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A NOTE ON CONFORMAL RICCI FLOW

PENG LU, JIE QING AND YU ZHENG

In this note we study the conformal Ricci flow that Arthur Fischer intro-
duced in 2004. We use DeTurck’s trick to rewrite the conformal Ricci flow
as a strong parabolic-elliptic partial differential equation. Then we prove
short-time existence for the conformal Ricci flow on compact manifolds as
well as on asymptotically flat manifolds. We show that the Yamabe constant
is monotonically increasing along conformal Ricci flow on compact mani-
folds. We also show that the conformal Ricci flow is the gradient flow for
the ADM mass on asymptotically flat manifolds.

1. Introduction

Suppose that Mm is a smooth m-dimensional manifold and that g0 is a Riemannian
metric on M of constant scalar curvature s0. All manifolds in this note are assumed
to have no boundary. The conformal Ricci flow on M is defined as

(1-1)

{
∂

∂t
g+ 2

(
Ric− s0

m g
)
=−2pg in M × (0, T ),

sg(t) = s0 in M ×[0, T )

for a family of metrics g(t) with initial condition g(0)= g0 and a family of functions
p = p(t) on M ×[0, T ), where sg(t) is the scalar curvature of the evolving metric
g(t). The conformal Ricci flow (1-1) was introduced by Arthur Fischer [2004] as
a modified Ricci flow that preserves the constant scalar curvature of the evolving
metrics. It is so named because of the role that conformal geometry plays in
maintaining constant scalar curvature. It was shown in [Fischer 2004] that on
compact manifolds the conformal Ricci flow is equivalent to

(1-2)

{ ∂
∂t

g+ 2
(
Ric− s0

m g
)
=−2pg in M × (0, T ),

(m− 1)1p+ s0 p =−
∣∣Ric− s0

m g
∣∣2 in M ×[0, T ),

with the initial condition g(0) = g0. Based on the fact that the conformal Ricci
flow (1-2) is of parabolic-elliptic nature, analogous to Navier–Stokes equations, the
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function p was named the conformal pressure function in [Fischer 2004]. Using
the theory of dynamical systems on infinite-dimensional manifolds, Fischer [2004]
proved that conformal Ricci flow exists, at least for a short time, on compact
manifolds with scalar curvature s0 < 0. He also observed that the Yamabe constant
monotonically increases along conformal Ricci flow on compact manifolds of
negative Yamabe type. Therefore one can hope that the conformal Ricci flow
does a good job of constructing Einstein metrics, considering the behavior of the
Hilbert–Einstein action on the space of Riemannian metrics.

In this paper we adopt DeTurck’s trick [1983; 2003] to eliminate the degeneracy
of (1-2) from the symmetry of diffeomorphisms and consider

(1-3)


∂

∂t
g+ 2

(
Ric−

s0

m
g
)
=−2pg+LW g,

(m− 1)1p+ s0 p =−
∣∣∣Ric−

s0

m
g
∣∣∣2.

This is DeTurck’s conformal Ricci flow for an appropriately chosen vector field W
(cf. Equation (3-5)) with an initial metric g(0)= g0 of constant scalar curvature s0.
Equation (1-3) is a strong parabolic-elliptic partial differential equation. We use the
contractive mapping theorem to prove an isomorphism property for the linearized
DeTurck conformal Ricci flow and then we use the implicit function theorem to
prove short-time existence for the DeTurck conformal Ricci flow. From this we
obtain short-time existence for the conformal Ricci flow based on the discussion in
Section 3.1.

Theorem 1.1. Let (Mm, g0) be a compact Riemannian manifold of constant scalar
curvature s0 with no boundary. Suppose that the elliptic operator (m− 1)1g0 + s0

is invertible. Then there exists a small positive number T such that the conformal
Ricci flow g(t) with the initial metric g0 exists for t ∈ [0, T ].

This extends the existence result in [Fischer 2004] to include some compact
manifolds with scalar curvature s0 > 0. For parabolic Hölder spaces and the theory
of linear and nonlinear parabolic equations used in the proof, we take references
mostly from [Lunardi 1995]. We also extend the monotonicity of the Yamabe
constant in [Fischer 2004] as follows:

Theorem 1.2. Let (Mm, g0) be a compact Riemannian manifold and let g(t), t ∈
[0, T ), be the solution of conformal Ricci flow with g(0)= g0. Suppose that g0 is
the only Yamabe metric in the conformal class [g0] with scalar curvature sg0 = s0

and that (m − 1)1g0 + s0 is invertible. Then there is T0 ∈ (0, T ] such that each
metric g(t), t ∈ [0, T0), is a Yamabe metric and the Yamabe constant Y [g(t)] is
strictly increasing for t ∈ [0, T0) unless g0 is an Einstein metric.

This theorem indicates that the conformal Ricci flow is somehow a better family
of constant scalar curvature metrics than those obtained in [Koiso 1979].
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On asymptotically flat manifolds we use weighted Hölder spaces defined in [Lee
and Parker 1987], and define weighted parabolic Hölder spaces based on the similar
ones in [Lunardi 1995; Oliynyk and Woolgar 2007].

Theorem 1.3. Let (Mm, g0) be a scalar flat and asymptotically flat manifold with
g0− ge ∈ C4,α

−τ , where α ∈ (0, 1), τ ∈ (0,m− 2), and ge is the standard Euclidean
metric. Then there exists a small positive number T such that the conformal
Ricci flow g(t) from the initial metric g0 exists for t ∈ [0, T ] and g(t) − ge ∈

C1,2+α
−τ ([0, T ]×M).

It is easily seen that (1-1) and (1-2) are equivalent on asymptotically flat manifolds
because of the uniqueness of bounded solutions to linear parabolic equations on
such manifolds. The scalar flat assumption in Theorem 1.3 is less stringent than
it looks. Thanks to Schoen and Yau [1979, Lemma 3.3 and Corollary 3.1] we
know that one can always conformally deform an asymptotically flat metric with
nonnegative scalar curvature into a scalar flat and asymptotically flat metric.

