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ON REPRESENTATIONS OF GL2n.F /

WITH A SYMPLECTIC PERIOD

ARNAB MITRA

Given a nonarchimedean local field F , we classify the irreducible admissible
representations of GL4.F / and GL6.F / that bear a nontrivial linear form
invariant under the groups Sp2.F / and Sp3.F /, respectively. We propose a
few conjectures for the case of GL2n.F /, n > 3.

1. Introduction

Let G D GL2n.F / for F a nonarchimedean local field of characteristic 0 and let
H be a symplectic subgroup of G of rank n. A representation � of G is said to
have a symplectic period (or to be H -distinguished) if HomH .�jH ;C/¤ 0. give
a complete list of irreducible admissible representations of GL4.F / and GL6.F /
having a symplectic period. We also make a few conjectural statements for GL2n.F /
at the end.

The motivation for this problem comes from the work of Klyachko [1983] in
the case of finite fields. He found a set of representations generalizing the Gelfand–
Graev model, after which Heumos and Rallis [1990] studied the analogous notion in
the p-adic case. They also proved multiplicity-one theorems in the symplectic case.

Continuing this line of investigation, Offen and Sayag [2007a; 2007b; 2008]
proved the uniqueness property of the Klyachko models and multiplicity-one results
for irreducible admissible representations. They also showed the existence of the
Klyachko model for unitary representations. To state the results precisely we need
to introduce notation.

Let ı be a square integrable representation of GLr.F /. Denote by U.ı;m/ the
unique irreducible quotient of the representation,

�.m�1/=2ı� �.m�3/=2ı� � � � � ��.m�1/=2ı:

Proposition 1.1 [Offen and Sayag 2007a]. For i D 1; : : : ; t , let ıi be square-
integrable representations of GLri

.F / and mi be positive integers. Let �i be a
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character of GL2miri
.F /. Then the representation

�1U.ı1; 2m1/� � � � ��tU.ıt ; 2mt /

has a symplectic period.

Further define

BD fU.ı; 2m/; �˛U.ı; 2m/� ��˛U.ı; 2m/g;

where ı varies over the discrete series representations and ˛ 2 R such that j˛j< 1
2

.

Theorem 1.2 [Offen and Sayag 2007b]. Let �D �1�� � ���r such that �i 2B. Then
� has a symplectic period. Conversely, if � is an irreducible unitary representation
with a symplectic period, there exist �1; : : : ; �r 2B such that � D �1 � � � � � �r .

A natural question now is to classify all irreducible admissible representations
that admit a symplectic model. For GL4.F / and GL6.F / we have:

Theorem 1.3. Using the notation introduced for Proposition 1.1, an irreducible
admissible representation of GL4.F / with a symplectic period is a product of factors
�iU.ıi ; 2ni /, where the �i are (not necessarily unitary) characters of F �.

Theorem 1.4. Using the notation introduced for Proposition 1.1, an irreducible
admissible representation of GL6.F / with a symplectic period is either a product of
�iU.ıi ; 2ni / (the �i are not necessarily unitary), or is a twist of Z.Œ1; ��; Œ�; �4�/
or its dual.

A few words about the proofs. It is a consequence of the uniqueness of the Kly-
achko models that irreducible cuspidal representations (which are generic) cannot
have a symplectic period. Since any nonsupercuspidal irreducible representation
is a quotient of a representation of the form IndGL2n

Pk;2n�k
.�˝ �/, � 2 Irr.GLk.F //,

� 2 Irr.GL2n�k.F // it is enough to study the problem for representations of these
types. For GL4.F / and GL6.F /, this reduces the problem to the analysis of
representations of the type �1��2 and �1��2��3, where each �i is an irreducible
representation of GL2.F /. For the GL4.F / case, using Mackey theory we obtain
an exhaustive list of (not necessarily irreducible) representations. Then we study
every possible quotient to obtain a complete list of irreducible Sp2.F /-distinguished
representations of GL4.F /. In the GL6.F / case, we first reduce the problem to
the case when none of the �i are cuspidal. Next we reduce it to the case when at
most one of the �i is an irreducible principal series. Then we do a case-by-case
analysis (for each �i to be one of the three types of irreducible representations of
GL2.F /— a character, an irreducible principal series or a twist of the Steinberg
representation, with at most one being an irreducible principal series), analyzing all
possible subquotients for symplectic periods. A common way of showing that an
irreducible subquotient is not H -distinguished, especially in the GL6.F / case, is
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to express it as a quotient of a representation, which is then shown not to have a
symplectic period using Mackey theory.

A word on the organization of the paper. Section 2 notation and preliminary
notions used in the paper. Orbit structures and Mackey theory are covered in detail
in Section 3. We analyze the representations of the form �1 ��2 and obtain the
theorem for GL4.F / in Section 4. In Section 5, we analyze the representations of the
form �1��2��3, collecting all the irreducible Sp3.F /-distinguished subquotients.
Using this analysis we obtain the theorem for GL6.F /. In Section 6 we make a
few conjectures for the general case based on the available examples.

2. Notation and preliminaries

Notation. Throughout the paper, F will denote a nonarchimedean local field of
characteristic 0.

Following the notation of [Bernstein and Zelevinsky 1976], we denote the set
of all smooth representations of an l-group G by Alg.G/ and the subset of all
irreducible admissible representations by Irr.G/. If � 2 Alg.G/, we denote by Q� ,
its contragredient.

Any character of GLn.F / can be thought of as a character of F � via the deter-
minant map. Given a character � of F � and a smooth representation � of GLn.F /
we will denote the twist of � by � simply by �� , ��.g/ WD �.det.g//�.g/. Unless
otherwise mentioned, Stn and 1n will be used to denote the Steinberg and the trivial
character of GLn.F /. The norm character �.g/ WD jdetgj will be denoted by �.

Let Pn1;:::;nr
be the group of block upper triangular matrices corresponding to

the tuple .n1; : : : ; nr/. Let Nn1;:::;nr
denote its unipotent radical. Let ıPn1;:::;nr

denote the modular function of the group Pn1;:::;nr
. Since a parabolic normalizes its

unipotent radical, this defines a character of Pn1;:::;nr
(the module of the automor-

phism n! pnp�1 of Nn1;:::;nr
for p 2 Pn1;:::;nr

). Call this character ıNn1;:::;nr
.

Then we have ıNn1;:::;nr
D ıPn1;:::;nr

. For an element p 2 Pn1;:::;nr
, with its Levi

part equal to diag.g1; : : : ; gr/, we have

(2-1) ıPn1;:::;nr
.p/Djdetg1jn2C���Cnr jdetg2j�n1Cn3C���Cnr � � � jdetgr j�n1����nr�1:

The induced representation of .�;H;W / 2 Alg.H/ to G is the following space
of locally constant functions

IndGH� D ff WG!W j f .hg/D ı
1=2
H ı

�1=2
G �.h/f .g/ for all h 2H; g 2Gg;

where ıG and ıH are the modular functions of G and H respectively. G acts
on the space by right action. Compact induction from H to G is denoted by
indGH� and is the subspace of IndGH� consisting of functions compactly supported
mod H . Occasionally we will use nonnormalized induction (see Remark 2.22
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of [Bernstein and Zelevinsky 1976] for the definition), although unless otherwise
mentioned induction is always normalized. Given representations �i 2 Irr.GLni

.F //

(i D 1; : : : ; r), extend �1˝� � �˝�r to Pn1;:::;nr
so that it is trivial on Nn1;:::;nr

. We
denote by �1 � � � � � �r the representation IndGLn

Pn1;:::;nr
.�1˝ � � �˝ �r/.

The Jacquet functor with respect to a unipotent subgroup N is denoted by rN
and is always normalized.

If � 2 Irr.GLn.F //, then there exists a partition of n and a multiset of cuspidal
representations f�1; : : : ; �rg corresponding to it such that � can be embedded in
�1 � � � � � �r . This multiset is uniquely determined by � and called its cuspidal
support. For the purposes of this paper, for a smooth representation of finite length
define it to be the union (as a set) of all the supports of its irreducible subquotients.

Preliminaries on segments. We briefly recall the notation and the basic definition
of segments as introduced in [Zelevinsky 1980]. Given a cuspidal representation
� of GLm.F /, a segment is a set of the form f�; ��; : : : ; ��k�1g, with k > 0; we
also write it as Œ�; ��k�1�. Given a segment �D Œ�; ��k�1�, the unique irreducible
submodule and the unique irreducible quotient of �� � � � � ��k�1 are denoted by
Z.�/ and Q.�/ respectively.

For �1 D Œ�1; �k1�1�1� and �2 D Œ�2; �k2�1�2�, we say that �1 and �2 are
linked if �1 ª �2, �2 ª �1 and �1 [�2 is also a segment. If �1 and �2 are
linked and �1\�2 D �, then we say that �1 and �2 are juxtaposed. If �1 and
�2 are linked and �2 D �k�1, where k > 0, we say that �1 precedes �2. Given a
multiset aD f�1; : : : ; �rg of segments, let

�.a/ WDZ.�1/� � � � �Z.�r/:

If �i does not precede �j for any i < j , �.a/ is known to have a unique irre-
ducible submodule, which will be denoted by Z.�1; : : : ; �r/. By Theorem 6.1 of
[Zelevinsky 1980], this submodule is independent of the ordering of the segments
as long as the “does not precede” condition is satisfied. Hence we simply denote
it by Z.a/. In this situation, a similar statement holds for quotients as well and
the unique irreducible quotient of Q.�1/� � � � �Q.�r/ is denoted by Q.a/. For
example, the trivial character 1n of GLn.F / is Z.Œ��.n�1/=2; �.n�1/=2�/, while Stn
is Q.Œ��.n�1/=2; �.n�1/=2�/.

We say a multiset aD f�1; : : : ; �rg is on the cuspidal line of �, where � is a
cuspidal representation of some GLn.F /, if �i � f�k�gk2Z for all i .

