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NONPLANARITY OF UNIT GRAPHS AND CLASSIFICATION
OF THE TOROIDAL ONES

A. K. DAS, H. R. MAIMANI, M. R. POURNAKI AND S. YASSEMI

The unit graph of a ring R with nonzero identity is the graph in which the
vertex set is R, and two distinct vertices x and y are adjacent if and only if
x + y is a unit in R. In this paper, we derive several necessary conditions
for the nonplanarity of the unit graphs of finite commutative rings with
nonzero identity, and determine, up to isomorphism, all finite commutative
rings with nonzero identity whose unit graphs are toroidal.

1. Introduction

Algebraic combinatorics is an area of mathematics which employs methods of
abstract algebra in various combinatorial contexts and vice versa. Associating a
graph to an algebraic structure is a research subject in this area and has attracted
considerable attention. The research in this subject aims at exposing the relationship
between algebra and graph theory and at advancing the application of one to the
other. In fact, there are three major problems in this area: (1) characterization of the
resulting graphs, (2) characterization of the algebraic structures with isomorphic
graphs, and (3) realization of the connections between the algebraic structures
and the corresponding graphs. Beck [1988] introduced the idea of a zero-divisor
graph of a commutative ring R with nonzero identity. He defined 00(R) to be the
graph in which the vertex set is R, and two distinct vertices x and y are adjacent
if and only if xy = 0. He was mostly concerned with coloring of 00(R). Beck
conjectured that χ(R) = ω(R), where χ(R) and ω(R) denote, respectively, the
chromatic number and the clique number of 00(R). Such graphs are called weakly
perfect graphs. This investigation of coloring of a commutative ring was then
continued by Anderson and Naseer [1993]. They gave a counterexample for the
above conjecture of Beck. Anderson and Livingston [1999] proposed a different
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method of associating a zero-divisor graph to a commutative ring R, and according
to them this gives a better illustration of the zero-divisor structure of the ring. They
defined 0(R) to be the graph in which the vertex set consists of all the nonzero
zero-divisors of R, and two distinct vertices x and y are adjacent if and only if
xy = 0. For a survey and recent results concerning zero-divisor graphs, we refer the
reader to [Anderson et al. 2011]. In literature, one can find a number of different
types of graphs attached to rings or other algebraic structures. For a survey of recent
results concerning graphs attached to rings, we refer the reader to [Maimani et al.
2011a].

The present paper deals with what is known as the unit graph of a ring, a notion
that generalizes the idea of Grimaldi [1990] who introduced and studied in detail a
graph G(Zn) in which the vertex set is the ring Zn of integers modulo a positive
integer n, and two distinct vertices x and y are adjacent if and only if x + y is
a unit in Zn . In general, given an arbitrary ring R with nonzero identity, its unit
graph G(R) is defined to be the graph in which the vertex set is R, and two distinct
vertices x and y are adjacent if and only if x + y is a unit in R. Some of the
properties of this graph have been studied in detail in [Ashrafi et al. 2010; Maimani
et al. 2010a; 2010b; 2010c; 2011b]. The graphs in Figure 1 are the unit graphs of
the rings indicated.
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Figure 1. The unit graphs of some specific rings.

It is easy to see that, given any two rings R and S, if R ∼= S as rings, then
G(R)∼= G(S) as graphs. This point is illustrated in Figure 2 for the unit graphs of
two isomorphic rings Z3×Z2 and Z6.

It is also easy to see that if the rings R1, R2, S1 and S2 are such that G(R1)∼=

G(R2) and G(S1)∼=G(S2), then G(R1×S1)∼=G(R2×S2). However, this property
does not hold in general for other widely studied graphs associated to rings (for
example, the zero-divisor graphs).

In this paper, we derive several necessary conditions for the nonplanarity of
the unit graphs of finite commutative rings with nonzero identity; in particular,
we show that given any positive integer g, there exists only a finite number of
finite commutative rings with nonzero identity whose unit graphs have genus g.
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Figure 2. The unit graphs of two isomorphic rings.