Conformal Ricci flow is the gradient flow for the ADM mass on asymptotically
flat manifolds (see Definition 4.1) in the following sense:

Theorem 1.4. Let g(t) be the conformal Ricci flow obtained in Theorem 1.3 for
τ ∈ (m−2

2 ,m− 2). Then

d
dt

m(g(t))=−2
∫

M
|Ricg(t)|

2 dvolg(t) .

In particular, the ADM mass m(g(t)) is strictly decreasing under conformal Ricci
flow, except when g0 is a Euclidean metric.

As a quick application of Theorem 1.4, one can easily show the rigidity part of
the celebrated positive mass theorem of Schoen and Yau [1979]. The monotonicity
of the ADM mass along conformal Ricci flow is sharply in contrast to the invariance
of the ADM mass along Ricci flow on asymptotically flat manifolds [Dai and Ma
2007; Oliynyk and Woolgar 2007].

The organization of the paper is as follows: In Section 2 we introduce the
conformal Ricci flow and establish the monotonicity of the Yamabe constant on
compact manifolds. In Section 3 we prove short-time existence of the conformal
Ricci flow, both on compact manifolds and on asymptotically flat manifolds. In
Section 4 we recall the definition of the ADM mass and show that conformal Ricci
flow on asymptotically flat manifolds is the gradient flow for the ADM mass.

2. Conformal Ricci flow

In this section we first introduce the conformal Ricci flow and then calculate
evolution equations for curvatures along conformal Ricci flow. We then discuss the
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monotonicity of Yamabe quotients and Yamabe constants along conformal Ricci
flow.

2.1. Conformal Ricci flow. Suppose that Mm is a smooth m-dimensional manifold
and that g0 is a Riemannian metric on M with constant scalar curvature s0. In
[Fischer 2004], the conformal Ricci flow on M is defined by (1-1) for a family of
metrics g(t) with initial condition g(0)= g0 and a family of functions p = p(t) on
M ×[0, T ).

As shown in [Fischer 2004], the normalization condition sg(t) = s0 in (1-1)
may be replaced by an elliptic equation and one can rewrite (1-1) as (1-2). The
equivalence between (1-1) and (1-2) was proved in [Fischer 2004, Proposition 3.2
and 3.4] when M is a compact manifold. Based on the evolution equation for scalar
curvature, it is easily seen that (1-1) always implies (1-2). Equation (1-2) implies
(1-1) when the solution to the linear heat equation is unique, which is true both in
the compact and asymptotically flat cases that we consider in this paper.

One important issue for geometric PDEs is the scaling property. It is easy to see
that for any constant λ > 0, if g and p solve the conformal Ricci flow (1-2), then

(2-1) gλ( · , t))= λ−2g( · , λ2t)) and pλ( · , t)= λ2 p( · , λ2t)

also solve the conformal Ricci flow.

2.2. Curvature evolution equations under conformal Ricci flow. To understand
conformal Ricci flow one often needs to calculate how curvatures behave along it.
The calculations are straightforward. Consider a general geometric flow

(2-2) ∂

∂t
g =−2T .

We recall that the evolution equations for curvatures are (see [Chow et al. 2006;
Besse 1987])

∂

∂t
s = 212− 2∇ i

∇
j Ti j + 2Ri j Ti j ,

∂

∂t
Ri j =1Ti j −∇i∇

k Tk j −∇ j∇
k Tki +∇i∇ j2+ 2Rik jl T kl

− Rik T k
j − R jk T k

i ,

∂

∂t
Rik jl =∇i∇ j Tkl −∇i∇l Tk j −∇k∇ j Til +∇k∇l Ti j − Rik jm T m

l − Rikml T m
j ,

where 2 := gi j Ti j . For the conformal Ricci flow, where

T = Ric−
s0

m
g+ pg and 2= s− s0+mp,
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we calculate the evolution equations for curvatures under the first equation in (1-2)
and get

∂

∂t
s =1s+

2s0

m
(s− s0)+ 2p(s− s0)+ 2(m− 1)1p+ 2s0 p+ 2

∣∣∣Ric−
s0

m
g
∣∣∣2,

∂

∂t
Ri j =1Ri j + 2Rik jl Rkl

− 2Rik Rk
j + (m− 2)∇i∇ j p+1pgi j ,

∂

∂t
Rm=1Rm+Rm ∗Rm+Ric ∗Rm+

2s0

m
Rm−2p Rm+T̃ (∇2 p),

where the operator ∗ stands for contractions of tensors, Rm is the Riemann curvature
tensor, and

T̃ (∇2 p)ik jl = gkl∇i∇ j p− gk j∇i∇l p− gil∇k∇ j p+ gi j∇k∇l p.

2.3. Yamabe constants under conformal Ricci flow. On compact manifolds along
conformal Ricci flow, we may calculate that

2= mp, ∂

∂t
dvolg(t) =−mp dvolg(t),

d
dt

vol(M)=−m
∫

M
p dvolg =

m
s0

∫
M

∣∣∣Ric−
s0

m
g
∣∣∣2 dvolg .(2-3)

Given a compact Riemannian manifold (Mm, h), the Yamabe quotient is defined as

Q[h] :=

∫
M sh dvolh

volh(M)(m−2)/m

and the Yamabe constant is defined as

Y [h] = inf
h∈[h]

Q[h].

A Riemannian metric h is said to be a Yamabe metric if and only if

Q[h] = Y [h].

Thus from (2-3) we have this:

Proposition 2.1. Suppose that g(t), t ∈ [0, T ), is a solution to the conformal Ricci
flow (1-2) on a compact manifold with scalar curvature sg0 6= 0. Then the Yamabe
quotient Q[g(t)] is strictly increasing unless g0 is an Einstein metric.