Preliminaries on GLn.F / and symplectic periods. We now collect a few basic
results on GLn.F / and symplectic periods needed in the sequel. The following
result is used to calculate explicitly the quotients and the submodules in quite a few
cases in the proofs of the main theorems.
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Theorem 2.1 [Zelevinsky 1980]. Let �1 and �2 be segments. If �1 and �2
are linked, put �3 D �1 [ �2 and �4 D �1 \ �2. The representation � D
Z.�1/�Z.�2/ is irreducible if and only if�1 and�2 are not linked. If�1 and�2
are linked then � has length 2. If �2 precedes �1 then � has a unique irreducible
submodule Z.�1; �2/ and a unique irreducible quotient Z.�3/�Z.�4/. If �1
precedes �2 then � has a unique irreducible submodule Z.�3/�Z.�4/ and a
unique irreducible quotient Z.�1; �2/.

Using the Zelevinsky involution and Rodier’s theorem that Q.�1; �2/ is taken
to Z.�1; �2/ we have a quotient version of this lemma.

Theorem 2.2. Let �1 and �2 be segments. If �1 and �2 are linked, put �3 D
�1[�2 and�4D�1\�2. The representation �DQ.�1/�Q.�2/ is irreducible
if and only if�1 and�2 are not linked. If�1 and�2 are linked then � has length 2.
If �2 precedes �1 then � has the unique irreducible submodule Q.�3/�Q.�4/.
If �1 precedes �2 then � has the unique irreducible quotient Q.�3/�Q.�4/.

Lemma 2.3 [Casselman 1995]. Let � D �1 � � � � � �m, where �i 2 Irr.GLi .F //.
Define M�D Q�m � � � � � Q�1. Then � is an irreducible quotient of � if and only if Q� is
an irreducible quotient of M�.

Let Ext1G. � ;C/ be the derived group of the HomG. � ;C/ functor (for details, see
[Prasad 1990; 1993]).

Lemma 2.4. Let H D Spn.F /. Then Ext1H .C;C/ is trivial.

Proof. An element of Ext1H .C;C/ corresponds to an exact sequence

0! C
i
! V

j
! C! 0

of H -modules, or equivalently a homomorphism from H to the group of upper
triangular unipotent subgroup of GL2.C/. Since H has no abelian quotients, there
are no such nontrivial maps and we have the lemma. �

Theorem 2.5 [Offen and Sayag 2008]. Let � 2 Irr.GLn.F //. If � embeds in a
Klyachko model, it does so in a unique Klyachko model and with multiplicity at
most one.

3. Orbit structures and Mackey theory

Let X be a subspace of a symplectic space .V; h ; i/ of dimension 2n. Let

X? D fy 2 V j hy; xi D 0 for all x 2Xg:

Define Rad X DX \X?. Note that X=Rad X inherits the symplectic structure of
V , becomes a nondegenerate symplectic space and hence has even dimension.

The next lemma is a variant of the classical theorem of Witt for quadratic forms.



440 ARNAB MITRA

Lemma 3.1 (Witt). (a) Let X1; X2 be subspaces of V of same dimension. Then
there exists a symplectic automorphism � of V , taking X1 to X2 if and only if
dim RadX1 D dim RadX2.

(b) Let X1; X2 be subspaces of V and � WX1!X2 be a symplectic isomorphism.
Then � extends to a symplectic automorphism of V .

It follows from this lemma that if X is a k-dimensional subspace of V , and PX
is the parabolic subgroup of GL.V / consisting of automorphisms of V leaving X
invariant, then Sp.V /nGL.V /=PX is in bijective correspondence with integers i ,
0� i � dimX , such that dimX � i is even. To get a set of representatives for these
double cosets, let

fe1; e2; : : : ; en; f1; f2; : : : ; fng

be the standard symplectic basis of V ; i.e., hei ; fj i D ıij . Define

Yr WD he1; : : : ; eri;

Y _r WD hf1; : : : ; fri;

Sk;r WD herC1; : : : ; e.kCr/=2; frC1; : : : ; f.kCr/=2i;

Tk;r WD hekCr
2
C1
; : : : ; en; fkCr

2
C1
; : : : ; fni;

Xk;r WD Yr CSk;r :

Note that GL.V /=PX is the set of all k-dimensional subspaces of V on which
Sp.V / acts in a natural way. Therefore Sp.V /nGL.V /=PX is represented by a
certain set of k-dimensional subspaces of V , which can be taken to be the spaces
Xk;r with 0� r � k such that k� r is even.

Since dimX D dimXk;r , there exists an automorphism g 2 GL.V / taking X
to Xk;r . This automorphism gives an isomorphism from PX to PXk;r

. Using this
isomorphism a representation of PX can be considered to be a representation of
PXk;r

. By Mackey theory, the restriction of the representation IndGL.V /
PX

.�/ to
Sp.V / is obtained by gluing the representations:

indSp.V /
.Sp.V /\PXk;r

/
.ı
1=2
PX
� j.Sp.V /\PXk;r

//;

where the induction is nonnormalized. The isomorphism of PX with PXk;r
takes the

unipotent radical ofPX to the unipotent radical ofPXk;r
and hence the representation

of PXk;r
so obtained is of the same kind that appears in parabolic induction. This

is a special case for maximal parabolics of Proposition 3 of [Offen 2006].
For an isotropic subspace Y of V , the subgroup QY of Sp.V / stabilizing Y is a

parabolic subgroup of Sp.V /, with Levi decomposition

QY D
�
GL.Y /�Sp.Y ?=Y /

�
ËU;
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where U is the subgroup of Sp.V / preserving Y � Y ? and acting trivially on Y ,
Y ?=Y and V=Y ?.

We fix a symplectic basis of V and identify the group of linear transformations
with the corresponding group of matrices, although we emphasize that the following
proposition and its corollary are independent of the choice of the basis.

Proposition 3.2. The subgroupHk;r of Sp.V / stabilizing the subspaceXk;r of V is

Hk;r D
�
GL.Yr/�Sp.Sk;r/�Sp.Tk;r/

�
:Uk;r ;

where Uk;r is the unipotent group inside Sp.V / consisting of automorphisms of V
of the form 0BB@

Ir A B C

0 Ik�r 0 A0

0 0 I2n�.kCr/ B
0

0 0 0 Ir

1CCA ;
where A 2 Hom.Sk;r ; Yr/, B 2 Hom.Tk;r ; Yr/, the matrix C 2 Hom.Y _r ; Yr/ is
symmetric, and A0 2 Hom.Y _r ; Sk;r/; B

0 2 Hom.Y _r ; Tk;r/ are adjoint to A;B .

Proof. Note that Hk;r is nothing but the symplectic automorphisms of V preserving
the flag 0� Yr DXk;r \X?k;r �Xk;r �Xk;r CX

?
k;r
DXk;r C Tk;r D Y

?
r � V .

Hence Hk;r acts on the successive quotients of this filtration, giving rise to a surjec-
tive homomorphism to GL.Yr/�Sp.Sk;r/�Sp.Tk;r/ with kernel Uk;r consisting
of the subgroup of Sp.V / preserving the flag and acting trivially on successive
quotients. Clearly Uk;r acts trivially on the isotropic subspace Yr , on Y ?r and on
Y ?r =Yr D Sk;rCTk;r . The well-known knowledge of the structure of the parabolic
in Sp.V / defined by Yr proves the assertion of the proposition. �

Corollary 3.3. (1) The modular character ık;r of the group Hk;r is

ık;r.diag.g; h1; h2; tg�1//D jdetgjrCaCbC1;

where r D dimYr , aD dimSk;r D k� r , b D dimTk;r D 2n� .kC r/, and
g 2 GL.Yr/.

(2) By (2-1) we have ıP .diag.g; h1; h2; tg�1// D jdetgj2rCaCb , where we set
P D P.rCa;bCr/. Thus

ı
1=2
P

ık;r

�
diag.g; h1; h2; tg�1/

�
D jdetgj�1�.aCb/=2 D jdetgj�.n�rC1/: �

Define M to be the group GL.Yr/�Sp.Sk;r/�Sp.Tk;r/ and identify it with

GLr.F /�Sp.k�r/=2.F /�Sp.2n�k�r/=2.F /
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via the fixed basis. Call H the group Spn.F / defined with respect to this sym-
plectic basis. Further let N D N1 � N2, where N1 and N2 are the unipotent
subgroups of GLk.F / and GL2n�k.F / corresponding to the partitions .r; k�r/
and .2n�k�r; r/, respectively. Let �1 2 Irr.GLk.F // and �2 2 Irr.GL2n�k.F //.
Call � the representation of P D P.k;2n�k/ obtained by extending �1˝�2 to P in
the usual way.

By Frobenius reciprocity and Corollary 3.3, we get

HomH
�
indHHk;r

.ı
1=2
P � jHk;r

/;C
�
D HomMUk;r

�
��.n�rC1/�1˝ �2;C

�
:

Clearly,

HomM:Uk;r

�
��.n�rC1/�1˝ �2;C

�
D HomMN

�
��.n�rC1/�1˝ �2;C

�
:

Since the normalized Jacquet functor is left adjoint to normalized induction by
Proposition 1.9(b) of [Bernstein and Zelevinsky 1977], we obtain

HomMN
�
��.n�rC1/�1˝ �2;C

�
D HomM

�
rN .�

�.n�rC1/�1˝ �2/; ı
�1=2
N

�
D HomM

�
��.n�rC1/ı

1=2
N1
rN1

.�1/˝ ı
1=2
N2
rN2

.�2/;C
�
:

Now let A and B have determinant 1. By (2-1), we have

ıN1

�
g �

0 A

�
D jdetgj.k�r/; ıN2

�
B �

0 tg�1

�
D jdetgj2n�.kCr/:

Define ˛ to be the character of M such that ˛.diag.g; h1; h2; tg�1// D ��1.g/.
Plugging in the value of the delta functions we get

(3-1) HomH
�
indHHk;r

.ı
1=2
P � jHk;r

/;C
�
D HomM

�
˛.rN1

.�1/˝ rN2
.�2//;C

�
:

From this we have the following lemma for GL2n.F /.

