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We give a counterexample to a proposition claimed to be proven in an earlier
paper of ours and used in the proof of its main theorem. We also show how
to salvage the main result of that paper under additional hypotheses.

Let X ⊂ PN be a nondegenerate smooth projective variety such that X∗ is a
hypersurface. Let L ⊂ PN be a linear subspace such that for general x ∈ X we
have 〈L , TX,x 〉 6= PN . We say that L⊥ is an unexpected equisingular space in
X∗ (see Definition 3.2.1 of [Abuaf 2011], hereafter cited as [A]) if the general
hyperplane containing 〈L , TX,x 〉 has the same multiplicity in X∗ as a general hy-
perplane containing L . In [A], the following side-result, whose aim was to discuss a
necessary hypothesis in our main theorem, was stated in Section 3 (“Open question
and corollaries”):

Theorem 3.2.2 of [A]. Let X ⊂ PN be an irreducible, smooth, nondegenerate
projective variety such that X∗ is a hypersurface. Let L ⊂ X be a linear space with
dim(L)= dim(X)−1. Assume that L⊥ is an unexpected equisingular linear space
in X∗ such that multL⊥ X∗ = 2. Then X is the cubic scroll surface in P4.

Its proof was based on this proposition:

Proposition 3.2.3 of [A]. Let X ⊂ PN be a smooth, irreducible, nondegenerate
projective variety such that X∗ is a hypersurface. Let [h] ∈ X∗ be such that
mult[h] X∗ = 2. The scheme-theoretic tangency locus of H with X is one of the fol-
lowing:

• An irreducible hyperquadric and in this case |C[h](X∗)|∗ = Tan(H, X).

• The union of two (not necessarily distinct) linear spaces.

• A linear space with at least one embedded component.

This proposition is false as shown by the following example.

MSC2010: primary 14B05; secondary 14N15.
Keywords: projective geometry, singularities, dual variety.

507

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2014.268-2
http://dx.doi.org/10.2140/pjm.2011.253.1


508 ROLAND ABUAF

Example 1. Let V be a vector space of dimension 6 and let W = G(3, V ) ⊂
P(
∧3 V ) be the Grassmannian of C3

⊂ V in its Plücker embedding. The dual of
X is a quartic hypersurface in P(

∧3 V ∗). We can decompose
∧3 V ∗ as

C⊕U ⊕U∗⊕C,

where U is identified with the space of 3×3 matrices (see [Landsberg and Manivel
2001, Section 5] for more details). We denote by C the determinant on U , which
can be seen as a map S3U → C or as a map S2U → U∗. We also denote by C∗

the determinant on U∗.
It is shown in (ibid.) that an equation (up to an automorphism of P(

∧3 V ∗)) of
W ∗ is

Q(x, X, Y, y)

=
(
3xy− 1

2〈X, Y 〉
)2
+

1
3

(
yC(X⊗3)+ xC∗(Y⊗3)

)
−

1
6

〈
C∗(Y⊗2),C(X⊗2)

〉
,

where 〈 · , · 〉 is the standard pairing between U and U∗. The partial derivatives of
Q give the equations of the variety of “stationary secants” to W⊥ := G(3, V ∗) ⊂
P(
∧3 V ∗), which we denote by σ+(W⊥). The Jacobian criterion shows that the va-

riety σ+(W⊥) is singular precisely along W⊥. However, a simple Taylor expansion
of Q around the point [1, 0, . . . , 0] ∈ W⊥ shows that, contrary to what is claimed
in Proposition 5.10 of (ibid.), W⊥ is not defined by all the second derivatives of
Q. The orbit structure of the action of SL6 on P(

∧3 V ∗) is

W⊥ ⊂ σ+(W⊥)⊂W ∗ ⊂ P
(∧3 V ∗

)
.

