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Theorem 1.4 of the article in question — its main result — is a prime orbit
theorem for the geodesic flow of asymptotically hyperbolic manifolds with
negative sectional curvatures. We correct a typo and supply a missing tech-
nical assumption to make the result and its proof correct. We also supply
a remainder term required in the dynamical wave trace formula given in
Theorem 1.1, relating the length spectrum to the regularized trace of the
wave group. This correction does not affect the main terms in the trace
formula nor its application by Borthwick and Perry (2011).

1. Corrections

Joint work with P. Suarez-Serrato and S. Tapie [Rowlett et al. 2011] has led to the
discovery of a missing term in the dynamical wave trace formula given in Theorem
1.1 of [Rowlett 2009], due to a subtle gap in the proof. A correct version follows:

Theorem 1.1. Suppose (X, g) is an asymptotically hyperbolic (n+1)-dimensional
manifold with negative sectional curvatures. Let 0-tr cos(t

√
1− n2/4) denote the

regularized trace of the wave group, and let t0> 0. Let Lp denote the set of primitive
closed geodesics of (X, g), and for γ ∈ Lp, let l(γ ) denote the length of γ . Then

(1-1) 0-tr cos
(
t
√
1− n2/4

)
=

∑
γ∈Lp

∑
k∈N

l(γ )δ(|t | − kl(γ ))

2
√
|det(I −Pk

γ )|
+ R(t),

as a distributional equality in D′([t0,∞))1, where Pk
γ is the k-times Poincaré map

around γ in the cotangent bundle. The remainder R(t) is continuous and can be
written as the sum of two continuous terms

R(t)= A(t)+ B(t),

which satisfy the following.
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1D′(X) is the dual of C∞0 (X).
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(1) There exist constants ε,C > 0 such that

(1-2)
∣∣∣∣∫ ∞

0
A(t) cos(λt)ρ(t) dt

∣∣∣∣≤ C

for all λ > 1 and ρ ∈ C∞0 ([t0, ε ln λ]). The constants C and ε depend only on
t0 and ‖ρ‖∞; they are independent of λ.

(2) B(t) is independent of the set of closed geodesics, and it is possible that B(t)
has exponential growth for large time.

Theorem 1.1 of [Rowlett 2009] was restated in Theorem 5.1 of [Rowlett 2010],
which is therefore subject to the same correction; it was also applied in [Borthwick
and Perry 2011], but without use of the remainder estimate for large time, so the
results there are unaffected.

Corollary 1.2 of [Rowlett 2009] (restated in [Rowlett 2010] as Corollary 5.2)
should be corrected as follows.

Corollary 1.2. Let (X, g) be a manifold with negative sectional curvatures that is
hyperbolic near infinity. Then, for any t0 > 0, as an element of D′([t0,∞)), we have
the distributional equality∑

s∈Rsc

e(s−n/2)|t |
=

∑
γ∈Lp

∑
k∈N

l(γ )δ(|t | − kl(γ ))√
|det(I −Pk

γ )|
+ A(t)+ B(t).

Here the resonances Rsc of the scattering operator (see [Rowlett 2009]) are summed
with multiplicity, and the remainders A(t) and B(t) have the same properties as in
Theorem 1.1.

In Theorem 1.4 of [Rowlett 2009], a factor of h was omitted in the numerator;
this was corrected in Theorem 4.4 of [Rowlett 2010]. An additional technical
assumption, that the length-spectrum is nonarithmetic (see [Rowlett et al. 2011,
§4]), was also missing. (Experts believe that this assumption always holds, but a
proof is not known.) Thus the correct statement is this:

Theorem 1.4. Suppose (X, g) is an asymptotically hyperbolic (n+1)-dimensional
manifold with negative sectional curvatures and nonarithmetic length spectrum. Let
h be the topological entropy of the geodesic flow, and assume h > 0. The dynamical
zeta function

Z(s)= exp
(∑
γ∈Lp

∑
k∈N

e−kslp(γ)

k

)
has a nowhere vanishing analytic extension to an open neighborhood of <(s)≥ h
except for a simple pole at s = h. Let L denote the set of all closed geodesics, and
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for γ ∈ L, let l(γ ) denote the length of γ . The length spectrum counting function

(1-3) N (T ) := #{γ ∈ L : l(γ )≤ T }

satisfies lim
T→∞

h T N (T )
ehT = 1.