Also, in analogy with the results in [Maimani et al. 2012], we determine, up to
isomorphism, all finite commutative rings with nonzero identity whose unit graphs
are toroidal. It may be recalled here that the genus of a graph G, denoted by γ (G),
is smallest nonnegative integer g such that the graph G can be embedded on the
surface obtained by attaching g handles to a sphere. The graphs of genus 0 and 1 are
called planar graphs and toroidal graphs respectively. For unexplained terminology
and notations in this paper, we refer the reader to [Chartrand and Oellermann 1993].

2. Some auxiliary results and the related concepts

In this section, we put together certain graph theoretical terminologies and some
well-known results which have been used extensively in the forthcoming sections.
Note that all graphs considered in this section are finite simple graphs, that is,
graphs with finitely many vertices and without loops or multiple edges.

Let x and y be any two vertices in a graph G. Then, x and y are said to be adjacent
in G if x 6= y and there is an edge {x, y} between x and y. A path between x and y
is a sequence {x, x1}, {x1, x2}, . . . , {xn, y} of distinct edges, which is also written as
{x, x1, x2, . . . , xn, y}, where the vertices x, x1, x2, . . . , xn, y are all distinct (except,
possibly, x and y). A path between x and y is called a cycle if x = y. The number
of edges in a path or a cycle, is called its length.

A graph G is said to be connected if there is a path between every pair of distinct
vertices in G. A chord of a cycle in a graph is an edge of the graph which does not
lie in the edge set of the cycle but whose endpoints lie in the vertex set of the cycle.
A chordless cycle of a graph is a cycle without any chord.

A cycle of a graph, embedded on a surface, is called contractible with respect to
the embedding if it can be contracted continuously on the surface to a point. A cycle
of a toroidal graph is said to be flat if it is contractible in every torus embedding
of the graph. Given a cycle C of a graph G, we write G−C to denote the graph
obtained from G by deleting the vertices of C and the edges of the graph incident
to the vertices of C .
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A graph G is said to be complete if there is an edge between every pair of distinct
vertices in G. We denote the complete graph with n vertices by Kn . A bipartite
graph is the one whose vertex set can be partitioned into two disjoint parts in such
a way that the two end vertices of every edge lie in different parts. Among the
bipartite graphs, the complete bipartite graph is the one in which two vertices are
adjacent if and only if they lie in different parts. The complete bipartite graph, with
parts of size m and n, is denoted by Km,n .

A subdivision of an edge {x, y} in a graph is a path {x, x1, x2, . . . , xn, y} obtained
by inserting some new vertices x1, x2, . . . , xn into the edge {x, y}. A subdivision
of a graph G is the result of some subdivisions of the edges of G. Furthermore,
every graph can be considered as a subdivision of itself. A remarkably simple
characterization of planar graphs was given by Kuratowski in 1930. Kuratowski’s
theorem [Chartrand and Oellermann 1993, page 153] says that a graph is planar
if and only if it contains no subdivision of K3,3 or K5. As a consequence of
Kuratowski’s theorem, one has the following result.

Lemma 2.1 [Neufeld and Myrvold 1997, Theorem 2.1]. If a cycle C of a toroidal
graph G is such that G−C is nonplanar, then C is flat in G. Furthermore, if flat C
is chordless and G−C is connected, then C is a flat face in any torus embedding
of G.

Given a graph G, we denote its vertex set by V (G) and its edge set by E(G). If
G1 and G2 are any two graphs, then their disjoint union, denoted by G1 tG2, is
defined to be the graph in which the vertex set is V (G1)t V (G2) and the edge set
is E(G1)t E(G2). The following result, which follows from [Battle et al. 1962,
Corollary 2], often enables us to reformulate some results which are otherwise true
for connected graphs.

Lemma 2.2. If a graph G is isomorphic to the disjoint union G1tG2 of two graphs
G1 and G2, then γ (G)= γ (G1)+ γ (G2).

