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LINKED TRIPLES OF QUATERNION ALGEBRAS

ALEXANDER S. SIVATSKI

Let F be a field of characteristic different from 2, and let Q1, Q2, Q3 be
quaternion algebras over F such that any element in Br(F) generated by
Q1, Q2, Q3 has index at most 2. For the triple {Q1, Q2, Q3} we construct
a certain invariant, lying in I3(F), which is a 4-fold Pfister form, provided
the algebras Q1, Q2, Q3 have a common slot. Among other results we prove
that the algebras Q1, Q2, Q3 have a common slot if and only if the torsion
of the group CH2(X1 × X2 × X3) is zero, where X i is the projective conic
associated with the algebra Q i .

Let F be a field with char F 6= 2, let Q1, . . . , Qn be quaternion algebras over F ,
and G ⊂ 2 Br(F) the group generated by these quaternions. We call the collection
{Q1, . . . , Qn} linked if ind(α) ≤ 2 for any α ∈ G. We say that the collection
{Q1, . . . , Qn} has a common slot if there are a, b1, . . . , bn ∈ F∗ such that Qi =

(a, bi ) for each 1≤ i ≤ n. Obviously, if the collection {Q1, . . . , Qn} has a common
slot, then it is linked. The opposite statement is true for n = 2 [Scharlau 1985],
but is not true for n ≥ 3. Indeed, it was shown in [Peyre 1995] that if

√
−1 ∈ F ,

a, b, c∈ F∗, and a∪b∪c 6= 0 in H 3(F,Z/2Z), then the triple {(a, b), (a, c), (b, c)}
is linked, but has no common slot. However, this example does not make clear
whether there exists some obstruction that does not permit a given linked triple
of quaternion algebras to have a common slot. In this note we construct such
an obstruction, which lies in the Witt ring of the field F ; more precisely, it lies
in I 3(F).

We use the notation usual in the theory of quadratic forms, which can be found,
for instance, in the books [Lam 2005; Scharlau 1985; Elman et al. 2008]. The word
“form” always means a quadratic form over a field of characteristic different from 2.
For a form ϕ defined on a linear space V over a field F , by D(ϕ) we denote the set
of nonzero values ϕ(v), where v ∈ V . The n-fold Pfister form 〈〈a1, . . . , an〉〉 is the
form 〈1,−a1〉⊗· · ·⊗〈1,−an〉. (Take notice of signs!) Sometimes, slightly abusing
notation, we consider regular forms over F as their images in the Witt ring W (F),
and, vice versa, elements of W (F) as the associated anisotropic forms. In particular,
we call the corresponding elements in W (F) n-fold Pfister forms. The signs +
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and − are used for operations in W (F). The dimension of the anisotropic form
associated with ϕ ∈W (F) is denoted by dimϕ. By F(ϕ) we denote the function
field of the projective quadric associated with the form ϕ over the field F . By i1(ϕ)

we denote the first Witt index of the form ϕ, which is defined as follows: i1(ϕ)= n,
where ϕF(ϕ) ' ψ ⊥ nH and ψ is the anisotropic part of ϕF(ϕ).

Let T= {Q1, Q2, Q3} be a linked triple. For any quaternion algebra α denote
by c(α) the 2-fold Pfister form corresponding to α. Put

c(T)= c(Q1)+ c(Q2)+ c(Q3)− c(Q1+ Q2)− c(Q1+ Q3)

−c(Q2+ Q3)+ c(Q1+ Q2+ Q3) ∈W (F).

The invariant c(T) has the following properties:

Proposition 1. (1) c(T) ∈ I 3(F), c(T) is divisible by each c(Qi ), and dim c(T)
equals either 0, 8, or 16. Moreover, if dim c(T)= 16, then 1 ∈ D(c(T)).

(2) c(T) is a sum of two elements, similar to a 4-fold and a 3-fold Pfister form,
respectively. In particular, c(T) (mod I 4(F)) is a symbol in I 3(F)/I 4(F).

