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FINITE NONSOLVABLE GROUPS WITH MANY DISTINCT
CHARACTER DEGREES

HUNG P. TONG-VIET

Let G be a finite group and let Irr(G) denote the set of all complex irre-
ducible characters of G. Let cd(G) be the set of all character degrees of G.
For a degree d ∈ cd(G), the multiplicity of d in G, denoted by mG(d), is the
number of irreducible characters of G having degree d. A finite group G is
said to be a Tk-group for some integer k≥1 if there exists a nontrivial degree
d0 ∈ cd(G) such that mG(d0)= k and that for every d ∈ cd(G)−{1, d0}, the
multiplicity of d in G is trivial, that is, mG(d) = 1. In this paper, we show
that if G is a nonsolvable Tk-group for some integer k ≥ 1, then k = 2 and
G ∼= PSL2(5) or PSL2(7).

1. Introduction

Let G be a finite group and let Irr(G)= {χ1, χ2, · · · , χs} be the set of all complex
irreducible characters of G. Let cd(G)={d0, d1, · · · , dt }, 1=d0<d1< · · ·<dt , be
the set of all character degrees of G. For an integer d ≥ 1, the multiplicity of d in G,
denoted by mG(d), is the number of irreducible characters of G having degree d; i.e.,
mG(d)= |{χ∈ Irr(G) |χ(1)= d}|. Let ni = χi (1) for 1≤ i ≤ s. We call mp(G)=
(mG(d0),mG(d1), · · · ,mG(dt)) the multiplicity pattern and (n1, n2, . . . , ns) the
degree pattern of G. Let CG be the complex group algebra of G. We know that
CG =

⊕s
i=1 Mni (C) and thus knowing the degree pattern of G is equivalent to

knowing the structure of the complex group algebra of G, or, equivalently, the first
column of the ordinary character table of G. One of the main questions in character
theory of finite groups is Problem 1 in [Brauer 1963], asking for the possible degree
patterns of finite groups. It was proved in [Moretó 2007; Craven 2008] that the
order of a finite group is bounded in terms of the largest multiplicity of its character
degree. This gives a new restriction on the degree patterns of finite groups.

Motivated by this result, we want to explore the relations between the mul-
tiplicities of character degrees of finite groups and the structure of the groups.
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This problem has been the subject of much literature; we mention in particular
[Berkovich 1996; Berkovich and Kazarin 1996; Berkovich et al. 1992; Dolfi et al.
2013; Seitz 1968]. In this last reference, G. Seitz classified all finite groups which
have exactly one nonlinear irreducible representation. This result was generalized
in [Berkovich et al. 1992], where the authors classified all finite groups G in which
the multiplicity of every nonlinear irreducible character degree G is trivial. Finite
groups in which only two nonlinear irreducible characters have equal degrees have
been classified in [Berkovich 1996; Berkovich and Kazarin 1996].

To generalize these results, we consider the following definition. A finite group
G is called a Tk-group for some integer k ≥ 1 if there exists a nontrivial degree
d0 ∈ cd(G) such that mG(d0) = k and that for every nontrivial degree d ∈ cd(G)
different from d0, we have mG(d) = 1. Obviously, the finite groups studied in
[Berkovich et al. 1992; Seitz 1968] and [Berkovich 1996; Berkovich and Kazarin
1996] are exactly T1-groups and T2-groups, respectively. In this paper, we generalize
the results in [Berkovich and Kazarin 1996] as follows:

Theorem A. Let G be a finite nonsolvable group. If G is a Tk-group for some
integer k ≥ 1, then G ∼= PSL2(5) or PSL2(7) and k = 2.

From [Conway et al. 1985] we know that the multiplicity patterns of PSL2(q) for
q ∈ {5, 7} are (1, 2, 1, 1) and (1, 2, 1, 1, 1), respectively. Suppose that G is a finite
group such that mp(G) = mp(PSL2(q)) with q ∈ {5, 7}. Since the first entry of
mp(G) is |G : G ′| = 1, we see that G is perfect and hence a nonsolvable T2-group.
Applying Theorem A, we deduce that G ∼= PSL2(5) or PSL2(7). By comparing the
number of distinct character degrees, we deduce that G ∼= PSL2(q). It follows that
PSL2(5) and PSL2(7) are uniquely determined by the multiplicity patterns.

In [Tong-Viet 2013] we conjectured that every nonabelian simple group is
uniquely determined by its multiplicity pattern, and showed that this conjecture
holds for every nonabelian simple group with at most 7 distinct character degrees.
If true, this conjecture generalizes a result in [Tong-Viet 2012] saying that all
nonabelian simple groups are uniquely determined by the structure of their complex
group algebras. This latter result is related to Problem 2 in [Brauer 1963], which
asks: What does CG know about G? This is also an important question in character
theory and has been studied extensively (see the references in [Tong-Viet 2012]).

Notice that if the degree pattern of a finite group G is given, then both cd(G)
and mp(G) are known. Thus, apart from being a direct generalization of the results
obtained in [Berkovich and Kazarin 1996], Theorem A could be used to study
questions raised in [Tong-Viet 2013]. For finite solvable groups, if G is a finite
Tk-group of odd order, then |cd(G)| ≤ 2 since G has only one real irreducible
character (the trivial character) and thus every nontrivial character degree of G
has multiplicity at least 2. On the other hand, every finite group with exactly two
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distinct character degrees is a solvable Tk-group for some integer k (see [Isaacs
1976, Corollary 12.6]) and a compete classification of such finite groups is yet to
be found. This together with the fact that there is no explicit upper bound for k
makes the classification of solvable Tk-groups quite complicated even for 2-groups.

Throughout this paper, all groups are finite and all characters are complex
characters. Let G be a group. If N EG and θ ∈ Irr(N ), the inertia group of θ in G
is denoted by IG(θ). We write Irr(G|θ) for the set of all irreducible constituents of
θG. The order of an element x ∈ G is denoted by |x |. Denote by 8k :=8k(q) the
value of the k-th cyclotomic polynomial evaluated at q . Other notation is standard.

