∈ W [[x]] such that
Lan

p (s,Ad( f ))=8an(γ s−1
−1) regarding γ ∈ 1+ pZp. We have8an(x)= x9an(x)

with 9an(x) ∈W [[x]], and Lan(Ad( f )) is a nonzero constant multiple of 9an(0).
Let Q∞/Q be the cyclotomic Zp-extension. The arithmetic p-adic L-function

is defined as L p(s,Ad(ρ)) = 8(γ s−1
− 1) for the characteristic power series

8(x) ∈W [[x]] of the adjoint square Selmer group SelQ∞(Ad(ρ)) defined by Green-
berg (see [Greenberg 1994] and [Hida 2011]), where we identify Gal(Q∞/Q) with
0 = 1+ pZp by the cyclotomic character, and the Iwasawa algebra W [[0]] with
W [[x]] by 031+p 7→1+x . It is known that8(x)= x9(x)with9(x)∈W [[x]] (see
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[Greenberg 1994]). Thus, the arithmetic L-function L p(s,Ad(ρ)) has a zero at s=1.
Greenberg has defined his L-invariant L(Ad(ρ)) by purely Galois cohomological
means and proved that 9(0) is a multiple of L(Ad(ρ)) by a simple constant (up to
units in W ; see [ibid.]).

The main conjecture in this setting predicts the equality8(x)=8an(x) up to units
in W [[x]] (assuming that ρ is residually absolutely irreducible). The conjecture has
been proven in many cases by [Urban 2006]. We assume the following condition:

(H) ρ = (ρ mod mW ) is absolutely irreducible over Gal(Q/Q[
√

p∗]) for p∗ =
(−1)(p−1)/2 p, or the semisimplification of ρ restricted to Gal(Qp/Qp) is the
sum of two distinct characters, or α =±1.

Under this circumstance, regarding γ = 1+ p ∈ 1+ pZp, it is known that

(8-1) L(Ad(ρ))=−2 logp(γ )α
−1 da(p)

dx

∣∣∣
t=0
.

This follows from [Greenberg and Stevens 1993] if α = 1, because in this case
L(Ad(ρ)) = L(ρ). Otherwise, it is proven in [Hida 2004] and [2011]. Though
Greenberg made the following conjecture in a more general setting, if we limit
ourselves to Ad(ρ) for the ordinary modular Galois representation ρ, Conjecture 8.1
is equivalent to the following conjecture under (H):

Conjecture 8.2 (R. Greenberg). L(Ad(ρ)) 6= 0.
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