Lemma 3.4. Let �i D Z.�i1; : : : ; �
i
ki
/ 2 Irr.GLni

.F // for i D 1; : : : ; s be such
that the following conditions are satisfied:

(1) For i ¤ j , the segments �imi
and �jmj

are disjoint and not linked, for all
mi D 1; : : : ; ki and all mj D 1; : : : ; kj .

(2)
sP
iD1

ni is even and � WD �1 � � � � ��s has a symplectic period.

Then each ni is even and every �i has a symplectic period.
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Proof. Condition (1) forces � to be irreducible (by Proposition 8.5 of [Zelevinsky
1980]). Thus it is enough to prove the lemma for s D 2.

Let �1 2 Irr.GLn1
.F // and �2 2 Irr.GLn2

.F //. Now, since rN1
.�1/ lies in

Alg.GLr.F /�GLn1�r.F // and the functor rN1
takes finite length representations

into ones of finite length ([ibid.], Proposition 1.4), up to semisimplification it is
of the form

Pt1
iD1 �1i ˝ �1i for some t1 > 0, where �1i 2 Irr.GLr.F // and �1i 2

Irr.GLn1�r.F // for all i D 1; : : : ; t1. Similarly, up to semisimplification, rN2
.�2/

is equal to
Pt2
jD1 �2j ˝�2j , where �2j 2 Irr.GLn2�r.F // and �2j 2 Irr.GLr.F //.

We claim that for any � 2 Irr.GLm.F //, the cuspidal support (page 438) of rN .�/
is always a subset (as a set) of the cuspidal support of � . Assume �DZ.�1; : : : ; �l/.
The claim follows from the geometrical lemma (Lemma 2.12 of [Bernstein and
Zelevinsky 1977]) applied to rN .Z.�1/�� � ��Z.�l//, along with the observation
that rN .�/ is a submodule of it.

Together with condition (1) of the lemma, this claim implies the vanishing of
HomGLr

.��1�1i ˝ Q�2j ;C/ for every pair i; j . By (3-1) and the realization of
contragredient representations due to Gelfand and Kazhdan (cf. Theorem 7.3 of
[Bernstein and Zelevinsky 1976]), this implies

HomH
�
indHHn1;r

.ı
1=2
Pn1;n2

.�1˝�2/jHn1;r
/;C

�
D 0

unless r D 0. This along with condition (2) forces n1; n2 to be even and �1; �2
both to have symplectic periods. �

Lemma 3.5. Let�1 and�2 be segments of even lengths such that their intersection
is of odd length. Then the representation � DZ.�1; �2/ has a symplectic period.

Proof. If possible, let HomH .�;C/ D 0. Define the segments �3 D �1 [�2
and �4 D �1 \ �2. Without loss of generality assume �1 precedes �2. By
Theorem 2.1, � sits inside the following exact sequence of GL2n.F / modules:

0! � !Z.�2/�Z.�1/!Z.�3/�Z.�4/! 0:

Observe that �3 and �4 are segments of odd length. So, Z.�3/�Z.�4/ has a
mixed Klyachko model by Theorem 3.7 of [Offen and Sayag 2007b] and hence by
Theorem 2.5, it is not H -distinguished. Since HomH

�
Z.�2/�Z.�1/;C

�
D 0 if

HomH
�
Z.�3/�Z.�4/;C

�
D 0 and HomH .�;C/D 0, we obtain a contradiction

with Proposition 1.1. �

Lemma 3.6. If �1 and �2 are juxtaposed segments of even lengths in the cuspidal
line of 11 (the trivial representation of GL1.F /), the representation � DZ.�1; �2/
does not have a symplectic period.



444 ARNAB MITRA

Proof. Define�3D�1[�2 and let 2n be its length. In fact, twisting it by an appro-
priate power of �, without loss of generality we can take �3 to be Œ��

2n�1
2 ; �

2n�1
2 �

and hence Z.�3/D 1. Let

�1 D Œ�
� 2n�1

2 ; �
a
2 � and �2 D Œ�

b
2 ; �

2n�1
2 �:

Let k D 2n�1
2
�
b
2
C 1, the length of �2. Now assume k � n.

Let �1 D Z.�2/ and �2 D Z.�1/. Let us first calculate HomH .�1 ��2;C/.
By (3-1), for r ¤ 0;HomH

�
indHHk;r

.ı
1=2
P �1˝�2jHk;r

/;C
�

is isomorphic to

HomGLr .F /�Sp k�r
2
.F /�Sp

n�
kCr

2

.F /

�
�n�

2k�r
2
�1
˝�n�1�

k�r
2 ˝��

kCr
2 ˝�n�k�

r
2 ;C

�
;

where GLr.F / acts on the last term via the contragredient. Now, consider

HomGLr .F /

�
�n�

2k�r
2
�1
˝ ��.n�k�

r
2
/;C

�
:

This is nonzero only if n� 2k�r
2
� 1D n� k� r

2
, which is impossible since k is

even by the hypothesis of the lemma. Thus

HomH
�
indHHk;r

.ı
1=2
P �1˝�2jHk;r

/;C
�
D 0 if r ¤ 0:

On the other hand, if r D 0 we have

HomH
�
indHHk;0

.ı
1=2
P �1˝�2jHk;0

/;C
�

D HomSp k
2
.F /

�
�1;C

�
˝HomSp

n�k
2
.F /.�2;C/D C:

Hence HomH .�1��2;C/ is at most one-dimensional. Now, we have the following
exact sequence of GL2n.F / modules (and hence of Spn.F / modules):

0!Z.�1; �2/
i
!Z.�2/�Z.�1/

j
! C! 0:

Applying the functor HomSpn.F /

�
::;C

�
to it we obtain the long exact sequence

0! HomSpn.F /

�
C;C

� j�
! HomSpn.F /

�
Z.�2/�Z.�1/;C

�
i�

! HomSpn.F /

�
Z.�1; �2/;C

� r�
! Ext1Spn.F /

�
C;C

�
! � � �

Observing that Ext1Spn.F /

�
C;C

�
D 0 (see Lemma 2.4) we get the following short

exact sequence:

0! C
j�

! HomSpn.F /

�
Z.�2/�Z.�1/;C

� i�
! HomSpn.F /

�
Z.�1; �2/;C

�
! 0:

Since j � is injective, Im.j �/ D C. By exactness, Ker.i�/ D C as well. Since
HomSpn.F /

�
Z.�2/�Z.�1/;C

�
was shown to be at most one-dimensional, it is
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equal to Ker.i�/. Thus Im.i�/D 0. But again by exactness, i� is surjective, thus
implying that

HomSpn.F /

�
Z.�1; �2/;C

�
D 0:

Thus we have the lemma if k � n. Since an irreducible representation has a
symplectic period if and only if its contragredient has so, we have the lemma in the
case k > n. �

4. Analysis in the GL4.F / case: proof of Theorem 1.3

In this section we prove Theorem 1.3. We begin with the following lemma.

Lemma 4.1. Let � be an irreducible representation of GL4.F / with a symplectic
period. Then there exists �i 2 Irr.GL2.F //; i D 1; 2 such that � appears as a
quotient of �1 ��2.

Proof. If � is a supercuspidal representation of GL4.F /, it is generic and hence
by Theorem 2.5 it doesn’t have a symplectic period. Thus � appears as a quotient
of either �1� �3, �3��1 or �1��2 (where �1 2 Irr.GL1.F //, �3 2 Irr.GL3.F //
and �1; �2 2 Irr.GL2.F //). In the last case we have nothing left to prove. If �
is a quotient of �3 � �1, by Lemma 2.3, Q� is a quotient of Q�1 � Q�3. Since an
irreducible representation has a symplectic period if and only if its contragredient
does, by applying Lemma 2.3 again we are reduced to the first case. So assume �
is a quotient of �1 � �3. Now if �3 is cuspidal, �1 � �3 is irreducible and generic.
Hence by the disjointness of the symplectic and Whittaker models it cannot have a
symplectic period. Thus assume �3 isn’t cuspidal.

Then �3 is a quotient of one of the representations of the form �01�ı2, ı2��01 or
�01��

00
1��

000
1 , where �01; �

00
1; �
000
1 are characters of GL1.F / and ı2 is a supercuspidal

of GL2.F /.
In the first case, �1 � �3 is a quotient of �1 ��01 � ı2. If �1 ��01 is irreducible,

the lemma is proved. If not, �1 � �01 � ı2 is glued from Z.�1 � �
0
1/ � ı2 and

Q.�1 ��
0
1/� ı2, where Z.�1 ��01/ and Q.�1 ��01/ are respectively the unique

irreducible submodule and unique irreducible quotient of �1 � �01. Thus any
irreducible quotient of �1 � �3 has to be a quotient of one of the two.

In the second case, since ı2 � �01 is irreducible, �1 � ı2 � �01 Š �1 � �
0
1 � ı2.

Thus we are back to the first case.
In the third case, if both �1��01 and �001��

000
1 are irreducible we are done. In case

at least one of them is reducible, we get the lemma by breaking �1��01��
00
1��

000
1 ,

as in the first case, into subquotients of the required form. �

By this lemma, it is enough to consider representations of the form �1 � �2,
where �1 and �2 are irreducible representations of GL2.F /. If � D �1 ��2 has
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an H -distinguished quotient, then � itself is H -distinguished. By Mackey theory
we get that .�1 ��2/jSp2.F /

is glued from the two subquotients

indHH2;0
.ı
1=2
P2;2

�1˝�2jH2;0
/ and indHH2;2

.ı
1=2
P2;2

�1˝�2jH2;2
/:

Analyzing the two subquotients (using (3-1)), it is easy to see that the necessary
conditions for � to have a symplectic period are that either �1; �2 are characters
of GL2.F / or �2 Š ��1�1. Any irreducible representation of GL2.F / is either a
supercuspidal, a character, an irreducible principal series or a twist of the Steinberg
representation. Thus any irreducible Sp4.F /-distinguished representation occurs as
a quotient of one of the representations listed in the next proposition.