Next we give a proof of Theorem 1.2 concerning the evolution of Yamabe
constants along conformal Ricci flow. As observed in [Wang and Zheng 2011;
Chang and Lu 2007; Anderson 2005; Koiso 1979], the Yamabe constant could in
general behave rather irregularly among manifolds of positive Yamabe type.
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Proof of Theorem 1.2. We prove the result by contradiction. Assume there is a
sequence ti→ 0+ such that g(ti ) are not Yamabe metrics. Let g̃i be a Yamabe metric
in the conformal class [g(ti )] of the same volume as g(ti ). By the compactness of
the space of Yamabe metrics of fixed volume, g̃i converges to a Yamabe metric
g∞ ∈ [g0] (taking a subsequence if necessary). By the assumption that g0 is the
only Yamabe metric in [g0], we have g∞ = g0. That is to say that both g(ti ) and g̃i

converge to g0. Since (m− 1)1g0 + s0 is assumed to be invertible, we can apply
Koiso’s decomposition theorem [1979, Corollary 2.9] in the set of metrics of the
same volume as g0 to conclude the following: In some small neighborhood of g0,
each metric can be written uniquely as the product of a metric of constant scalar
curvature near g0 and a function. Since g̃i and g(ti ) are in the same conformal
class, have the same volume and both have constant scalar curvature, we get a
contradiction. �

Note that similar arguments have been used in [Wang and Zheng 2011; Chang
and Lu 2007; Anderson 2005; Koiso 1979].

3. Short-time existence of conformal Ricci flow

In this section we prove the short-time existence of the conformal Ricci flow, i.e.,
Theorem 1.1 and 1.3. The first step is to combine the two equations in the conformal
Ricci flow into one evolution equation with one nonlocal term. More precisely,
(1-2) can be written as

(3-1) ∂

∂t
g+ 2

(
Ric−

s0

m
g
)
=−2P(g)g on M,

where
P(g)= ((m− 1)1+ s0)

−1
∣∣∣Ric−

s0

m
g
∣∣∣2,

provided that (m−1)1g(t)+ s0 is invertible for all t ∈ [0, T ]. The strategy to prove
the short-time existence for the conformal Ricci flow is similar to the one used in
[DeTurck 1983; 2003] to prove the short-time existence for the Ricci flow. We will
first prove the short-time existence for DeTurck conformal Ricci flow written as

(3-2) ∂

∂t
g+ 2

(
Ric−

s0

m
g
)
=−2P(g)g+LW g on M .

To prove the short-time existence for (3-2) we calculate the linearization of the
DeTurck conformal Ricci flow and apply an implicit function theorem.

3.1. DeTurck’s trick. As a system of differential equations, the conformal Ricci
flow is of parabolic-elliptic nature, similar to the Navier–Stokes equations. The
significant difference between the conformal Ricci flow and the Navier–Stokes
equations is that the conformal Ricci flow is a geometric flow. Hence we need to
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find ways to eliminate the degeneracy of the conformal Ricci flow arising from the
symmetries of diffeomorphisms.

In this subsection we will follow the idea of the improved version [DeTurck
2003] of the approach to short-time existence for the Ricci flow in [DeTurck 1983]
to get rid of the degeneracy of diffeomorphisms for conformal Ricci flow. Before
introducing DeTurck’s trick, we first recall the following operator G. Let g be a
Riemannian metric on Mm . The operator G on symmetric 2-tensor B is defined as

(3-3) G(B)= B− 1
2 Trg(B)g.

Also recall the divergence operator δ

(δB)i := ∇ j Bi j : 0(S2(M))→ 0(T ∗M)

and its adjoint operator δ∗

(δ∗ω)i j := −
1
2(ωi, j +ω j,i ) : 0(T ∗M)→ 0(S2(M)).

Note that if X is the dual vector field of ω, then δ∗ω =−LX g, where LX denotes
the Lie derivative in the X direction.

According to DeTurck’s improved version [2003] of his approach to the short-
time existence of Ricci flow [DeTurck 1983], we consider the following gauge-fixed
conformal Ricci flow on M :

(3-4)


∂

∂t
g+ 2

(
Ric−

s0

m
g
)
=−2pg+ 2(δ∗(g̃−1δG(g̃))),

(m− 1)1p+ s0 p =−
∣∣∣Ric−

s0

m
g
∣∣∣2

for a family of metrics g(t) with g(0) = g0 and a family of functions p(t) on
M ×[0, T ), where g̃ is any fixed metric on M .

Suppose that g(t), t ∈ [0, T ), solves (3-4). Then we consider the time-dependent
vector field W

(3-5) W k
:= gi j(0k

i j [g] −0
k
i j [g̃]

)
,

where 0k
i j are the Christoffel symbols of the corresponding metric. It turns out that

(see [Hamilton 1995, Section 6; Shi 1989])

2
(
δ∗(g̃−1δG(g̃))

)
= LW g.

Hence we can rewrite (3-4) as

(3-6)


∂

∂t
g+ 2

(
Ric−

s0

m
g
)
=−2pg+LW g,

(m− 1)1p+ s0 p =−
∣∣∣Ric−

s0

m
g
∣∣∣2.
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The conformal Ricci flow (1-2) and the DeTurck conformal Ricci flow (3-6) are
related to each other by coordinate changes in the following sense. Suppose that
ĝ(t) solves the DeTurck conformal Ricci flow (3-6) and W is given as in (3-5). We
consider the one-parameter family of diffeomorphisms ϕt generated by W on M ,
defined by

(3-7) ∂

∂t
ϕt(x)=−W (ϕt(x), t), ϕ0(x)= x,

for some time period [0, T ).

Lemma 3.1. Let (ĝ(t), p̂(t)), t ∈ [0, T ), be a solution to the DeTurck conformal
Ricci flow (3-6) on the manifold Mm with the initial metric g0. Assume that the
solution ϕt(x) to (3-7) exists for t ∈ [0, T ). Let

g(t) := ϕ∗t ĝ(t) and p(t) := p̂(ϕt(x), t).

Then (g(t), p(t)), t ∈ [0, T ), is a solution to the conformal Ricci flow (1-2) on the
manifold M with g(0)= g0.

Proof. By using (3-6) we simply compute that (cf. [Chow et al. 2006, Section 2.6])

∂

∂t
g(t)= ϕ∗t

(
∂

∂t
ĝ(t)

)
+
∂

∂s

∣∣∣
s=0

(
ϕ∗t+s ĝ(t)

)
=−2ϕ∗t

(
Ricĝ −

s0

m
ĝ+ p̂ĝ

)
+ϕ∗t

(
LW ĝ

)
−L(ϕ−1

t )∗W (ϕ
∗

t ĝ)

=−2
(

Ricg −
s0

m
g+ pg

)
.