2. Preliminaries

Lemma 2.1. Let G be a group and let N EG be such that G/N is cyclic of order
d ≥ 2. Assume that G has a nontrivial degree a with multiplicity m. Suppose that
a > d and m/d ≥ 2. Then N has a nontrivial degree b with multiplicity at least 2
and a/d ≤ b ≤ a.

Proof. Assume first that χN is not irreducible for some χ∈ Irr(G) with χ(1)= a.
Let θ ∈ Irr(N ) be an irreducible constituent of χN . As G/N is cyclic, we deduce
from [Isaacs 1976, Corollary 11.22] that θ is not G-invariant. Let I = IG(θ) and
t := |G : I |. Then t ≥ 2. By Clifford’s theorem [Isaacs 1976, Theorem 6.2] and the
corollary just cited, we deduce that χN =

∑t
i=1 θi , where θi ∈ Irr(N ) are distinct

conjugates of θ . Hence N has a nontrivial degree a/t with multiplicity at least
t ≥ 2. Since t divides |G/N | = d , we deduce that a/d ≤ a/t ≤ a. Assume now that
χN ∈ Irr(N ) for every χ∈ Irr(G) with χ(1)= a. It follows that N has a nontrivial
degree a with multiplicity at least m/d≥2 as each irreducible character χN ∈ Irr(N )
has exactly d extensions in G. Therefore, in both cases N has a nontrivial degree b
with 1< a/d ≤ b ≤ a with multiplicity at least 2. The proof is now complete. �

We note that when d in the previous lemma is a prime, then b ∈ {a, a/d}. As an
application of this lemma, we obtain:

Corollary 2.2. Let G be a group and let NEG be such that G/N is cyclic of order
d ≥ 2. Assume that G has two nontrivial degrees a1, a2, with multiplicities m1,m2.
Suppose that a2/d > a1 > d and mi ≥ 2d for i = 1, 2. Then N is not a Tk-group
for any integer k ≥ 1.

Proof. By Lemma 2.1, N has two nontrivial character degrees d1, d2, each with
multiplicity at least 2, such that ai/d ≤ di ≤ ai , for i = 1, 2. Now we have
d2 ≥ a2/d > a1 ≥ d1 ≥ a1/d > 1 by the hypothesis. Hence d1 and d2 are character
degrees of N and both degrees have nontrivial multiplicity, so N is not a Tk-group
for any integer k ≥ 1. �

The next result is well known. See [Carter 1985, §§ 13.8, 13.9] for the notion of
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symbols and the classification of unipotent characters of finite groups of Lie type.

Lemma 2.3. Let S be a nonabelian simple group.

(1) If S is a sporadic simple group, the Tits group or an alternating group of
degree at least 7, then S has two nontrivial irreducible characters, with distinct
degrees and both extendible to Aut(S).

(2) If S is a simple group of Lie type in characteristic p and S 6= 2F4(2)′, then
the Steinberg character of S, denoted by StS , of degree |S|p, is extendible
to Aut(S). Furthermore, if S 6∼= PSL2(3 f ), then S possesses an irreducible
character θ such that θ(1) 6= |S|p and θ also extends to Aut(S).

Proof. The first statement follows from [Bianchi et al. 2007, Theorems 3 and 4].
For (2), the existence and extendability of the Steinberg character of S is well
known. Now assume that S 6∼= PSL2(q) with q = p f. We can choose θ to be
any unipotent character of S which is not one of the exceptions in [Malle 2008,
Theorem 2.5] and not the Steinberg character of S, then θ is extendible to Aut(S)
[Carter 1985, §§ 13.8, 13.9]. Finally, assume that S ∼= PSL2(q) with q = p f and
p 6= 3. Then S has an irreducible character θ of degree q+ δ, where q ≡ δ (mod 3)
and δ ∈ {±1} such that θ extends to Aut(S). Notice that this irreducible character
of S corresponds to a semisimple element of order 3 in the dual group SL2(q). �

Lemma 2.4 [Zsigmondy 1892]. Let q ≥ 2 and n ≥ 3 be integers such that (n, q) 6=
(6, 2). Then qn

− 1 has a prime factor ` such that ` ≡ 1 (mod n) and ` does not
divide qm

− 1 for any m < n.

Such an ` is called a primitive prime divisor and is denoted by `n(q).
The orders of two maximal tori and the corresponding primitive prime divisors of

the finite classical groups are given in Table 1, taken from [Malle 1999, Table 3.5].
Table 2 lists the degrees of some unipotent characters of the simple exceptional
groups of Lie type. This can be found in [Carter 1985, §13.9].

3. Simple Tk-groups

The main purpose of this section is to classify all simple Tk-groups. As we will
see shortly, there are only two simple Tk-groups and they are exactly the simple
T2-groups. Let L be the set consisting of the following simple groups:

PSL2(q), PSL3(q), PSU3(q), PSp4(q),

PSL6(2), PSL7(2), PSU4(2), PSp6(2), PSp8(2), P�±8 (2)

and

PSL4(2), PSU4(3), PSU5(2), PSp6(3),

�7(3), PSp8(3), �9(3), P�±8 (3), P�+10(2), P�−10(3).
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G = G(q) |T1| |T2| `1 `2

An (qn+1
− 1)/(q − 1) qn

− 1 `n+1(q) `n(q)
2An, (n ≡ 0(4)) (qn+1

+ 1)/(q + 1) qn
− 1 `2n+2(q) `n(q)

2An, (n ≡ 1(4)) (qn+1
− 1)/(q + 1) qn

+ 1 `(n+1)/2(q) `2n(q)
2An, (n ≡ 2(4)) (qn+1

+ 1)/(q + 1) qn
− 1 `2n+2(q) `n/2(q)

2An, (n ≡ 3(4)) (qn+1
− 1)/(q + 1) qn

+ 1 `n+1(q) `2n(q)

Bn, Cn (n ≥ 3 odd) qn
+ 1 qn

− 1 `2n(q) `n(q)

Bn, Cn (n ≥ 2 even) qn
+ 1 (qn−1

+ 1)(q + 1) `2n(q) `2n−2(q)

Dn, (n ≥ 5 odd) (qn−1
+ 1)(q + 1) qn

− 1 `2n−2(q) `n(q)

Dn, (n ≥ 4 even) (qn−1
+ 1)(q + 1) (qn−1

− 1)(q − 1) `2n−2(q) `n−1(q)
2Dn qn

+ 1 (qn−1
+ 1)(q − 1) `2n(q) `2n−2(q)

Table 1. Two tori for classical groups.