Proposition 4.2. Let � be an irreducible admissible representation of GL4.F /
with a symplectic period. Then � occurs as a quotient of one of the following
representations � of GL4.F /:

(1) � D �2 ��02, where �2; �02 are characters of GL2.F /.

(2) � D �2 � ��1�2, where �2 is a supercuspidal of GL2.F /.

(3) �D�1��01��
�1�1��

�1�01, where �1; �01 are characters of F � and �1��01
is an irreducible principal series.

(4) �DQ.Œ�1��1=2; �1�1=2�/�Q.Œ�1��3=2; �1��1=2�/, where �1 is a character
of F �. �

Now we come to the theorem in the GL4.F / case. We state and prove an
equivalent version of Theorem 1.3 in terms of the Zelevinsky classification.

Theorem 4.3. This is the complete list of irreducible admissible representations �
of GL4.F / with a symplectic period:

(1) � DZ.Œ�2; ��2�/, where �2 is a cuspidal representation of GL2.F /.

(2) �DZ.�1; �2/, where�1D Œ�1��1=2; �1�1=2� and�2D Œ�1��3=2; �1��1=2�
(�1 is a character of F �).

(3) � D a character of GL4.F /.

(4) � D �2 ��02, where �2; �02 are characters of GL2.F /.

Proof. The strategy of the proof is to consider each representation in the list of
Proposition 4.2 and to check, for all irreducible quotients of each one, whether they
have a symplectic period.

Case I: � D �2 � �02. If �2 � �02 is irreducible, � D � has a symplectic period
by Proposition 1.1. So assume otherwise. Let �2 D Z.Œ�1��1=2; �1�1=2�/ and
�02 DZ.Œ�

0
1�
�1=2; �01�

1=2�/. There are four subcases:
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(1) �1D�01�. In this case, � DZ.Œ�01�
1=2; �01�

3=2�/�Z.Œ�01�
�1=2; �01�

1=2�/. By
Theorem 2.1, it has a unique irreducible quotient, which is

� DZ.Œ�01�
�1=2; �01�

3=2�/��01�
1=2:

By Theorem 3.7 of [Offen and Sayag 2007b], it has a mixed Klyachko model.
Hence, by Theorem 2.5, it doesn’t have a symplectic period.

(2) �1 D �01�
�1. Here, � DZ.Œ�01�

�3=2; �01�
�1=2�/�Z.Œ�01�

�1=2; �01�
1=2�/. By

Theorem 2.1, this has a unique irreducible quotient

� D �01Z.Œ�
�3=2; ��1=2�; Œ��1=2; �1=2�/;

which has a symplectic period by Lemma 3.5. Note that � is a twist of U.St2; 2/
and the fact that it has a symplectic period also follows from Proposition 1.1.

(3) �1 D �01�
2. In this case, � D Z.Œ�01�

3=2; �01�
5=2�/�Z.Œ�01�

�1=2; �01�
1=2�/.

This has a unique irreducible quotient � D Z.Œ�01�
�1=2; �01�

5=2�/. Thus � is
the character �1� of GL4.F / and has a symplectic period.

(4) �1 D �01�
�2. Here, � D Z.Œ�01�

�5=2; �01�
�3=2�/ � Z.Œ�01�

�1=2; �01�
1=2�/,

which, by Theorem 2.1, has a unique irreducible quotient

� DZ.Œ�01�
�5=2; �01�

�3=2�; Œ�01�
�1=2; �01�

1=2�/:

By Lemma 3.6, it doesn’t have a symplectic period.

Case II: � D �2 � �
�1�2. In this case, � has a unique irreducible quotient

U.��1=2�2; 2/ŠZ.Œ�
�1�2; �2�/. By Proposition 1.1 it has a symplectic period.

Case III: � D �1 ��01 � �
�1�1 � �

�1�01, where �1 ��01 is irreducible. There are
two further subcases:

(1) �01 ��1�
�1 is irreducible. This again can be broken down into two subcases.

(1a) �01 ¤ �1�
2. In this case, � Š �1 � ��1�1 ��01 � �

�1�01. The “does not
precede” condition (page 438) is satisfied and so � has a unique irreducible
quotient. Clearly, � has Z.Œ��1�1; �1�/�Z.Œ��1�01; �

0
1�/ as a quotient.

If it’s irreducible, it has a symplectic period by Proposition 1.1 and has
already been accounted for in case I. So assume the contrary. In that case
the segments are linked. But the assumption that �01��1�

�1 is irreducible,
together with �01 ¤ �1�

2, forces a contradiction. Hence irreducibility of
Z.Œ��1�1; �1�/�Z.Œ�

�1�01; �
0
1�/ is the only possibility.

(1b) �01 D �1�
2. In this case,

� Š �01�
�2
��01 ��

0
1�
�3
��01�

�1
Š �01�

�2
��01�

�3
��01 ��

0
1�
�1:

This representation has � D Z.Œ�01�
�3; �01�

�2�/ � Z.Œ�01�
�1; �01�/ as a

quotient. Since the cuspidal support of � is multiplicity free it has a unique
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irreducible quotient (by Proposition 2.10 of [Zelevinsky 1980]) and so any
H -distinguished irreducible quotient of � is a quotient of � . Thus they
have already been accounted for in case I.

(2) �01 ��1�
�1 is reducible. This happens if and only if �1 D �01 or �1 D �01�

2.
Again, we will deal with the cases separately.

(2a) �1D�01. The representation is of the form �1��1��1�
�1��1�

�1. Since
it satisfies the “does not precede” condition (page 438) it has a unique
irreducible quotient. It can be easily seen that � D Z.Œ�1�

�1; �1�/ �

Z.Œ�1�
�1; �1�/ is an irreducible quotient of this representation (and so is

the unique one). � has a symplectic period and has already been accounted
for in case I.

(2b) �1 D �01�
2. In this case, � Š �01�

2 ��01 ��
0
1� ��

0
1�
�1 Š �01 ��

0
1�
�1 �

�01�
2 � �01�. By an argument similar to the one used in (1b) above, we

conclude that this representation has already been accounted for in case I.

Case IV: � DQ.Œ�1��1=2; �1�1=2�/�Q.Œ�1��3=2; �1��1=2�/. By Theorem 2.2,
� has a unique irreducible quotient �1Q.Œ��3=2; ��1=2�; Œ��1=2; �1=2�/. As seen in
case I(2), it is a twist of U.St2; 2/ and has a symplectic period (by Proposition 1.1).

�

5. Analysis in the GL6.F / case

In this section we obtain the theorem for GL6.F /. The following lemma reduces
the analysis to representations of the form �1��2��3, where the �i are irreducible
representations of GL2.F /.

Lemma 5.1. Let � be an irreducible representation of GL6.F / with a symplectic
period. Then either � is of the form Z.Œ�3; ��3�/, where �3 is a supercuspidal
representation of GL3.F / or it occurs as a subquotient of a representation of the
form �1 ��2 ��3, where �1 2 Irr.GL2.F // for i D 1; 2; 3.

Proof. Since supercuspidal representations are generic, they don’t have a symplectic
period. Thus � appears as a subquotient of �1� �2, where �1 and �2 are irreducible
representations of GLk.F / and GL6�k.F / respectively. By interchanging �1 and �2
if necessary, we can assume k � 3.

Case 1: kD 1. If �2 is a cuspidal representation of GL5.F /, since �1 is a character,
�1��2 is irreducible and generic. Thus �2 occurs as a subquotient of a representation
induced from a maximal parabolic of GL5.F /. So � is either a subquotient of
�1���� .�2 Irr.GL1.F //, � 2 Irr.GL4.F /// or �1�� 0�� 00 .� 02 Irr.GL2.F //, � 002
Irr.GL3.F ///. Thus � is either a subquotient of �1 � � (where �1 2 Irr.GL2.F //)
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or of �2 � � 00 (where �2 2 Irr.GL3.F //) thus reducing the lemma to the next two
cases.

Case 2: k D 2. If �2 is a cuspidal representation of GL4.F /, �1 � �2 is irreducible
and doesn’t have a symplectic period, by Lemma 3.4. Thus, as earlier, �2 occurs as
a subquotient of a representation induced from a maximal parabolic of GL4.F /.
So � is either a subquotient of �1 ��� � .� 2 Irr.GL1.F //; � 2 Irr.GL3.F /// or
�1 � �

0 � � 00 .� 0 2 Irr.GL2.F //; � 00 2 Irr.GL2.F ///. In the first scenario � occurs
as a subquotient of �1 � �2 (where �1; �2 2 Irr.GL3.F //), reducing the lemma to
the next case, while in the second we have the lemma.

Case 3: k D 3. We will first show that if either of �1; �2 (say �1) is cuspidal then �
is of the form Z.Œ�3; ��3�/. Choose � 02 2 Irr.GL3.F // such that � is a quotient of
either �1 � � 02 or � 02 � �1.

Assume the former. Then �1 � � 02 also has a nontrivial Sp3.F /-invariant linear
form. Now, �1 � � 02jSp3.F /

is glued from

indHH3;3
.ı
1=2
P3;3

�1˝ �
0
2jH3;3

/ and indHH3;1
.ı
1=2
P3;3

�1˝ �
0
2jH3;1

/:

Since �1 is cuspidal, by (3-1), HomH .indHH3;1
.ı
1=2
P3;3

�1˝ �
0
2jH3;1

/;C/D 0. Hence,

HomH .indHH3;3
.ı
1=2
P3;3

�1˝ �
0
2jH3;3

/;C/¤ 0;

which is true if and only if � 02 D �
�1�1, again by (3-1) and a theorem of Gelfand

and Kazhdan (see [Bernstein and Zelevinsky 1976, Theorem 7.3]). Thus � equals
Z.Œ��1�1; �1�/.

If instead � is a quotient of � 02 � �1, replacing � by Q� gives us the desired result.
Thus assume now that none of the two are cuspidal. Then 9 �i , � 0i (i D 1; 2) such

that �i is a subquotient of �i � � 0i (where �i 2 Irr.GL1.F //; � 0i 2 Irr.GL2.F //).
Thus � is a subquotient of �1 ��2 � � 01 � �

0
2 and hence the lemma is proved. �

Next we prove a hereditary property for GL6.F / using the classification theorem
for GL4.F /.

