
Pacific
Journal of
Mathematics

THE ASYMPTOTIC BEHAVIOR OF PALAIS–SMALE
SEQUENCES ON MANIFOLDS WITH BOUNDARY

SÉRGIO ALMARAZ

Volume 269 No. 1 May 2014



PACIFIC JOURNAL OF MATHEMATICS
Vol. 269, No. 1, 2014

dx.doi.org/10.2140/pjm.2014.269.1

THE ASYMPTOTIC BEHAVIOR OF PALAIS–SMALE
SEQUENCES ON MANIFOLDS WITH BOUNDARY

SÉRGIO ALMARAZ

We describe the asymptotic behavior of Palais–Smale sequences associated
to certain Yamabe-type equations on manifolds with boundary. We prove
that each of those sequences converges to a solution of the limit equation
plus a finite number of “bubbles” which are obtained by rescaling funda-
mental solutions of the corresponding Euclidean equations.

1. Introduction

Let .M n; g/ be a compact Riemannian manifold with boundary @M and dimension
n� 3. For u 2H 1.M/, we consider the following family of equations, indexed by
� 2 N:

(1-1)

8<:
�guD 0 in M;
@

@�g
u� h�uCu

n
n�2 D 0 on @M;

and their associated functionals

(1-2) I �g .u/D
1

2

Z
M

jduj2g dvgC
1

2

Z
@M

h�u
2 d�g�

n� 2

2.n� 1/

Z
@M

juj
2.n�1/
n�2 d�g :

Here, fh�g�2N is a sequence of functions in C1.@M/, �g is the Laplace–Beltrami
operator, and �g is the inward unit normal vector to @M . Moreover, dvg and d�g
are the volume forms of M and @M respectively and H 1.M/ is the Sobolev space
H 1.M/D fu 2 L2.M/ W du 2 L2.M/g.

Definition 1.1. We say that fu�g�2N � H
1.M/ is a Palais–Smale sequence for

fI �g g if

(i) fI �g .u�/g�2N is bounded, and

(ii) dI �g .u�/! 0 strongly in H 1.M/0 as �!1.
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In this paper we establish a result describing the asymptotic behavior of those
Palais–Smale sequences. This work is inspired by Struwe’s theorem [1984] for
equations �uC�uCjuj4=.n�2/uD 0 on Euclidean domains. We refer the reader
to [Druet et al. 2004, Chapter 3] for a version of Struwe’s theorem on closed
Riemannian manifolds, and to [Cao et al. 2001; Chabrowski and Girão 2002;
Pierotti and Terracini 1995] for similar equations with boundary conditions.

Roughly speaking, as �!1 and h�! h1, we prove that each Palais–Smale
sequence fu� � 0g�2N is H 1.M/-asymptotic to a nonnegative solution of the limit
equations

(1-3)

8<:
�guD 0 in M;
@

@�g
u� h1uCu

n
n�2 D 0 on @M;

plus a finite number of “bubbles” obtained by rescaling fundamental positive
solutions of the Euclidean equations

(1-4)

8<:�uD 0 in Rn
C
;

@

@yn
uCu

n
n�2 D 0 on @Rn

C
;

where Rn
C
D f.y1; : : : ; yn/ 2 Rn W yn � 0g.

Palais–Smale sequences frequently appear in the blow-up analysis of geometric
problems. In the particular case when h1 is .n� 2/=2 times the boundary mean
curvature, the equations (1-3) are satisfied by a positive smooth function u repre-
senting a conformal scalar-flat Riemannian metric u4=.n�2/g with positive constant
boundary mean curvature. The existence of those metrics is the Yamabe-type
problem for manifolds with boundary introduced in [Escobar 1992].

An application of our result is the blow-up analysis performed in [Almaraz
2012] for the proof of a convergence theorem for a Yamabe-type flow introduced
in [Brendle 2002].

We now begin to state our theorem more precisely.

Convention. We assume that there is some h1 2 C1.@M/ and C > 0 such that
h� ! h1 in L2.@M/ as � !1 and jh�.x/j � C for all x 2 @M , � 2 N. This
obviously implies that h�! h1 in Lp.@M/ as �!1, for any p � 1.

Notation. If .M; g/ is a Riemannian manifold with boundary @M , we will denote
by Dr.x/ the metric ball in @M with center at x 2 @M and radius r .