If G is a graph and x ∈ V (G), then the degree of x in G is defined as the number
of vertices adjacent to x in G, and is denoted by deg(x). If r is a nonnegative integer
such that deg(x)= r for all x ∈ V (G), then the graph G is said to be r-regular. In
general, we write δ(G) to denote the minimum of the degrees of the vertices of
G. In this connection, using Lemma 2.2, one may reformulate [Wickham 2008,
Proposition 2.1] as follows.

Lemma 2.3. If G is a graph (not necessarily connected) having n vertices with
n ≥ 3, then

δ(G)≤ 6+
12(γ (G)− 1)

n
.

The girth of a graph G is the minimum of the lengths of all cycles in G, and
is denoted by gr(G). If G is acyclic, that is, if G has no cycles, then we write
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gr(G) =∞. It has been proved in [Archdeacon 1996, Section 2.3] that if G is a
connected graph (but not acyclic) having n vertices and m edges, then

γ (G)≥
m(k− 2)

2k
−

n
2
+ 1,

where k= gr(G). Therefore, using the facts that in an acyclic graph the total number
of edges is less than the total number of vertices, and that the girth of a bipartite
graph (which is not acyclic) is at least four, we have, in view of Lemma 2.2, the
following result.

Lemma 2.4. If G is a bipartite graph (not necessarily connected) having n vertices
and m edges with n ≥ 3, then

γ (G)≥
m
4
−

n
2
+ 1.

We conclude the section with two useful results.

Lemma 2.5 [White 1973, Theorem 6–38]. If n ≥ 3, then

γ (Kn)=

⌈
(n− 3)(n− 4)

12

⌉
.

Lemma 2.6 [White 1973, Theorem 6–37]. If m, n ≥ 2, then

γ (Km,n)=

⌈
(m− 2)(n− 2)

4

⌉
.

3. Some necessary conditions for the nonplanarity of unit graphs

In this section, we derive a few necessary conditions for the nonplanarity of the
unit graphs of finite commutative rings with nonzero identity. However, we begin
with a known result.

Lemma 3.1 [Ashrafi et al. 2010, Proposition 2.4]. Let R be a finite commutative
ring with nonzero identity, and U (R) be the set of all unit elements of R. Let x ∈ R.
Then

deg(x)=
{
|U (R)| − 1 if x ∈U (R) and 2 ∈U (R),
|U (R)| otherwise.

Let us now derive the first necessary condition for the nonplanarity of unit graphs.

Proposition 3.2. Let R be a finite commutative ring with nonzero identity such that
γ (G(R))= g > 0. Then either |R| ≤ 12(g− 1) or |U (R)| ≤ 7.
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|U (R)| |Z(R)| |R| R

7 1 8 F8

6 1 7 Z7

6 3 9 Z9, Z3[x]/〈x2
〉

4 1 5 Z5

4 4 8
Z8, Z2[x]/〈x3

〉, Z2[x]/〈2x, x2
−2〉,

Z2[x, y]/〈x, y〉2, Z4[x]/〈2, x〉2

3 1 4 F4

2 1 3 Z3

2 2 4 Z4, Z2[x]/〈x2
〉

1 1 2 Z2

Table 1. Finite commutative local rings with at most 7 units.

Proof. If |R|> 12(g− 1), then, using Lemma 2.3, we deduce that

δ(G(R))≤ 6+
12(g− 1)
|R|

< 6+ 1= 7.

Since δ(G(R)) is an integer, we have δ(G(R)) ≤ 6. Hence, it follows from
Lemma 3.1 that |U (R)| ≤ 7. �

Let R be a finite commutative ring with nonzero identity. Let Z(R) denote
the set of all zero-divisors of R. It is easy to see that U (R) t Z(R) = R and so
|U (R)| + |Z(R)| = |R|. The structure theorem for finite commutative rings says
that R is isomorphic to a direct product of finite commutative local rings with
nonzero identity, and such a product is unique up to the order in which the factors
are arranged (see [McDonald 1974]). If R itself is a local ring, then we have the
following result which is essentially due to Raghavendran.