The following result will be needed when dealing with simple classical groups of
Lie type. We refer to [Dolfi et al. 2013, §4.3] and [Larsen et al. 2013, Theorem 4.7]
for some related results.

Lemma 3.1. Let G be a simply connected simple algebraic group of classical type
and let F be a suitable Frobenius map such that S∼=GF/Z(GF ) is a simple classical
group of Lie type defined over a finite field of size q with S 6∈L. Let the pair (G∗, F∗)
be dual to (G, F) and let G = (G∗)F∗. For i = 1, 2, let Ti be the maximal tori of G
with order given in Table 1. Then for each i , there exist two regular semisimple
elements si , ti ∈ Ti such that si , ti ∈ Ti ∩G ′ and that si and ti are not G-conjugate.

Proof. Since G is of simply connected type, the dual group G∗ is of adjoint type and
thus by using the identifications with classical groups in [Carter 1985, page 40],
G/S is either a cyclic or an elementary abelian group of order 4. In all cases, G/S is
abelian and so G ′= S. For each i = 1, 2, let T ′i = Ti ∩G ′. Since G ′ETi G ′≤G, we
obtain that |T ′i | = |Ti ∩G ′| ≥ |Ti |/d with d := |G : G ′|. Since S 6∈L, the primitive
prime divisors `1 and `2 in Table 1 both exist.

Claim 1. For i = 1, 2, every element si ∈ Ti of order `i is a regular semisimple
element and si ∈ Ti ∩G ′ = T ′i .

Observe that the two maximal tori of G with order given in Table 1 have the
properties that they are uniquely determined up to conjugation by their orders.
Furthermore, for each i = 1, 2, the conjugacy class of maximal tori containing Ti

is the only class of maximal tori whose order is divisible by `i . Also, the Sylow
`i -subgroups of G are cyclic. Let si ∈ Ti be a semisimple element of order `i .
As in the proof of [Malle 2010, Proposition 2.4], if CG(si ) is not a torus, then its
semisimple rank is at least 1, and thus it contains two maximal tori of different
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orders. Both of these tori must have orders divisible by `i , which is impossible.
Hence we obtain that CG(si ) = Ti . Since gcd(`i , |G : G ′|) = 1, we deduce that
si ∈ G ′ and so si ∈ T ′i = Ti ∩G ′.

Claim 2. For every x ∈ Ti , if |x | is divisible by `i , then x is a regular semisimple
element.

Assume that x ∈ Ti such that |x |=m`i where m≥ 1 is an integer. Let s= xm
∈ Ti .

Then |s| = `i and so by Claim 1, we know that CG(s)= Ti , hence Ti ≤ CG(x)≤
CG(xm)= CG(s)= Ti . So, CG(x)= Ti and x is a regular semisimple element.

Claim 3. If T ′i = Ti ∩ G ′ has no element whose order is a proper multiple of `i ,
then T ′i contains two distinct G-conjugacy classes of regular semisimple elements
of order `i .

For i = 1, 2, let T ′′i be a cyclic subgroup of T ′i whose order is divisible by `i . By
our assumption, we must have that |T ′′i |= `i and so T ′′i =〈si 〉, where si is an element
of order `i . As si is regular semisimple by Claim 1, we deduce that NG(〈si 〉) ≤

NG(Ti ) and so as the Sylow `i -subgroup of Ti is cyclic and |si | = `i , we obtain
that NG(〈si 〉)=NG(Ti ). Since CG(si )= Ti =CG(Ti ) and |NG(Ti )/Ti | ≤m(S), we
deduce that |NG(〈si 〉)/CG(si )| ≤m(S), where m(S) is the dimension of the natural
module for S=G ′ over Fq . (Notice that the fact |NG(Ti )/Ti |≤m(S) can be deduced
from [Babai et al. 2009, Lemma 4.7].) It follows that si is G-conjugate to at most
m(S) of its powers and thus T ′′i = 〈si 〉 contains at least ϕ(|si |)/m(S) G-conjugacy
classes of regular semisimple elements of order `i , where ϕ is the Euler ϕ-function.
Since |si | = `i , we deduce that ϕ(|si |)/m(S)= (|si |−1)/m(S)≥ (|T ′′i |−1)/m(S).
We now verify that for each possibility of S, we have that (|T ′′i | − 1)/m(S) ≥ 2,
which implies that T ′i contains at least two distinct G-conjugacy classes of regular
semisimple elements of order `i .

(a) Assume first that S∼= PSLn(q). Then m(S)= n and d = gcd(n, q−1). Since Ti ,
i = 1, 2, are cyclic, we deduce that both T ′i are also cyclic of order at least |Ti |/d.
Hence we can choose T ′′i = T ′i for i = 1, 2. Then |T ′′1 | ≥ (q

n
− 1)/(d(q − 1)) and

|T ′′2 | ≥ (q
n−1
−1)/d . As S 6∈L, it is routine to check that qn−1

−1≥ (2n+1)(q−1)
and so since q − 1 ≥ d = gcd(n, q − 1), we obtain that qn−1

− 1 ≥ (2n+ 1)d or
equivalently (|T ′′2 | − 1)/n ≥ 2. Similarly, we can check that (|T ′′1 | − 1)/n ≥ 2.