(3) If T has a common slot, then c(T) is a 4-fold Pfister form.

Proof. (1) It is obvious that the elements c(Q1) + c(Q2) − c(Q1 + Q2) and
c(Q3) + c(Q1 + Q2 + Q3) − c(Q2 + Q3) − c(Q1 + Q3) both are from I 3(F)
and split by the extension F(SB(Q1))/F . Hence they are divisible by c(Q1)

[Scharlau 1985]. Since the dimensions of the elements c(Q1) − c(Q1 + Q2),
c(Q2)− c(Q2+ Q3) and c(Q3)− c(Q1+ Q3) are at most 4, we get

dim
(
c(Q1)+ c(Q2)+ c(Q3)− c(Q1+ Q2)− c(Q1+ Q3)− c(Q2+ Q3)

)
≤ 12.

Hence dim c(T)≤ 16, and if dim c(T)= 16, then the Pfister form c(Q1+Q2+Q3)

is a direct summand of c(T), and so 1 ∈ D(c(T)) (here we consider c(T) as the
corresponding quadratic form). Furthermore, since c(T) ∈ I 3(F) and is divisible
by c(Q1), it follows that dim c(T) is divisible by 8. By symmetry c(T) is divisible
by each c(Qi ).

(2) It follows at once from part (1) that

c(T)= c(Q1)⊗〈a1, a2, a3, a4〉

= c(Q1)⊗〈a1, a2, a3, a1a2a3〉+ c(Q1)⊗〈−a1a2a3, a4〉

for some ai ∈ F∗. The first summand is similar to a 4-fold Pfister form, and the
second one to a 3-fold Pfister form.

(3) Assume that Qi = (a, bi ) for some a, b1, b2, b3 ∈ F∗. Then a straightforward
computation shows that

c(T)=〈〈a〉〉⊗〈1,−b1,−b2,−b3,b1b2,b1b3,b2b3,−b1b2b3〉=〈〈a,b1,b2,b3〉〉. �
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As another example of computation of c(T), which will be used in the sequel,
we have the following:

Proposition 2. Let F be a field, a, b1, b2 ∈ F∗. Let Q be a quaternion algebra
over F such that QF(

√
bI )
= 0 for any nonempty I ⊂ {1, 2}, where bI =

∏
i∈I bi .

Then the triple {(a, b1), (a, b2), Q} is linked, and c(T) = 〈〈a〉〉c(Q). Moreover, if
{(a, b1), (a, b2), Q} has a common slot, then c(T)= 0.

Proof. For any nonempty I ⊂ {1, 2} there is some element cI ∈ F∗ such that
Q = (bI , cI ). Obviously,

Q+
∑
i∈I

(a, bi )= (acI , bI ),

hence the triple T is linked. Furthermore, in view of Proposition 1(3) and the
equality 〈〈xy, z〉〉 = 〈〈x, z〉〉+ 〈〈y, z〉〉− 〈〈x, y, z〉〉 we get

c(T)= 〈〈a, b1〉〉+ 〈〈a, b2〉〉− 〈〈a, b1b2〉〉+ Q+
∑

I⊂{1,2}

(−1)|I |〈〈acI , bI 〉〉

= 〈〈a, b1, b2〉〉+ Q+
∑

I⊂{1,2}

(−1)|I |
(
〈〈a, bI 〉〉+ Q−〈〈a, bI , cI 〉〉

)
= 〈〈a, b1, b2〉〉+

∑
I⊂{1,2}

(−1)|I |〈〈a, bI 〉〉+
∑

I⊂{1,2}

(−1)|I |+1
〈〈a〉〉c(Q)

= 〈〈a, b1, b2〉〉− 〈〈a, b1, b2〉〉+ 〈〈a〉〉c(Q)= 〈〈a〉〉c(Q).

By Proposition 1(3), the assumption that the triple {(a, b1), (a, b2), Q} has a com-
mon slot implies c(T)= 0. �

As a consequence we obtain another proof of the example from [Peyre 1995].