Proposition 5.2. Let �1 2 Irr.GL2.F // and �2 2 Irr.GL4.F // be two irreducible
representations with symplectic periods. Then �1 � �2 has a symplectic period.
Similarly, if �1; �2; �3 are irreducible representations of GL2.F /, with a symplectic
period, then �1 ��2 ��3 has a symplectic period.

Proof. Any irreducible representation � of GL2.F / having a symplectic period is
a character, while by Theorem 1.3 any such representation of GL4.F / is either a
character, an irreducible product of two characters of GL2.F / or a representation
of the form U.ı; 2/. The proposition now follows from Proposition 1.1. �
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The following lemma is a consequence of Lemma 3.4 and the fact that cuspidal
representations are generic (and hence not symplectic).

Lemma 5.3. Let �1; �2; �3 be irreducible admissible representations of GL2.F /.
If one or more of the �i are cuspidal and � is an Sp3.F /-distinguished subquotient
of � D �1 ��2 ��3 then it is of the form �2 �Z.Œ�2; ��2�/, where �2 and �2 are
a character and a supercuspidal of GL2.F / respectively.

Proof. Without loss of generality let �3 be a supercuspidal. Call it �2. Now there
can be three cases depending on �1 and �2.

Case 1: None of �1 and �2 are cuspidal. In this case �2 is not in the cuspidal
support of �1��2 and hence any irreducible subquotient of � is of the form �2�J ,
where J is an irreducible subquotient of �1 ��2. By Lemma 3.4, it doesn’t have a
symplectic period.

Case 2: Both �1 and �2 are cuspidal. In this case � is of the form �2 � �
0
2 � �

00
2 .

If none of the pairs are linked or there is exactly one linked pair among the 3,
then again by Lemma 3.4, � doesn’t have an Sp3.F /-distinguished irreducible
subquotient. So � has to be either of the form �2 � ��2 � ��2, �2 � �2 � ��2 or
�2 � ��2 � �

2�2 (up to a permutation of the �i ).
If � D �2���2��2�2 (or a permutation), then it has 4 irreducible subquotients.

Of these, Q.Œ�2; �2�2�/ is generic and Z.Œ�2; �2�2�/ doesn’t have a symplectic
period (by Theorem 1.2). Now consider the subquotient Z.Œ�2�; Œ��2; �2�2�/. It
is the unique irreducible quotient of the representation �1 � �2, where �1 D
�2 and �2 D Z.Œ��2; �

2�2�/. Now, using (3-1), it can be easily checked that
HomH

�
indHH2;0

.ı
1=2
P2;4

�1˝�2jH2;0
/;C

�
and HomH

�
indHH2;2

.ı
1=2
P2;4

�1˝�2jH2;2
/;C

�
are both 0, thus implying HomH .�1��2;C/D 0. So, Z.Œ�2�; Œ��2; �2�2�/ doesn’t
have a symplectic period and by taking contragredients we conclude that neither
doesZ.Œ�2�2�; Œ�2; ��2�/. Thus � doesn’t have any irreducible subquotient carrying
a symplectic period.

If � D �2 � ��2 � ��2 (or a permutation), it is glued from the irreducible repre-
sentations ��2 �Z.Œ�2; ��2�/ and ��2 �Q.Œ�2; ��2�/. As in the above paragraph,
taking �1 D ��2 and �2 DZ.Œ�2; ��2�/ and using (3-1), it can be easily checked
that ��2 � Z.Œ�2; ��2�/ doesn’t have a symplectic period. The representation
��2 �Q.Œ�2; ��2�/ is generic and hence doesn’t have a symplectic period, by
Theorem 2.5. Similarly �2 � �2 � ��2 (or any of its permutations) cannot have an
Sp3.F /-distinguished subquotient either.

Case 3: Exactly one of �1 and �2 is cuspidal. Up to a permutation, � then is a
representation of the form �2��

0
2� �

0, where � 0 is an irreducible representation of
GL2.F /, which isn’t supercuspidal. If � 02 and �2 are linked and � 0 is a character
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then � has an Sp3.F /-distinguished subquotient of the required form. Otherwise,
again by Lemma 3.4, it doesn’t have one. �

Thus it reduces the analysis to the cases where each �i is either a character, an
irreducible principal series or a twist of the Steinberg. Note that (up to a permutation
of the �i ) there are 10 possible cases. Next we show that if at least two of the �i
are irreducible principal series representations, we need not consider those cases.
This reduces the analysis to the remaining 7 cases.

Lemma 5.4. Let �1; �2; �3 be irreducible admissible representations of GL2.F /
such that none of them are cuspidal. If two or more of the �i are irreducible
principal series representations and � is an Sp3.F /-distinguished subquotient of
� D�1��2��3 then it also appears as a subquotient of � 0D� 01��

0
2��

0
3, where

at most one of the � 0i is a principal series representation.

Proof. If � is as above, it is a subquotient of a representation of the form � D

�1�� � ���6, where each �i is a character of GL1.F /. It is easy to see that Lemma 3.4
implies that unless all the �i are in the same cuspidal line, � is an irreducible product
of a character of GL2.F / and an irreducible Sp2.F /-distinguished representation.
We count them in the case when all the three �i are characters. So without loss of
generality we can assume the �i to be integral powers of the character � of GL1.F /.
Say a character is linked to another if they are linked as one-element segments
(page 438): explicitly, �a and �b are linked if and only if a� b D˙1. If no two
of the characters appearing in � are linked, � is irreducible and generic and so �
cannot be its subquotient. So we can assume � Š 1� � � �a � �b � �c � �d .

Now, assume that there is a character among �a; : : : ; �d (say �a) that is not
linked to any of the other characters. Collecting all the �a together, we see that
�D�a�� � ���a�J for some irreducible representation J such that �a�� � ���a and
J satisfy the hypothesis of Lemma 3.4. So � cannot have an Sp3.F /-distinguished
subquotient. Thus we further assume that all the characters among �a; : : : ; �d are
linked to some other character.

Note that if there exists a partition of the characters of � such that at least two
different blocks of the partition consist of linked pairs, � is glued from subquotients
of the form �1 � �2 � �

n1 � �n2 , where �i is either a character or a twist of the
Steinberg. Thus � can also be obtained in the cases when two of the �i are characters,
two of them are twists of the Steinberg or one of the �i is a character and another
one is a twist of the Steinberg.

Thus if we show that, under the hypothesis that any two of the characters of �
are linked and such a partition of them doesn’t exist, � cannot have an irreducible
H -distinguished subquotient we are done. Lemma 5.5 precisely does that. �
Lemma 5.5. Call the characters �a and �b linked if and only if a� b D˙1. Let
� Š 1� � � �a � �b � �c � �d be such that every character of it is linked to some
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other character. Assume that there doesn’t exist any partition of the characters with
at least two blocks consisting of linked pairs. Then � cannot have an irreducible
Sp3.F /-distinguished subquotient.

Proof. If possible, let � be an Sp3.F /-distinguished subquotient of � . The hypoth-
esis of the lemma implies that the cuspidal support of � can have at most ��1 or
�2 along with 1 and �. Moreover, ��1 and �2 cannot both be there simultaneously
and in case the support only consists of 1 and �, � is one of the representations
1�1�1�1�1�� or 1���������� (up to a permutation of the characters).

If � has ��1 in the cuspidal support, 1 can be there only with multiplicity one
and so the only possible forms for � , up to a permutation of the characters, are
these:

��1�1��������; ��1���1�1������;

��1���1���1�1����; ��1���1���1���1�1��:

Consider the last representation first. There exists a permutation of factors such
that � is a quotient of the representation obtained by taking the product in that
order. An easy calculation, using arguments similar to those of case 1(a) below
(where all three �i are characters), shows that no permutation gives a product
which is H -distinguished. Thus � cannot have a symplectic period which is a
contradiction. So � cannot be ��1���1���1���1�1�� (or any permutation of
the characters). Similarly one checks that � cannot be ��1� ��1� ��1� 1� � � �
(or any permutation). Since the other two representations are contragredients of
the above two representations, they cannot have any H -distinguished subquotients
either. Thus � cannot be any permutation of one of them either and we conclude
that � cannot have ��1 in its cuspidal support.

Observe that the possible values of � if its cuspidal support has �2 instead of
��1 can all be obtained by appropriately twisting the contragredients of the ones
obtained in the ��1 case. So � cannot be one of them either and hence cannot have
�2 in its cuspidal support.

Thus � can only have 1s and �s in its cuspidal support. If � D 1�1�1�1�1��
(or any permutation of the characters), it is glued from Z.Œ1; ��/�1�1�1�1 and
Q.Œ1; ��/� 1� 1� 1� 1. For the first one take �1 DZ.Œ1; ��/; �2 D 1� 1� 1� 1
and use (3-1), as in case 1(a) below, to conclude that it doesn’t have a symplectic
period. The second one is generic and hence also cannot have symplectic period.
Thus again � cannot have � as a subquotient and so it cannot be a permutation
of 1� 1� 1� 1� 1� �. Taking contragredients we conclude that it cannot be a
permutation of 1� � � � � � � � � � either. This shows that even 1 and � cannot be
in the cuspidal support of � . This is a contradiction to our initial assumption that �
has an Sp3.F /-distinguished subquotient. �

Thus we need to analyze only the remaining seven cases.
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Case 1: �1; �2; �3 are all characters. The representations in this case are of the
form

� DZ.Œ�1; �1��/�Z.Œ�
0
1; �
0
1��/�Z.Œ�

00
1; �
00
1��/:

If there are no links among the three segments, the representation is an irreducible
product of characters of GL2.F / and is symplectic by Proposition 1.1. Assume
now that there is exactly one link. Without loss of generality we can assume that
Œ�01; �

0
1�� and Œ�001; �

00
1�� are linked, and that Œ�1; �1�� is not linked to either. Clearly

then, �1 ¤ �01; �
00
1. So, Œ�1; �1�� is disjoint and not linked to either Œ�01; �

0
1��

or Œ�001; �
00
1��. Observe that if a segment �1 is not linked to �2 and �3 (where

�2 and �3 are linked), it is not linked to �2 [�3 or �2 \�3 either. So by
Theorem 7.1 and Proposition 8.5 of [Zelevinsky 1980], each irreducible subquotient
of � is of the form Z.Œ�1; �1��/� �

0, where � 0 is an irreducible subquotient of
Z.Œ�01; �

0
1��/ � Z.Œ�

00
1; �
00
1��/. Moreover if the subquotient is H -distinguished,

observe then that Z.Œ�1; �1��/ and � 0 satisfy the hypothesis of Lemma 3.4. Thus
by Lemma 3.4 any irreducible Sp3.F /-distinguished subquotient is an irreducible
product of H -distinguished representations of GL2.F / and GL4.F /.