If z0 2 Rn
C

, we set BCr .z0/D fz 2 Rn
C
W jz� z0j< rg. We define

@CBCr .z0/D @B
C
r .z0/\RnC; and @0BCr .z0/D B

C
r .z0/\ @RnC:

Thus, @0BCr .z0/D∅ if z0 D .z10 ; : : : ; z
n
0 / satisfies zn0 > r .
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We define the Sobolev spaceD1.Rn
C
/ as the completion ofC10 .R

n
C
/with respect

to the norm

kukD1.Rn
C
/ D

sZ
Rn
C

jdu.y/j2 dy:

It follows from a Liouville-type theorem established in [Li and Zhu 1995] (see
also [Escobar 1990] and [Chipot et al. 1996]) that any nonnegative solution in
D1.Rn

C
/ to the equations (1-4) is of the form

(1-5) U�;a.y/D

�
�

.ynC �=.n� 2//2Cj Ny � aj2

�n�2
2

; a 2 Rn�1; � > 0;

or is identically zero; see Remark 2.5. By [Escobar 1988] or [Beckner 1993] we
have the sharp Euclidean Sobolev inequality

(1-6)
�Z

@Rn
C

ju.y/j
2.n�1/
n�2 dy

�n�2
n�1

�K2n

Z
Rn
C

jdu.y/j2 dy;

for u 2 D1.Rn
C
/, which has the family of functions (1-5) as extremal functions.

Here,

Kn D
�
n�2

2

��1=2
�
� 1
2.n�1/

n�1 ;

where �n�1 is the area of the unit .n� 1/-sphere in Rn. Up to a multiplicative
constant, the functions defined by (1-5) are the only nontrivial extremal ones for
the inequality (1-6).

Definition 1.2. Fix x0 2 @M and geodesic normal coordinates for @M centered at
x0. Let .x1; : : : ; xn�1/ be the coordinates of x 2 @M and �g.x/ be the inward unit
vector normal to @M at x. For small xn � 0, the point expx.xn�g.x// 2M is said
to have Fermi coordinates .x1; : : : ; xn/ (centered at x0).

For small � > 0 the Fermi coordinates centered at x0 2 @M define a smooth map
 x0 W B

C
� .0/� Rn

C
!M .

We define the functional I1g by the same expression as I �g , with h� D h1 for
all �, and state our main theorem as follows:

Theorem 1.3. Let .M n; g/ be a compact Riemannian manifold with boundary @M
and dimension n� 3. Suppose fu� � 0g�2N is a Palais–Smale sequence for fI �g g.
Then there exist m 2 f0; 1; 2; : : : g, a nonnegative solution u0 2 H 1.M/ of (1-3),
andm nontrivial nonnegative solutions Uj DU�j ;aj 2D

1.Rn
C
/ of (1-4), sequences

fR
j
� > 0g�2N, and sequences fxj� g�2N � @M , 1� j �m, the whole satisfying the

following conditions for 1� j �m, possibly after taking subsequences:

(i) Rj� !1 as �!1.

(ii) xj� converges as �!1.
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(iii)
u� �u0� mP

jD1

�
j
�u
j
�


H1.M/

! 0 as �!1, where

uj� .x/D .R
j
� /
.n�2/=2Uj .Rj� 

�1

x
j
�

.x// for x 2  
x
j
�
.BC2r0.0//:

Here, r0 > 0 is small, the

 
x
j
�
W BC2r0.0/� RnC!M

are Fermi coordinates centered at xj� 2 @M , and the �j� are smooth cutoff functions
such that �j� � 1 in  

x
j
�
.BCr0.0// and �j� � 0 in Mn 

x
j
�
.BC2r0.0//.

Moreover,

I �g .u�/� I
1
g .u

0/�
m

2.n� 1/
K�2.n�1/n ! 0 as �!1;

and we can assume that for all i ¤ j

(1-7)
Ri�

R
j
�

C
R
j
�

R
i
�

CRi�R
j
�dg.x

i
� ; x

j
� /
2
!1 as �!1:

Remark 1.4. Relations of the type (1-7) were previously obtained in [Bahri and
Coron 1988; Brezis and Coron 1985].

2. Proof of the main theorem

The rest of this paper is devoted to the proof of Theorem 1.3, which will be carried
out in several lemmas. Our presentation will follow the same steps as Chapter 3 of
[Druet et al. 2004], with the necessary modifications.

Lemma 2.1. Let fu�g be a Palais–Smale sequence for fI �g g. Then there exists
C > 0 such that ku�kH1.M/ � C for all �.

Proof. It suffices to prove that kdu�kL2.M/ and ku�kL2.@M/ are uniformly bounded.
The proof follows the same arguments as [Druet et al. 2004, p. 27]. �

Define Ig as the functional in (1-2) when h� � 0 for all �.

Lemma 2.2. Let fu� � 0g be a Palais–Smale sequence for fI �g g such that u� *
u0 � 0 in H 1.M/, and set Ou� D u� �u0. Then f Ou�g is a Palais–Smale sequence
for fIgg and satisfies

(2-1) Ig. Ou�/� I
�
g .u�/C I

1
g .u

0/! 0 as �!1:

Moreover, u0 is a (weak) solution of (1-3).