Lemma 3.3 [Raghavendran 1969, Theorem 2]. Let R be a finite commutative
local ring with nonzero identity. Then |R| = pnr, |Z(R)| = p(n−1)r and |U (R)| =
p(n−1)r (pr

− 1) for some prime p and some positive integers n and r.

Now, Lemma 3.3 together with some well-known results on the structures of
small local rings (see, for example, [Corbas and Williams 2000a; 2000b]) enable
us to obtain the following result.

Proposition 3.4. Let R be a finite commutative local ring with nonzero identity
such that |U (R)| ≤ 7. Then the possible forms of R are given by Table 1.

As a consequence of the above result, we derive a necessary condition for the
nonplanarity of the unit graphs of finite commutative local rings with nonzero
identity.
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Corollary 3.5. Let R be a finite commutative local ring with nonzero identity such
that γ (G(R))= g > 0. Then |R| ≤max{9, 12(g− 1)}. In particular, the number
of finite commutative local rings with nonzero identity such that γ (G(R))= g > 0
is finite.

Proof. If |R| ≤ 12(g− 1), then we are done. Otherwise, by Proposition 3.2, we
have |U (R)| ≤ 7. Therefore, by Proposition 3.4, |R| ≤ 9. This completes the proof
of the first part. The last part of the corollary is obvious, because, given any positive
integer g, the number of rings R with |R| ≤max{9, 12(g− 1)} is clearly finite. �

In Figure 1, one can see that G(Z2×Z2) is isomorphic to the disjoint union of
two copies of G(Z2). In fact, it is not difficult to make a more general observation
that if S is a finite commutative ring with nonzero identity, then the unit graph
G(Z2×Z2× S) is isomorphic to the disjoint union of two copies of the unit graph
G(Z2× S). Therefore, in view of Lemma 2.2, we have the following result.

Lemma 3.6. Let S be a finite commutative ring with nonzero identity. Then we
have γ (G(Z2×Z2× S))= 2γ (G(Z2× S)). In particular, γ (G((Z2)

t))= 0 for all
t ≥ 1.

The following result plays an important role in getting rid of all finite commutative
rings with nonzero identity whose unit graphs are planar.

Lemma 3.7 [Ashrafi et al. 2010, Theorem 5.14]. Let R be a finite commutative
ring with nonzero identity. Then the unit graph G(R) is planar if and only if R is
isomorphic to one of Z5, Z3×Z3 or (Z2)

t
× S, where t ≥ 0 and S is one of the rings

Z2, Z3, Z4, F4 and
{[

a b
0 a

]
| a, b ∈ Z2

}
∼= Z2[x]/〈x2

〉.

We are now in a position to state and prove the main result of this section.

Theorem 3.8. Let R be a finite commutative ring with nonzero identity such that
γ (G(R))= g > 0. Then either

|R| ≤ 12(g− 1) or R ∼= (Z2)
t
× S,

where 0≤ t ≤ 1+ log2 g and S is one of the finite rings given by Table 2.

Proof. Let |R| > 12(g − 1). In this case, Proposition 3.2 implies that |U (R)| ≤
7. Using the structure theorem for finite commutative rings (see the discussion
preceding Lemma 3.3) along with Lemma 3.6 and the fact that g > 0, we conclude
that

R ∼= (Z2)
t
× R1× R2× · · ·× Rk,

where 0≤ t ≤ 1+ log2g, k ≥ 1 and each Ri is a finite commutative local ring with
nonzero identity having at least three elements. Now, we have

|U (R)| = |U (R1× R2× · · ·× Rk)| = |U (R1)| × |U (R2)| × · · · × |U (Rk)|.
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Clearly, |U (R)| 6= 1. Since |U (R)| ≤ 7, we have the following possibilities:

(1) |U (R)|= p, where p=2, 3, 5 or 7. In this case, we have k=1 and |U (R1)|= p.

(2) |U (R)| = 6. In this case, either we have k = 1 and |U (R1)| = 6, or we have
k = 2, |U (R1)| = 2 and |U (R2)| = 3.