(b) Assume that S ∼= PSUn(q) and n ≥ 5 is odd. We have that m(S) = n and
d = gcd(n, q + 1). As in the previous case, we see that both Ti are cyclic and
so are T ′i , hence we can choose T ′′i = T ′i . Then |T ′′1 | ≥ (q

n
+ 1)/(d(q + 1)) and

|T ′′2 |≥ (q
n−1
−1)/d . Since qn−1

−1>(qn
+1)/(q+1) and d=gcd(n, q+1)≤q+1,

it suffices to show that (qn
+ 1)≥ (2n+ 1)(q + 1)2 with n ≥ 5 odd. Since S 6∈ L,

we can check that the previous inequality holds so that (|T ′′i | − 1)/m(S) ≥ 2 for
i = 1, 2, as required.



MANY DISTINCT CHARACTER DEGREES 483

(c) Assume that S ∼= PSUn(q) and n ≥ 4 is even. Arguing as in the case n is odd,
we have that |T ′′1 | ≥ (q

n
−1)/(d(q+1)) and |T ′′2 | ≥ (q

n−1
+1)/d . Since qn−1

+1>
(qn
− 1)/(q + 1) and d ≤ q + 1, it suffices to show that qn

− 1≥ (2n+ 1)(q + 1)2

where n ≥ 4 is even. As S 6∈ L, we can check that the previous inequality holds
so that (qn

− 1)/(n(q + 1)2) ≥ 2 and thus (|T ′′i | − 1)/m(S) ≥ 2 for i = 1, 2, as
required.

(d) Assume that S ∼= PSp2n(q) or �2n+1(q) and n ≥ 3 is odd. We have that
m(S) ≤ 2n + 1 and d = gcd(2, q − 1). In this case both Ti are cyclic, so we
can choose T ′′i = T ′i and hence |T ′′1 | ≥ (q

n
+ 1)/d and |T ′′2 | ≥ (q

n
− 1)/d. Since

qn
+ 1> qn

− 1, it suffices to show that qn
− 1 ≥ (4n+ 3)d, where n ≥ 3 is odd

and d = gcd(2, q − 1). Since S 6∈ L, we can check that the latter inequality holds,
so for i = 1, 2, we obtain that (|T ′′i | − 1)/m(S)≥ 2.

(e) Assume that S ∼= PSp2n(q) or �2n+1(q) and n ≥ 4 is even. We can choose
|T ′′1 | = |T

′

1| ≥ (q
n
+ 1)/d and |T ′′2 | ≥ (q

n−1
+ 1)/d. Since qn

+ 1 > qn−1
+ 1, it

suffices to show that qn−1
+1≥ (4n+3)d , where n≥4 is even and d=gcd(2, q−1).

Since S 6∈ L, we can check that the latter inequality holds, so for i = 1, 2, we have
that (|T ′′i | − 1)/m(S)≥ 2.

(f) Assume that S ∼= P�+2n(q) where n ≥ 5 is odd. Then m(S) = 2n and d =
gcd(4, qn

− 1). We have |T ′′1 | ≥ (q
n−1
+ 1)/d and |T ′′2 | ≥ (q

n
− 1)/d. Since

qn
− 1> qn−1

+ 1, it suffices to show that qn−1
+ 1 ≥ (4n+ 1)d, where n ≥ 5 is

odd. Since S 6∈ L, we can check that the latter inequality holds, so for i = 1, 2, we
obtain that (|T ′′i | − 1)/m(S)≥ 2.

(g) Assume that S ∼= P�+2n(q) where n ≥ 4 is even. Then |T ′′1 | ≥ (q
n−1
+ 1)/d

and |T ′′2 | ≥ (q
n−1
− 1)/d. Since qn−1

+ 1 > qn−1
− 1, it suffices to show that

qn−1
− 1 ≥ (4n+ 1)d, where n ≥ 4 is even. Since S 6∈ L, we can check that the

latter inequality holds, so for i = 1, 2, (|T ′′i | − 1)/m(S)≥ 2.

(h) Assume that S ∼= P�−2n(q) where n ≥ 4. Then |T ′′1 | ≥ (q
n
+ 1)/d and |T ′′2 | ≥

(qn−1
+1)/d . Since qn

+1> qn−1
+1, it suffices to show that qn−1

+1≥ (4n+1)d ,
where n ≥ 4. Since S 6∈ L, we can check that the latter inequality holds, so for
i = 1, 2, (|T ′′i | − 1)/m(S)≥ 2 as wanted. This completes the proof of Claim 3.

Finally, by Claim 1, to finish the proof of the lemma, we only need to find a
regular semisimple element ti ∈ T ′i such that ti is not G-conjugate to si for i = 1, 2.
Now, for each i , if T ′i contains an element whose order is a proper multiple of
`i , then this element is a regular semisimple element by Claim 2 and clearly it is
not G-conjugate to si as the orders of these two semisimple elements are distinct.
Otherwise, if no such elements exists, then by Claim 3 we can find a regular
semisimple element ti ∈ T ′i with the same order as that of si and they are not
G-conjugate. The proof is now complete. �
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We now prove the main result of this section.

Theorem 3.2. Let S be a nonabelian simple group. If S is a Tk-group for some
integer k ≥ 1, then k = 2 and S ∼= PSL2(5) or PSL2(7).

Proof. Using the classification of finite simple groups, we consider several cases:

(1) S is a sporadic simple group or the Tits group. It is routine to check using
[Conway et al. 1985] that S has at least two nontrivial distinct degrees, each with
multiplicity at least 2. Hence S is not a Tk-group for any integer k ≥ 1.