Hence we look at the cases where there are at least two links among the segments.
Without loss of generality we can assume �1 to be trivial. Following are the eight
possible cases:

(a) Z.Œ1; ��/�Z.Œ�; �2�/�Z.Œ�3; �4�/

(b) Z.Œ1; ��/�Z.Œ�; �2�/�Z.Œ�2; �3�/

(c) Z.Œ1; ��/�Z.Œ�2; �3�/�Z.Œ�4; �5�/

(d) Z.Œ1; ��/�Z.Œ�; �2�/�Z.Œ�; �2�/

(e) Z.Œ1; ��/�Z.Œ�2; �3�/�Z.Œ�2; �3�/

(f) Z.Œ1; ��/�Z.Œ�2; �3�/�Z.Œ�3; �4�/

(g) Z.Œ1; ��/�Z.Œ1; ��/�Z.Œ�; �2�/

(h) Z.Œ1; ��/�Z.Œ1; ��/�Z.Œ�2; �3�/

In each case we will evaluate all possible irreducible subquotients using [Zelevinsky
1980, Theorem 7.1], to determine whether it has a symplectic period.

(a) �DZ.Œ1; ��/�Z.Œ�; �2�/�Z.Œ�3; �4�/. In this case, all irreducible subquotients
of � are Z.Œ1; ��; Œ�; �2�; Œ�3; �4�/, Z.Œ1; �2�; Œ��; Œ�3; �4�/, Z.Œ1; �4�; Œ��/ and
Z.Œ1; ��; Œ�; �4�/. We now analyze each of these representations.

� �DZ.Œ1; ��; Œ�; �2�; Œ�3; �4�/ is the only irreducible submodule ofZ.Œ�3; �4�/�
Z.Œ�; �2�/�Z.Œ1; ��/. Using Lemma 2.3 and taking contragredients we get that
� is the unique irreducible quotient of � DZ.Œ1; ��/�Z.Œ�; �2�/�Z.Œ�3; �4�/.
Since Z.Œ�; �2�; Œ�3; �4�/ is a quotient of Z.Œ�; �2�/�Z.Œ�3; �4�/, � is also the
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unique irreducible quotient of Z.Œ1; ��/�Z.Œ�; �2�; Œ�3; �4�/.

Let �1 DZ.Œ1; ��/ and �2 DZ.Œ�; �2�; Œ�3; �4�/. Now, �1 ��2 is glued from

indHH2;0
.ı
1=2
P2;4

�1˝�2jH2;0
/ and indHH2;2

.ı
1=2
P2;4

�1˝�2jH2;2
/

(see Section 3). Since �2 doesn’t have a symplectic period (by Lemma 3.6),

HomH
�
indHH2;0

.ı
1=2
P2;4

�1˝�2jH2;0
/;C

�
D HomSp1

.�1;C/˝HomSp2
.�2;C/

is zero, by (3-1). On the other hand, HomH
�
indHH2;2

.ı
1=2
P2;4

�1˝�2jH2;2
/;C

�
equals

(5-1) HomGL2�Sp1

�
��1�1˝ r.2;2/;.4/.�2/;C

�
:

An application of the geometrical lemma ([Bernstein and Zelevinsky 1977,
Lemma 2.12]) shows that r.2;2/;.4/.Z.Œ�; �2�/�Z.Œ�3; �4�// is glued from the
irreducible representations Z.Œ�; �2�/˝Z.Œ�3; �4�/, Z.Œ�3; �4�/˝Z.Œ�; �2�/
and .�� �3/˝ .�2� �4/. Jacquet functor being an exact functor, r.2;2/;.4/.�2/
is glued from one or more of these terms. It can be checked that replacing
r.2;2/;.4/.�2/ by each of these three representations makes the group (5-1)
trivial.

Thus, we get that Z.Œ1; ��/�Z.Œ�; �2�; Œ�3; �4�/ doesn’t have a symplectic
period. If � had a symplectic period, this would have given a nontrivial Sp3.F /-
invariant linear functional of Z.Œ1; ��/�Z.Œ�; �2�; Œ�3; �4�/ (by composing the
one for � with the quotient map), a contradiction. Hence � doesn’t have a
symplectic period.

� If � D Z.Œ1; �2�; Œ��; Œ�3; �4�/, then � is the unique irreducible submodule of
Z.Œ�3; �4�/� � �Z.Œ1; �2�/. Using Lemma 2.3 and taking contragredients, �
is the unique irreducible quotient of Z.Œ1; �2�/ � � �Z.Œ�3; �4�/. Applying
Lemma 2.3 again, Q� is the unique irreducible quotient of Z.Œ��4; ��3�/���1�
Z.Œ��2; 1�/. By taking �1 D Z.Œ��4; ��3�/ and �2 D ��1 �Z.Œ��2; 1�/ and
a similar calculation as above shows that Z.Œ��4; ��3�/� ��1 �Z.Œ��2; 1�/,
and hence Q� , doesn’t have a symplectic period. Thus even � is not Sp3.F /-
distinguished.

� If � DZ.Œ1; �4�; Œ��/ŠZ.Œ1; �4�/�� (by Proposition 8.5 of [Zelevinsky 1980]),
by Theorem 2.1, it is an irreducible quotient of Z.Œ�3; �4�/�Z.Œ1; �2�/� �.
Now doing a similar calculation as in the first case by taking �1 DZ.Œ�3; �4�/
and �2 DZ.Œ1; �2�/��, we get that Z.Œ�3; �4�/�Z.Œ1; �2�/��, and hence � ,
doesn’t have a symplectic period.

� If � DZ.Œ1; ��; Œ�; �4�/, it has a symplectic period by Lemma 3.5.

This concludes case (a).
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(b) � DZ.Œ1; ��/�Z.Œ�; �2�/�Z.Œ�2; �3�/. Here the irreducible subquotients of
� areZ.Œ1; ��; Œ�; �2�; Œ�2; �3�/,Z.Œ1; �2�; Œ��; Œ�2; �3�/, Z.Œ1; ��; Œ�; �3�; Œ�2�/,
Z.Œ1; �3�; Œ��; Œ�2�/, Z.Œ1; �2�; Œ�; �3�/, and Z.Œ1; �3�; Œ�; �2�/. We now analyze
each of these representations.

� If � DZ.Œ1; ��; Œ�; �2�; Œ�2; �3�/, we have � DQ.Œ1; �2�; Œ�; �3�/ by Theorem
A.10(iii) of [Tadić 1986]. Twisting � by an appropriate power of � makes it
a unitary representation, which then turns out to be Sp3.F /-distinguished by
Theorem 1.2.

� If � D Z.Œ1; �2�; Œ��; Œ�2; �3�/, then � is the unique irreducible submodule of
Z.Œ�2; �3�/� � �Z.Œ1; �2�/. Using Lemma 2.3 and taking contragredients we
get that � is the unique irreducible quotient of � DZ.Œ1; �2�/���Z.Œ�2; �3�/.
Using Lemma 2.3 again, we get that Q� is the unique irreducible quotient
of Z.Œ��3; ��2�/ � ��1 � Z.Œ��2; 1�/. By taking �1 D Z.Œ��3; ��2�/ and
�2 D �

�1 �Z.Œ��2; 1�/, and doing a similar calculation as in (a), we get that
Z.Œ��3; ��2�/ � ��1 � Z.Œ��2; 1�/ and hence Q� , doesn’t have a symplectic
period. Thus even � is not Sp3.F /-distinguished.

� If � DZ.Œ1; ��; Œ�; �3�; Œ�2�/, it can be obtained by twisting the contragredient
of Z.Œ1; �2�; Œ��; Œ�2; �3�/, which, as showed in the last paragraph, doesn’t have
a symplectic period.

� If � DZ.Œ1; �3�; Œ��; Œ�2�/, it is the unique irreducible submodule of

�2 � � �Z.Œ1; �3�/ŠZ.Œ1; �3�/� �2 � �:

Thus it is the unique irreducible submodule of Z.Œ1; �3�/�Q.Œ�; �2�/. Using
Lemma 2.3 and taking contragredients we get that � is the unique irreducible
quotient of Q.Œ�; �2�/�Z.Œ1; �3�/. Now doing a similar calculation as in (a) by
taking �1DQ.Œ�; �2�/ and �2DZ.Œ1; �3�/, we get thatQ.Œ�; �2�/�Z.Œ1; �3�/,
and hence � , doesn’t have a symplectic period.

� If � DZ.Œ1; �2�; Œ�; �3�/, by Theorem A.10(iii) of [Tadić 1986],

� DQ.Œ1; ��; Œ�; �2�; Œ�2; �3�/:

Twisting � by an appropriate power of � makes it a unitary representation. By
Theorem 1.2 it doesn’t have a symplectic period.

� If � DZ.Œ1; �3�; Œ�; �2�/ŠZ.Œ1; �3�/�Z.Œ�; �2�/, it has a symplectic period
by Proposition 5.2.

This concludes case (b).