The second equation for p in (1-2) is readily seen to hold, since the scalar curvature
under both flows is kept constant as s0. �

This lemma is particularly important to us because it enables us to prove the
short-time existence of the conformal Ricci flow by proving the short-time existence
of the DeTurck conformal Ricci flow. The later will be shown to be a system of
parabolic-elliptic equations (see Lemma 3.3).

On the other hand, suppose that (g(t), p(t)), t ∈ [0, T ), solves the conformal
Ricci flow (1-2) on M with initial metric g0. Let g̃ be any fixed metric on M . We
then consider the harmonic map flow

(3-8) ∂

∂t
ϕt =1g(t),g̃ϕt , ϕ0 = Id

for ϕt : M→ M , where the nonlinear Laplacian in local coordinates is(
1g1,g2 f

)γ
=1g1 f γ +0γαβ[g2]

∂ f α

∂x i

∂ f β

∂x j gi j
1 .

The following lemma is useful for deriving the uniqueness of the conformal Ricci
flow from the uniqueness of the DeTurck conformal Ricci flow. From it readily
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follows that the uniqueness of the conformal Ricci flow with a given initial metric
holds at least on compact manifolds.

Lemma 3.2. Let (g(t), p(t)), t ∈ [0, T ), be a solution to the conformal Ricci
flow (1-2) on the manifold Mm with the initial metric g0. Assume that the solution
ϕt : M→ M to the harmonic map flow (3-8) exists for t ∈ [0, T ). Let

ĝ(t) := (ϕ−1
t )∗g(t) and p̂(x, t) := p(ϕ−1

t (x), t).

Then (ĝ(t), p̂(t)), t ∈ [0, T ), is a solution to the DeTurck conformal Ricci flow (3-6)
on the manifold M with the initial metric g0.

Proof. This follows from a calculation like the one in the proof of Lemma 3.1, after
identifying the vector field W with 1g(t),g̃ϕt (see [Chow et al. 2006, p. 117]). �

3.2. Linearization of DeTurck conformal Ricci flow. In this subsection we com-
pute the linearization of the DeTurck conformal Ricci flow (3-2). To do so we
set

gλ(t)= g(t)+ λh(t)

for a family of symmetric 2-tensors h(t) and for λ ∈ (−ε, ε). We rewrite the
DeTurck conformal Ricci flow as

(3-9) M(g(t))= ∂

∂t
g+ 2

(
Ric−

s0

m
g
)
+ 2P(g)g−LW g =: ∂

∂t
g−F(g(t))= 0

and calculate
d

dλ

∣∣∣
λ=0

M(gλ).

To compute the linearization of P we first calculate (cf. [Chow et al. 2006,
Equation (S.5), p. 547])

d
dλ

∣∣∣
λ=0

1gλP(gλ)=−hi j∇
i
∇

j P− 1
2(2∇

i hi j −∇ j hi
i )∇

j P+1P′,

where P′ =
d

dλ

∣∣∣
λ=o

P(gλ). Next we may calculate

d
dλ

∣∣∣
λ=0

∣∣∣Ricgλ −
s0

m
gλ
∣∣∣2

using the linearization of Ricci curvature

(3-10) d
dλ

∣∣∣
λ=0

2Ri j [gλ] = −1hi j − 2Rik jlhkl + Rikhk
j + R jkhk

i

−∇i∇ j hk
k +∇i∇

khk j +∇ j∇
khki

(see [Chow et al. 2006, (2.31)]). In summary we have

(m− 1)1P′+ s0P′− P i jkl
1 ∇i∇ j hkl − P i jk

2 ∇i h jk + P i j
3 hi j = 0,
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that is,

(3-11) P′ = ((m− 1)1+ s0)
−1(P1 ∗∇

2h+ P2 ∗∇h+ P3 ∗ h),

where P1, P2, P3 are tensors that depend on curvature of g(t) and up to second-order
spatial derivatives of p.

In the calculation of the linearization of M the crucial step is to calculate

d
dλ

∣∣∣
λ=0

LWλ
gλ =−

d
dλ

∣∣∣
λ=0

δ∗[gλ]ωλ,

where (ωλ)i := (gλ)ik W k
λ and Wλ =−g̃−1δ[gλ]G[gλ](g̃). In fact, the key point of

DeTurck’s trick is to collect the second-order covariant derivatives of h in the above
and realize that they cancel out the second line in (3-10). To see that we first collect
terms involving the first-order covariant derivatives of h in

d
dλ

∣∣∣
λ=0

(ωλ)i =∇
khki −

1
2∇i hk

k + other terms.

Then we collect the second-order covariant derivatives of h in

(3-12) d
dλ

∣∣∣
λ=0

((δgλ)
∗ωλ)i j =−∇i∇

khki −∇ j∇
khk j +∇i∇ j hk

k + other terms.

Therefore

(3-13) d
dλ

∣∣∣
λ=0

M(gλ)=
∂

∂t
h−1h+ 2P′g+M i jk

1 ∇i h jk +M i j
2 hi j ,

where M1 depends only g(t) and P(g) and M2 depends on the curvature of g(t)
and P(g). To summarize, we have this:

Lemma 3.3. Suppose that g(t), t ∈[0, T ], is a family of metrics such that the elliptic
operator (m − 1)1g(t)+ s0 is invertible for all t ∈ [0, T ]. Then the linearization
of the DeTurck conformal Ricci flow equations (3-2) at the metrics g(t) in the
directions of the symmetric 2-tensors h(t) is

(3-14) DM(g)(h)= ∂

∂t
h−1h+ 2P′g+M1 ∗∇h+M2 ∗ h,

where

P′ = ((m− 1)1+ s0)
−1(P1 ∗∇

2h+ P2 ∗∇h+ P3 ∗ h).