Corollary 3. Let F be a field,
√
−1 ∈ F , a, b, c ∈ F∗. If a ∪ b ∪ c 6= 0 in

H 3(F,Z/2Z), then the triple T = {(a, b), (a, c), (b, c)} is linked, but does not
have a common slot.

Proof. Since 〈〈b, c〉〉 = 〈〈b,−bc〉〉 = 〈〈b, bc〉〉, we have

(a, b)+ (a, c)+ (b, c)= (a, bc)+ (b, bc)= (ab, bc),

so the triple is linked. Since

(b, c)F(
√

b) = (b, c)F(
√

c) = (b, c)F(
√

bc) = 0,

we get by Proposition 2 that c(T)= 〈〈a, b, c〉〉 6= 0. Also by Proposition 2 we get
that the triple T has no common slot. �

Recall that a field L is called linked if any two quaternion algebras over L have
a common slot [Elman et al. 2008]. A natural question arises whether there exists a
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linked field L and a triple of quaternion algebras {Q1, Q2, Q3} over L without a
common slot. The answer is in affirmative, and one can construct such a field L
even with a few additional properties. To do this we need a couple of lemmas.

Lemma 4. Let ϕ be an anisotropic Albert form (i.e., an anisotropic 6-dimensional
form with trivial discriminant) over a field F , π the 2-fold Pfister form over F(ϕ)
similar to ϕF(ϕ). Then π /∈ h+ I 4(F(ϕ)) for any h ∈ I 2(F).

Proof. We will induct on dim h. Assume the converse, i.e., that there is h ∈ I 2(F)
such that π ∈ h+ I 4(F(ϕ)). Consider a few cases.

(a) h = 0. Then π = 0, hence ϕF(ϕ) = 0. Choose any a ∈ F∗ such that the
form ϕF(

√
a) is isotropic. In particular, a /∈ F∗2. Obviously, ϕF(

√
a) = 0, i.e.,

ϕ ' 〈〈a〉〉ψ for some 3-dimensional form ψ . Comparing discriminants, we get
a ∈ F∗2, a contradiction.

(b) The form ϕF(h) is isotropic. Then there exists c ∈ F∗ such that either ϕ = ch,
or ϕ = c(h− h̃) for some form h̃ 6= 0 with dim h = dim h̃ = 4 [Merkurjev 1991].
In both cases by dimension count we have π = hF(ϕ). If ϕ ' ch, then we have
ϕF(ϕ) = cπ ; therefore, dim(ϕ ⊥ 〈−c〉)F(ϕ) = 3. If c ∈ D(ϕ), then the field F(ϕ)
splits a proper subform of ϕ, which is impossible, since i1(ϕ)= 1 [Karpenko and
Merkurjev 2003]. (Another, more elementary way to come to a contradiction is to
make the form (ϕ ⊥ 〈−c〉)an a Pfister neighbor, not splitting the form ϕ [Hoffmann
1995].) If c /∈ D(ϕ), then dim(ϕ ⊥ 〈−c〉)= 7. Moreover, i1(ϕ ⊥ 〈−c〉)= 1, since
ϕF(ϕ⊥〈−c〉) is anisotropic [Merkurjev 1991]. Since c ∈ D(ϕF(ϕ⊥〈−c〉)), changing F
for F(ϕ ⊥ 〈−c〉), we get a contradiction again.

If ϕ = c(h− h̃) and ϕF(ϕ) = uπ = uh for some u ∈ F(ϕ)∗, then ch̃ = ch−uh ∈
I 3(F(ϕ)), hence h̃F(ϕ) = 0, which is also impossible.

(c) ϕF(h) is anisotropic, h 6= 0. Then, passing to the field F(h), the forms (hF(h))an,
πF(h)(ϕ) and the Albert form ϕF(h), we can conclude by induction on dim h that
this case is impossible as well, which finishes the proof. �

Lemma 5. Let F be a field, Q1, Q2, Q3 pairwise distinct nontrivial quaternion
algebras, ϕ an anisotropic Albert form. Suppose {Q1, Q2, Q3} is not a linked triple.
Then either the triple T = {Q1 F(ϕ), Q2 F(ϕ), Q3 F(ϕ)} is not linked, or it is linked
and c(TF(ϕ)) /∈ I 4(F(ϕ)). In particular, the triple TF(ϕ) has no common slot.