(c) � D Z.Œ1; ��/�Z.Œ�2; �3�/�Z.Œ�4; �5�/. Here the irreducible subquotients
of � are Z.Œ1; ��; Œ�2; �3�; Œ�4; �5�/, Z.Œ1; �3�; Œ�4; �5�/, Z.Œ1; ��; Œ�2; �5�/ and
Z.Œ1; �5�/. Of these, by Lemma 3.6, Z.Œ1; �3�; Œ�4; �5�/ and Z.Œ1; ��; Œ�2; �5�/
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do not have a symplectic period. Z.Œ1; �5�/ being a character clearly has a
symplectic period. We analyze the remaining representation.

� If � D Z.Œ1; ��; Œ�2; �3�; Œ�4; �5�/, by definition, it is the unique irreducible
submodule of Z.Œ�4; �5�/ � Z.Œ�2; �3�/ � Z.Œ1; ��/. Thus we get that it is
the unique irreducible quotient of � D Z.Œ1; ��/ �Z.Œ�2; �3�/ �Z.Œ�4; �5�/
(using Lemma 2.3 and taking contragredients). Since Z.Œ�2; �3�; Œ�4; �5�/ is
a quotient of Z.Œ�2; �3�/�Z.Œ�4; �5�/, we get � is a quotient of Z.Œ1; ��/�
Z.Œ�2; �3�; Œ�4; �5�/. By taking �1 DZ.Œ1; ��/ and �2 DZ.Œ�2; �3�; Œ�4; �5�/,
and doing a calculation as in (a), we get that Z.Œ1; ��/�Z.Œ�2; �3�; Œ�4; �5�/
and hence � , doesn’t have a symplectic period.

This concludes case (c).

(d) �DZ.Œ1; ��/�Z.Œ�; �2�/�Z.Œ�; �2�/. In this case, all irreducible subquotients
of � are Z.Œ1; ��; Œ�; �2�; Œ�; �2�/ and Z.Œ1; �2�; Œ��; Œ�; �2�/. We now analyze
both of these representations.

� If � D Z.Œ1; �2�; Œ��; Œ�; �2�/ Š Z.Œ1; �2�/ �Z.Œ�; �2�/ � �, by Theorem 3.7
of [Offen and Sayag 2007b], it has a mixed Klyachko model. Hence by
Theorem 2.5, it is not Sp3.F /-distinguished.

� If � D Z.Œ1; ��; Œ�; �2�; Œ�; �2�/, it is the unique irreducible submodule of
Z.Œ�; �2�/�Z.Œ�; �2�/�Z.Œ1; ��/. Thus it is the unique irreducible submodule
of Z.Œ�; �2�/�Z.Œ1; ��; Œ�; �2�/ŠZ.Œ�; �2�/�Q.Œ1; ��; Œ�; �2�/ (by Example
11.4 in [Zelevinsky 1980]). By Theorem 1 of [Badulescu et al. 2012], this
representation is irreducible and so � ŠZ.Œ�; �2�/�Z.Œ1; ��; Œ�; �2�/ and has
a symplectic period by Proposition 5.2.

This concludes case (d).

(e) � D Z.Œ1; ��/ � Z.Œ�2; �3�/ � Z.Œ�2; �3�/. In this case, all irreducible sub-
quotients of � are Z.Œ1; ��; Œ�2; �3�; Œ�2; �3�/ and Z.Œ1; �3�; Œ�2; �3�/. We now
analyze both of these representations.

� If � DZ.Œ1; �3�; Œ�2; �3�/ŠZ.Œ1; �3�/�Z.Œ�2; �3�/, it has a symplectic period
by Proposition 5.2.

� If � D Z.Œ1; ��; Œ�2; �3�; Œ�2; �3�/, it is the unique irreducible submodule of
Z.Œ�2; �3�/�Z.Œ�2; �3�/�Z.Œ1; ��/. Now,Z.Œ�2; �3�/�Z.Œ�2; �3�/�Z.Œ1; ��/
is glued from Z.Œ�2; �3�/�Z.Œ1; ��; Œ�2; �3�/ and Z.Œ�2; �3�/�Z.Œ1; �3�/. Us-
ing Theorem 1 of [Badulescu et al. 2012], we get the irreducibility of

Z.Œ�2; �3�/�Z.Œ1; ��; Œ�2; �3�/ŠZ.Œ�2; �3�/�Q.Œ1�; Œ�; �2�; Œ�3�/:

Thus � ŠZ.Œ�2; �3�/�Z.Œ1; ��; Œ�2; �3�/, implying that Q� ŠZ.Œ��3; ��2�/�
Z.Œ��1; 1�; Œ��3; ��2�/. A calculation as in case (a), taking�1DZ.Œ��3; ��2�/
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and �2 D Z.Œ��1; 1�; Œ��3; ��2�/, shows that Q� D �1 � �2 doesn’t have a
symplectic period. Thus even � is not Sp3.F /-distinguished.

This concludes case (e).

The remaining cases, (f), (g), and (h), are dealt with by duality: all irreducible
subquotients of � are twists of the contragredients of those obtained in cases (a),
(d), and (e), respectively. Hence the only subquotients with a symplectic period are
up to a twist, duals of the ones already obtained previously.

Case 2: �1; �2; �3 are all twists of Steinberg. The representations that we are
looking at in this case are of the form

� DQ.Œ�1; �1��/�Q.Œ�
0
1; �
0
1��/�Q.Œ�

00
1; �
00
1��/:

The following result will be used repeatedly in the analysis of this case.

Lemma 5.6. Let �DQ.Œ�a; �aC1�/�Q.Œ�b; �bC1�/�Q.Œ�c ; �cC1�/. Then � has
a symplectic period only if aD b D cC 1.

Proof. Let �1 DQ.Œ�a; �aC1�/ and �2 DQ.Œ�b; �bC1�/�Q.Œ�c ; �cC1�/. Since
�1 doesn’t have a symplectic period (by Theorem 2.5), the group

HomH
�
indHH2;0

.ı
1=2
P2;4

�1˝�2jH2;0
/;C

�
DHomSp1.F /

�
�1; 1

�
˝HomSp2.F /

.�2;C/

is zero, by (3-1). Thus the other term, HomH
�
indHH2;2

.ı
1=2
P2;4

�1 ˝ �2jH2;2
/;C

�
,

has to be nonzero. Now, r.2;2/;.4/.Q.Œ�b; �bC1�/�Q.Œ�c ; �cC1�/ is glued from
Q.Œ�b; �bC1�/˝Q.Œ�c ; �cC1�/, Q.Œ�c ; �cC1�/˝Q.Œ�b; �bC1�/ and

.�bC1 � �cC1/˝ .�b � �c/;

by Lemma 2.12 of [Bernstein and Zelevinsky 1977]. It can be checked easily that
replacing r.2;2/;.4/.�2/ by the first two of the three representations makes this Hom
space 0. Thus,

HomGL2.F /�Sp1.F /

�
��1Q.Œ�a; �aC1�/˝ .�bC1 � �cC1/˝ .�b � �c/;C

�
¤ 0:

Solving the equations for this to be nonzero gives the lemma. �
By similar arguments using Lemma 3.4 as in case 1 it can be easily concluded

that if there is at most one link among the three segments then � doesn’t have an
H -distinguished subquotient. Thus we look at the case where there are at least
two links among the segments. Since twisting by a character doesn’t matter to us,
without loss of generality we can assume �1 to be trivial. As before we have eight
possible cases:

(a) Q.Œ1; ��/�Q.Œ�; �2�/�Q.Œ�3; �4�/

(b) Q.Œ1; ��/�Q.Œ�; �2�/�Q.Œ�2; �3�/
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(c) Q.Œ1; ��/�Q.Œ�2; �3�/�Q.Œ�4; �5�/

(d) Q.Œ1; ��/�Q.Œ�; �2�/�Q.Œ�; �2�/

(e) Q.Œ1; ��/�Q.Œ�2; �3�/�Q.Œ�2; �3�/

(f) Q.Œ1; ��/�Q.Œ�2; �3�/�Q.Œ�3; �4�/

(g) Q.Œ1; ��/�Q.Œ1; ��/�Q.Œ�; �2�/

(h) Q.Œ1; ��/�Q.Œ1; ��/�Q.Œ�2; �3�/

(a) � D Q.Œ1; ��/�Q.Œ�; �2�/�Q.Œ�3; �4�/. Here, all irreducible subquotients
of � are Q.Œ1; ��; Œ�; �2�; Œ�3; �4�/, Q.Œ1; �2�; Œ��; Œ�3; �4�/, Q.Œ1; �4�; Œ��/ and
Q.Œ1; ��; Œ�; �4�/. We now analyze each of these representations.

� If � DQ.Œ1; ��; Œ�; �2�; Œ�3; �4�/, it is the unique irreducible quotient of

Q.Œ�3; �4�/�Q.Œ�; �2�/�Q.Œ1; ��/;

which doesn’t have a symplectic period by Lemma 5.6. Hence � doesn’t have
one.

� If � DQ.Œ1; �2�; Œ��; Œ�3; �4�/, it is the unique irreducible quotient of

Q.Œ�3; �4�/� � �Q.Œ1; �2�/:

Thus it is an irreducible quotient of Q.Œ�3; �4�/�Q.Œ1; ��/�Q.Œ�; �2�/ (by
Theorem 2.2), which doesn’t have a symplectic period by Lemma 5.6. Hence �
doesn’t have one.

� If �DQ.Œ1; �4�; Œ��/ŠQ.Œ1; �4�/�� (by Proposition 8.5 of [Zelevinsky 1980]),
it is generic and hence doesn’t have a symplectic period (by Theorem 2.5).

� If � DQ.Œ1; ��; Œ�; �4�/, it is a quotient of Q.Œ�; �2�/�Q.Œ�3; �4�/�Q.Œ1; ��/,
which doesn’t have a symplectic period by Lemma 5.6. Hence it doesn’t have
one too.

This concludes case (a).