Proof. First, observe that u�*u0 in H 1.M/ implies that u�! u0 in L
n
n�2 .@M/

and a.e. in @M . Using the facts that dI �g .u�/� ! 0 for any � 2 C1.M/ and
h�! h1 in Lp.@M/ for any p � 1, it is not difficult to see that the last assertion
of Lemma 2.2 follows.
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In order to prove (2-1), we first observe that

I �g .u�/D Ig. Ou�/C I
1
g .u

0/�
.n� 2/

2.n� 1/

Z
@M

ˆ� d�g C o.1/;

where ˆ� D j Ou� C u0j
2.n�1/
n�2 � j Ou� j

2.n�1/
n�2 � ju0j

2.n�1/
n�2 and o.1/! 0 as � !1.

Then (2-1) follows from the fact that there exists C > 0 such thatZ
@M

ˆ� d�g � C

Z
@M

j Ou� j
n
n�2 ju0j d�g CC

Z
@M

ju0j
n
n�2 j Ou� j d�g for all �;

and, by basic integration theory, the right side of this last inequality goes to 0 as
�!1.

Now we prove that f Ou�g is a Palais–Smale sequence for Ig . Let � 2 C1.M/.
Observe thatˇ̌̌̌ Z
@M

h�u�� d�g �

Z
@M

h1u�� d�g

ˇ̌̌̌
� ku�kL2.@M/kh� � h1kL2.n�1/.@M/k�k

L
2.n�1/
n�2 .@M/

by Hölder’s inequality. Then, by the Sobolev embedding theorem,Z
@M

h�u�� d�g D

Z
@M

h1u
0� d�g C o.k�kH1.M//;

from which follows that

(2-2) dI �g .u�/� D dIg. Ou�/� �

Z
@M

 �� d�g C o.k�kH1.M//;

where  � D j Ou� Cu0j
2
n�2 . Ou� Cu

0/� j Ou� j
2
n�2 Ou� � ju

0j
2
n�2u0.

Next we observe that there exists C > 0 such thatZ
@M

j ��j d�g � C

Z
@M

j Ou� j
2
n�2 ju0jj�j d�g CC

Z
@M

ju0j
2
n�2 j Ou� jj�j d�g

for all �, and use Hölder’s inequality and basic integration theory to obtainZ
@M

j ��j d�g

�
�j Ou� j 2n�2 u0

L
2.n�1/
n .@M/

C
ju0j 2n�2 Ou�

L
2.n�1/
n .@M/

�
k�k

L
2.n�1/
n�2 .@M/

D o
�
k�k

L
2.n�1/
n�2 .@M/

�
:

We can use this and the Sobolev embedding theorem in (2-2) to conclude that

dI �g .u�/� D dIg. Ou�/�C o.k�kH1.M//;

finishing the proof. �
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Lemma 2.3. Let f Ou�g�2N be a Palais–Smale sequence for Ig such that Ou� * 0

in H 1.M/ and Ig. Ou�/! ˇ as �!1 for some ˇ <K�2.n�1/n =.2.n� 1//. Then
Ou�! 0 in H 1.M/ as �!1.

Proof. SinceZ
M

jd Ou� j
2 dvg �

Z
@M

j Ou� j
2.n�1/
n�2 d�g D dIg. Ou�/ � Ou� D o.k Ou�kH1.M//

and fk Ou�kH1.M/g is uniformly bounded due to Lemma 2.1, we can see that

(2-3) ˇC o.1/D Ig. Ou�/D
1

2.n� 1/

Z
@M

j Ou� j
2.n�1/
n�2 d�g C o.1/

D
1

2.n� 1/

Z
M

jd Ou� j
2
g dvg C o.1/;

which already implies ˇ � 0. At the same time, as proved in [Li and Zhu 1997],
there exists B D B.M; g/ > 0 such that�Z

@M

j Ou� j
2.n�1/
n�2 d�g

�n�2
n�1

�K2n

Z
M

jd Ou� j
2
g dvg CB

Z
@M

j Ou� j
2 d�g :

SinceH 1.M/ is compactly embedded inL2.@M/, we have k Ou�kL2.@M/!0. Then

.2.n� 1/ˇC o.1//
n�2
n�1 � 2.n� 1/K2nˇC o.1/;

from which we conclude that either

K
�2.n�1/
n

2.n� 1/
� ˇC o.1/

or ˇ D 0. Hence, our hypotheses imply ˇ D 0. Using (2-3) finishes the proof. �

Define the functional

E.u/D 1
2

Z
Rn
C

jdu.y/j2 dy �
n� 2

2.n� 1/

Z
@Rn
C

ju.y/j
2.n�1/
n�2 dy

for u 2D1.Rn
C
/ and observe that E.U�;a/D

K
�2.n�1/
n

2.n�1/
for any a 2 Rn�1, � > 0.