The corrected statements of Theorem 1.1, Corollary 1.2 and Theorem 1.4 follow
from the proofs in [Rowlett 2009], with the exception of statement (2) above, about
the remainder term B(t), which shall be proved in Section 2.

As we shall demonstrate below, the remainder term B(t) may grow exponentially
for large time. This was unexpected because in the compact case there is no
such term, and in the noncompact model case of conformally compact hyperbolic
manifolds, the remainder term has exponential decay as t→∞; see [Guillarmou
and Naud 2006, Theorem 1.1].

Corollary 1.5 of [Rowlett 2009] (and the analogous Corollary 5.3 in [Rowlett
2010]) should both be replaced by the version below. Before stating it, we recall
the standard big-O notation. For a function f : R→ C and a function F : R→ R

we use the notation
f (t)= O(F(t)) as t→∞

if there exist constants T,C > 0 such that | f (t)| ≤ C F(t) for all t > T .

Proposition 1.5. Let (Mn+1, g) be a Riemannian manifold with negative sectional
curvatures that is hyperbolic near infinity, and whose length spectrum is nonarith-
metic. Assume the topological entropy of the geodesic flow is positive. Let W be the
Sinai–Bowen–Ruelle potential, and let ℘ denote topological pressure.

(1) Assume the remainder B(t) in Corollary 1.2 also satisfies a statement identical
to (1) of Theorem 1.1, with the substitution of B(t) for A(t). If

℘(−W/2) > 0,

then the discrete spectrum of the Laplacian is nonempty and the infimum 31 of
the spectrum of the Laplacian satisfies the estimate

31 =min σpp(1)≤
n2

4
−
(
℘(−W/2)

)2
.

(2) If both remainder terms are uniformly bounded as t→∞, then

℘(−W/2) > 0 ⇐⇒ σpp 6=∅,

and these equivalent conditions imply

31 =
n2

4
−
(
℘(−W/2)

)2
.
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(3) The remainder satisfies

|R(t)| = O
(
sup{e(s1−n/2)t, e℘(−W/2)t, t}

)
as t→∞.

(If σpp =∅, the term e(s1−n/2)t is omitted from the supremum.)

(4) The assumption about B(t) in part (1) does not always hold.

The proof of this proposition is based on Theorem 1.1, Corollary 1.2, and the
following result, which will appear in [Rowlett et al. 2011].

Theorem 1.6. Let (M, g) be a conformally compact manifold whose sectional
curvatures satisfy −b2

≤ Kg ≤−a2 < 0, with nonabelian fundamental group2 and
nonarithmetic length spectrum. The weighted zeta function

Z̃(s)= exp
( ∑
γ∈Lp

∑
k∈N

e−kslp(γ )

k
√
|det(I −Pγ

k)|

)
is an analytic nonzero function on the half-plane R(s) > ℘(−W/2). It admits a
meromorphic extension to the half plane

R(s) > ℘(−W/2)− inf
{
λa
b
,
λ

2

}
,

where λ is the expansion factor of the geodesic flow on the nonwandering set.
Moreover, with the exception of a simple pole at ℘(−W/2), this extension is
analytic and nonvanishing in an open neighborhood of {R(s) ≥ ℘(−W/2)}. If
℘(−W/2) > 0, then we have the counting estimate∑

γ∈LT

|det(I −Pγ )|
−1/2
∼

exp
(
℘(−W/2)T

)
℘(−W/2)T

as T →∞,

where LT denotes the set of closed geodesics of length at most T .