(b) �DQ.Œ1; ��/�Q.Œ�; �2�/�Q.Œ�2; �3�/. Here the irreducible subquotients of �
are Q.Œ1; ��; Œ�; �2�; Œ�2; �3�/, Q.Œ1; �2�; Œ��; Œ�2; �3�/, Q.Œ1; ��; Œ�; �3�; Œ�2�/,
Q.Œ1; �3�; Œ��; Œ�2�/, Q.Œ1; �2�; Œ�; �3�/ and Q.Œ1; �3�; Œ�; �2�/.

� If � DQ.Œ1; ��; Œ�; �2�; Œ�2; �3�/, twisting � by an appropriate power of � makes
it a unitary representation. By Theorem 1.2 it doesn’t have a symplectic period.

� If � DQ.Œ1; �2�; Œ��; Œ�2; �3�/, it is the unique irreducible quotient of

Q.Œ�2; �3�/� � �Q.Œ1; �2�/:

This itself is a quotient of Q.Œ�2; �3�/�Q.Œ1; ��/�Q.Œ�; �2�/, which doesn’t
have a symplectic period by Lemma 5.6. Hence � doesn’t have one.
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� If � DQ.Œ1; ��; Œ�; �3�; Œ�2�/, it can be obtained by twisting the contragredient
of Q.Œ1; �2�; Œ��; Œ�2; �3�/, which as showed in the last paragraph, doesn’t have
a symplectic period.

� If � D Q.Œ1; �3�; Œ��; Œ�2�/, it is the unique irreducible quotient of �2 � � �
Q.Œ1; �3�/ and hence ofZ.Œ�; �2�/�Q.Œ1; �3�/. Now doing a similar calculation
as in case 1(a) by taking �1 D Z.Œ�; �2�/ and �2 D Q.Œ1; �3�/ we get that
Z.Œ�; �2�/�Q.Œ1; �3�/, and hence � , doesn’t have a symplectic period.

� If � DQ.Œ1; �2�; Œ�; �3�/, it has a symplectic period by Theorem 1.2.

� If � D Q.Œ1; �3�; Œ�; �2�/ Š Q.Œ1; �3�/ �Q.Œ�; �2�/, (by Proposition 8.5 of
[Zelevinsky 1980]), it is generic and hence doesn’t have a symplectic period
(by Theorem 2.5).

This concludes case (b).

(c) � DQ.Œ1; ��/�Q.Œ�2; �3�/�Q.Œ�4; �5�/. Here the irreducible subquotients of
� are Q.Œ1; ��; Œ�2; �3�; Œ�4; �5�/, Q.Œ1; �3�; Œ�4; �5�/, Q.Œ1; ��; Œ�2; �5�/ and
Q.Œ1; �5�/.

� If � DQ.Œ1; �5�/, it is generic and hence doesn’t have a symplectic period.

� If � D Q.Œ1; ��; Œ�2; �3�; Œ�4; �5�/, it is the unique irreducible quotient of
Q.Œ�4; �5�/�Q.Œ�2; �3�/�Q.Œ1; ��/, which doesn’t have a symplectic period
by Lemma 5.6. Hence it doesn’t have one. The other two cases are dealt
similarly.

� If � DQ.Œ1; �3�; Œ�4; �5�/, it is the unique irreducible quotient of Q.Œ�4; �5�/�
Q.Œ1; �3�/. Now this itself is a quotient ofQ.Œ�4; �5�/�Q.Œ1; ��/�Q.Œ�2; �3�/,
which doesn’t have a symplectic period by Lemma 5.6. Hence � doesn’t have
one.

� If � D Q.Œ1; ��; Œ�2; �5�/, it can be obtained by twisting the contragredient
of Q.Œ1; �3�; Œ�4; �5�/, which as shown in the last paragraph, doesn’t have a
symplectic period.

This concludes case (c).

(d) �DQ.Œ1; ��/�Q.Œ�; �2�/�Q.Œ�; �2�/. In this case, all irreducible subquotients
of � are Q.Œ1; ��; Œ�; �2�; Œ�; �2�/ and Q.Œ1; �2�; Œ��; Œ�; �2�/.

� If � D Q.Œ1; �2�; Œ��; Œ�; �2�/ Š Q.Œ1; �2�/� � �Q.Œ�; �2�/, it is generic and
hence doesn’t have a symplectic period.

� If �DQ.Œ1; ��; Œ�; �2�; Œ�; �2�/, it is the sole irreducible quotient ofQ.Œ�; �2�/�
Q.Œ�; �2�/�Q.Œ1; ��/. Thus it is the unique irreducible quotient ofQ.Œ�; �2�/�
Q.Œ1; ��; Œ�; �2�/ŠQ.Œ�; �2�/�Z.Œ1; ��; Œ�; �2�/ (by Example 11.4 in [Zelevin-
sky 1980]). By Theorem 1 of [Badulescu et al. 2012], this representation is
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irreducible and so � Š Q.Œ�; �2�/ � Z.Œ1; ��; Œ�; �2�/. So it is a quotient of
Q.Œ�; �2�/�Z.Œ1; ��/�Z.Œ�; �2�/. Now a calculation as in case 1(a), taking
�1 D Q.Œ�; �2�/ and �2 D Z.Œ1; ��/ � Z.Œ�; �2�/, yields that Q.Œ�; �2�/ �
Z.Œ1; ��/�Z.Œ�; �2�/, and hence � , doesn’t have a symplectic period.

This concludes case (d).

(e) � DQ.Œ1; ��/�Q.Œ�2; �3�/�Q.Œ�2; �3�/. In this case, all irreducible subquo-
tients of � are Q.Œ1; ��; Œ�2; �3�; Œ�2; �3�/ and Q.Œ1; �3�; Œ�2; �3�/.

� If � DQ.Œ1; �3�; Œ�2; �3�/ŠQ.Œ1; �3�/�Q.Œ�2; �3�/, (by Proposition 8.5 of
[Zelevinsky 1980]), it is generic and hence doesn’t have a symplectic period
(by Theorem 2.5).

� If � D Q.Œ1; ��; Œ�2; �3�; Œ�2; �3�/, it is the unique irreducible quotient of
Q.Œ�2; �3�/�Q.Œ�2; �3�/�Q.Œ1; ��/. This doesn’t have a symplectic period
by Lemma 5.6 and so � doesn’t have one too.

This concludes case (e).

As before, in cases (f), (g), and (h) all the irreducible subquotients of � are twists
of the contragredients of the ones obtained in cases (a), (d), and (e) respectively.
Hence the only subquotients with a symplectic period are up to a twist, duals of the
ones already obtained previously.

Cases 3–7: The remaining five cases of �1 ��2 ��3 are dealt similarly, proving
Theorem 1.4. We just mention that no new H -distinguished subquotients are
obtained from the other cases.

6. Conjectures for the general case

Theorem 1.3 and Theorem 1.4 prompt us to make certain conjectures for the general
2n case. In order to do so we need to set up notation.

DefineG0 as the set of all representations of GL2n.F / of the formZ.�1; : : : ; �r/

that satisfy the following properties:

(1) All the segments are in the same cuspidal line.

(2) Each segment is of even length.

(3) No two segments have the beginning element in common.

(4) Conditions (1) and (3) imply that there is a natural ordering of the segments
(with respect to the beginning element). Arrange �1; : : : ; �r accordingly. We
require that the intersection of each segment with its neighbors is odd in length,
in particular is nonempty.

The set G0 is contained in the set of ladder representations as defined in [Badu-
lescu et al. 2012].



ON REPRESENTATIONS OF GL2n.F / WITH A SYMPLECTIC PERIOD 461

Further define G�[i�1 Irr.GL2i .F // to be the set of all irreducible products
of elements in G0; i.e.,

GD f�1 � � � � ��t j �1; : : : ; �t 2G
0 and the product is irreducibleg:

Let us now state the conjecture in the general case using the above notation.

Conjecture 6.1. Let � be an irreducible representation of GL2n.F / carrying a
symplectic period. Then there exists �1; : : : ; �t 2G0 such that

� Š �1 � � � � ��t :

In other words, � 2G.

The following proposition verifies the conjecture for unitary representations.

Proposition 6.2. Let � be an irreducible unitary representation having a symplectic
period. Then � 2G.

Proof. Let ı D Q.Œ��
1�d

2 ; ��
d�1

2 �/. By Theorem A.10(iii) of [Tadić 1986],
U.ı; t/DZ.�1; : : : ; �d /, where

�1 D Œ.��
1�d

2 /�
1�t

2 ; .��
1�d

2 /�
t�1

2 �;

�2 D Œ.��
3�d

2 /�
1�t

2 ; .��
3�d

2 /�
t�1

2 �; : : : ;

�d D Œ.��
d�1

2 /�
1�t

2 ; .��
d�1

2 /�
t�1

2 �:

The intersection of each segment with both its neighbors, if they are arranged in the
order of precedence, is of length t�1. So if t is even, U.ı; t/2G0. The proposition
then follows from Theorem 1.2. �

That U.ı; 2m/ 2G0 leads to an obvious question generalizing Proposition 1.1,
which we state as the next conjecture.

Conjecture 6.3 (hereditary property). Let � 2G0. Then � has a symplectic period.
Moreover, if �1; : : : ; �d 2G0 then �1 � � � � � �d has a symplectic period.

Conjecture 6.1 and Conjecture 6.3 together imply that G is precisely the set of
H -distinguished representations of the linear groups. Thus Theorem 1.3 and
Theorem 1.4 prove the conjectures for GL4.F / and GL6.F /. Note that the above
conjectures together imply that the property of having a symplectic period is
dependent only on the combinatorial structure of the segments involved and not on
the building blocks, i.e., the cuspidal representations. More precisely:

Conjecture 6.4. Let � 2 Irr.GL2n.F // be of the form Z.�1; : : : ; �r/ such that
all the segments are in the same cuspidal line. Let � 2 Irr.GLm.F // be an element
of the line. Let �0i be the segment obtained from �i by replacing � with the trivial
representation of F � and � 0 be the representation Z.�01; : : : ; �

0
r/ of GL2n=m.F /.
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(1) If 2n=m is even, � has a symplectic period if and only if � 0 has a symplectic
period.

(2) If 2n=m is odd, � doesn’t have a symplectic period.
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