Proof. Notice first that all
∑

i∈I Qi (I ⊂ {1, 2, 3}) are pairwise distinct. Suppose
the triple T is linked. Then there is a unique α ∈ G = 〈Q1, Q2, Q3〉 ∈ 2 Br(F)
such that ind(α) = 4, and, moreover, ϕ is an Albert form for α. Assume that
c(T) ∈ I 4(F(ϕ)). Then we get c(α)F(ϕ) ∈ h+ I 4(F(ϕ)) for some form h ∈ I 2(F),
which contradicts Lemma 4. �
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Theorem 6. Suppose that the triple {Q1, Q2, Q3} over a field F is not linked. Then
there exists a field extension L/F with the following properties:

(1) The field L is linked. In particular, the triple {Q1, Q2, Q3}L is linked.

(2) The triple {Q1, Q2, Q3}L has no common slot.

(3) The field L has no proper odd degree extension.

(4) Any 9-dimensional form over L is isotropic.

(5) Up to isomorphism there is a unique nontrivial 3-fold Pfister form over L ,
namely the one similar to c({Q1, Q2, Q3}L).

Proof. We will apply a procedure similar to the one used in the construction of fields
with prescribed even U -invariant [Merkurjev 1991]. First, applying Lemma 5 a few
times, we can construct a field extension K/F such that the triple {Q1, Q2, Q3}K

is linked, but has no common slot. Further, splitting if needed some 4-fold Pfister
form over K , we pass to the field K1/K such that c({Q1, Q2, Q3}K1) is similar to
some 3-fold Pfister form τ over K1. Next, splitting all Albert forms, all forms of
dimension at least 9, and all 3-fold Pfister forms differing from τ , then passing to a
maximal odd degree extension, we construct a tower of fields K1 ⊂ K2 ⊂ · · · such
that L =

⋃
i Ki satisfies all the required properties. The point is that for each i the

form τKi remains nontrivial; this proves the absence of a common slot of the triple
{Q1, Q2, Q3}Ki . �

Theorem 6 has an application for Chow groups of codimension 2 of the product
of three projective conics. We give numerous examples of increasing the torsion
of these groups when passing to some field extension. We need the following
statement, which is an immediate consequence of Theorem 4.1, Proposition 6.1
and Remark 4.1 from [Peyre 1995].

Peyre’s Theorem. Let F be a field, Q1, Q2, Q3 quaternion algebras over F ,
and X1, X2, X3 the corresponding projective conics. Denote by G the subgroup
of 2 Br(F) generated by all Qi . Then:

(1) The torsion of the group CH2(X1× X2× X3) is either zero, or Z/2Z.

(2) Denote by d the least common multiple of all the numbers ind(α), where α
runs over all the elements of G. The following two assertions are equivalent:
(i) The algebras Qi have a common splitting field of degree dm, where m is

an odd integer.
(ii) The torsion of the group CH2(X1× X2× X3) equals 0.

(3) If the algebras Qi have a common slot, the sequence

F∗/F∗2⊗G
cup product
−−−−−−→ H 3(F,Z/2Z)

res
−→ H 3(F(X1× X2× X3),Z/2Z

)
is exact.
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Corollary 7. Let F be a field, T= {Q1, Q2, Q3} a nonlinked triple of quaternion
algebras. Suppose that either at least one of the elements Q1 + Q2, Q1 + Q3,
Q2+ Q3, Q1+ Q2+ Q3 has index 2, or ind(Q1+ Q2+ Q3) = 8. Denote by X i

the projective conic corresponding to Qi . Further, let L/F be the field extension
constructed in Theorem 6 for the triple T. Then the torsion of CH2(X1× X2× X3)

is zero, but the torsion of CH2(X1L × X2L × X3L) is Z/2Z.