2. Proofs

The relationship between the support of the test function and its oscillation in (1-2)
is known in the context of semiclassical analysis as Ehrenfest time. Therefore,
we will say that (λ, T ) ∈ (1,∞)2 is an ε-Ehrenfest pair if it satisfies T ≤ ε ln λ,
where ε > 0 is a constant. Due to the oscillation of test functions needed to control
the remainder, we shall use the “Dirichlet box principle” technique of Jakobson,
Polterovich, and Toth:

2Note that this is equivalent to the positivity of the topological entropy of the geodesic flow (see
[Rowlett et al. 2011, Proposition 3.12]).
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Proposition 2.1 (Dirichlet box principle [Jakobson et al. 2008]). There are infinitely
many ε-Ehrenfest pairs (λ, T (λ)) such that

(2-1) for each γ ∈ L with l(γ )≤ T,
there exists k(γ ) ∈ Z such that |λl(γ )− 2πk(γ )| ≤ 1

2 .

Remark. For such an ε-Ehrenfest pair (λ, T (λ)), for each γ ∈ L with l(γ )≤ T ,

cos(λl(γ ))≥ 1
2 .

Proof of Proposition 1.5. From the assumption of negative sectional curvatures and
hyperbolicity near infinity, it follows that the manifold is asymptotically hyperbolic
and has pinched negative sectional curvatures; see [Rowlett et al. 2011, §2]. We
may therefore apply Corollary 1.2 and Theorem 1.6.

We first prove part (1). Let the assumptions in that statement hold and set

η := ℘(−W/2) > 0.

The spectral side of the trace formula can be reformulated in terms of the resonances
of the resolvent as follows:∑

s∈R

m(s)e(s−n/2)|t |
+

∑
k∈N

dke−k|t |.

There are at most finitely many terms in the first sum with R(s) > n/2, and these
are in bijection with the pure point (discrete) spectrum (see [Mazzeo and Melrose
1987]) via

s(n− s)=3 ∈ σpp ⊂

(
0, n2

4

)
.

Write
R=Rpp ∪R0,

where
Rpp = {s ∈R |R(s) > n/2}, R0 = {s ∈R |R(s)≤ n/2}.

We shall require the counting estimate demonstrated in Theorem 1.1 of [Borthwick
2008], which implies

(2-2) N(R) :=
∑
s∈R
|s|≤R

m(s)= O(Rn+1),

R∑
k=1

dk = O(Rn+1).

Let (λ, T (λ)) be an ε-Ehrenfest pair that satisfies (2-1). Let

l0 := inf{l(γ ) | γ ∈ Lp}.

For T > 0, let ρT ∈ C∞((0,∞)) be a smooth, nonnegative function such that



498 JULIE ROWLETT

(2-3) ρT (t)=


0 if t ≤ l0/2,
1 if l0 ≤ t ≤ T,
0 if T + 1≤ t.

Let

(2-4) f (t) := cos(λt)ρT (λ)(t), ρ(t) := ρT (λ)(t).

By Corollary 1.2 and the assumption of statement (1), we have I = II, where

I :=
∑
s∈R

m(s)
∫
∞

0
e(s−n/2)t f (t) dt +

∞∑
k=1

dk

∫
∞

0
e−kt f (t) dt

and

II :=
∑
γ∈Lp

∞∑
k=1

l(γ ) f (kl(γ ))√
|det(I −Pk

γ )|
+ O(1).

By the Dirichlet box principle, for all γ ∈ Lp and for any k ∈ N with kl(γ ) =
`(kγ )≤ T (λ), there exists j (γ ) ∈ Z such that

|λl(kγ )− 2π j (γ )| ≤ 1
2 .

It follows that
f (kl(γ ))= cos(λkl(γ ))ρ(kl(γ ))≥ 1

2 .

Therefore,

II ≥
∑

γ∈Lp, k∈N

kl(γ )≤T

l(γ )

2
√
|det(I −Pk

γ )|
+ O(1).

By Theorem 1.6, there exists a constant C > 0, independent of T , such that

II ≥ C eηT

T
+ O(1).

On the other hand, we can estimate I from above. Define

F(s) :=
∫
∞

0
e(s−n/2)t f (t) dt.

Since the pure point spectrum is finite or empty, and 0<31 ≤32 ≤ · · ·< n2/4,
with 3 j = s j (n− s j ), it follows that

s1 ≥ s2 ≥ · · ·>
n
2
.