(2) S ∼= An with n ≥ 5. If n = 5, then cd(A5) = {1, 3, 4, 5} and every degree of
A5 has multiplicity 1, except for the degree 3 with multiplicity 2. Hence A5 is
a T2-group. Now assume that n ≥ 6. For 6 ≤ n ≤ 13, we can check that An is
not a Tk-group by using [Conway et al. 1985]. Thus we can assume that n ≥ 14.
Let λ be a self-conjugate partition of n and denote by χλ the irreducible character
of Sn labeled by λ. Then χλ when restricted to An will split into the sum of two
irreducible characters having the same degree χλ(1)/2. Thus χλ(1)/2 ∈ cd(An)

has multiplicity at least two. Therefore, in order to show that An is not a Tk-group
for any k ≥ 1, it suffices to find two distinct self-conjugate partitions λi , i = 1, 2,
of n such that χλi (1)/2, i = 1, 2, are distinct and nontrivial.

Assume first that n ≥ 15 is odd. We can write n = 2k+ 9= 2(k+ 4)+ 1. Then
λ1 = (k+5, 1k+4) and λ2 = (k+3, 32, 1k) are two distinct self-conjugate partitions
of n. Assume next that n≥ 14 is even. Write n= 2k+8. Then λ1= (k+4, 2, 1k+2)

and λ2 = (k+ 3, 32, 1k) are two distinct self-conjugate partitions of n. Using Hook
formula, we can easily check that χλi (1)/2 are distinct and nontrivial for i = 1, 2.
Thus An is not a Tk-group for n ≥ 14.

(3) S is a simple exceptional group of Lie type in characteristic p.
Assume first that S ∼= 2B2(q2), where q2

= 22m+1 and m ≥ 1. By [Suzuki 1962],
S has irreducible characters of degree

√
2q(q2

− 1)/2 and q4
+ 1, with multiplicity

2 and (q2
− 2)/2, respectively. Hence S is not a Tk-group for any k ≥ 1.

Assume next that S ∼= 3D4(q). If q = 2, then 3D4(2) is not a Tk-group for any
integer k ≥ 1 by using [Conway et al. 1985]. Hence we can assume that q ≥ 3. By
[Deriziotis and Michler 1987, Table 4.4], S has degrees given by

(q3
+ δ)(q2

− δq + 1)(q4
− q2
+ 1)

with multiplicity 1
2q(q + δ), where δ =±1. Since q ≥ 3, we deduce that these two

degrees are distinct and nontrivial and q(q + 1)/2≥ q(q − 1)/2≥ 3, so S is not a
Tk-group.

Assume that S ∼= E6(q) and let G = E6(q)ad. Let d = |G : S| = gcd(3, q − 1).
By [Lübeck 2007], G has an irreducible character χ of degree

χ(1)= 1
2q382

18
2
384858

2
68889812, with mG(χ(1))≥ q(q − 1).
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S = S(q) Symbol Degree
2G2(q2) cuspidal 1

√
3
q818284

cuspidal 1
2
√

3
q81828

′

12
2F4(q2) (2B2[a], 1), (2B2[b], 1) 1

√
2
q81828

2
486

(2B2[a], ε), (2B2[b], ε) 1
√

2
q1381828

2
486

G2(q) φ′1,3, φ
′′

1,3
1
3q8386

G2[θ ],G2[θ
2
]

1
3q82

18
2
2

F4(q) φ′8,3, φ
′′

8,3 q382
488812

φ′8,9, φ
′′

8,9 q982
488812

2E6(q) 2E6[θ ],
2E6[θ

2
]

1
3q784

18
6
28

2
488810

E6(q) E6[θ ],E6[θ
2
]

1
3q786

18
4
28

2
48588

E7(q) E7[ξ ],E7[−ξ ]
1
2q1187

18
3
38

2
485878889812

E6[θ ],E6[θ
2
]

1
3q786

18
6
28

2
4858788810814

E8(q) (E7[ξ ], 1), (E7[−ξ ], 1) 1
2q1187

18
4
38

4
48

2
5878

2
8898

2
12815820824

(E7[ξ ], ε), (E7[−ξ ], ε)
1
2q2687

18
4
38

4
48

2
5878

2
8898

2
12815820824

Table 2. Some unipotent characters of simple exceptional groups
of Lie type.

Obviously, χ(1) > d and mG(χ(1))≥ 2d . By Lemma 2.1, S has a nontrivial degree
b ∈ {χ(1), χ(1)/d} with nontrivial multiplicity. By Table 2, S also has a nontrivial
degree ψ(1) with multiplicity at least 2. Observe that ψ(1) 6∈ {χ(1), χ(1)/d}.
Therefore, S has two distinct nontrivial degrees, each with multiplicity at least 2,
so S is a not a Tk-group.

The same argument applies to the simple group S ∼= 2E6(q) with q > 2 since
G = 2E6(q)ad has a degree

χ(1)= 1
2q382

283848
3
688810812818, with mG(χ(1))≥ (q + 1)(q − 2),

|G : S| = gcd(3, q + 1)=: d; and S has a nontrivial degree ψ(1) 6∈ {χ(1), χ(1)/d}
with multiplicity at least 2 by Table 2. For the case q = 2, we can check that 2E6(2)
is not a Tk-group by using [Conway et al. 1985].

Finally, for the remaining simple exceptional groups of Lie type, by Table 2 each
simple group S has two distinct nontrivial degrees, each with multiplicity at least 2,
so S is not a Tk-group.

(4) Assume that S is a simple classical group in characteristic p.