(3) |U (R)| = 4. In this case, either we have k = 1 and |U (R1)| = 4, or we have
k = 2, |U (R1)| = 2 and |U (R2)| = 2.

The result now follows from Proposition 3.4 and Lemma 3.7. �

As an immediate corollary, we have the following result.

Corollary 3.9. Let R be a finite commutative ring with nonzero identity such that
γ (G(R))= g > 0. Then |R| ≤ 32g. In particular, given any positive integer g, the
number of finite commutative rings with nonzero identity such that γ (G(R))= g is
finite.

Proof. By Theorem 3.8, either |R| ≤ 12(g − 1) or R ∼= (Z2)
t
× S, where 0 ≤

t ≤ 1+ log2g and S is a ring with |S| ≤ 16. In the second case, |R| = 2t
|S| =

2t−1(2|S|)≤ 32g. Hence, it follows that |R| ≤max{32g, 12(g−1)}= 32g. The last
part of the corollary is obvious, because, given any positive integer g, the number
of rings R with |R| ≤ 32g is clearly finite. �

4. Classification of rings with toroidal unit graphs

In this section, we determine, up to isomorphism, all finite commutative rings with
nonzero identity whose unit graphs have genus one, that is, whose unit graphs are
toroidal graphs.

Let R be a finite commutative ring with nonzero identity such that γ (G(R))= 1.
Then, by Theorem 3.8, R is isomorphic to either S or Z2× S, where S is one of
the finite rings mentioned in Table 2. There are 36 such possibilities for R, among
which we single out the ones whose unit graphs have genus 1. For this purpose, the
following result is very useful; in fact, in combination with Lemma 2.4, it helps

|U (R)| S

7 F8

6 Z7, Z9, Z3[x]/〈x2
〉, Z3×F4, Z4×F4, Z2[x]/〈x2

〉×F4

4
Z5 (for t 6= 0), Z8, Z2[x]/〈x3

〉, Z2[x]/〈2x, x2
−2〉, Z2[x, y]/〈x, y〉2,

Z4[x]/〈2, x〉2, Z3×Z3 (for t 6= 0), Z3×Z4, Z3×Z2[x]/〈x2
〉,

Z4×Z4, Z4×Z2[x]/〈x2
〉, Z2[x]/〈x2

〉×Z2[x]/〈x2
〉

Table 2. Possible seed rings for toroidal unit graphs.
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Figure 3. Embedding of the unit graph of Z2×Z5 on a torus.

in determining some lower bounds for the genus of the unit graphs of rings of the
type Z2× S, where S is a finite commutative ring with nonzero identity.

Lemma 4.1 [Ashrafi et al. 2010, Theorem 3.5]. Let R be a finite commutative ring
with nonzero identity, and m be a maximal ideal of R such that R/m∼= Z2. Then
the unit graph G(R) is a bipartite graph. Moreover, G(R) is a complete bipartite
graph if and only if R is a local ring.

Let us now start the process of classification by looking at some toroidal unit
graphs.

Proposition 4.2. γ (G(Z2×Z5))= 1.

Proof. By Lemma 3.7, we have γ (G(Z2×Z5))≥1. But Figure 3 gives an embedding
of the unit graph G(Z2×Z5) on a torus, and so γ (G(Z2×Z5))= 1. �

Proposition 4.3. γ (G(Z2×Z3×Z3))= 1.

Proof. By Lemma 3.7, we have γ (G(Z2×Z3×Z3)) ≥ 1. But Figure 4 gives an
embedding of G(Z2×Z3×Z3) on a torus, and so γ (G(Z2×Z3×Z3))= 1. �

Proposition 4.4. γ (G(Z3×Z4))= γ (G(Z3×Z2[x]/〈x2
〉))= 1.

Proof. By Lemma 3.7, we have γ (G(Z3×Z4))≥1. But Figure 5 gives an embedding
of the unit graph G(Z3×Z4) on a torus, and so γ (G(Z3×Z4))= 1. On the other
hand, since the unit graph G(Z4) is isomorphic to the unit graph G(Z2[x]/〈x2

〉),
we have

G(Z3×Z4)∼= G
(

Z3×
Z2[x]
〈x2〉

)
.