Therefore, for each s ∈Rpp,

|F(s)| ≤
∫
∞

0
e(s1−n/2)tρ(t) dt = O(e(s1−n/2)T ).
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Next we estimate for s ∈R0. Since

F(s)= 1
2

∫
∞

0
est e−(n/2)t(eiλt

+ e−iλt)ρ(t) dt,

for s = 0 and s = n/2± iλ, we have

F(s)= O(T ).

For s 6= 0, s 6= n/2± iλ, integrating by parts k times (compare [Guillarmou and
Naud 2006, §3]), we have

F(s)=
(−1)k

2(s− n/2+ iλ)k

∫
∞

0
e(s−n/2+iλ)tρ(k)(t) dt

+
(−1)k

2(s− n/2− iλ)k

∫
∞

0
e(s−n/2−iλ)tρ(k)(t) dt.

We therefore have the estimate

|F(s)| = O
(

T
|s|k + |λ|k

)
= O

(
T
|s|k

)
.

For s 6= 0, s 6= n/2± iλ, using the counting estimate (2-2) and the above with
k = n+ 2, we estimate (compare [Guillarmou and Naud 2006, §3])∑

s∈R0

|F(s)| = O(T )+
∫
∞

1

dN(R)
Rn+2 = O(T ).

By the counting estimate (2-2), it follows that there is a constant c> 0 (independent
of k) such that

dk ≤ ckn+1 for all k ∈ N.

Therefore the sum
∞∑

k=1

dke−kt

converges uniformly on [l0/2,∞) and is uniformly bounded. Consequently∣∣∣∣∫ ∞
0

f (t)
∞∑

k=1

dke−kt dt
∣∣∣∣= O(T ).

Putting this together with the estimate for Rpp, we have

I = O(e(s1−n/2)T )+ O(T ).
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If the pure point spectrum of the Laplacian is empty, then there is no contribution
to I from Rpp =∅, and we have

|I | = O(T )= |II| ≥ C eηT

T
.

This implies that we cannot have η > 0. We have thus shown that σpp=∅=⇒ η≤ 0.
By the contrapositive, if η> 0 then σpp(1) 6=∅. In this case, denote the infimum

of the spectrum σpp by 31, with

s1(n− s1)=31.

By our above estimates,

(2-5) O(e(s1−n/2)T )+ O(T )= |I | = |II| ≥ C eηT

T
.

By the Dirichlet box principle, there exist infinitely many Ehrenfest pairs, so we
may let T →∞, from which it follows that

s1−
n
2
≥ η, and hence s1 ≥ η+

n
2
.

This in turn implies the upper bound

31 ≤

(
η+

n
2

)(n
2
− η

)
=

n2

4
− η2.

We now turn to part (2), and thus assume that A(t) and B(t) are both uniformly
bounded as t→∞. In this case we do not need the Dirichlet box principle and may
simply use the test function ρ. If η > 0, then by part (1) the pure point spectrum is
nonempty and

s1 ≥ η+
n
2
.

We have the estimate∫
∞

0
e(s1−n/2)tρ(t) dt ≥ Ce(s1−n/2)T , C > 0.

Combining this with our estimates above, we have

I ≥ Ce(s1−n/2)T
−C ′T,

for some constant C ′. Since η > 0, Theorem 1.6 implies that

II ≤ C ′′ e
ηT

T

for some constant C ′′ > 0. Putting this together, we have

Ce(s1−n/2)T
−C ′T ≤ I = II ≤ C ′′ e

ηT

T
.
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It follows that
s1−

n
2
≤ η,

which, combined with the inequality from (1) (note that the condition in (2) implies
the one in (1)), gives

η > 0 =⇒ σpp 6=∅ and s1−
n
2
= η.

The last equality implies 31 = n2/4− η2.
Conversely, if σpp 6=∅, we may similarly estimate I from below, which shows that

the dynamical side must also grow exponentially as T →∞. Since the remainder
terms are bounded, by Theorem 1.6 we must have η > 0. This concludes the proof
that σpp 6=∅ ⇐⇒ η > 0, and as we have seen we have 31 = n2/4−η2 in this case.