(41) Assume first that S 6∈ L. We consider the following setup. Let G be a simply
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connected simple algebraic group of classical type and let F be a suitable Frobenius
map such that L/Z(L)∼= S, where L = GF. Let the pair (G∗, F∗) be dual to (G, F)
and let G = (G∗)F∗. Let T ≤ G be a maximal torus of G. By Deligne–Lusztig
theory, for each G-conjugacy class of regular semisimple element s ∈ T , there
exists a semisimple character χs ∈ Irr(L) with degree |G : T |p′ and if s ∈ G ′, then
Z(L) ⊆ kerχs , so χs is an irreducible character of L/Z(L) ∼= S. Moreover, if
t ∈ T ∩G ′ is also a regular semisimple element which is not G-conjugate to s, then
the semisimple character χt ∈ Irr(L) is an irreducible character of S with the same
degree as that of χs and thus the nontrivial degree |G : T |p′ ∈ cd(S) has multiplicity
at least 2.

Since S 6∈ L, by Lemma 3.1 G contains two maximal tori Ti , i = 1, 2, such that
each T ′i = Ti ∩G ′ possesses two regular semisimple elements si and ti which are
not G-conjugate. By the discussion above, we deduce that each nontrivial degree
|G : Ti |p′ ∈ cd(S) has multiplicity at least 2. Since |G : Ti |p′ , i = 1, 2, are distinct
and nontrivial, we deduce that S is not a Tk-group for any integer k ≥ 1.

(42) Assume next that S ∈ L.

(a) Assume first that S ∼= PSL2(q) with q ≥ 4. As PSL2(4)∼= PSL2(5)∼= A5, we
can assume that q ≥ 7. If q = 7, then PSL2(7) is a T2-group by using [Conway
et al. 1985]. Hence we assume that q ≥ 8. If q is even, then S ∼= SL2(q)
has degrees q − 1 and q + 1 with multiplicity q/2 and q/2− 1, respectively.
Since q ≥ 8, we can see that q/2 > q/2 − 1 ≥ 3, so S is not a Tk-group.
Now assume that q ≥ 9 is odd. Since PSL2(9) ∼= A6, we can assume that
q ≥ 11. We know that S has two irreducible characters of degree (q + ε)/2
where q ≡ ε (mod 4) and ε ∈ {1,−1}. Furthermore, S has a nontrivial degree
q − 1 with multiplicity (q − δ)/4, where q ≡ δ (mod 4) and δ ∈ {1, 3}. As
(q − 1)/4> (q − 3)/4≥ (11− 3)/4= 2 and q − 1> (q + 1)/2≥ (q − 1)/2,
S has two distinct nontrivial degrees, each with multiplicity at least 2 and thus
S is not a Tk-group.

(b) Assume that S ∼= PSL3(q). Since PSL3(2) ∼= PSL2(7), we can assume that
q ≥ 3. For 3≤ q ≤ 11, we can check that PSL3(q) is not a Tk-group by using
[Conway et al. 1985]. So, we assume that q ≥ 13. In this case, by [Simpson
and Frame 1973] S has degrees d1 = q2

+ q+ 1 and d2 = q(q2
+ q+ 1), both

with multiplicity (q − 1)/d − 1. Since q ≥ 13 and d = gcd(3, q − 1) ≤ 3, it
follows that (q − 1)/d − 1≥ (q − 1)/3− 1≥ 2 and hence S is not a Tk-group
in these cases.

(c) Assume that S ∼= PSU3(q). Since PSU3(2) is not simple, we can assume that
q ≥ 3. For 3≤ q ≤ 9, we can check that PSU3(q) is not a Tk-group by using
[Conway et al. 1985]. So, we assume that q ≥ 11. In this case, by [Simpson
and Frame 1973] S has degrees d1 = q2

− q+ 1 and d2 = q(q2
− q+ 1), both
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with multiplicity (q + 1)/d − 1. Since q ≥ 11 and d = gcd(3, q + 1) ≤ 3, it
follows that (q + 1)/d − 1≥ (q + 1)/3− 1≥ 2. Thus S is not a Tk-group.

(d) Assume that S ∼= PSp4(q) with q ≥ 3. If q ≥ 4 is even, then S possesses two
distinct nontrivial degrees q(q2

+1)/2 and (q−1)(q2
+1) with multiplicity 2

and q respectively by using [Lübeck 2007]. Now assume that q ≥ 3 is odd.
Using [Lübeck 2007] again, G has two distinct nontrivial character degrees
a1 := 2q(q2

+1)/2 and a2 := (q+1)(q2
+1) with multiplicity 4 and 3(q−3)/2,

respectively. Since d = |G : S| = 2, we deduce that a2/d > a1 > d. If q ≥ 5,
then 3(q−3)/2≥ 2d = 4 and 4≥ 2d , so it follows from Corollary 2.2 that S is
not a Tk-group. For the remaining cases, we can check directly using [Conway
et al. 1985] that S is not a Tk-group.

(e) Finally, for the remaining simple groups in L, it is routine to check using
[GAP 2012] that S is not a Tk-group for any k ≥ 1. �

4. Nonsolvable Tk-groups

We first prove a special case of the main theorem. In fact, we show that nonperfect
Tk-groups must be solvable. We note that if G is a Tk-group for some integer k ≥ 1
and N EG, then since Irr(G/N ) ⊆ Irr(G), we can easily see that G/N is also a
Tm-group for some integer m ≤ k.

Theorem 4.1. If G is a nonperfect Tk-group for some k ≥ 1, then G is solvable.

Proof. Let G be a counterexample to the theorem with minimal order. Then G ′ 6=G
and G is a Tk-group for some k ≥ 1 but G is nonsolvable. Let M be the last term of
the derived series of G and let N EG such that M/N is a chief factor of G. Since
G is nonsolvable, we see that M is nontrivial and hence it is perfect, so M/N is
nonabelian and M/N ∼=W t for some nonabelian simple group W and some integer
t ≥ 1. Then M/N is a minimal normal subgroup of G/N and that

|G/N : (G/N )′| = |G/N : G ′/N | = |G : G ′|> 1

as G is nonperfect and N ≤ M ≤ G ′. It follows that G/N is a nonperfect non-
solvable group and since Irr(G/N )⊆ Irr(G), we deduce that G/N is a nonperfect
nonsolvable Tm-group for some integer m ≥ 1. If N is nontrivial, then |G/N |< |G|,
which contradicts the minimality of |G|. Therefore, we conclude that N must be
trivial and M ∼=W t .