Proof. Let us compute the number d for the algebras Q1, Q2, Q3. Since the triple
{Q1, Q2, Q3} is not linked, d ≥ 4. In the first case, since the sum of a few Qi

has index 2, we get d 6= 8, i.e., d = 4. Assume that either ind(Q1 + Q2) = 2 or
ind(Q1 + Q2 + Q3) = 2. Choose a ∈ F∗ such that Q3 F(

√
a) = 0. Then Q1 F(

√
a)

and Q2 F(
√

a) have a common slot, hence for the algebras Q1, Q2, Q3 there exists
a common splitting field extension K/F of degree 4. By Peyre’s theorem we
conclude that the torsion of CH2(X1× X2× X3) is zero. In the second case it is
obvious that d = 8, and there is a triquadratic common splitting field extension for
the Qi . Hence in this case the torsion of CH2(X1× X2× X3) is zero as well. On
the other hand, for the algebras Q1L , Q2L , Q3L we have d = 2 in both cases, but
there is no common splitting extension E/L of degree 2m where m is odd. Indeed,
existence of such an extension implies m = 1, since L has no proper odd degree
extension. This means that the triple TL has a common slot, which is not the case.
Applying Peyre’s theorem again, we get that the torsion of CH2(X1L× X2L× X3L)

is Z/2Z. �

In the examples above the invariant c(T)was a Pfister form, either 3-fold or 4-fold.
In general this is not the case, as shown by a generic example of a linked triple.

Proposition 8. Let k be a field, a, b1, b2, c, d indeterminates. Further, let ϕ1,
ϕ2, ϕ3 be the Albert forms corresponding to the biquaternion algebras

(a, b1)+ (c, d), (a, b2)+ (c, d), (a, b1b2)+ (c, d),

respectively. Put F = k(ϕ1, ϕ2, ϕ3). Then:

(1) The triple T= {(a, b1)F , (a, b2)F , (c, d)F } is linked.

(2) dim c(T)= 16, and c(T) /∈ I 4(F).

(3) The form c(TF(c(T))) is similar, but not equal, to a 3-fold Pfister form over
F(c(T)).

Proof. (1) This is obvious by the definition of linked triple.

(2) We have (c, d)k(√ac) = (a, d)k(√ac). Put

P=
{
(a, b1)k(

√
ac), (a, b2)k(

√
ac), (c, d)k(√ac)

}
.

By Proposition 1 we get c(P) = 〈〈a, b1, b2, d〉〉k(√ac) 6= 0. Notice that TF(
√

ac) =

Pk(
√

ac)(ϕ1,ϕ2,ϕ3)
, and the forms ϕ1, ϕ2, ϕ3 are isotropic over k(

√
ac). Hence the
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field k(
√

ac)(ϕ1, ϕ2, ϕ3) is purely transcendental over k(
√

ac), which implies that

dim c(TF(
√

ac))= dim c
(
Pk(
√

ac)(ϕ1,ϕ2,ϕ3)

)
= 16.

By Proposition 1 we get dim c(T) = 16. Assume now that c(T) ∈ I 4(F). To
come to a contradiction it suffices to construct a field extension L/F such that
dim c(TL)= 8. Let

τ1 ' 〈b1,−c,−d, cd〉, τ2 ' 〈b2,−c,−d, cd〉, τ3 ' 〈b1b2,−c,−d, cd〉.

Obviously, the algebra Q = (c, d)k(τ1,τ2,τ3) satisfies the hypothesis of Proposition 2
with respect to the elements b1, b2, b1b2. Moreover, Q 6= 0 [Scharlau 1985] and a
is an indeterminate over k(τ1, τ2, τ3). Therefore,

c
(
{(a, b1), (a, b2), (c, d)k(τ1,τ2,τ3)}

)
= 〈〈a〉〉Q 6= 0.