This completes the proof. �
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Figure 4. Embedding of the unit graph of Z2×Z3×Z3 on a torus.
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Figure 5. Embedding of the unit graph of Z3×Z4 on a torus.

Proposition 4.5. If S is one of the rings

Z7, Z8,
Z2[x]
〈x3〉

,
Z2[x]

〈2x, x2− 2〉
,

Z2[x, y]
〈x, y〉2

and
Z4[x]
〈2, x〉2

,

then γ (G(S))= 1.

Proof. Note that the unit graph G(Z7) can be regarded as a subgraph of K7, and so,
by Lemmas 2.5 and 3.7, we have γ (G(Z7)) = 1. On the other hand, each of the
remaining rings is a local ring with 8 elements of which exactly 4 are zero-divisors,
and so it follows from Lemma 4.1 that the associated unit graph of each of these
rings is a complete bipartite graph, namely, K4,4. The proof is now completed by
Lemma 2.6. �

Next we look at some unit graphs which have genus more than 1.

Proposition 4.6. γ (G(Z2×Z3×Z4))= γ (G(Z2×Z3×Z2[x]/〈x2
〉))= 2.
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Proof. It is not difficult to see that G(Z2×Z3×Z4) is isomorphic to the disjoint
union of two copies of G(Z3×Z4). Therefore, by Lemma 2.2 and Proposition 4.4,
we have γ (G(Z2×Z3×Z4))= 2. On the other hand, since the unit graph G(Z4)

is isomorphic to the unit graph G(Z2[x]/〈x2
〉), we have

G(Z2×Z3×Z4)∼= G
(

Z2×Z3×
Z2[x]
〈x2〉

)
.

This completes the proof. �

Proposition 4.7. If S is one of the rings

Z8,
Z2[x]
〈x3〉

,
Z2[x]

〈2x, x2− 2〉
,

Z2[x, y]
〈x, y〉2

and
Z4[x]
〈2, x〉2

,

then γ (G(Z2× S))= 2. On the other hand, γ (G(Z2×Z7))≥ 5.

Proof. In view of the proof of Proposition 4.5, one may note that, for each of the
given choices of S, the unit graph G(Z2× S) is isomorphic to the disjoint union of
two copies of K4,4. Hence, the first part follows from Lemmas 2.2 and 2.6.

For the second part, note that the unit graph G(Z2 × Z7) is 6-regular with
14 vertices. Also, by Lemma 4.1, it is bipartite, and so it has 42 edges. Therefore,
by Lemma 2.4, we have γ (G(Z2×Z7))≥ 5. This completes the proof. �

Let us now recall that a subgraph H of a graph G is called a spanning subgraph
if they have the same sets of vertices. A 1-regular spanning subgraph H of a graph
G is called a perfect matching of G. Given a graph G with a subgraph H , we write
G \ H to denote the subgraph of G in which the vertex set is V (G) and the edge
set is E(G) \ E(H).

Proposition 4.8. γ (G(F8))= 2 and γ (G(Z2× F8))≥ 7.

Proof. The unit graph G(F8) is isomorphic to K8, and so, by Lemma 2.5, we have
γ (G(F8))= 2. On the other hand, the unit graph G(Z2× F8) has 16 vertices, and,
by Lemma 4.1, it is bipartite. In fact, this graph is isomorphic to the graph K8,8 \M ,
where M is a perfect matching of K8,8, and so it has 56 edges. Therefore, by
Lemma 2.4, we have γ (G(Z2× F8))≥ 7. �

Proposition 4.9. γ (G(Z3× F4))≥ 2 and γ (G(Z2×Z3× F4))≥ 7.