We shall prove (3) by contradiction. Assume that for any C > 0, for each N ∈N

there is TN > N with

|R(TN )|> C sup{e(s1−n/2)TN , e℘(−W/2)TN , TN }.

By the continuity of R, for each N ∈ N there exists a nonnegative test function
ρN ∈ C∞0 (0, TN + 1) such that ∫

∞

0
ρN (t) dt = 1,

and ∣∣∣∣∫ ∞
0

R(t)ρN (t) dt
∣∣∣∣> C sup{e(s1−n/2)TN , e℘(−W/2)TN , TN }.

By Corollary 1.2,∑
s∈R

m(s)
∫
∞

0
e(s−n/2)tρN (t) dt+

∞∑
k=1

dk

∫
∞

0
e−ktρN (t) dt −

∑
γ∈Lp

∞∑
k=1

l(γ )ρN (kl(γ ))√
|det(I−Pk

γ )|

=

∫
∞

0
R(t)ρN (t) dt.

By Theorem 1.6 and our above estimates, the norm of the left side is bounded
above by

(2-6) C ′ sup{e(s1−n/2)TN , e℘(−W/2)TN , TN }

for a fixed constant C ′ > 0 that is independent of N and ρN . This in turn implies
the same upper bound for the right side. This is a contradiction. Therefore, there
exist constants C > 0 and T > 0 such that

|R(t)| ≤ C sup{e(s1−n/2)t , e℘(−W/2)t , t} for all t > T,

which is the conclusion of (3).
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To prove (4), we will describe a counterexample suggested by Gilles Carron and
Samuel Tapie. Let S = H2/0 be a convex cocompact hyperbolic surface whose
topological entropy satisfies h = h(gH ) >

1
2 , where gH is the hyperbolic metric

on S, and assume that the length spectrum is nonarithmetic. Then by [Sullivan
1979] its Laplacian admits an isolated first eigenvalue 3H = h(1− h) ∈

(
0, 1

4

)
. We

shall assume for the sake of contradiction that for any manifold that has negative
sectional curvatures and is hyperbolic near infinity, the remainder term B(t) in
Corollary 1.2 also satisfies the estimate (1-2).

Let � be a compact, convex subset of S that properly contains the nonwandering
set,3 and let

�⊂ BR ⊂ BR′ ⊂ BR′′,

with BR , BR′ , BR′′ balls of radii 0< R < R′ < R′′.
Let α : S→ [1−ε, 1] be a smooth function satisfying

(2-7) α(x)=


1 for x ∈�,
1− ε for x ∈ BR′ \ BR,

1 for x ∈ S \ BR′′ .

Let g be the Riemannian metric defined for all x ∈ S by g(x) = α(x)gH (x). For
ε > 0 sufficiently small, the sectional curvatures of g remain negative. Thus (S, g)
is again hyperbolic near infinity, and a function is in L2(S, g) if and only if it is in
L2(S, gH ). Since α ≡ 1 on the nonwandering set, g = gH on �. It follows that the
length spectrum of (S, g) is identical to the length spectrum of (S, gH ), and hence
is also nonarithmetic. Moreover, hg = hgH

, and therefore the topological entropy of
(S, g) is also positive; equivalently, the fundamental group of (S, g) is nonabelian.
Since W (g)=W (gH ) along all closed geodesics,

η := ℘
(
−W (g)

2

)
= ℘

(
−W (gH )

2

)
= h− 1

2 > 0.

Since B(t) satisfies the estimate (1-2) and the hypotheses of Proposition 1.5, it
follows from (1) that the discrete spectrum of (S, g) is nonempty and

31 ≤
1
4 − η

2
=3H .

It follows that there exists φ : S→ [0,∞) (not identically zero) such that∫
S ||∇φ||

2
g dvg∫

S ||φ||
2
g dvg

=31 ≤3H .

3Note that since S is convex cocompact and hyperbolic, it is asymptotically hyperbolic as well as
convex cocompact with pinched negative curvatures and therefore the nonwandering set is a compact
subset; see [Joshi and Sá Barreto 2001; Rowlett et al. 2011].
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For any positive smooth function φ,∫
S
||∇φ||2g dvg =

∫
S

g−1(dφ, dφ)α2 dvgH
=

∫
S
α−2g−1

H (dφ, dφ)α2 dvgH

=

∫
S

g−1
H (dφ, dφ) dvgH

=

∫
S
||∇φ||2gH

dvgH
.