Here P1, P2, P3 are tensors depending on curvature of g(t) and up to the second-
order derivatives in spatial variables of P(g), and M1,M2 are tensors depending
on the curvature of g(t) and the function P(g).
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3.3. Short-time existence on closed manifolds. Let us first solve the conformal
Ricci flow on a compact manifold Mm . There are many books that are good
references for linear and nonlinear systems of parabolic equations. We will mostly
use the book [Lunardi 1995, §5.1], in particular its Theorem 5.1.21, for existence
and standard estimates. We adopt the definitions of parabolic Hölder spaces from
[Lunardi 1995, pp. 175–177]. We use the same notations for parabolic Hölder
spaces of functions and of tensor fields when there is no confusion. To define norms
for tensor fields we may use the initial metric and local coordinate charts.

3.3.1. Preliminaries. Since we deal with systems of parabolic-elliptic equations,
we need to consider elliptic estimates with a time parameter. There is an advantage
to using only the supremum norm in the time variable, as indicated by the following
lemma.

Lemma 3.4. Let g(t), t ∈ [0, T ], be a family of smooth Riemannian metrics on a
compact manifold Mm . Suppose the operator (m − 1)1g(t) + s0 is invertible for
t ∈ [0, T ]. Then the equation

(3-15) (m− 1)1g(t) p(t)+ s0 p(t)= γ

has a unique solution p ∈ C0,2+α for each γ ∈ C0,α. Moreover, p satisfies the
estimate

(3-16) ‖p‖C0,2+α ≤ C‖γ ‖C0,α

for some constant C independent of γ .

Proof. In the light of the standard Schauder estimates for elliptic PDEs, we only
need to verify that p(t) is continuous in the time variable, which is a consequence
of the classical Bernstein estimates. �

The following interpolatory inclusion will be useful in the proof of the short-time
existence (cf. [Lunardi 1995, Lemma 5.1.1]).

Lemma 3.5. There is a constant C independent of T such that for any t1, t2 ∈ [0, T ]
we have

‖h(t1, · )− h(t2, · )‖Ck−2,α ≤ C · |t1− t2| · ‖h‖C1,k+α

for all h ∈ C1,k+α([0, T ]×M).

3.3.2. On linearized DeTurck conformal Ricci flow. We first solve the linearized
DeTurck conformal Ricci flow

(3-17)

 DM(g)(h)= ∂

∂t
h−1h+ 2P′g+M1 ∗∇h+M2 ∗ h = γ,

h(0, · )= 0

for appropriately given metrics g(t) for each γ ∈ C0,α.
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Proposition 3.6. Suppose that g(t), t ∈ [0, T ], is a family of metrics such that the
elliptic operator (m−1)1g(t)+s0 is invertible for all t ∈ [0, T ]. Then, for γ ∈C0,α ,
the initial value problem for (3-17) has a unique solution h ∈ C1,2+α. Moreover,

(3-18) ‖h‖C1,2+α([0,T ]×M) ≤ C‖γ ‖C0,α([0,T ]×M).

Proof. To use a contractive mapping-type argument we consider the Banach space

E1([0, T ∗])= {h ∈ C0,2+α
: h(0, · )= 0}.

Given h̃ ∈ E1([0, T ∗]), based on [Lunardi 1995, Theorem 5.1.21], we first solve a
usual system of linear parabolic equations

(3-19)


∂

∂t
h−1h+M1 ∗∇h+M2 ∗ h = γ̃ ,

h(0, · )= 0,

where γ̃ = γ − 2P′(h̃)g ∈ C0,α and P′(h̃) is defined by (3-11). We remark that it
takes some work to extend Theorem 5.1.21 in [Lunardi 1995] to be applicable to
our context, but there are no significant issues in doing so. Hence we may define
a map

9 : E1([0, T ∗])→ E1([0, T ∗]), 9(h̃)= h.

Note that if we set
v =9(h̃1)−9(h̃2),

then v satisfies
∂

∂t
v−1v+M1 ∗∇v+M2 ∗ v = 2(P′(h̃2)−P′(h̃1))g,

v(0, · )= 0.

Since
‖(P′(h̃2)−P′(h̃1))g‖C0,2+α ≤ C‖h̃1− h̃2‖C0,2+α

holds by (3-11) and Lemma 3.4, we obtain again from the estimates based on
Theorem 5.1.21 in [Lunardi 1995] that

‖v‖C1,4+α ≤ C‖h̃1− h̃2‖C0,2+α .

In the light of Lemma 3.5, we thus have

‖v(t1)− v(t2)‖C2,α ≤ C · |t1− t2| · ‖h̃1− h̃2‖C0,2+α .

In particular,

‖9(h̃1)−9(h̃2)‖C0,2+α ≤ CT ∗‖h̃1− h̃2‖C0,2+α .



A NOTE ON CONFORMAL RICCI FLOW 425

To apply the contractive mapping theorem we observe that

‖9(h̃)‖C0,2+α ≤ ‖9(0)‖C0,2+α +CT ∗‖h̃‖C0,2+α ,

where
‖9(0)‖C1,2+α ≤ C0‖γ ‖C0,α

for some constant C0, from the estimates based on Theorem 5.1.21 in [Lunardi
1995]. Thus

9 : BR = {h ∈ E1([0, T ∗]) : ‖h‖C0,2+α ≤ R} → BR,

for R= 2C0‖γ ‖C0,α , is a contractive mapping when T ∗ is appropriately small. Then,
by the uniqueness of the solution of the linear parabolic equation (3-17), one may
extend the solution of (3-17) to [0, T ] by steps in time of length T ∗. The estimate
(3-18) follows from the estimates based on Theorem 5.1.21 in [Lunardi 1995]. �

To summarize, we have established that

DM(g) : C1,2+α([0, T ]×M)∩ {h(0, · )= 0} → C0,α([0, T ]×M)

is an isomorphism, provided that g(t) satisfies the assumptions in Proposition 3.6.

3.3.3. Implicit function theorem argument. Next we solve the DeTurck conformal
Ricci flow and then the conformal Ricci flow. Our approach is to use an implicit
function theorem. Let us start with the following general implicit function theorem.

Lemma 3.7. Let X and Y be Banach spaces and let

H : X→ Y

be a C1 map. Suppose that for a point x0 ∈ X there are positive numbers δ and C
such that

‖(DH(x))−1
‖ ≤ C for all x ∈ Bδ(x0),

‖DH(x1)− DH(x2)‖ ≤
1

2C
for all x1, x2 ∈ Bδ(x0).