Claim 1. M ∼= PSL2(3 f ) for some f ≥ 2.

We first show that W ∼=PSL2(3 f )with f ≥2. Suppose by contradiction that W 6∼=
PSL2(3 f ) with f ≥ 2. Then there exist two irreducible characters θi ∈ Irr(W ) such
that θ1(1) 6=θ2(1) and both θi extend to Aut(W ) by Lemma 2.3. Let ϕi =θ

t
i ∈ Irr(M)

for i = 1, 2. By [Bianchi et al. 2007, Lemma 5], we deduce that both ϕi extend to
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χi ∈ Irr(G). Furthermore, by Gallagher’s theorem [Isaacs 1976, Corollary 6.17] we
know that each ϕi has exactly |G/M : (G/M)′| = |G : G ′| extensions. For each i ,
all extensions of ϕi have the same degree which is ϕi (1)= θ t

i (1) > 1. So, G has two
distinct nontrivial degrees θ t

i (1), i = 1, 2, both with nontrivial multiplicity, which
is a contradiction. Hence W ∼= PSL2(3 f ) with f ≥ 2 as we wanted.

We now claim that t = 1 and thus M ∼= PSL2(3 f ) with f ≥ 2. By way of
contradiction, assume that t ≥ 2. Let θ be the Steinberg character of W . Then
ϕ = θ t

∈ Irr(M) extends to ϕ0 ∈ Irr(G) by [Bianchi et al. 2007, Lemma 5]. Thus
by Gallagher’s theorem [Isaacs 1976, Corollary 6.17] again, we have that ϕ0(1)=
ϕ(1) = θ(1)t is a nontrivial degree with nontrivial multiplicity. It follows that
if d ∈ cd(G) with 1 < d 6= θ(1)t = 3t f , then the multiplicity of d is trivial. It
is well know that PSL2(3 f ) has two irreducible characters of degree (3 f

+ ε)/2,
where 3 f

≡ ε (mod 4) and ε ∈ {±1}, hence PSL2(3 f ) has a nontrivial degree
(3 f
+ ε)/2 < 3 f with multiplicity 2. Denote these two irreducible characters by

αi , i = 1, 2. For i = 1, 2, let

ϕi = 1× 1× · · ·×αi ∈ Irr(M) and ψ = 1× 1× · · ·× θ ∈ Irr(M).

Let I, I1 and I2 be the inertia groups of ψ , ϕ1 and ϕ2, respectively. Obviously, we
have that M ≤ Ii ≤ I ≤ G for i = 1, 2. By the representation theory of wreath
products, we know that ψ extends to ψ0 ∈ Irr(I ) and |G : I | = t . Since G/M is
solvable, we deduce that I/M is solvable. If I/M is nontrivial, then I/M has j > 1
linear characters and thus ψ has j distinct extensions to I , which are ψ0λ with
λ ∈ Irr(I/M) and λ(1)= 1, so by Clifford’s theorem [Isaacs 1976, Theorem 6.11]
we have that (ψ0λ)

G
∈ Irr(G) are distinct irreducible characters of G having the

same degree. Furthermore, for λ ∈ Irr(I/M) with λ(1)= 1, we have

(ψ0λ)
G(1)= ψG

0 (1)= |G : I |ψ0(1)= 3 f
· t < 3t f .

The last inequality holds since t ≥ 2. But then this is a contradiction since the
multiplicity of the nontrivial degree 3 f

· t is at least |I/M : (I/M)′| which is
nontrivial by our assumption. Therefore, we conclude that I/M is trivial and so
I = M . It follows that for i = 1, 2, we have Ii = I = M since M ≤ Ii ≤ I = M .
Thus for each i , we have ϕG

i ∈ Irr(G) and

ϕG
i (1)= |G : M |αi (1)= |G : M |(3 f

+ ε)/2

which is nontrivial and different from 3 f t. Clearly, ϕG
1 6= ϕ

G
2 , so we deduce that

G has a nontrivial degree |G : M |(3 f
+ ε)/2 6= 3 f t with multiplicity at least 2,

which is impossible. This contradiction proves our claim.

Claim 2. G is an almost simple group with socle M.

By the previous claim, we know that M∼=PSL2(3 f )with f ≥2. Let C=CG(M).



MANY DISTINCT CHARACTER DEGREES 489

Then C EG and G/C is an almost simple group with socle MC/C . Assume first
that G/C is perfect. Then G = MC and since M is nonabelian simple, we must
have that M ∩ C = 1 and so G = M × C , where G/M ∼= C is solvable. If C
is nontrivial, then |C : C ′| > 1 and so for each nontrivial irreducible character
µ ∈ Irr(M) of M , we see that µ has |C : C ′| extensions to G = M ×C and thus
G cannot be a Tk-group for any k ≥ 1. Hence C must be trivial and so G is
simple, which is impossible as G 6=G ′. Assume next that G/C is nonperfect. Then
G/C is a nonperfect nonsolvable Tm-group for some m ≥ 1. By the minimality
of |G|, we must have that C = 1 and thus G is an almost simple group with socle
M ∼= PSL2(3 f ).