Lemma 2.4. Let f Ou�g�2N be a Palais–Smale sequence for Ig . Suppose Ou�*0 in
H 1.M/, but not strongly. Then there exist a sequence fR� > 0g�2N with R�!1,
a convergent sequence fx�g�2N � @M , and a nontrivial solution u 2D1.Rn

C
/ of

(2-4)

8<:�uD 0 in Rn
C
;

@

@yn
u� juj2=.n�2/uD 0 on @Rn

C
;
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the whole such that, up to a subsequence, the following holds: If

Ov�.x/D Ou�.x/� ��.x/R
n�2
2

� u.R� 
�1
x�
.x//;

then f Ov�g�2N is a Palais–Smale sequence for Ig satisfying Ov�*0 in H 1.M/ and

lim
�!1

�
Ig. Ou�/� Ig. Ov�/

�
DE.u/:

Here, the  x� W B
C
2r0
.0/� Rn

C
!M are Fermi coordinates centered at x� and the

��.x/ are smooth cutoff functions such that �� � 1 in  x� .B
C
r0
.0// and �� � 0 in

Mn x� .B
C
2r0
.0//.

Proof. By the density of C1.M/ inH 1.M/ we can assume that Ou� 2C1.M/. We
can also assume that Ig. Ou�/! ˇ as �!1 and, since dIg. Ou�/! 0 in H 1.M/0,
we obtain

lim
�!1

Z
@M

j Ou� j
2.n�1/
n�2 d�g D 2.n� 1/ˇ �K

�2.n�1/
n ;

as in the proof of Lemma 2.3. Hence, given t0 > 0 small we can choose x0 2 @M
and �0 > 0 such that Z

Dt0.x0/

j Ou� j
2.n�1/
n�2 d�g � �0

up to a subsequence. Now we set

��.t/D max
x2@M

Z
Dt .x/

j Ou� j
2.n�1/
n�2 d�g

for t > 0, and, for any � 2 .0; �0/, choose sequences ft�g � .0; t0/ and fx�g � @M
such that

(2-5) �D ��.t�/D

Z
Dt�.x�/

j Ou� j
2.n�1/
n�2 d�g :

We can also assume that x� converges. Now, we choose r0 > 0 small such that
for any x0 2 @M the Fermi coordinates  x0.z/ centered at x0 are defined for all
z 2 BC2r0.0/� Rn

C
and satisfy

1
2
jz� z0j � dg. x0.z/;  x0.z

0//� 2jz� z0j for any z; z0 2 BCr0.0/:

For each � we consider Fermi coordinates

 � D  x� W B
C
2r0
.0/!M:

For any R� � 1 and y 2 BCR�r0.0/, we set

Qu�.y/DR
�n�2

2
� Ou�. �.R

�1
� y// and Qg�.y/D . 

�
� g/.R

�1
� y/:
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Let us consider z 2 Rn
C

and r > 0 such that jzjC r < R�r0. Then we haveZ
B
C
r .z/

jd Qu� j
2
Qg�
dv Qg� D

Z
 �.R

�1
� B

C
r .z//

jd Ou� j
2
g dvg ;

and, if in addition z 2 @Rn
C

,

(2-6)
Z
@0B
C
r .z/

j Qu� j
2.n�1/
n�2 d� Qg� D

Z
 �.R

�1
� @0B

C
r .z//

j Ou� j
2.n�1/
n�2 d�g

�

Z
D
2R�1� r

. �.R
�1
� z//

j Ou� j
2.n�1/
n�2 d�g ;

where we have used the fact that

 �
�
R�1� @0BCr .z/

�
D  �

�
@0BC

R�1� r
.R�1� z/

�
�D2R�1� r

�
 �.R

�1
� z/

�
:

Given r 2 .0; r0/ we fix t0 � 2r . Then, given a � 2 .0; �0/ to be fixed later, we
set R� D 2rt�1� � 2rt

�1
0 � 1. It follows from (2-5) and (2-6) that

(2-7)
Z
@0B
C
r .z/

j Qu� j
2.n�1/
n�2 d� Qg� � �:

Moreover, since  �.@0BC
2R�1� r

.0//DDt� .x�/, we have

(2-8)
Z
@0B
C

2r .0/

j Qu� j
2.n�1/
n�2 d� Qg� D

Z
Dt� .x�/

j Ou� j
2.n�1/
n�2 d�g D �:

Choosing r0 smaller if necessary, we can suppose that

(2-9) 1

2

Z
Rn
C

jduj2 dy �

Z
Rn
C

jduj2
Qgx0;R

dv Qgx0;R
� 2

Z
Rn
C

jduj2 dy

for anyR�1 and any u2D1.Rn
C
/ such that supp.u/�BC2r0R.0/. Here, Qgx0;R.y/D

. �x0g/.R
�1y/. We can also assume that

(2-10) 1

2

Z
@Rn
C

juj dy �

Z
@Rn
C

juj d� Qgx0;R
� 2

Z
@Rn
C

juj dy

for all u 2 L1.@Rn
C
/ such that supp.u/� @0BC2r0R.0/.