Then, if

‖H(x0)‖ ≤
δ

2C
,

there is x ∈ Bδ(x0) such that
H(x)= 0.

To apply the above implicit function theorem to the map

M : C1,2+α([0, T ]×M)∩ {g(0)= g0} → C0,α([0, T ]×M)
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to solve the DeTurck conformal Ricci flow we need to show that M is continuously
differentiable. In fact we have the following lemma.

Lemma 3.8. Let Mm be a compact manifold and let g(t) ∈ C1,2+α([0, T ]×M) be
a family of metrics such that the elliptic operator (m− 1)1g(t)+ s0 is invertible for
all t ∈ [0, T ]. Then there is a δ0 > 0 such that

‖DM(g1)− DM(g2)‖L(C1,2+α,C0,α) ≤ C‖g1− g2‖C1,2+α

for ‖gi − g‖C1,2+α ≤ δ0 in C1,2+α([0, T ]×M) and i = 1, 2.

Proof. We calculate, for any h ∈ C1,2+α⋂
{h(0, · )= 0}, that

(DM(g1)− DM(g2))h = (1g2 −1g1)h+ 2P′[g1](g1− g2)

+M1[g1] ∗ (∇g1h−∇g2h)+ (M1[g1] −M1[g2]) ∗∇g2h

+ (M2[g1] −M2[g2]) ∗ h+ 2(P′[g1] −P′[g2])g2.

It is easily seen that

‖M1[g1] ∗ (∇g1h−∇g2h)+ (M1[g1] −M1[g2]) ∗∇g2h‖C0,α

≤ C‖g1− g2‖C1,2+α‖h‖C1,2+α ,

‖(M2[g1] −M2[g2])h‖C0,α ≤ C‖g1− g2‖C1,2+α‖h‖C1,2+α ,

‖1g1h−1g2h‖C0,α ≤ C‖g1− g2‖C1,2+α‖h‖C1,2+α .

It is also easy to see that

‖P′[g1](g1− g2)‖C0,α ≤ C‖g1− g2‖C1,2+α‖h‖C1,2+α

under the assumption that ‖gi − g‖C1,2+α ≤ δ0, i = 1, 2, from the definition of P′ in
(3-11).

For the last remaining term we write

((m− 1)1+ s0)(P
′
[g2] −P′[g1])= (m− 1)(1g1 −1g2)P

′
[g1]

+ (P1[g2] − P1[g1]) ∗∇
2
g2

h+ P1[g1] ∗ (∇
2
g2
−∇

2
g1
)h

+ (P2[g2] − P2[g1]) ∗∇g2h+ P2[g1] ∗ (∇g2 −∇g1)h

+ (P3[g2] − P3[g1]) ∗ h

and apply Lemma 3.4. Then

‖P′[g1] −P′[g2]‖C0,α ≤ C‖g1− g2‖C1,2+α‖h‖C1,2+α ,

which implies that

‖(P′[g1] −P′[g2])g‖C0,α ≤ C‖g1− g2‖C1,2+α‖h‖C1,2+α .

Thus the proof is complete. �
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To apply Lemma 3.7, we consider the initial approximate solution

(3-20) ḡ(t)= g0+ tF(g0),

where F was introduced in (3-9). We then calculate that

(3-21) M(ḡ)=−F(g0+ tF(g0))+F(g0)

=−t
∫ 1

0
DF(g0+ θ tF(g0))dθ ·F(g0).

Now we are ready to state and prove the short-time existence theorem for the
conformal Ricci flow (a precise form of Theorem 1.1).

Theorem 3.9. Let Mm be a compact manifold with no boundary. Suppose that
g0 ∈ C4,α is a Riemannian metric on M such that the scalar curvature sg0 = s0 is
constant and that the elliptic operator (m − 1)1g0 + s0 is invertible. Then there
exists a small positive number T such that the conformal Ricci flow g(t) exists in
C1,2+α from the initial metric g0 for t ∈ [0, T ].

Proof. First we notice that Proposition 3.6 holds for the family of metrics ḡ(t)=
g0+tF(g0) in C1,2+α , for some appropriately small T such that the elliptic operator
(m− 1)1ḡ + s0 is invertible for all t ∈ [0, T ]. Therefore there is a constant C and
a small number δ0 such that

‖(DM(g))−1
‖ ≤ C and ‖DM(g1)− DM(g2)‖ ≤

1
2C

for all g, g1, g2,∈ B(δ0), where B(δ0)={g∈C1,2+α
: ‖g−ḡ‖C1,2+α ≤ δ0}, according

to Lemma 3.8. Next, after choosing an even smaller T if necessary, we observe
from (3-21) that

‖M(ḡ)‖C0,α ≤
δ0

2C
.

Hence Lemma 3.7 implies that DeTurck conformal Ricci flow ĝ(t) exists in C1,2+α

with the initial metric g0. Therefore, applying Lemma 3.1, we obtain the short-time
existence for conformal Ricci flow from the initial metric g0, since (3-7) is always
solvable for short time. �

3.4. Short-time existence on asymptotically flat manifolds. In this subsection we
establish the short-time existence of the conformal Ricci flow on asymptotically
flat manifolds. The idea of the proof is the same as of the proof in last subsection.
We remark here that the short-time existence of the Ricci flow on asymptotically
flat manifolds has been established independently in [Dai and Ma 2007; Oliynyk
and Woolgar 2007]. The approach in [Dai and Ma 2007] is to use the short-time
existence result in [Shi 1989] and the maximum principle to show that the Ricci
flow in fact remains asymptotically flat when starting from an asymptotically flat
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metric, while the approach in [Oliynyk and Woolgar 2007] is to establish short-time
existence of the Ricci flow based on weighted function spaces. Our approach is
similar to the one in [Oliynyk and Woolgar 2007], since neither short-time existence
on noncompact manifolds nor a maximum principle are available for the conformal
Ricci flow.