The final contradiction. Let q = 3 f, with f ≥ 2. Let α be an irreducible character of
M with α(1)= (q+ ε)/2 where q ≡ ε (mod 4) and ε ∈ {±1}, let δ be the diagonal
automorphism of M and let ϕ be the field automorphism of M of order f . Then
Out(M)= 〈δ〉× 〈ϕ〉. Since G is nonperfect, we deduce that |G : M | is nontrivial.
Observe that the Steinberg character StM of M is extendible to Aut(M) and so it
extends to G by [Bianchi et al. 2007, Lemma 5], hence by Gallagher’s theorem
[Isaacs 1976, Corollary 6.17] the degree StM(1) = |M |3 has multiplicity at least
|G : M |> 1. Thus the multiplicity of every nontrivial degree of G different from
|M |3 = q must be trivial. By [White 2013, Lemma 4.6], α is ϕ-invariant. Now
if G ≤ M〈ϕ〉, then α is G-invariant and since G/M is cyclic, α extends to G
and so G has a nontrivial degree (q + ε)/2 with multiplicity at least |G : M | ≥ 2,
which is impossible. Hence G 6≤ M〈ϕ〉. By [White 2013, Theorem 6.5], we have
IG(α)=G∩M〈ϕ〉 and |G : IG(α)| = 2. If |IG(α) : M |> 1, then α has |IG(α) : M |
extensions to IG(α) as IG(α)/M is cyclic and thus by inducing these characters to
G, we see that G has at least |IG(α) : M | ≥ 2 irreducible characters of degree q+ε,
which is a contradiction. Thus, we conclude that IG(α)= M and |G : M | = 2. By
[White 2013, Corollary 6.2], we have that either G ∼= PGL2(q) or G ∼= M〈δϕ f/2

〉,
where f is even. Clearly, the first case cannot happen. For the latter case, since
f is even, we obtain that q ≡ 1 (mod 4), so M has exactly (q − 1)/4 irreducible
characters of degree q − 1. As |G : M | = 2, by [White 2013, Theorem 6.6] all
irreducible characters of G lying over an irreducible character of M of degree q−1
have degree 2(q − 1). Therefore, G has at least (q − 1)/8 irreducible characters of
degree 2(q − 1). If q = 9, then we can check directly using [Conway et al. 1985]
that all almost simple groups with socle PSL2(9)∼= A6 are not Tk-groups for any
integer k ≥ 1. Thus we can assume that q ≥ 81 as f is even, so (q − 1)/8 ≥ 10,
hence G is not a Tk-group. This final contradiction proves our theorem. �

We are now ready to prove the main theorem.

Proof of Theorem A. Let G be a counterexample to the theorem with minimal order.
Then G is a nonsolvable Tk-group for some integer k ≥ 1 but G is isomorphic
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to neither PSL2(5) nor PSL2(7). If G ′ 6= G, then G is solvable by Theorem 4.1,
which is a contradiction. Thus we can assume that G is perfect. Let M be a
maximal normal subgroup of G. Then G/M is a nonabelian simple group. Since
Irr(G/M)⊆ Irr(G), we deduce that G/M is a Tm-group for some m ≥ 1. Now by
Theorem 3.2, we have that G/M ∼= PSL2(q) with q ∈ {5, 7} and G/M is a T2-group.
Since G is a counterexample to the theorem, we deduce that M is nontrivial.

By [Conway et al. 1985], we know that cd(PSL2(5))={1, 3, 4, 5} with multiplic-
ity 1, 2, 1, 1 and cd(PSL2(7))= {1, 3, 6, 7, 8} with multiplicity 1, 2, 1, 1, 1. Since
G is a Tk-group, we deduce that the degree 3 ∈ cd(G/M) is the unique nontrivial
character degree in cd(G) with nontrivial multiplicity and also k ≥ 2. If k = 2, then
G must be isomorphic to either PSL2(5) or PSL2(7) by [Berkovich and Kazarin
1996, Main Theorem], which is a contradiction. Therefore, we must have that
k ≥ 3. Hence there exists χ∈ Irr(G|M) with χ(1) = 3 and thus χ∈ Irr(G|θ) for
some nontrivial irreducible character θ of M . By Clifford’s theorem [Isaacs 1976,
Theorem 6.2], we have that χM = e(θ1+ θ2+ · · ·+ θt), where all θi are conjugate
to θ in G, e≥ 1 is the degree of an irreducible projective representation of IG(θ)/M
and t = |G : IG(θ)|. Since χ(1)= 3, we have that 3= etθ(1) and hence t ≤ 3. As
the index of a proper subgroup of G/M with G/M ∼=PSL2(5) or PSL2(7) is at least
5, we must have that t = 1, so χM = eθ and θ is G-invariant. If θ is extendible to
θ0 ∈ Irr(G), then θ0(1)= θ(1)≥ 2 since G is perfect; also by Gallagher’s theorem
[Isaacs 1976, Corollary 6.17], we obtain that Irr(G|θ) = {θ0 λ | λ ∈ Irr(G/M)}.
It follows that χ = µθ0 for some µ ∈ Irr(G/M). As 3 = χ(1) = µ(1)θ(1) and
θ(1) ≥ 2, we must have that µ(1) = 1 and θ(1) = 3. Since 3 ∈ cd(G/M) has
multiplicity 2, there exist two distinct irreducible characters λi , i = 1, 2, of G/M
with λi (1) = 3 and so θ0λi , i = 1, 2, are two distinct irreducible characters of
G, both have degree 9. Thus 9 ∈ cd(G) has multiplicity at least 2 which is a
contradiction as 3∈ cd(G) already has nontrivial multiplicity. Thus θ is G-invariant
but it is not extendible to G. As the Schur multiplier of PSL2(q) with q ∈ {5, 7}
is cyclic of order 2, by the theory of character triple isomorphism [Isaacs 1976,
Chapter 11], the triple (G,M, θ) must be isomorphic to (SL2(q), A, λ), where
q ∈ {5, 7}, A = Z(SL2(q)) and µ is a nontrivial irreducible character of A. Since
cd(SL2(q)|λ) = {(q − ε)/2, q − 1, q + 1}, with q ≡ ε (mod 4) and ε ∈ {±1}, we
deduce that cd(G|θ)= {θ(1)(q−ε)/2, (q−1)θ(1), (q+1)θ(1)}. However, we can
check that all degrees in cd(G|θ) are even and thus 3 6∈ cd(G|θ). This contradiction
proves the theorem. �
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