On the other hand, since the Albert forms ϕi k(τi )
are isotropic, the field extension

k(τ1, τ2, τ3, ϕ1, ϕ2, ϕ3)/k(τ1, τ2, τ3) is purely transcendental, so

dim c(TL)= 8, where L = k(τ1, τ2, τ3, ϕ1, ϕ2, ϕ3)= F(τ1, τ2, τ3).

(3) Here we consider c(T) as the corresponding anisotropic form. In view of part (2)
we have dim c(TF(c(T)))= 8, hence the form TF(c(T)) is similar to a 3-fold Pfister
form over F(c(T)). By Proposition 1 we have 1 ∈ D(c(T)), i.e., c(T)= 〈1〉 ⊥ ψ
for some 15-dimensional form δ over F . Suppose 1 ∈ D(c(TF(c(T)))). Then
dim δF(c(T)) = dim δF(δ) = 7, i.e., i1(δ) = 4. Since the first Witt index of an odd
dimensional form is odd [Karpenko 2003], we get a contradiction. �

It turns out that existence of a common slot for the triple {Q1, Q2, Q3} over the
field F is equivalent to isotropicity of a certain 9-dimensional form over F(t).

Proposition 9. The following conditions are equivalent:

(1) The triple {(a1, b1), (a2, b2), (a3, b3)} has a common slot.

(2) The system of quadratic forms{
ϕ1 = a1x2

1 + b1x2
2 − a1b1x2

3 − a2x2
4 − b2x2

5 + a2b2x2
6 = 0

ϕ2 =−a2x2
4 − b2x2

5 + a2b2x2
6 + a3x2

7 + b3x2
8 − a3b3x2

9 = 0

has a nontrivial zero.

(3) The form

8' ϕ1+ tϕ2' 〈a1, b1,−a1b1〉 ⊥ (t+1)〈−a2,−b2, a2b2〉 ⊥ t〈a3, b3,−a3b3〉

is isotropic over F(t).
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Proof. By [Brumer 1978] the conditions (2) and (3) are equivalent. If at least one of
the algebras (ai , bi ) is trivial, then it is easy to see that both conditions (1) and (2)
hold. Assume that each (ai , bi ) is nontrivial. Then (2) is equivalent to existence of
a nonzero row (x1, . . . , x9) such that

0 6= a1x2
1 + b1x2

2 − a1b1x2
3 = a2x2

4 + b2x2
5 − a2b2x2

6 = a3x2
7 + b3x2

8 − a3b3x2
9 ,

which in turn is equivalent to (1). �

Proposition 10. Let F be a field, {Q1, Q2, Q3} a triple over F without a common
slot, and L/F a field extension. Then the triple {Q1, Q2, Q3}L has no common
slot as well, if L/F is either purely transcendental, or of odd degree, or L = F(τ ),
where τ is a form over F , dim τ ≥ 9.

Proof. We keep the notation of Proposition 9. If L/F is purely transcendental, then
the claim is obvious. If L/F is an odd degree extension, then the assertion follows
from Proposition 9 and Springer’s theorem [Scharlau 1985]. Assume now that τ is
a form over F , dim τ ≥ 9, L = F(τ ), and that {Q1, Q2, Q3}L has a common slot.
We may assume that τ is anisotropic, for otherwise the extension F(τ )/F is purely
transcendental. By Proposition 9 the form 8F(t)(τ ) is isotropic. Since dim8 =

dim τ = 9, it follows that the form τF(t)(8) is isotropic as well [Izhboldin 2000]. On
the other hand, the form 8F(t)(

√
−a1a3t) is isotropic, hence the form τF(t)(

√
−a1a3t)

is isotropic, which is impossible, since the extension F(t)(
√
−a1a3t)/F is purely

transcendental. �

Corollary 11. Let K/F be a field extension of degree 2m, where m is odd. Suppose
that Q1, Q2, Q3 are quaternion algebras such that Q1K = Q2K = Q3K = 0. Then
the triple {Q1, Q2, Q3} has a common slot.