Proof. Note that the unit graph G := G(Z3 × F4) is the union of two planar
subgraphs plotted in Figure 6 which intersect at exactly four vertices, namely,
00, 01, 0a and 0a2 (indicated by bigger bullets). It is easy to see that the graph
G has 12 vertices and 36 edges. Moreover, it is a 6-regular graph. Also, it is
easy to see that it is not a planar graph, as it contains a subdivision of K5, namely,
{20, 21, 2a, 2a2, 0a, 11, 0a2, 20}.
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Figure 6. Two planar subgraphs of the unit graph of Z3× F4.
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Figure 7. The graph G(Z3× F4)−{00, 1a2, 1a, 00}.

Let us now assume that G is toroidal, that is, γ (G)= 1. Then, by Euler’s formula,
G has 36− 12 = 24 faces. Also, note that G is symmetrical in nature. We use
Lemma 2.1 to show that every 3-cycle C in G is a face, and arrive at a contradiction.

First, let us consider a 3-cycle having empty interior. By symmetry, it is enough
to take C ={00, 1a2, 1a, 00}. Then G−C is given as indicated in Figure 7. Clearly,
G −C is nonplanar, as it contains a subdivision of K5, namely, {20, 21, 2a, 2a2,

0a, 11, 0a2, 20}. Moreover, C is chordless and G−C is connected. Therefore, by
Lemma 2.1, C is a face. Note that there are 24 such 3-cycles in G.

Next, we consider the 3-cycle C = {1a2, 10, 1a, 1a2
}. Then G−C is given as

indicated in Figure 8. Again, it is clear that G − C is nonplanar, as it contains
a subdivision of K5, namely, {20, 21, 2a, 2a2, 0a, 11, 0a2, 20}. Moreover, C is
chordless and G−C is connected. Therefore, by Lemma 2.1, C is a face.

Since we have already found 25 faces, our assumption that G is toroidal is wrong.
Hence, we conclude that γ (G(Z3× F4))≥ 2.

For the second part, note that the unit graph G(Z2×Z3× F4) is 6-regular with
24 vertices. Also, by Lemma 4.1, it is bipartite, and so it has 72 edges. Therefore,
by Lemma 2.4, we have γ (G(Z2×Z3× F4))≥ 7. This completes the proof. �

Arguing in the same manner as above, we also have the following result.
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Figure 8. The graph G(Z3× F4)−{1a2, 10, 1a, 1a2
}.

Proposition 4.10. If S is one of the rings Z9 and Z3[x]/〈x2
〉, then γ (G(S)) ≥ 2

and γ (G(Z2× S))≥ 6.

Proof. Note that the unit graphs of the rings Z9 and Z3[x]/〈x2
〉 are isomorphic.

Therefore, it is enough to prove the result only for Z9. It is easy to see, from
Figure 9, that the unit graph G(Z9) is a nonplanar graph with 9 vertices and
24 edges. Moreover, the number of 3-cycles in it is 20. If C is one such 3-cycle,
then it is easy to see that C is chordless, and G(Z9)−C is connected and nonplanar.
In fact, G(Z9)−C is either a subdivision of K5 or has a subgraph isomorphic to
K3,3, depending on whether the 3-cycle C contains one or none of the vertices 0, 3
and 6. Therefore, if G(Z9) is toroidal, then it follows from Lemma 2.1 that every
3-cycle in G(Z9) is a face, and so G(Z9) has at least 20 faces, whereas from Euler’s
formula it follows that G(Z9) has 15 faces. Hence, we have γ (G(Z9))≥ 2.

For the second part, note that the unit graph G(Z2 × Z9) is 6-regular with
18 vertices. Also, by Lemma 4.1, it is bipartite, and so it has 54 edges. Therefore,
by Lemma 2.4, we have γ (G(Z2×Z9))≥ 6. This completes the proof. �

Proposition 4.11. If S is one of the rings

Z4×Z4, Z4×
Z2[x]
〈x2〉

and
Z2[x]
〈x2〉

×
Z2[x]
〈x2〉

,

then γ (G(S))= 2 and γ (G(Z2× S))= 4.

Proof. Consider the following two subsets of the vertex set of G(Z4×Z4):

V1 = {(0, 0), (0, 2), (2, 0), (2, 2), (1, 1), (1, 3), (3, 1), (3, 3)},

V2 = {(0, 1), (0, 3), (2, 1), (2, 3), (1, 0), (1, 2), (3, 0), (3, 2)}.