By the maximum principle, φ cannot vanish identically on BR′ \BR , so by definition
of α we have ∫

S
||φ||2gH

α2 dvgH
<

∫
S
||φ||2gH

dvgH
.

Since 0<31 ≤3H , we have∫
S
||∇φ||2gH

dvgH
=

∫
S
||∇φ||2g dvg =31

∫
S
||φ||2g dvg

=31

∫
S
||φ||2gH

α2 dvgH
<31

∫
S
||φ||2gH

dvgH
≤3H

∫
S
||φ||2gH

dvgH
,

which leads to the estimate ∫
S ||∇φ||

2
gH

dvgH∫
S ||φ||

2
gH

dvgH

<3H .

This contradicts the definition of3H as the infimum of the spectrum of the Laplacian
on S with respect to the hyperbolic metric. �

For manifolds of higher dimension, it is also possible to build counterexamples
to the long-time estimate (1-2) for B(t) using conformal deformations.

Proof of Theorem 1.1(2). The remainder term A(t) is defined to depend only on the
set of closed geodesics. We shall use the preceding example to prove statement (2)
of Theorem 1.1. Since the set of closed geodesics is contained in the nonwandering
set, which is a compact, convex subset of the manifold (see [Rowlett et al. 2011]),
the estimate (1-2) follows from the Ehrenfest estimate for compact manifolds with
pinched negative curvature as in [Jakobson et al. 2008] and in the original proof of
this estimate in [Rowlett 2009]. The unexpected news is that the difference

B(t) := R(t)− A(t),

may have exponential growth for large time. To prove this, we shall use the example
used to prove part (4) of Proposition 1.5. Let (S, gH ), (S, g), 3H , and 31 be
defined as above. Since the assumption that

31 ≤3H

leads to a contradiction, we have 31 >3H , and hence

s1 < sH = h = η+ 1
2 = ℘

(
−W (g)/2

)
+

1
2 ,
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where
s1 =

1
2 +

√
1
4 −31.

For the constant curvature metric (S, gH ), the Guillarmou–Naud trace formula
[2006, Theorem 1.1, Theorem 1.2] implies∑

s∈R

m(s)e(s−n/2)|t |
+

∑
k∈N

dke−k|t |
=

∑
γ∈Lp

∞∑
k=1

l(γ )δ(|t | − kl(γ ))√
|det(I −Pk

γ )|
+ RH (t),

where
RH (t)= O(e−t/2) as t→∞.

Let us write
RH (t)= AH (t)+ BH (t),

where AH is defined to be the contribution from closed geodesics, and

BH := RH − AH .

The perturbation (S, g) is hyperbolic near infinity and has negative sectional
curvatures. Let R(t) denote the remainder in the trace formula Theorem 1.1 for
(S, g), and similarly write

R(t)= A(t)+ B(t).

Since the perturbation did not change the set of closed geodesics,

A = AH .

Estimating as in the proof of Proposition 1.5, by (2-5),

O(e(s1−1/2)T )+ O(T )= |I | = |II| ≥ C eηT

T
−

∣∣∣∣∫ ∞
0

R(t) f (t) dt
∣∣∣∣.

Rearranging, we have

(2-8)
∣∣∣∣∫ ∞

0
R(t) f (t) dt

∣∣∣∣≥ C eηT

T
− O(e(s1−1/2)T ).

Since
s1−

1
2 < sH −

1
2 = h− 1

2 = η,

both sides of (2-8) have exponential growth as t→∞. For the test function f as
defined in (2-3), (2-4),∣∣∣∣∫ ∞

0
RH (t) f (t) dt

∣∣∣∣= ∣∣∣∣∫ ∞
0

AH (t) f (t) dt +
∫
∞

0
BH (t) f (t) dt

∣∣∣∣= O(e−t/2).