Since W⊥ is the deepest strata in W ∗ and all the second derivatives of the equa-
tion of W ∗ do not vanish on W⊥, we conclude that there are no point of multiplicity
bigger than 2 in W ∗. However one can prove (see (ibid.) for instance) that a point
in W⊥ is tangent to W along a cone over P2

× P2. This gives a counterexam-
ple to the above proposition. Note that an easy computation shows that if p =
(p0, P0, P1, p1)∈P(

∧3 V ∗) is a generic point then the cubic hypersurface (which
we denote by P(Q, p)) defined by the equation p0

∂Q
∂x + P0

∂Q
∂X + P1

∂Q
∂Y + p1

∂Q
∂y

is smooth. Moreover the polar P(W ∗, p) := W ∗ ∩ P(Q, p) has multiplicity 3
along W⊥.

In [A] I claim that I “prove” Proposition 3.2.3 in the appendix. This proof relies
on the following statement:

Lemma A.3 of [A]. Let Z ⊂ PN be an irreducible and reduced hypersurface,
whose defining equation is denoted by fZ . Let z ∈ Z and let k ∈ {−1, . . . , N − 2}.
Then one of the following holds for general D ∈ G(k, N ):
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• z /∈ P(Z , D).

• multz P(Z , D)=multz Z .multz P( fZ , D)

if dim(Z (z)sing) < dim P(Z , D), where Z (z)sing is an irreducible component of Zsing of
maximal dimension passing through z.

• multz P(Z , D) <multz Z .multz P( fZ , D)

if dim(Z (z)sing) ≥ dim P(Z , D), where Z (z)sing is an irreducible component of Zsing of
maximal dimension passing through z.

This lemma is also false as shown by Example 1. Indeed the hypersurface
P(Q, p) is smooth for generic p, the hypersurface W ∗ has multiplicity 2 along
W⊥, but the polar P(W ∗, p) := W ∗ ∩P(Q, p) has multiplicity 3 along W⊥. The
mistake in the proof of the lemma can be easily found. On line 5, page 14 of [A], I
write “Let (Zi )i∈I be a stratification of Z such that Zi is smooth and Z is normally
flat along Zi for all i ∈ I . Such a stratification exists, due to the open nature of
normal flatness [. . . ]. Consider the Gauss map G : Z → (PN )∗. It restricts to a
map Gi : Zi → (PN )∗ . . . .” This last sentence is nonsense since the Gauss map is
not defined on the singular locus of Z .

I used Lemma A.3 of [A] in the form of the following corollary:

Corollary A.4 of [A]. Let Z ⊂ PN be an hypersurface and let z ∈ Z such that
multz Z = 2 and let k ∈ {−1, . . . N − 2}. Then, for generic D ∈ G(k, N ), we have
multz P(Z , D)≤ 2.

This corollary is again false as shown in Example 1, but it seems natural to use
its conclusion as an hypothesis. Indeed the rest of the proof of Proposition 3.2.3
of [A] is correct, and thus we get the following result:

Proposition 2 (replacement for Proposition 3.2.3 of [A]). Let X⊂PN be a smooth,
irreducible, nondegenerate projective variety such that X∗ is a hypersurface. Let
[h] ∈ X∗ be such that mult[h] X∗ = 2 and that for all k ∈ {−1, . . . , N − 2} and
generic D ∈ G(k, N ), we have mult[h]P(X∗, D) ≤ 2. The scheme theoretic tan-
gency locus of H with X is one of the following:

• An irreducible hyperquadric and in this case |C[h](X∗)|∗ = Tan(H, X).

• The union of two (not necessarily distinct) linear spaces.

• A linear space with at least one embedded component.

Finally, we can formulate a version of Theorem 3.2.2 of [A], whose proof relies
on the above proposition:
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Theorem 3 (replacement for Theorem 3.2.2 of [A]). Let X⊂PN be an irreducible,
smooth, nondegenerate projective variety such that X∗ is a hypersurface. Let L ⊂
X be a linear space with dim(L)= dim(X)− 1. Assume that L⊥ is an unexpected
equisingular linear space in X∗ such that multL⊥(X∗)= 2. Assume moreover that
for all [h] ∈ L⊥, for all k ∈ {−1, . . . , N − 2} and generic D ∈ G(k, N ), we have
mult[h]P(X∗, D)≤ 2. Then X is the cubic scroll surface in P4.
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