Let Q� be a smooth cutoff function on Rn such that 0� Q�� 1, Q�.z/D 1 for jzj � 1
4

,
and Q�.z/D 0 for jzj � 3

4
. We set Q��.y/D Q�.r�10 R�1� y/.

It is easy to check that �Z
Rn
C

jd. Q�� Qu�/j
2
Qg�
dv Qg�

�
is uniformly bounded. Then the inequality (2-9) implies that f Q�� Qu�g is uniformly
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bounded in D1.Rn
C
/ and we can assume that Q�� Qu�*u in D1.Rn

C
/ for some u.

Claim 1. Let us set r1D r0=24. There exists �1D�1.n/ such that for any 0<r <r1
and 0 < � <minf�1; �0g we have

Q�� Qu�! u in H 1.BC2Rr.0// as �!1;

for any R � 1 satisfying R �R� for all � large.

Proof. We consider r 2 .0; r1/, � 2 .0; �0/ and choose z0 2 @Rn
C

such that jz0j<
3.2R� 1/r1. By Fatou’s lemma,Z 2r

r

lim inf
�!1

�Z
@CB

C
� .z0/

�
jd. Q�� Qu�/j

2
CjQ�� Qu� j

2
�
d��

�
d�

� lim inf
�!1

Z
B
C

2r .z0/

�
jd. Q�� Qu�/j

2
CjQ�� Qu� j

2
�
dy � C;

where d�� is the volume form on @CBC� .z0/ induced by the Euclidean metric.
Thus there exists � 2 Œr; 2r� such that, up to a subsequence,Z

@CB
C
� .z0/

�
jd. Q�� Qu�/j

2
CjQ�� Qu� j

2
�
d�� � C for all �:

Hence,
˚
k Q�� Qu�kH1.@CB

C
� .z0//

	
is uniformly bounded, and, since the embedding

H 1.@CBC� .z0//�H
1=2.@CBC� .z0//

is compact, we can assume that

Q�� Qu�! u in H 1=2.@CBC� .z0// as �!1:

We set AD BC3r.z0/�B
C
� .z0/, and let f��g �D1.RnC/ be such that

�� D

�
Q�� Qu� �u; in BC�C�.z0/;

0; in Rn
C
nBC3r��.z0/;

with � > 0 small. Then

k Q�� Qu� �ukH1=2.@CB
C
� .z0//

D k��kH1=2.@CB
C
� .z0//

! 0 as �!1;

and there exists f�0� g �D
1.A/ such that

k�� C�
0
�kH1.A/ � Ck��kH1=2.@CA/ D Ck��kH1=2.@CB

C
� .z0//

for some C >0 independent of �. Here,D1.A/ is the closure of C10 .A/ inH 1.A/,
and we have set @CAD @A\ .Rn

C
n@Rn

C
/ and @0AD @A\ @Rn

C
.

The sequence of functions f��g D f�� C�0� g �D
1.Rn
C
/ satisfies
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�� D

8̂<̂
:
Q�� Qu� �u in BC� .z0/;
�� C�

0
� in BC3r.z0/nB

C
� .z0/;

0 in Rn
C
nBC3r.z0/:

In particular, ��! 0 in H 1.A/. We set

Q��.x/DR
n�2
2

� ��.R� 
�1
� .x// if x 2  �.BC6r1.0//;

and Q��.x/D 0 otherwise. Since we are assuming jz0j<3.2R�1/r1� 3.2R��1/r1
for all � large, BC3r.z0/� B

C

6r1R�
.0/. Hence,

Q��.x/D

8<:R
n�2
2

� . Q�� Qu� �u/.R� 
�1
� .x// if x 2  �.R�1� BC� .z0//;

R
n�2
2

� .�� C�
0
� /.R� 

�1
� .x// if x 2  �

�
R�1� .BC3r.z0/nB

C
� .z0//

�
;

and Q��.x/D 0 otherwise, and

(2-11) dIg. Ou�/ � Q��
D dIg. O�� Ou�/ � Q��

D

Z
B
C

3r .z0/

hd. Q�� Qu�/; d��i Qg� dv Qg��

Z
@0B
C

3r .z0/

j Q�� Qu� j
2
n�2 . Q�� Qu�/�� d� Qg� ;

where O��.x/D Q�.r�10  �1� .x//.
Since there exists C > 0 such that kQ��kH1.M/ � Ck��kD1.Rn

C
/, the sequence

f Q��g is uniformly bounded in H 1.M/. Hence,

(2-12) dIg. Ou�/ � Q��! 0 as �!1:

Noting that ��! 0 in H 1.A/ and ��*0 in D1.Rn
C
/, we obtain

(2-13)
Z
B
C

3r .z0/

hd. Q�� Qu�/; d��i Qg� dv Qg�D

Z
B
C
� .z0/

hd.��Cu/; d��i Qg� dv Qg�Co.1/

D

Z
Rn
C

jd�� j
2
Qg�
dv Qg�Co.1/:

Similarly,

(2-14)
Z
@0B
C

3r .z0/

j Q�� Qu� j
2
n�2 . Q�� Qu�/�� d� Qg� D

Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� C o.1/:

Using (2-11), (2-12), (2-13) and (2-14) we conclude that

(2-15)
Z

Rn
C

jd�� j
2
Qg�
dv Qg� D

Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� C o.1/:
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Using again the facts that ��! 0 in H 1.A/ and ��*0 in D1.Rn
C
/, we can apply

the inequalityˇ̌
j Q�� Qu� �uj

2.n�1/
n�2 � j Q�� Qu� j

2.n�1/
n�2 Cjuj

2.n�1/
n�2

ˇ̌
� C juj

n
n�2 j Q�� Qu� �ujCC j Q�� Qu� �uj

n
n�2 juj

to see thatZ
@Rn
C

j�� j
2.n�1/
n�2 d� Qg�D

Z
@0B
C
� .z0/

j Q�� Qu� j
2.n�1/
n�2 d� Qg��

Z
@0B
C
� .z0/

juj
2.n�1/
n�2 d� Qg�Co.1/:

This implies

(2-16)
Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� �

Z
@0B
C
� .z0/

j Q�� Qu� j
2.n�1/
n�2 d� Qg� C o.1/

D

Z
@0B
C
� .z0/

j Qu� j
2.n�1/
n�2 d� Qg� C o.1/;

where we have used the fact that Q��.z/D 1 for all z 2 BC� .z0/.
If N DN.n/ 2N is such that @0BC2 .0/ is covered by N discs in @Rn

C
of radius 1

with center in @0BC2 .0/, then we can choose points zi 2 @0BC2r.z0/, i D 1; : : : ; N ,
satisfying

@0BC� .z0/� @
0BC2r.z0/�

N[
iD1

@0BCr .zi /:

Hence, using (2-7), (2-15) and (2-16), we see that

(2-17)
Z

Rn
C

jd�� j
2
Qg�
dv Qg� C o.1/D

Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� �N�C o.1/:

It follows from (2-9), (2-10) and the Sobolev inequality (1-6) that�Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg�

�n�2
n�1

� 2
n�2
n�1

�Z
@Rn
C

j�� j
2.n�1/
n�2 dx

�n�2
n�1

� 2
n�2
n�1K2n

Z
Rn
C

jd�� j
2 dx

� 21C
n�2
n�1K2n

Z
Rn
C

jd�� j
2
Qg�
dv Qg� :

Then using (2-15) and (2-17) we obtain
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Rn
C

jd�� j
2
Qg�
dv Qg� D

Z
@Rn
C

j�� j
2.n�1/
n�2 d� Qg� C o.1/

�

�
21C

n�2
n�1K2n

�n�1
n�2

�Z
Rn
C

jd�� j
2
Qg�
dv Qg�

�n�1
n�2

C o.1/

� 21C
n�1
n�2K

2.n�1/
n�2

n .N�C o.1//
1
n�2

Z
Rn
C

jd�� j
2
Qg�
dv Qg� C o.1/:

Now we set �1 D
K
�2.n�1/
n

22n�3N
and assume that � < �1. Then

21C
n�1
n�2 .N�/

1
n�2K

2.n�1/
n�2

n < 1;

and we conclude that

lim
�!1

Z
Rn
C

jd�� j
2
Qg�
dv Qg� D 0:

Hence, ��! 0 in D1.Rn
C
/. Since r � �, we have

(2-18) Q�� Qu�! u in H 1.BCr .z0//:

Now let us choose any z0 D ..z0/1; : : : ; .z0/n/ 2 Rn
C

satisfying .z0/n > r=2
and jz0j < 3.2R � 1/r1. Using this choice of z0 and r 0 D r=6 replacing r , the
process above can be performed with some obvious modifications. In this case, we
have @0BC3r 0.z0/D∅ and the boundary integrals vanish. Hence, the equality (2-15)
already implies that Q�� Qu�! u in H 1.BCr 0 .z0//.

IfN1DN1.R; n/2N andN2DN2.R; n/2N are such that the half-ball BC2R.0/
is covered by N1 half-balls of radius 1 with centers in @0BC2R.0/, plus N2 balls
of radius 1=6 with centers in fz D .z1; : : : ; zn/ 2 BC2R.0/ W z

n > 1=2g, then the
half-ball BC2Rr.0/ is covered by N1 half-balls of radius r with centers in @0BC2Rr.0/,
plus N2 balls of radius r=6 with center in fzD .z1; : : : ; zn/2BC2Rr.0/ W z

n>r=2g.
Hence, Q�� Qu�! u in H 1.BC2Rr.0//, finishing the proof of Claim 1. �

Using (2-8), (2-10) and Claim 1 with RD 1, we see that

(2-19) �D

Z
@0B
C
r .0/

j Qu� j
2.n�1/
n�2 d� Qg�

D

Z
@0B
C
r .0/

j Q�� Qu� j
2.n�1/
n�2 d� Qg�

� 2

Z
@0B
C
r .0/

juj
2.n�1/
n�2 dxC o.1/:

It follows that u 6� 0, due to (1-6).
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Claim 2. We have lim�!1R� D1. In particular, Claim 1 can be stated for any
R � 1.