It is easy to see that the two subgraphs 〈V1〉 and 〈V2〉 are disjoint, and their union is
G(Z4×Z4). Moreover, 〈V1〉 ∼= 〈V2〉 ∼= K4,4. Therefore, it follows from Lemma 2.2
and Lemma 2.6 that γ (G(Z4×Z4))= 2. Also, it is easy to see that G(Z2×Z4×Z4)
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Figure 9. The unit graph of Z9.

is isomorphic to the disjoint union of two copies of G(Z4×Z4). Therefore, in view
of Lemma 2.2, it follows that γ (G(Z2×Z4×Z4))= 4. On the other hand, since
the unit graph G(Z4) is isomorphic to the unit graph G(Z2[x]/〈x2

〉), we have

G(Z4×Z4)∼= G
(

Z4×
Z2[x]
〈x2〉

)
∼= G

(
Z2[x]
〈x2〉

×
Z2[x]
〈x2〉

)
and

G(Z2×Z4×Z4)∼= G
(

Z2×Z4×
Z2[x]
〈x2〉

)
∼= G

(
Z2×

Z2[x]
〈x2〉

×
Z2[x]
〈x2〉

)
.

Hence, the result follows. �

Proposition 4.12. If S is one of the rings Z4 × F4 and Z2[x]/〈x2
〉 × F4, then

γ (G(S))≥ 2 and γ (G(Z2× S))≥ 9.

Proof. Note that G(Z4) is a spanning subgraph of G(F4). This implies that
G(Z4×Z4) is an spanning subgraph of G(Z4×F4). Therefore, by Proposition 4.11,
we have γ (G(Z4 × F4)) ≥ 2. Also note that the unit graph G(Z2 × Z4 × F4) is
6-regular with 32 vertices. Moreover, by Lemma 4.1, it is bipartite, and so it has 96
edges. Therefore, by Lemma 2.4, we have γ (G(Z2×Z4× F4))≥ 9. On the other
hand, since the unit graph G(Z4) is isomorphic to the unit graph G(Z2[x]/〈x2

〉),
we have

G(Z4× F4)∼= G
(

Z2[x]
〈x2〉

× F4

)
and

G(Z2×Z4× F4)∼= G
(

Z2×
Z2[x]
〈x2〉

× F4

)
.

This completes the proof. �

Let us now summarize what we have achieved so far: If S is a finite commutative
ring with nonzero identity, then, with γS = γ (G(S)) and γ2S = γ (G(Z2× S)), one
has Table 3.
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S γS γ2S

Z5, Z3×Z3 0 1

Z3×Z4, Z3×Z2[x]/〈x2
〉, Z8, Z2[x]/〈x3

〉,

Z2[x]/〈2x, x2
−2〉, Z2[x, y]/〈x, y〉2, Z4[x]/〈2, x〉2

1 2

Z7 1 ≥ 5

F8 2 ≥ 7

Z3×F4 ≥ 2 ≥ 7

Z9, Z3[x]/〈x2
〉 ≥ 2 ≥ 6

Z4×Z4, Z4×Z2[x]/〈x2
〉, Z2[x]/〈x2

〉 × Z2[x]/〈x2
〉 2 4

Z4×F4, Z2[x]/〈x2
〉×F4 ≥ 2 ≥ 9

Table 3. Genus of some unit graphs.

Finally, using Table 3 and Theorem 3.8, one easily obtains the following classifi-
cation theorem.

Theorem 4.13. Let R be a finite commutative ring with nonzero identity. Then the
unit graph G(R) is a toroidal graph if and only if R is isomorphic to one of

Z2×Z5, Z2×Z3×Z3, Z3×Z4, Z3×
Z2[x]
〈x2〉

, Z8,

Z2[x]
〈x3〉

,
Z2[x]

〈2x, x2− 2〉
,

Z2[x, y]
〈x, y〉2

,
Z4[x]
〈2, x〉2

or Z7.
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