This shows that the perturbation of the metric gH 7→ g, which did not affect
AH = A, had a rather drastic effect on the second part of the remainder term, BH .
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In particular, for the original metric, since AH satisfies the estimate (1-2), and
the total remainder RH decays exponentially, the remainder term BH must also
satisfy (1-2). However, this clearly cannot be the case for B. Hence, the remainder
in the trace formula Theorem 1.1 may include a contribution that is independent of
the set of closed geodesics and that grows exponentially for large time. �

3. Concluding remarks

The estimate in (1-2) [Rowlett 2009] arises solely from the nonwandering set,
which is a compact, convex subset of the manifold (see [Rowlett et al. 2011]), and
therefore reduces to the Ehrenfest estimate for compact manifolds with pinched
negative curvature as in [Jakobson et al. 2008]. This estimate corresponds to the
remainder term A(t). The proof of Proposition 1.5 and Theorem 1.1(2) shows
that one may perturb the manifold away from the nonwandering set, which does
not change the leading term in the dynamical side of the trace formula nor the
remainder A(t), but which does change the bottom of the spectrum. It follows that
this perturbation affects the long-time asymptotics of the dynamical side of the trace
formula and therefore must change the long-time estimate of the remainder term.
Since the perturbation does not affect the nonwandering set, which contains all
closed geodesics, the remainder term must have an additional contribution arising
from nonclosed geodesics; this is the term B(t) in Theorem 1.1 and Corollary 1.2
above. This unexpected contribution is not seen in either the compact case or the
model case of convex cocompact hyperbolic manifolds. It would be interesting to
identify this contribution more precisely.

References

[Borthwick 2008] D. Borthwick, “Upper and lower bounds on resonances for manifolds hyperbolic
near infinity”, Comm. Partial Differential Equations 33:7-9 (2008), 1507–1539. MR 2009i:58039
Zbl 1168.58012

[Borthwick and Perry 2011] D. Borthwick and P. A. Perry, “Inverse scattering results for manifolds
hyperbolic near infinity”, J. Geom. Anal. 21:2 (2011), 305–333. MR 2012i:58023 Zbl 1229.58024

[Guillarmou and Naud 2006] C. Guillarmou and F. Naud, “Wave 0-trace and length spectrum on con-
vex co-compact hyperbolic manifolds”, Comm. Anal. Geom. 14:5 (2006), 945–967. MR 2008f:58032
Zbl 1127.58028

[Jakobson et al. 2008] D. Jakobson, I. Polterovich, and J. A. Toth, “A lower bound for the remainder
in Weyl’s law on negatively curved surfaces”, Int. Math. Res. Not. 2008:2 (2008), Art. ID rnm142.
MR 2009f:58038 Zbl 1161.58010

[Joshi and Sá Barreto 2001] M. S. Joshi and A. Sá Barreto, “The wave group on asymptotically
hyperbolic manifolds”, J. Funct. Anal. 184:2 (2001), 291–312. MR 2002m:58046 Zbl 0997.58010

[Mazzeo and Melrose 1987] R. R. Mazzeo and R. B. Melrose, “Meromorphic extension of the
resolvent on complete spaces with asymptotically constant negative curvature”, J. Funct. Anal. 75:2
(1987), 260–310. MR 89c:58133 Zbl 0636.58034

http://dx.doi.org/10.1080/03605300802031598
http://dx.doi.org/10.1080/03605300802031598
http://msp.org/idx/mr/2009i:58039
http://msp.org/idx/zbl/1168.58012
http://dx.doi.org/10.1007/s12220-010-9149-9
http://dx.doi.org/10.1007/s12220-010-9149-9
http://msp.org/idx/mr/2012i:58023
http://msp.org/idx/zbl/1229.58024
http://dx.doi.org/10.4310/CAG.2006.v14.n5.a5
http://dx.doi.org/10.4310/CAG.2006.v14.n5.a5
http://msp.org/idx/mr/2008f:58032
http://msp.org/idx/zbl/1127.58028
http://dx.doi.org/10.1093/imrn/rnm142
http://dx.doi.org/10.1093/imrn/rnm142
http://msp.org/idx/mr/2009f:58038
http://msp.org/idx/zbl/1161.58010
http://dx.doi.org/10.1006/jfan.2001.3741
http://dx.doi.org/10.1006/jfan.2001.3741
http://msp.org/idx/mr/2002m:58046
http://msp.org/idx/zbl/0997.58010
http://dx.doi.org/10.1016/0022-1236(87)90097-8
http://dx.doi.org/10.1016/0022-1236(87)90097-8
http://msp.org/idx/mr/89c:58133
http://msp.org/idx/zbl/0636.58034