Proof. Suppose for a contradiction that, up to a subsequence, R�!R0 as �!1,
for some 1 � R0 < 1. Then, since Ou� * 0 in H 1.M/, we have Qu� * 0 in
H 1.BC2r.0//. This contradicts the fact that

Qu� Q��! u 6� 0 in H 1.BC2r.0//;

which is obtained by applying Claim 1 with RD 1. This proves Claim 2. �

That u is a (weak) solution of (2-4) follows easily from the fact that f Ou�g is a
Palais–Smale sequence for Ig and Q�� Qu�! u in D1.Rn

C
/.

Now, we set

V�.x/D ��.x/R
n�2
2

� u.R� 
�1
x�
.x//

for x 2  x� .B
C
2r0
.0//, and 0 otherwise. The proof of the following claim is totally

analogous to step 3 on p. 37 of [Druet et al. 2004] with some obvious modifications.

Claim 3. We have Ou� �V�*0, as �!1, in H 1.M/. Moreover, as �!1,

dIg.V�/! 0 and dIg. Ou� �V�/! 0

strongly in H 1.M/0, and

Ig. Ou�/� Ig. Ou� �V�/!E.u/:

We finally observe that if r 00 >0 is also sufficiently small then j.����0�/V� j! 0

as �!1, where �0� is a smooth cutoff function such that �0� � 1 in  x� .B
C

r 00
.0//

and �0� � 0 in Mn x� .B
C

2r 00
.0//. Hence, the statement of Lemma 2.4 holds for any

r0 > 0 sufficiently small, finishing the proof. �

Proof of Theorem 1.3. According to Lemma 2.1, the Palais–Smale sequence fu�g
for I �g is uniformly bounded in H 1.M/. Hence, we can assume that u�*u0 in
H 1.M/, and u�! u0 a.e. in M , for some 0� u0 2H 1.M/. By Lemma 2.2, u0

is a solution to the equations (1-3). Moreover, Ou� D u� �u0 is Palais–Smale for
Ig and satisfies

Ig. Ou�/D I
�
g .u�/� I

1
g .u

0/C o.1/:

If Ou�! 0 in H 1.M/, then the theorem is proved. If Ou�*0 in H 1.M/ but not
strongly, then we apply Lemma 2.4 to obtain a new Palais–Smale sequence f Ou1�g
satisfying

Ig. Ou
1
�/� Ig. Ou�/�ˇ

�
C o.1/D I �g .u�/� I

1
g .u

0/�ˇ�C o.1/;

where ˇ�D K
�2.n�1/
n

2.n�1/
. The term ˇ� appears in this inequality because E.u/� ˇ�
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for any nontrivial solution u 2D1.Rn
C
/ to the equations (1-1). This can be seen

using the Sobolev inequality (1-6).
Now we again have either Ou1� ! 0 in H 1.M/, in which case the theorem is

proved, or we apply Lemma 2.4 to obtain a new Palais–Smale sequence f Ou2�g. The
process follows by induction and stops, by virtue of Lemma 2.3, once we obtain a
Palais–Smale sequence f Oum� g with Ig. Oum� / converging to some ˇ < ˇ�.

We are now left with the proof of (1-7) and the fact that the Uj obtained by
the process above are of the form (1-5). To that end, we can follow the proof of
Lemma 3.3 in [Druet et al. 2004], with some simple changes, to obtain the relation
(1-7) and to prove that the Uj are nonnegative. For the reader’s convenience this is
outlined below.

Claim. The functions u0 and Uj obtained above are nonnegative. Moreover, the
identity (1-7) holds.

Proof. That u0 is nonnegative is straightforward. To prove that the Uj are also
nonnegative, set Ou� D u� �u0 and �j� D 1=R

j
� .