Proof. We will induct on m, the case m = 1 being trivial. Suppose first that
K = F(α), and denote by p(t) the irreducible monic polynomial for α. As earlier,
let X i be the projective conic corresponding to Qi . By the hypothesis there is a
morphism Spec K → X1× X2× X3. This map gives rise to the morphism

Spec L[t]/p(t)= Spec L ⊗F K → X1L × X2L × X3L ,

where L is a maximal odd-degree field extension of F . Since deg p is not divisible
by 4, and any finite extension of L is 2-primary, there is an irreducible f ∈ L[t]
such that f |p and deg f ≤ 2. Therefore, we get a morphism Spec L[t]/ f (t)→
X1L × X2L × X3L . If deg f = 1, then Q1L = Q2L = Q3L = 0, hence, since
L/F is an odd degree extension, Q1 = Q2 = Q3 = 0. If deg f = 2, then the triple
{Q1, Q2, Q3}L has a common slot, hence by Proposition 10, the triple {Q1, Q2, Q3}

has a common slot as well, and the corollary is proved in the case K = F(α).
In the general case we have a tower of field extensions F ⊂ F(α)⊂ K , F(α) 6= F ,

and [F(α) : F] is not divisible by 4. If [F(α) : F] = 2n, where n is odd, then
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[K : F(α)] is odd, hence Q1 F(α) = Q2 F(α) = Q3 F(α) = 0, and by induction
{Q1, Q2, Q3} has a common slot. If [F(α) : F] is odd, then again by induction
with respect to the extension K/F(α) the triple {Q1, Q2, Q3}F(α) has a common
slot. By Proposition 10, {Q1, Q2, Q3} has a common slot as well. �

Corollary 12. The linked triple {Q1, Q2, Q3} has a common slot if and only if the
torsion of the group CH2(X1× X2× X3) is zero.

Proof. By Peyre’s theorem, the group CH2(X1×X2×X3) is zero if and only if there
is an extension K/F of degree 2m, with m odd, such that Q1K = Q2K = Q3K = 0.
By Corollary 11 this is equivalent to the triple {Q1, Q2, Q3} having a common slot.

�

Peyre’s theorem implies the following curious result on four quaternion algebras.

Proposition 13. Let k be a field, a1, a2, a3, a4 ∈ k∗, D ∈ 2 Br(k), F = k(x) the
rational function field, X i the projective conics corresponding to the algebras (ai , x)
over F. Then the following conditions are equivalent:

(1) There exist b1, b2, b3, b4 ∈ k∗ such that D =
∑4

i=1(ai , bi ).

(2) D ∪ (x)F(X) = 0 in H 3(F(X),Z/2Z), where X = X1× X2× X3× X4.

Proof. The implication (1)=⇒ (2) is trivial, since if D =
∑4

i=1(ai , bi ), then

D ∪ (x)=
4∑

i=1

(ai , bi , x),

hence D∪(x)F(X)=0. Suppose now that D∪(x)F(X)=0. We have F(X4)=k(u, v),
where u2

−av2
= x . Therefore, D∪(u2

−av2)K (Y1×Y2×Y3)= 0, where K = k(u, v),
and Yi is the conic corresponding to the algebra (ai , u2

−av2). Put t = u/v, a = a4.
By applying Peyre’s theorem to the algebras (ai , t2

− a) (i = 1, 2, 3), we get

D ∪ (t2
− a)= (a1, t2

− a, p1(t))+ (a2, t2
− a, p2(t))

+(a3, t2
− a, p3(t)) ∈ H 3(k(t),Z/2Z)

for some pi (t) ∈ k(t). Obviously, we can rewrite the last equality as

D ∪ (t2
− a)=

∑
I⊂{1,2,3}

(aI , t2
− a, f I ),

where aI =
∏

i∈I ai , and f I ∈ k[t] are some pairwise coprime polynomials. More-
over, we may suppose that each f I is coprime with t2