506 JULIE ROWLETT

[Rowlett 2009] J. Rowlett, “Dynamics of asymptotically hyperbolic manifolds”, Pacific J. Math.
242:2 (2009), 377–397. MR 2011e:58045 Zbl 1198.37036

[Rowlett 2010] J. Rowlett, “On the spectral theory and dynamics of asymptotically hyperbolic mani-
folds”, Ann. Inst. Fourier (Grenoble) 60:7 (2010), 2461–2492. MR 2012j:58044 Zbl 1252.37025

[Rowlett et al. 2011] J. Rowlett, P. Suárez-Serrato, and S. Tapie, “Dynamics and zeta functions on con-
formally compact manifolds”, preprint, 2011. To appear in Trans. Amer. Math. Soc. arXiv 1106.1857

[Sullivan 1979] D. Sullivan, “The density at infinity of a discrete group of hyperbolic motions”, Inst.
Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 81b:58031 Zbl 0439.30034

Received January 4, 2013. Revised October 29, 2013.

JULIE ROWLETT

INSTITUT FÜR ANALYSIS

LEIBNIZ UNIVERSITÄT HANNOVER

WELFENGARTEN 1
30167 HANNOVER

GERMANY

rowlett@math.uni-hannover.de

http://dx.doi.org/10.2140/pjm.2009.242.377
http://msp.org/idx/mr/2011e:58045
http://msp.org/idx/zbl/1198.37036
http://dx.doi.org/10.5802/aif.2615
http://dx.doi.org/10.5802/aif.2615
http://msp.org/idx/mr/2012j:58044
http://msp.org/idx/zbl/1252.37025
http://msp.org/idx/arx/1106.1857
http://www.numdam.org/item?id=PMIHES_1979__50__171_0
http://msp.org/idx/mr/81b:58031
http://msp.org/idx/zbl/0439.30034
mailto:rowlett@math.uni-hannover.de


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2014 is US $410/year for the electronic version, and $535/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 268 No. 2 April 2014

257In memoriam: Jonathan Rogawski
DON BLASIUS, DINAKAR RAMAKRISHNAN and V. S. VARADARAJAN

259Formes modulaires sur la Zp-extension cyclotomique de Q

LAURENT CLOZEL

275Weight zero Eisenstein cohomology of Shimura varieties via Berkovich
spaces

MICHAEL HARRIS

2833-adic Barsotti–Tate groups
HARUZO HIDA

313Le flot géodésique des quotients géométriquement finis des géométries de
Hilbert

MICKAËL CRAMPON and LUDOVIC MARQUIS

371Nonplanarity of unit graphs and classification of the toroidal ones
A. K. DAS, H. R. MAIMANI, M. R. POURNAKI and S. YASSEMI

389Discrete semiclassical orthogonal polynomials of class one
DIEGO DOMINICI and FRANCISCO MARCELLÁN

413A note on conformal Ricci flow
PENG LU, JIE QING and YU ZHENG

435On representations of GL2n(F) with a symplectic period
ARNAB MITRA

465Linked triples of quaternion algebras
ALEXANDER S. SIVATSKI

477Finite nonsolvable groups with many distinct character degrees
HUNG P. TONG-VIET

493Errata to “Dynamics of asymptotically hyperbolic manifolds”
JULIE ROWLETT

507Erratum to “Singularities of the projective dual variety”
ROLAND ABUAF

0030-8730(201404)268:2;1-1

Pacific
JournalofM

athem
atics

2014
Vol.268,N

o.2


	1. Corrections
	2. Proofs
	3. Concluding remarks
	References
	
	