Given integers N 2 Œ1;m� and s 2 Œ0; N � 1�, we will prove that there exist an
integer p and sequences f Qxk� g�2N � @M and f�k� > 0g�2N for each k D 1; : : : ; p,
such that dg.xN� ; Qx

k
� /=�

N
� is bounded and lim�!1 �k�=�

N
� D 0, and such that

(2-20)
Z
�N� .R/n

Sp
kD1
z�k�.R0/

ˇ̌̌̌
Ou� �

sX
jD1

uj� �u
N
�

ˇ̌̌̌ 2n
n�2

dvg D o.1/C �.R
0/

for any R;R0 > 0. Here, �N� .R/ D  xN� .B
C

R�N�
.0//, z�k� .R

0/ D  
Qxk�
.BC
R0�k�

.0//

and �.R0/! 0 as R0!1.
We prove (2-20) by reverse induction on s. It follows from Claim 2 in the proof

of Lemma 2.4 thatZ
�N� .R/

ˇ̌̌̌
Ou� �

N�1X
jD1

uj� �u
N
�

ˇ̌̌̌ 2n
n�2

dvg D o.1/;

so that (2-20) holds for s DN � 1.
Assuming (2-20) holds for some s 2 Œ1; N � 1�, let us prove it does for s� 1.
We first consider the case when dg.xs� ; x

N
� / does not converge to zero as �!1.

In this case, we can assume �N� .R/ \�
s
�.
zR/ D ∅ for any zR > 0. Then after

rescaling we have

(2-21)
Z
�N� .R/n

Sp
kD1
z�k�.R0/

jus� j
2n
n�2 dvg � C

Z
Rn
C
nB
C

zR
.0/

jU sj
2n
n�2 dy:

Since zR > 0 is arbitrary and U s 2 L
2n
n�2 .Rn

C
/, the left side of (2-21) converges to

zero as �!1. Hence, (2-20) still holds replacing s by s� 1.
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Now consider the case when dg.xs� ; x
N
� /! 0 as �!1. According to Claim 2

in the proof of Lemma 2.4, given zR > 0, we haveZ
�s�. zR/

ˇ̌̌̌
Ou� �

sX
jD1

uj�

ˇ̌̌̌ 2n
n�2

dvg D o.1/:

Using the induction hypothesis (2-20), we then conclude thatZ
.�N� .R/n

Sp
kD1
z�k�.R0//\�

s
�. zR/

juN� j
2n
n�2 dvg D o.1/C �.R

0/:

First assume that dg.xs� ; x
N
� /=�

N
� !1. Rescaling by �N� and using coordinates

centered at xN� , it’s not difficult to see that dg.xs� ; x
N
� /=�

s
�!1. Hence we can

assume that �N� .R/\�
s
�.
zR/D∅ for any zR > 0, and we proceed as in the case

when dg.xs� ; x
N
� / does not converge to 0 to conclude that (2-20) holds for s� 1.

If dg.xs� ; x
N
� /=�

N
� does not go to infinity, we can assume that it converges. One

can then check that �s�=�
N
� ! 0. We set QxpC1� D xs� and �pC1� D �s� , so that

�
pC1
� =�N� ! 0 as �!1. Observing thatZ

�N� .R/n
SpC1
kD1

z�k�.R0/

jus� j
2n
n�2 dvg �

Z
Mn�s�.R0/

jus� j
2n
n�2 dvg � �.R

0/;

it follows that (2-20) holds when we replace p by pC 1 and s by s� 1.
This proves (2-20). The above also proves (1-7).
We fix an integer N 2 Œ1;m� and s D 0. Let Qyk� 2 @Rn

C
be such that Qxk� D

 N
xN�
.�N� Qy

k
� /, for k D 1; : : : ; p. For each k, the sequence f Qyk� g�2N is bounded,

so there exists Qyk 2 @Rn
C

such that lim�!1 Qyk� D Qy
k , possibly after taking a

subsequence. We set QX D
Sp

kD1
Qyk and

QuN� .y/D .�
N
� /

n�2
2 OuN� . xN� .�

N
� y// :

It follows from (2-20) that

QuN� ! UN in L
2n
n�2

loc .BCR .0/n
zX/ as �!1:

Therefore we can assume that Qu�! UN a.e. in Rn
C

as �!1.
If we set

Qu0;N� .y/D .�N� /
n�2
2 u0. xN� .�

N
� y//;

it’s easy to prove that

Qu0;N� ! 0 in L
2n
n�2

loc .BCR .0// as �!1:
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Hence, Qu0;N� ! 0 a.e. in Rn
C

as �!1. Setting

vN� .y/D .�
N
� /

n�2
2 uN� . xN� .�

N
� y//;

we see that vN� ! UN a.e. in Rn
C

as � !1. In particular, UN is nonnegative.
This proves the claim. �

Remark 2.5. For the regularity of the Uj we can use [Cherrier 1984, théorème 1].
Although that theorem was established for compact manifolds, we can use the
conformal equivalence between Rn

C
and Bnnfpointg and a removable singularities

theorem (see Lemma 2.7 on p. 1821 of [Almaraz 2011]) to apply it in Bn.
Thus we are able to use the result in [Li and Zhu 1995] to conclude that the Uj

are of the form (1-5), so we can write Uj D U�j ;aj .

This finishes the proof of Theorem 1.3. �
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