3.4.1. Analysis on asymptotically flat manifolds. We first briefly introduce asymp-
totically flat manifolds according to [Lee and Parker 1987] and then construct
appropriate parabolic Hölder spaces on them.

Definition 3.10 [Lee and Parker 1987, Definition 6.3]. A Riemannian manifold
Mm with a C2-metric g is called asymptotically flat of order τ > 0 if there exists
a decomposition M = M0 ∪ M∞ (with M0 compact) and a diffeomorphism 9 :

M∞→ Rn
\ BR(E0) for some R > 0, satisfying

g(z)= ge(z)+ O(ρ−τ ), ∂k g(z)= O(ρ−τ−1), ∂k∂l g(z)= O(ρ−τ−2),

where ge is the standard Euclidean metric and ρ=ρ(z)=|z|→∞ in the coordinates
z = (z1, · · · , zm) induced on M∞ by the diffeomorphism 9.

We give the definition of weighted Hölder spaces Ck,α
β from [Lee and Parker

1987, p. 75]. Again we will use the same notations for weighted Hölder spaces
of functions and of tensor fields if there is no confusion. We use local coordinate
charts and a given metric whenever it is necessary for the definition of Hölder
spaces of tensor fields on asymptotically flat manifolds.

Fix a number T > 0. Analogous to [Lunardi 1995, pp. 175–177], we define a
parabolic weighted Hölder space

C0,k+α
β :=

{
h ∈ C(M ×[0, T ]) : h(t) ∈ Ck,α

β and max
t∈[0,T ]

‖h(t)‖Ck,α
β
<∞

}
with the norm

‖h‖C0,k+α
β
:= max

t∈[0,T ]
‖h(t)‖Ck,α

β
.

Similarly we define the space

C1,k+α
β :=

{
h ∈ C0,k+α

β and ∂t h ∈ C0,k−2+α
β−2

}
with the norm

‖h‖C1,k+α
β
:= max

t∈[0,T ]
‖h(t)‖Ck,α

β
+ max

t∈[0,T ]
‖∂t h(t)‖Ck−2,α

β−2
.

We now recall the elliptic theory for weighted Hölder spaces, for example, from
[Lee and Parker 1987, Theorem 9.2] in our context.
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Lemma 3.11. Let (Mm, g(t)), for t ∈ [0, T ], be a family of asymptotically flat
manifolds with g(t)− ge ∈ C0,2+α

−τ for τ > 0. Then

1g(t) : C
0,2+α
β → C0,α

β−2

is an isomorphism for β ∈ (2−m, 0), that is, there is C such that

‖u‖C0,2+α
β
≤ C‖1g(t)u‖C0,α

β−2
.

Analogous to Lemma 3.5 we have a simple interpolatory inclusion.

Lemma 3.12. There is a constant C independent of T such that for any t1, t2 ∈
[0, T ], we have

‖h( · , t1)− h( · , t2)‖Ck−2,α
β−2
≤ C · |t1− t2| · ‖h‖C1,k+α

β

for all h ∈ C1,k+α
β (M ×[0, T ]).

3.4.2. Short-time existence on asymptotically flat manifolds. Here we assume that
the initial metric g0 on Mm is asymptotically flat and scalar flat. Thanks to [Schoen
and Yau 1979, Lemma 3.3 and Corollary 3.1], we know that one can always
conformally deform an asymptotically flat metric with nonnegative scalar curvature
into a scalar flat asymptotically flat metric. We will use the strategy of Section 3.3
to prove the short-time existence of conformal Ricci flow on asymptotically flat
manifolds.

First with changes of notations we are able to prove the isomorphism analogous
to Proposition 3.6. An extension of [Lunardi 1995, Theorem 5.1.21] to the weighted
parabolic Hölder spaces on asymptotically flat manifolds may be proven by the
standard argument through interior estimates and scaling invariance of the interior
estimates (cf. [Oliynyk and Woolgar 2007; Bartnik 1986; Lee and Parker 1987]).
The key is to realize that one may move in and out the weight for local estimates.

Proposition 3.13. Suppose that g(t), t ∈ [0, T0], is a family of asymptotically flat
metrics with g(t)− ge ∈ C0,2+α

−τ for τ ∈ (0,m − 2). Then there is a T∗ ∈ (0, T0]

such that, for any T ≤ T∗ and γ ∈ C0,α
−τ−2, the initial value problem for (3-17) has a

unique solution h ∈ C1,2+α
−τ . Moreover,

‖h‖C1,2+α
−τ (M×[0,T ]) ≤ C‖γ ‖C0,α

−τ−2(M×[0,T ])
.

This is to say that, for τ ∈ (0,m− 2),

DM(g) : C1,2+α
−τ (M ×[0, T ])∩ {h(0, · )= 0} → C0,α

−τ−2(M ×[0, T ])

is an isomorphism, provided that g(t) and T satisfy the assumptions in the above
Proposition 3.13. The restriction on the order τ of weight is solely used in solving
elliptic equations on weighted spaces in Lemma 3.11.
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To obtain a short-time existence of the DeTurck conformal Ricci flow we again
apply an implicit function theorem (Lemma 3.7) to the map

M :
{
g(t) : g(t)− ge ∈ C1,2+α

−τ (M ×[0, T ]) and g(0)= g0
}
→ C0,α

−τ−2(M ×[0, T ])

for any τ ∈ (0,m− 2) and T given from Proposition 3.13. Finally, we arrive at the
short-time existence of the conformal Ricci flow.

Theorem 3.14. Let (Mm, g0) be scalar flat and asymptotically flat with g0− ge ∈

C4,α
−τ and τ ∈ (0,m − 2). Then there exists a small positive number T such that

the conformal Ricci flow g(t) from the initial metric g0 exists for t ∈ [0, T ] and
g(t)− ge ∈ C1,2+α

−τ (M ×[0, T ]).

Proof. As in Section 3.3.3 we first verify that

‖DM(g1)− DM(g2)‖L(C1,2+α
−τ ,C0,α

−τ−2)
≤ C‖g1− g2‖C1,2+α

−τ
.