−a. Now apply the well-known
exact sequence

0→ H 3(k,Z/2Z)
res
−→ H 3(k(t),Z/2Z)∐

∂p
−−→

∐
p∈P1

k

H 2(kp,Z/2Z)
N
−→ H 2(k,Z/2Z)→ 0
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to the symbols (aI , t2
− a, f I ). Since the polynomials f I are pairwise coprime and

∂p(D ∪ (t2
− a))= 0 for any prime polynomial p 6= t2

− a, we have

∂p(aI , t2
− a, f I )= 0

for such p. Also ∂∞(aI , t2
− a, f I ) = 0. By the exact sequence above we have

Nk(
√

a)/k(∂t2−a(aI , t2
− a, f I )) = 0. Hence ∂t2−a(aI , t2

− a, f I )) = (aI , bI ) for
some bI ∈ k∗. Applying the above exact sequence again, we get

(aI , t2
− a, f I )= (aI , bI , t2

− a).
Therefore,

Dk(
√

a) = ∂t2−a(D ∪ (t
2
− a))

= ∂t2−a

( ∑
I⊂{1,2,3}

(aI , t2
− a, f I )

)
=

∑
I⊂{1,2,3}

(aI , bI )k(
√

a).

It follows that D = (a, b)+
∑

I⊂{1,2,3}(aI , bI ) for some b ∈ k∗, which implies (1).
�

Corollary 14. Assume F is a C2-field, which means that for each d ≥ 1 any
homogeneous polynomial in d2

+ 1 variables of degree d over F has a nontrivial
zero [Scharlau 1985]. Then any triple of quaternion algebras {Q1, Q2, Q3} over F
has a common slot.

Proof. Any two 9-dimensional quadratic forms over F have a common nontrivial
zero [Scharlau 1985], hence we are done by Proposition 9. �

In the case of global fields we can say more.

Proposition 15. Let F be a global field. Any finite collection Q1, . . . , Qn of
quaternion algebras over F has a common slot.

Proof. It is well known from the class field theory that the natural restriction map
∂ : Br(F)→

∐
v Br(Fv) is injective, where v runs over all valuations of F , and Fv

is the completion of F with respect to v. For any finite extension L/F , the diagram

Br(F)
∂=
∐
∂v
�

∐
v

Br Fv

Br(L)

res
g

∂=
∐
∂w
�

∐
w

Br Lw

resg

is commutative. Let {v1, . . . , vm} be all valuations over F such that ∂vi (Q j ) 6= 0
for some j . Choose d ∈ F∗ such that d /∈ Fvi

∗2 and vi (d)= 0 for each vi . Then

∂ ◦ resF(
√

d)/F (Q j )= resF(
√

d)/F ◦∂(Q j )= 0,

hence resF(
√

d)/F (Q j )= 0, so Q j = (d, e j ) for some e j ∈ F∗. �
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The above results prompt the following:

Open questions.

(1) Does there exist a linked triple T over a field F without common slot such
that c(T) ∈ I 4(F)? (In view of Proposition 9, an equivalent version of this
question is the one where c(T) ∈ I 4(F) is changed for c(T)= 0.)

(2) Assume that ϕ is an anisotropic form, dimϕ ≥ 5, T is a linked triple without
common slot. Is it true that TF(ϕ) is without common slot as well? (Notice
that if dimϕ = 4, then the answer is negative in general. For instance, under
the notation of Corollary 3 the triple TF(〈a,b,ab,c〉) obviously has a common
slot, namely c).

(3) Let F be a field such that any form of dimension at least 5 over F is isotropic.
Does any triple of quaternion algebras {Q1, Q2, Q3} over F have a common
slot? (By Corollary 14 and Proposition 15 the answer is positive if F is either
a C2-field or a nonreal global field.)

(4) Suppose cd2(F)= 2. Is it true that any linked triple has a common slot?

Certainly, these questions are not independent of one another. For instance, if
the answer to question (2) is positive, then the answer to question (1) is positive as
well, and the answers to questions (3) and (4) are negative.
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