The proof goes like the one for Lemma 3.8 with only changes of notation. We then
construct

ḡ(t)= g0+ tF(g0) ∈ ge+C1,2+α
−τ

as in Section 3.3.3 for g0− ge ∈ C4,α
−τ . Another issue one needs to take care of is

solving (3-7) to construct the conformal Ricci flow from the DeTurck conformal
Ricci flow. But, since W ∈ C0,1+α

−τ−1 , it is easy to solve (3-7) on the whole manifold
M for some short time. The rest of the proof goes like the one in Section 3.3.3
for Theorem 3.9 with little changes except in notation. Notice that the equivalence
between (1-1) and (1-2) holds because of the uniqueness of the bounded solution
of a linear parabolic equation on an asymptotically flat manifold. �

4. ADM mass under conformal Ricci flow

Asymptotically flat manifolds are used in general relativity to describe isolated
gravitational systems. The fundamental geometric invariant of an asymptotically
flat manifold is called the mass of the gravitational system. The so-called ADM
mass of an asymptotically flat manifold was first defined in [Arnowitt et al. 1960].

In general relativity the world is modeled by a 4-dimensional spacetime X4 with
a Lorentzian metric g. The physical law that describes the gravity induced by matter
in the spacetime is the famous Einstein equation

Ricg −
1
2 sgg = T,

where T is the energy-momentum-stress tensor that is supposed to reflect the nature
and state of matter in the spacetime. A time slice of a space-time that represents an
isolated gravitational system is an asymptotically flat 3-manifold M3.
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One of the most important solutions of Einstein equations is the Schwarzschild
spacetime, which represents the gravitational system of a static point particle of
mass m and whose time slice is an asymptotically flat metric

gSch = ge+
m
ρ

ge+ O(ρ−2)

on the punctured R3. The crucial test to validate the notion of mass in relativity is
whether its predictions reduce to those of Newtonian gravity under the circumstances
where Newtonian theory is known to be valid; when gravity is weak, motions are
much slower than the speed of the light, and material stresses are much smaller
than the mass-energy density (cf. [Wald 1984, 4.4]).

We now follow [Lee and Parker 1987, Definition 8.2] to introduce ADM mass
for asymptotically flat manifolds.

Definition 4.1. Given an asymptotically flat Riemannian manifold (Mm, g) with
asymptotic coordinates z, we define the ADM mass by (if the limit exists)

m(g)= lim
R→∞

ω−1
m−1

∫
SR

(∂i gi j − ∂ j gi i )n j dσ,

where ωm−1 is the volume of the unit sphere Sm−1, En= (n1, . . . , nm) is the outward
unit normal vector of the sphere SR = {z ∈Rm, |z| = R} and dσ is the area element
of SR .

Recall from [Lee and Parker 1987] that

Mτ :=
{
g = ge+ h : h ∈ C1,α

−τ and ∂ j∂i hi j − ∂ j∂ j hi i ∈ L1(M, dvolge)
}
.

After Definition 4.1 one wonders if the ADM mass is indeed a geometric invariant
for the asymptotically flat metric. This was confirmed by the following result:

Lemma 4.2 [Arnowitt et al. 1960; Bartnik 1986]. Suppose that g is an asymp-
totically flat metric in Mτ on Mm for τ > m−2

2 . Then the ADM mass m(g) is
independent of the choice of asymptotic coordinates at infinity.

Another important fact about the ADM mass is the following, observed in [Lee
and Parker 1987, (8.11); see also Lemma 9.4].

Lemma 4.3. Let g(t) be a smooth family of asymptotically flat metrics in Mτ on
Mm , for τ > m−2

2 . Then the mass m(g(t)) is differentiable and

d
dt

(
−

∫
M

sg(t) dvolg(t)+ωm−1m(g(t))
)
=

∫
M

G[g(t)] ·ϕ(t) dvolg(t),

where G[g(t)] = Ricg(t)−
1
2 sg(t)g(t) is the Einstein tensor and ϕ(t)= ∂t g(t).

Theorem 3.14 and Lemma 4.3 now entail the following theorem.
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Theorem 4.4. Let g0 be a scalar flat and asymptotically flat metric on Mm such
that g0−ge ∈C4,α

−τ for τ ∈ (m−2
2 ,m−2). Then the conformal Ricci flow g(t) starting

with g(0)= g0 exists for some short time and

g(t) ∈Mτ and g(t)− ge ∈ C1,2+α
−τ .

Moreover,
d
dt

m(g(t))=−2
∫

M
|Ricg(t)|

2 dvolg(t) .

In particular, the ADM mass is strictly decreasing under conformal Ricci flow,
except when g0 is the Euclidean metric.

Proof. To verify that the conformal Ricci flow g(t) stays in Mτ we only need to
verify that

∂ j∂i gi j (t)− ∂ j∂ j gi i (t) ∈ L1(M, dvolge).

Recall that [Lee and Parker 1987, (9.2)]

s = ∂ j∂i gi j − ∂ j∂ j gi i + O(ρ−2τ−2),

which implies that

∂ j∂i gi j − ∂ j∂ j gi i = O(ρ−2τ−2) ∈ L1(M, dvolge)

for τ ∈ (m−2
2 ,m − 2). It is easily seen that the ADM mass is strictly decreasing

except when g0 is Ricci flat. Then, using [Bando et al. 1989, Theorem 1.5] and [Lee
and Parker 1987, Proposition 10.2], one concludes that g0 is the standard Euclidean
metric. Therefore the proof is complete. �

A quick application of the above Theorem 4.4 is a simple and direct proof of the
rigidity part of Schoen and Yau’s positive mass theorem.

Corollary 4.5 [Schoen and Yau 1979]. Suppose that (Mm, g) is asymptotically
flat manifold with nonnegative scalar curvature and that g− ge ∈C4,α

−τ for τ > m−2
2 .

If the ADM mass m(g) is zero, then (M, g) is isometric to the standard Euclidean
space Rm .

Proof. First we know that g has to be scalar flat. Otherwise one can conformally
deform the metric to a scalar flat one and decrease the ADM mass to be negative,
which is impossible due to the first part of the positive mass theorem of Schoen
and Yau. Next we invoke Theorem 4.4 and come to the same contradiction if g is
not flat. �
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